

Economics of Equity in Infrastructure Investments

Application to Broadband Expansion and Digital Equity Planning

Digital Inclusion Research Forum, Oct. 13, 2023 Federal Reserve Bank, Dallas

Introduction to HDR

HDR Overview

- Top global engineering and architecture firm
- Plans, designs, builds essential infrastructure (transportation, water, energy, waste, etc.)
- Multidisciplinary broadband services
- HDR Fellowship (supported this research)
- HDR Economics and Finance Group
 - 40+ economists in the U.S. and Canada
 - Conducted hundreds of BCAs and related analyses, using best available information and methods
 - Established Sustainable Value Analysis approach

Agenda

- 1 Background and Overview of BCA
- 2 Introduction to *Weighted* BCA
- 3 Completed Project Examples
- 4 Conceptual Application to Broadband
- 5 Discussion

Infrastructure, Distributional Effects, and Equity

- Dramatic rise in income inequality since 1980s
- Infrastructure has inherent distributional effects
 - Access: Infrastructure serves individuals who have access to it
 - Service quality: Safe and reliable service can vary area
 - Targeted improvements: Some improvements for target groups
 - Barriers: Differences arise among individuals' abilities to pay
 - Externalities of use: Infrastructure can impact non-users
 - Project scale: Large projects are infrequently implemented
 - Budget constraints: Financial constraints limit implementation
 - Cost burden: More people contribute to costs than benefit
- Agencies seek sound, defensible methods to assess equity and distributional impacts
- Key Question: What role can economics play?

Standard BCA Methods

Standard Approach

- Follows federal BCA guidelines
- Analytical focus: "market" value of improvements
- Applied on major projects for decades
 - Build vs. Base Case
 - Benefits and costs over planning horizon
 - Measurable, monetizable
 - Multiple benefit categories
- Standardized methods for different infrastructure
- BCA results and contribution to decisions
 - · Increasingly required in Federal grants
 - Ignores differences in people, such as income
 - BCA provides no input on equity evaluation
 - Distributional analyses => alongside BCA

Elements of Benefit Calculations:

	Scale Factors	Impact Factors	Valuation
Transit (travel time benefits)	# of users	Travel / wait time savings	Value of time per trip
Flood Risk (residences)	# of properties	Depth of damage	Property value
Energy conversion	# of kWh of production	Pollutant emissions per kWh	Value per ton of pollutant
Broadband (labor market)	# of employable pop (over 16)	% increase in job placement	Value of jobs (wages)

Alternative Approach: Weighted BCA

- Theoretically sound framework, similar to BCA
- WBCA incorporates information on the value of projects to people relative to incomes
- Weights are computed based on value of \$ to a person, according to that person's income
- Weights multiply with estimated benefits *B_{ij}* and costs *C_{ik}* to determine weighted net present value (wNPV)

$$wNPV = \sum_{i}^{l} \left[\sum_{j}^{J} w_{i}^{\alpha} \cdot B_{ij} - \sum_{k}^{K} w_{i}^{\alpha} \cdot C_{ik} \right]$$

Project Example – Transit Improvement, Lynn, MA

- Location: Lynn, MA, a northern, suburb of Boston
- Multi-modal improvements
- · Local area is low-income
- Regional median inc.= \$94k
- Benefits differ by mode and affected population
- Source of costs are state and federal grant funding
- Benefit categories: time savings, cost savings, safety, amenities, emissions, O&M

Category	BCA Totals
Travel Time Savings	\$6.52
Vehicle Op. Cost Savings	\$4.46
Safety Benefits	\$1.30
Emissions	\$1.12
Amenity Benefits	\$8.88
O&M Costs	-\$3.47
Total Benefits	\$18.8
Cost	\$24.83
BC Ratio	0.76
NPV	-\$6.0

Note: Net present values, at 7% discount rate

Evaluation of Example Results

- BCA:
 - Negative NPV: it is not a project that people would be willing to pay for
- Weighted BCA:
 - Positive W-NPV: value of benefits to users exceeds value of money raised from taxpayers (and fee payers)
 - Weighted BC ratio > 1 provides compelling case of a positive societal value-for-money
 - Magnitude of differences of weighted benefits versus benefits differs by income
 - Low threshold elasticity (compared to baseline value of 1.2) indicates that these *results are robust*

	BCA	Weighted BCA
BCA Metric	(PV 7% \$M)	(PV 7% W\$M)
Benefits	\$22.3	W\$54.9
Costs	\$28.3	W\$28.3
NPV	-\$6.0	W\$26.6
BC Ratio	0.8	1.9
Threshold Elasticity		0.15

Project Example – Flood Risk Reduction, Marysville, CA

- Potential flood risk to properties (green shaded zone)
- Residential and commercial properties at risk
- Flood damages have been evaluated for several return periods
- Analysis supported a FEMA grant application
- Multiple census tracts
 affected
- Benefit categories: structures, agricultural crops, life loss, O&M response

Benefits Comparison

	Total Damages - BCA		Total Damages - WBCA	
Recurrence Interval (varies in Pre- and Post-)	Pre- Mitigation Damages	Post- Mitigation Damages	Pre- Mitigation Damages	Post- Mitigation Damages
	Annual (\$M)	Annual (\$M)	Annual (\$M)	Annual (\$M)
1	\$5.24	\$3.36	\$21.87	\$14.04
2	\$5.27	\$0.18	\$22.01	\$0.74
3	\$5.61	\$4.87	\$23.42	\$20.33
Total Annualized	\$16.11	\$8.41	\$67.30	\$35.11
Ann. Net Benefits	\$7.7		\$32.2	
PV Benefits	\$106.0		\$444.0	
PV Costs	\$236.6		\$236.6	
BCR	0.45		1.88	
NPV	-\$130.6		\$207.4	

Summary of Research

- Relevant form of distributional analysis (differences: across geographical areas, and targeted to income groups)
- Weights are **evidenced based**, but some details need to be developed
- Weights can be **integrated with results** from standard methods
- Weighted benefits for low-income users are
 substantially higher than standard
- Results can **influence the investment location and type** (e.g. level of protection)
- Research areas: better understand nuances in approach and local agency perspectives

Potential Use Cases:

- Transit: service routes; mode choice
- Roadways: facility expansion, toll road access
- Flood mitigation: neighborhood protection
- Digital Inclusion: benefits of access
- Water: affordability analyses; siting
- Waste management: service provision
- Energy: residential energy efficiency or solar
- Public health facilities: access to services

Data Needs

- Facility / service location & description
- Distribution of incomes / wealth of beneficiaries
- Project (notional) scope and benefits

Exploration – BCA of Broadband Expansion

- Characteristics of program
 - Location characteristics
 - Baseline level of broadband access (speed)
 - Change in level of broadband access
- Scale of impact
 - Determine numbers of persons affected
 - Existing number of users
 - % annual growth in users
 - Characteristics of households
 - Household size
 - Demographics (e.g. % working age, % school age)
 - Current income distribution
- Value of impact
 - Adapt results of economic research
 - Standardize economic valuation parameters

Benefits and Valuation Sources

- BCA models:
 - Census data on beneficiaries
 - Initial valuation parameters
 - Long run trend assumptions
- Distributional analyses:
 - Identify income distributions of affected population
 - Estimate and apply weights
- Sensitivity analyses:
 - Identify key parameters
 - Model uncertainty
 - Assess robustness of results

Benefit Category	Impact	Affected Persons	Sources
Willingness To Pay	"Catch all" measure of value that accounts for improvements in speed, reliability, etc.	Households	Rabbani, Bogulski, Eswaran, Hayes, 2023
Economic development	Increases in higher median household income	Employees (over 16)	Gallardo, and Strover, 2014
Farm profits	Increase in sales, expenditures, and profits	Farmer Households	Kandilov, Kandilov, Liu, Renkow, 2017
Education and Income	Long-range wage growth of access at primary & secondary levels	School children (under 18)	Chen, Mittal, and Sridhar, 2020
Consumer pricing	Annual consumer savings: from \$500 - \$1500 / year per HH	Households	Greenstein and McDevitt, 2012
Property Values	Rural single-family homes sell for 2.5% higher price	Homeowners	Molnar, Savage, & Sicker, 2019; Deller, Whitacre, 2019

Illustrative Results – KS Broadband Acceleration Grants

- Location: Seward County, KS
- Number of households: 250
- Income eligibility (up to ~\$54k)
- Impact: Increase from average 10 to 25 MBps
- WTP higher speed: ~\$31.44 (Rabbani, et al, 2023)
- Capital cost only (state): \$1.19 M
- Weighting parameters factors: $w_i^{\alpha} = \left(\frac{y_{\alpha}}{v_i}\right)^{\epsilon}$
 - Elasticity 1.2
 - Benchmark income: \$108k
 - Avg beneficiary incomes: 2nd quintile (average \$46k)
 - Weight = 2.82

Illustrative Results – ACP Subsidy

- Location: Seward County, KS
- Income eligibility (up to ~\$30k)
- Baseline number of households: 250
- Growth in number of users: 75
 - Baseline cost: \$50 average
 - Program impact: lower cost by \$30/month
 - Valuation: elasticity of demand: -0.5% (Ford, 2021)
- Annual program cost impact (federal): \$0.12 M
- Weighting parameters factors: $w_i^{\alpha} = \left(\frac{y_{\alpha}}{y_i}\right)^{\epsilon}$
 - Elasticity 1.2
 - Benchmark income: \$145k
 - Avg beneficiary incomes: 1st quintile (average \$30k)
 - Weight = 6.1

Comparative BCA and Weighted BCA

Discussion on Application for Broadband

- Would this form of distributional analysis support decisions?
 - If so, where and when, relative to digital equity plans and goals?
 - Is this approach more relevant at federal or state levels?
- What are potential (or perceived) limitations in applications?
 - Data availability?
 - Assumptions in valuation?
 - Viability of alternative based on weights of quantitative impacts (e.g. # of students)?
- Can we identify case studies for an actual demonstration?
 - Which agencies have interests in results and access to data?
 - Are there potential funding sources / contracting options?

Thank you

Contact info:

Chris Behr HDR Principal Economist cbehr@hdrinc.com 301.502.0540 Vienna, VA