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Abstract  
Engel and West (EW, 2005) argue that as the discount factor gets closer to one, present-
value asset pricing models place greater weight on future fundamentals. Consequently, 
current fundamentals have very weak forecasting power and asset prices in these models 
appear to follow approximately a random walk. We connect the Engel-West explanation to 
the studies of long-horizon regressions. As expected, we find that under EW’s assumption 
that fundamentals are I(1) and observable to the econometrician, long-horizon regressions 
generally do not have significant forecasting power when the discount factor is large.  
However, when EW’s assumptions are violated in a particular way, our analytical and 
simulation results show that long-horizon regressions can have substantial power, even when 
the discount factor is close to one and the power of short-horizon regressions is low. One 
example for the substantial power improvement at long horizons is the existence of 
unobservable stationary fundamentals, such as the risk premium, in present-value asset 
pricing models. Consistent with our model’s prediction, we find that the risk premium 
calculated from survey data can forecast exchange rates at long horizons. These results 
suggest that the presence of stationary unobservable fundamentals may have played a large 
role in the power improvement of long-horizon regressions found in empirical studies. 
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1 Introduction

A long-standing puzzle in international finance is the disconnect between nominal exchange rates and macroeco-

nomic fundamentals. Engel and West (2005) argue that this disconnect is consistent with exchange rates being

determined by economic fundamentals. In connection with the Engel-West explanation, we explore the relation-

ship between fundamentals-based exchange rate models, the disconnect puzzle, and the finding that exchange

rate models can forecast exchange rates at long horizons.

Meese and Rogoff’s (1983a, 1983b) seminal papers find that a simple random walk model can perform as

well as various structural and time series exchange rate models based on out-of-sample forecasting accuracy

criteria. While subsequent studies find evidence of exchange rate predictability, most results remain fragile or

quantitatively moderate.1 Engel and West (2005) take a new line of attack on this puzzle. They show that

if the exchange rate is determined as a forward-looking asset price, the models predict that the exchange rate

approximately follows a random walk when the fundamentals are I(1) and the discount factor is large (close to

one). Engel and West (2005) also show that a wide range of exchange rate models can be written in the form of

a present-value asset pricing model, and discount factors estimated from monthly or quarterly data are indeed

close to one. As a result, exchange rate models should not be judged by whether they can predict exchange rates

more accurately than the random walk.2

In this paper, we examine whether exchange rates can be better distinguished from a random walk process

at longer horizons, under the Engel-West explanation (E-W explanation henceforth). The long-horizon pre-

dictability of exchange rates has been an active empirical research topic in the last decade. The underlying

rationale is: “While short-horizon changes tend to be dominated by noise, this noise is apparently averaged out

over time, thus revealing systematic exchange-rate movements that are determined by economic fundamentals.”3

The early claims of success include Mark(1995), Chinn and Meese (1995), and MacDonald and Taylor (1994).

However, these findings have been challenged in later studies. Kilian (1999) finds no long-horizon predictability

after updating the dataset used by Mark (1995). He also shows that the long-horizon predictability in Mark

(1995) could come from the misspecification of the bootstrap method. Berkowitz and Giorgianni (2001) argue

that the long-horizon predictability in Mark (1995) may be driven by the assumption that the exchange rate and

fundamentals are cointegrated.

Recently, Engel, Mark, and West (2007) show that out-of-sample forecasting power of models can be increased

1For instance, see Mark (1995), Groen (2000), Mark and Sul (2001), Kilian and Taylor (2003), Faust, Rogers, and Wright (2003),
Molodtsova and Papell (2009), and Wang and Wu (2008). See Cheung, Chinn and Pascual (2005) for a recent comprehensive study.

2Rossi (2005) gives another example in which exchange rates approximately follow a random walk even if they are determined
by economic fundamentals.

3See Mark (1995).



in long-horizon forecasts, especially when using panel data. Wang and Wu (2008) find long-horizon predictability

of exchange rates in the context of interval forecasting. Campbell (2001) also finds that long-horizon regressions

have power advantages when there is a persistent predictable component in the asset return. More recently,

Mark and Sul (2006) study the same model of Campbell (2001) and find that long-horizon regressions have an

asymptotic power advantage over the short-horizon regressions if the regressor is endogenous.

The focus of this paper is on whether there is some underlying basis for long-horizon predictability of exchange

rates and whether this can be reconciled with the E-W explanation. We study the population R-squared of short-

and long-horizon regressions in the context of a present-value asset pricing model as in Engel and West (2005).

Two situations are considered. First, we assume that economic fundamentals are nonstationary, following Engel

and West (2005). If fundamentals are I(1) and changes of underlying economic variables follow a VAR(p)

process, the theoretical R-squared of long-horizon regressions converges to zero for all time horizons, when

the discount factor approaches one. That is, for a large discount factor, the long-horizon regressions do not

have significant power advantage over a random walk. This is consistent with the E-W explanation and the

intuition is straightforward. According to the E-W explanation, the change of the exchange rate in present-value

models converges (in probability) to a white noise process as the discount factor approaches one, if economic

fundamentals are I(1). In this case, the h-period change of the exchange rate is the sum of h white noises, and

therefore a white noise as well.

The more interesting case is when Engel and West’s (2005) assumptions that fundamentals are I(1) do not

hold, so that some economic fundamentals are I(0) rather than I(1). There are two reasons for us to explore this

case. First, Engel and West (2004) find that while observable fundamentals can account for a sizable fraction of

exchange rate variation, there is still substantial unexplained variation that may be accounted for by unobservable

fundamentals, such as the risk premium in Uncovered Interest Parity (UIP). We calculated this risk premium

from Consensus Survey data and it appears to be stationary. Second, economic fundamentals in some exchange

rate models, such as bilteral output gap and inflation differentials in the Taylor rule model, are theoretically

stationary. In data, evidence of stationarity of these variables are mixed, but it is also well known that unit

root tests often suffer from lower power. Hence, we cannot rule out the possibility that these fundamentals are

stationary.

In contrast to the case with only I(1) fundamentals, the R-squared of short- and long-horizon regressions

no longer converges to zero as the discount factor converges to one. Furthermore, we derive reasonably general

analytical conditions under which long-horizon regressions have more power than short-horizon regressions. A

special case of these conditions is illustrated in a simple example in Engel, Mark, and West (2007), in which

2



a stationary, but persistent, unobservable fundamental brings substantial power improvements in long-horizon

regressions.

To evaluate whether or not these conditions are satisfied in the data, we consider two standard exchange

rate models - the Monetary and Taylor Rule models. Both models include a risk premium, which is a stationary

unobservable fundamental. For seven foreign currency-U.S. dollar exchange rates, we calculate the risk premium

from Consensus Forecasts of exchange rates, assuming the survey data is an appropriate measure of market

expectations. The risk premium and other variables were used to form a dataset of economic fundamentals.

We then estimate model coefficients and the variance-covariance matrix from the fundamentals. The data and

estimated model coefficients are used to simulate the exchange rate for each country. The population R-squared

obtained by simulations at long horizons for several countries is substantially higher than the population R-

squared of corresponding short-horizon regressions.

Our results suggest that stationary unobservable fundamentals, such as the risk premium, may play an

important role in reconciling the E-W explanation and the empirical evidence of long-horizon predictability.

Studies related to this paper include Clarida, Sarno, Taylor, and Valente (2003). They find that the term

structure of forward premia may contain information about the risk premium that is useful for forecasting

exchange rates. Adrian, Etula, and Shin (2009) find that fluctuations in risk premia captured by the variation

in the aggregate balance sheets of financial intermediaries are useful in forecasting exchange rates.4

While this paper focuses on the exchange rate, our results are derived for a general present-value asset pricing

model, hence they can be applied to other asset prices as well. Campbell (2001) studies long-horizon predictability

of stock returns. There is indeed a close analogy of his model to the case with stationary fundamentals of this

paper and this connection is detailed in the appendix.5

The remainder of the paper is organized as follows: Section 2 provides a brief introduction to the Engel-West

explanation. In Section 3, we derive the long-horizon regressions from present-value asset pricing models and

study the power of long-horizon regressions when the discount factor is close to one. Two cases are discussed in

this section: (1) all observable fundamentals are I(1), and (2) some observable and unobservable fundamentals

are I(0). Section 4 presents our simulation results. Section 5 summarizes major findings and concludes.

4See Chen and Tsang (2009) for a recent study along this line of research.
5See Appendix A.1 for details.
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2 Asset Pricing Model and E-W Explanation

Engel and West (2005) show that a wide range of exchange rate models can be written as a special case of linear

present-value asset pricing models, which have a general form of:

st = (1− b)
∞∑

j=0

bjEt (f1,t+j + u1,t+j) + b
∞∑

j=0

bjEt (f2,t+j + u2,t+j) , (1)

where st is the asset price, 0 < b < 1 is the discount factor, {f1,t, f2,t} are observable fundamentals and

{u1,t, u2,t} are unobservable fundamentals. The fundamentals are functions of a vector of economic variables,

{Xt}. For instance, in the Monetary model in Mark (1995), st is the logarithm of the exchange rate and

f1,t = (mt−m∗
t )− (yt− y∗t ), where {mt, yt} and {m∗

t , y
∗
t } are money and output for home and foreign countries,

respectively. To avoid confusion, we call the elements in Xt, for instance mt and yt, economic variables and fi,t

and ui,t fundamentals.

Some well-known applications of the present-value model include Campbell and Shiller (1987, 1988) and West

(1988). In equation (1), the asset price equals the sum of the expected present value of future fundamentals.

Engel and West (2005) demonstrate analytically that if the discount factor b is close to unity, and either (1)

f1,t +u1,t ∼ I(1) and f2,t +u2,t = 0, or (2) f2,t +u2,t ∼ I(1) with f1,t +u1,t unrestricted, then the exchange rate

st approximately follows a random walk.

To develop intuition, consider a simple example where u1,t = f2,t = u2,t = 0. Equation (1) reduces to:

st = (1− b)
∞∑

j=0

bjEt(f1,t+j). (2)

If the fundamental f1,t follows a random walk, it is straightforward from the above equation that st = f1,t, which

means that the exchange rate is also a random walk. However, first differences of the fundamentals are typically

serially correlated in the data. For simplicity, we assume that the first difference of f1,t follows an AR(1) process:

∆f1,t+1 = φ∆f1,t + εt+1, (3)

where |φ| < 1. From equations (2) and (3), we obtain:

∆st+1 =
φ(1− b)
1− bφ

∆f1,t +
1

1− bφ
εt+1. (4)

In equation (4), the first difference of the exchange rate is a weighted average of the first difference of the
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fundamental at time t and “news” arriving at time t + 1. ∆st+1 is serially correlated because ∆f1,t is serially

correlated. However, when b approaches one, the coefficient in front of ∆f1,t converges to zero. As a result,

∆st+1 converges to 1
1−φεt+1, which is simply white noise. The intuition for this result is that more weight is

given to the new information rather than the changes of current fundamentals when the discount factor is large.

Engel and West (2005) show that the discount factor estimated from data is indeed very close to one. They

argue that the exchange rate may be determined by fundamentals, but cannot be distinguished from a random

walk.

3 Long-Horizon Regressions under E-W Explanation

In this section, we drive long-horizon regressions from the linear present-value models studied in Engel and West

(2005). We investigate conditions under which the E-W explanation is consistent with the empirical findings

that economic models can forecast exchange rates at long horizons.

Long-horizon regressions have been widely used to test the efficiency of asset markets.6 A strand of literature

has attempted to test the long-horizon predictability of exchange rates, including Mark (1995), Chinn and Meese

(1995), Kilian (1999) and Berkowitz and Giorgianni (2001). Let st+h−st be the h-period change of the exchange

rate and zt be the deviation of the exchange rate from its long-run equilibrium level. Typically, in-sample or

out-of-sample forecasts of st+h − st from the model:

st+h − st = ch + βhzt + υt+h (5)

are compared with in-sample or out-of-sample forecasts from the random walk model (equation (5) with the

restriction βh = 0).7 If the R-squared of equation (5) increases, or the out-of-sample relative Mean Square

Prediction Error (MSPE) decreases with time horizon h, it is taken as evidence that the exchange rate converges

to its long-run value over time and therefore is predictable at long horizons.

We derive long-horizon regressions from the following linear present-value model:

st = (1− b)
∞∑

j=0

bjEtf1,t+j + b
∞∑

j=0

bjEt(f2,t+j + u2,t+j). (6)

Notice that compared to equation (1), u1t was omitted in the model to simplify the set up. Two notable

exchange rate models in the literature fall under the setup in equation (6): the Monetary model and the Taylor
6See, for instance, Fama and French (1988) and Campbell and Shiller (1988).
7One can also restrict ch = 0 to obtain the driftless random walk model.
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Rule model.8 In the Monetary model,

st = (1− b)
∞∑

j=0

bjEt

(
mt+j −m∗

t+j − γ(yt+j − y∗t+j) + qt+1 − (vt+j − v∗t+j)
)
− b

∞∑
j=1

bjEtρt+j , (7)

where mt and yt are logarithms of the domestic money stock and output, respectively. The superscript ∗

denotes the foreign country. qt ≡ st + p∗t − pt is the real exchange rate, vt is a money demand shock, and

ρt ≡ Etst+1 − st − (it − i∗t ) is the deviation from uncovered interest rate parity. We interpret this deviation as

a risk premium in currency markets. In this model f1,t = mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t ), f2,t = 0, and

u2,t = −ρt.

In the Taylor Rule model,

st = (1− b)
∞∑

j=0

bjEt(pt+j − p∗t+j)− b

∞∑
j=0

bjEt

(
rg(y

g
t+j − y∗gt+j) + rπ(πt+j − π∗t+j) + vt+j − v∗t+j + ρt

)
, (8)

where pt, yg
t and πt are domestic aggregate price, output gap and the inflation rate, respectively, and vt is a

monetary policy shock. In this case f1,t = pt−p∗t , and f2,t+u2,t = −
(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t + ρt

)
.

As shown in the above examples, the fundamentals in equation (6) are linear functions of economic variables.

Collect the economic variables in an n × 1 vector (Xt) and assume that the first difference of Xt follows a

stationary VAR(p) process:

εt = ∆Xt − Φ1∆Xt−1 − ...− Φp∆Xt−p ≡ (In − Φ(L))∆Xt

Etεt+j = 0,∀j > 0 (9)

E(εtε
′

t) = Ω.

Although Xt seemingly contains only I(1) economic variables, our setup also includes cases with stationary

economic variables. In these cases, Xt contains the levels of I(1) variables and the summation of I(0) variables

from negative infinity to time t.

Let α1, α21, α22 be n× 1 coefficient vectors. Throughout the paper, we maintain the assumption that:

f1,t = α
′

1Xt ∼ I(1) (10)

u2,t = α
′

22∆Xt ∼ I(0).

8See Appendix A.2 for details of these two models.
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The assumption that f1,t ∼ I(1) is reasonable and supported by empirical evidence of exchange rate models

studied in the literature. The assumption that u2,t ∼ I(0) is maintained to guarantee that long-horizon regres-

sions are not spurious.9 u2,t is a measure of risk premium in the Monetary and Taylor Rule models. Our survey

data suggests that u2,t is stationary. More details will be given later. For f2,t, two cases are considered:

Case 1.

f2,t = u2,t = 0 or f2,t = α
′

21Xt ∼ I(1) with α21 6= 0 and α22 unrestricted; (11)

Case 2.

f2,t = α
′

21∆Xt ∼ I(0) with f2,t + u2,t 6= 0. (12)

In Case 1, all observable fundamentals (either f1,t or {f1,t, f2,t}) are I(1). Also, f2,t + u2,t is either I(1) or

zero, so Engel and West’s (2005) assumptions are satisfied. Case 2, however, implies that f2,t + u2,t ∼ I(0) 6= 0,

which violates Engel and West’s assumptions. This case is motivated by exchange rate models studied in the

literature and has high empirical relevance. In the Monetary model of equation (7), f2,t equals zero, but the risk

premium (u2,t) is non-zero. In the Taylor Rule model of equation (8), in addition to the risk premium u2,t, f2,t

is also stationary in theory.

We derive long-horizon regressions and discuss the properties of the population R-squared of these regressions,

under both Cases 1 and 2. In both cases, the regressor or equilibrium error is defined as zt = st − f1,t − b
1−bf2,t.

This definition of zt is consistent with most empirical studies on long-horizon regressions, including Mark (1995),

Chinn and Meese (1995), Engel, Mark and West (2007), and Molodtsova and Papell (2009). Furthermore, long-

horizon regressions are often based on an OLS regression with zt as the only regressor. Therefore, the population

R-squared of interest is {Cov (st+h − st, zt)}2 /V ar(zt)V ar(st+h − st). To summarize, for both Cases 1 and 2,

zt ≡ st − f1,t −
b

1− b
f2,t

R2(h) ≡ {Cov (st+h − st, zt)}2

V ar(zt)V ar(st+h − st)
. (13)

9By definition u2,t is unobservable, hence not included as a regressor in long-horizon regressions. If this “left-out” variable is
non-stationary, long-horizon regressions will be spurious.
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Finally, we use following definitions:

F
np×np

≡



Φ1 Φ2 ... Φp−1 Φp

In 0 ... 0 0

0 In ... 0 0
...

... ...
...

...

0 0 ... In 0


, ∆Yt

np×1
≡



∆Xt

∆Xt−1

...

∆Xt−p+1


, vt

np×1
≡



εt

0
...

0


, ι

np×n
≡



In

0
...

0


.

Notice that ∆Yt = F∆Yt−1+vt. Define F (b) ≡ bF (Inp−bF )−1 for b ∈ (0, 1]. F (b) exists because all eigenvalues

of F lie inside the unit circle by the assumption that ∆Xt is a stationary process. Also, let Q ≡ E(vtv
′

t).

3.1 Long-Horizon Regression under Case 1

Proposition 1. Consider the case specified in (11) and fix b < 1. Under the setup in (6), (9), (10) and (13),

(a) For ρh and υt+h defined in the appendix,

st+h − st = ρhzt − α
′

22ι
′

(
h−1∑
k=0

F k

)
∆Yt + υt+h (14)

is a valid regression where (zt,∆Yt) and υt+h do not correlate. Also,

zt = β
′
(b)∆Yt

where β(b) ≡ bια22 + F
′
(b)ια(b) and α(b) ≡ α1 + b

1−bα21 + bα22. Hence, zt is stationary.

(b) For np× 1 vectors Ah,b and {Bk,b}h−1
k=1 defined in the appendix,

1−R2(h)
R2(h)

=

∑h−1
k=0 B

′

k,bQBk,b

A
′
h,bE(∆Yt∆Y′

t)Ah,b
,

As b → 1, Ah,b = O(1) while Bh,b = O(b/(1− b)) for all h < ∞.

Proof. See appendix.

Proposition 1(a) derives long-horizon regressions based on the present-value model and VAR(p) process of

economic variables. Note that in the absence of unobservable economic variables (α22 = 0), the long-horizon

regression in equation (14) reduces to the one that is typically used in empirical studies, for instance, equation
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(5). That is, Proposition 1(a) shows that the use of long-horizon regressions in exchange rate forecasting can be

rationalized by our present-value model in which all economic variables are observable to the econometrician.

We will show shortly that this result also holds in Case 2. Our result generalizes Campbell and Shiller (1987)

and Nason and Rogers (2008), which derive the short-horizon regression (i.e. h = 1) from a present-value model

with only observable fundamentals.

Proposition 1(b) implies that R2(h) → 0 for all time horizons h as b → 1. That is, the predictive power of

long-horizon regressions, as measured by the population R-squared, becomes negligible for all time horizons if

the discount factor is close to one. As a result, economic models have no significant power advantage over the

random walk in forecasting exchange rates even at long horizons. This extends the Engel-West Theorem to the

cases where h > 1.

Example 1. To illustrate the results in Proposition 1, consider a simple example in which f2,t = u2,t = 0,

α1 = 1, and

n = 1 , p = 1

Xt = X1,t , εt = ε1,t

Φ1 = φ1 , Ω = σ2
1 .

This example falls under Case 1, with f1,t = X1,t, zt = st − f1,t. Using Proposition 1:

∆st+1 =
1− b

b
zt +

1
1− bφ1

ε1,t+1. (15)

Comparing equations (15) and (14), ρ1 = 1−b
b and υt+1 = 1

1−bφ1
ε1,t+1. After some algebra, we have:

R2(1) =
ρ2
1V ar(zt)

ρ2
1V ar(zt) + V ar(υt+1)

, where

V ar(zt) =
(

bφ1

1− bφ1

)2
σ2

1

1− φ2
1

, and V ar(υt+1) =
σ2

1

(1− bφ2
1)

. (16)

When the discount factor b → 1, ρ1 → 0 while V ar(zt) and V ar(υt+1) converge to constants. Hence, R2(1) → 0.

For instance, if b = 0.95, ρ1 is approximately equal to 0.05. Assuming φ1 = 0.5, σ2
1 = 1 and using equation (16),

we have R2(1) ≈ 0.001. �

Example 2. Consider the long-horizon regressions for the setup in Example 1. Using Proposition 1 and the
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fact that ρ1 = 1−b
b , we obtain:

ρh = ρ1
1− φh

1

1− φ1
≡ ρ1µh. (17)

This special result was also derived in Berkowitz and Giorgianni (2001). The multiplier µh ≡ 1−φh
1

1−φ1
> 1 increases

monotonically in h and φ1 for φ1 ∈ (0, 1). As a result, ρh is an increasing function of the time horizon h. However,

for a large discount factor, say b = 0.95, the level and increases in ρh are small unless φ1 is unrealistically large.

Even if φ1 = 0.8, a level difficult to justify given the data, limh→∞µh = 5 and limh→∞ρh = 0.26.

Since u2t = 0, Proposition 1 implies that:

R2(h) =
ρ2

hV ar(zt)
ρ2

hV ar(zt) + V ar(υt+h)
. (18)

Using Proposition 1, it is straightforward, albeit tedious, to show that:

υt+h =
φ(1− b)
1− bφ

{εt+1

(
1

φ(1− b)
+

1− φh−1

1− φ

)
+ εt+2

(
1

φ(1− b)
+

1− φh−2

1− φ

)
+ ... + εt+h−1

(
1

φ(1− b)
+ 1
)

+
1

φ(1− b)
εt+h}. (19)

Using equation (19), V ar(υt+h) can be written as:

V ar(υt+h) =
φ2

1(1− b)2σ2
1

(1− bφ1)2


h−1∑
j=1

(
1

φ1(1− b)
+

1− φj
1

1− φ1

)2

+
1

φ2
1(1− b)2

 . (20)

Substituting the expression for V ar(zt) in equation (16) and V ar(υt+h) in equation (20) into equation (18), we

can calculate the population R-squared R2(h).

Proposition 1 and Example 1 show that R2(1) ≈ 0 for a reasonable φ1 and b ≈ 1. To compare R2(h) more

meaningfully across h, we calculate the ratio of R2(h)/R2(1) where h = 1, ..., 16. Figure 1 plots the R-squared

ratios under different AR(1) coefficients (φ1). When ∆f1,t is not very persistent (φ1 = 0.4 for instance), the ratio

is less than one for all horizons h and decreases monotonically with h. When ∆f1,t is more persistent, there is

a hump-shaped relation between the R-squared and time horizon: for some small h’s, long-horizon regressions

have greater power than the short-horizon (i.e. h = 1) regressions, but the power improvement for long-horizon

regressions is limited. The maximum R-squared in the long-horizon regressions is less than twice that in the

short-horizon regression. The power advantage of long-horizon regressions also dies out eventually with the

increase of h. Long-horizon regressions generally have less power than short-horizon regressions when h > 10.

In order to understand the hump-shaped pattern, Figure 2 plots ρh and V ar(υt+h) across h when φ1 = 0.8.
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As predicted by equation (17), ρh increases with the time horizon h, but at a decreasing rate. V ar(υt+h), on the

other hand, increases at an approximately constant rate. ρh increases at a faster rate than the variance of υt+h

at the beginning (for h ≤ 4 in our example). At these horizons, the numerator of R2(h) increases faster than the

denominator and hence R2(h) increases in h. However, the growth rate of var(υt+h) eventually catches up and

exceeds that of ρh as h increases. As a result, R2(h) starts to decline with h. �

In summary, in the absence of unobservable fundamentals (u2t = 0), long-horizon regressions used in empirical

studies are valid regressions in which regressors and error terms are uncorrelated. In the case where observable

fundamentals are I(1) (Case 1), the population R-squared of long-horizon regressions (R2(h)) converges to zero

as the discount factor b converges to 1, for any horizon h. Hence, long-horizon regressions have negligible power

improvements over the random walk for a large discount factor b, consistent with the Engel and West (2005)

prediction. An example shows that if the changes of economic fundamentals are persistent, the power of long-

horizon regressions, although small, displays a hump shape when compared to the power of the short-horizon

regression.

3.2 Long-Horizon Regressions under Case 2

Proposition 2. Consider the case specified in (12) and a fixed b < 1. Under the setup in (6), (9), (10) and

(13),

(a) For a fixed b < 1 and θh and νt+h defined in the appendix,

st+h − st = θhzt − α
′

22ι
′

(
h−1∑
k=0

F k

)
∆Yt + νt+h

is a valid regression where (zt,∆Yt) and νt+h do not correlate. Also,

zt = ω
′
(b)∆Yt

where ω(b) ≡ bι(α22 − b
1−bα21) + F

′
(b)ιη(b) and η(b) ≡ α1 + b(α21 + α22). Hence, zt is stationary.

(b) Set b = 1. For np× 1 vectors Ch and {Dk}h−1
k=0 defined in the appendix,

1−R2(h)
R2(h)

=
∑h−1

k=0 D
′

kQDk

C
′
hE(∆Yt∆Y′

t)Ch
.
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Further, if we define:

Pt+k ≡ Et(f2,t+k + u2,t+k)

Ξ1,t+k ≡ f2,t+k + u2,t+k − Et(f2,t+k + u2,t+k)

Ξ2,t+k ≡ Et+k

 ∞∑
j=0

∆f1,t+k+j + f2,t+k+j + u2,t+k+j

− Et+k−1

 ∞∑
j=0

∆f1,t+k+j + f2,t+k+j + u2,t+k+j

 ,

then,

1−R2(h)
R2(h)

=
V ar

(∑h−1
k=0(Ξ1,t+k − Ξ2,t+k+1)

)
V ar(

∑h−1
k=0 Pt+k)

.

Proof. See appendix.

Propositions 2(a) and 2(b) are analogous to Propositions 1(a) and 1(b), except that R2(h) no longer converges

to zero when b → 1. This highlights the fact that the existence of stationary fundamentals (f2t and u2t) opens

up the possibility of detecting exchange rate predictability in long-horizon regressions even when the discount

factor b is close to one. This is true even when the existence of u2t leads to a misspecification in long-horizon

regressions, where only zt is used as a regressor.

Notice that Pt+k is the time t forecast of f2,t+k + u2,t+k, while Ξ1,t+k and Ξ2,t+k are forecast errors, where

Ξ1,t+k is the forecast error induced by predicting f2,t+k +u2,t+k at time t, and Ξ2,t+k is the forecast error induced

by predicting
∑∞

j=0 ∆f1,t+k+j + f2,t+k+j + u2,t+k+j at time t + k − 1 instead of t + k. Therefore, Proposition

2(b) says that in order for R2(h) to increase with h, the following condition needs to be satisfied:

V ar
(∑h

k=0(Ξ1,t+k − Ξ2,t+k+1)
)

V ar
(∑h−1

k=0(Ξ1,t+k − Ξ2,t+k+1)
) − 1 ≤

V ar(
∑h

k=0 Pt+k)

V ar(
∑h−1

k=0 Pt+k)
− 1. (21)

Therefore, equation (21) says that R-squared increases with the forecasting horizon if the percentage increase

in the variance of the forecast errors is smaller than the percentage increase in the variance of the forecasts.

Intuitively, long-horizon forecasts of exchange rates using fundamentals are useful relative to the random walk

when f2t + u2t is sufficiently persistent, while on the other hand errors induced in the forecasting process are

reasonably small. A corollary of Proposition 2(b) is that as h increases, R2(h) converges to zero as the forecast

errors accumulate and overwhelm the predictable component.

Although equation (21) gives the condition for long-horizon regressions to have more power than the short-
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horizon regressions, the extent of power improvement depends on the structure of the fundamentals. Engel, Mark,

and West (2007) gave a simple example in which long-horizon regressions have substantial power improvement.

The example can be considered as a special case of Proposition 2. We use a similar example here to develop

intuition.

Example 3. Consider the setup in equation (6). Assuming f2,t = 0, we have:

st = (1− b)
∞∑

j=0

bjEtf1,t+j + b
∞∑

j=0

bjEtu2,t+j . (22)

We further assume f1,t follows a random walk10 and u2,t follows an AR(1) process:

f1,t+1 = f1,t + εt+1

u2,t+1 = φu2,t + vt+1,

where |φ| < 1. After some algebra, we obtain:

st = f1,t +
bu2,t

1− bφ
. (23)

In equation (23), the exchange rate is determined by a permanent component f1,t, and a transitory component
bu2,t

1−bφ . Similarly, the h-period change of the exchange rate is also determined by the change in the permanent

component and the change in the transitory component:

st+h − st = f1,t+h − f1,t +
b

1− bφ
(u2,t+h − u2,t)

= Pt+h + Tt+h, (24)

where Pt+h ≡ f1,t+h − f1,t is exchange rate movements due to the change of the permanent component, and

Tt+h ≡ b
1−bφ (u2,t+h − u2,t) is exchange rate movements due to the change of the transitory component. We can

10Allowing f1,t to have a stationary component does not change our results. The stationary, or transitory, component has negligible
effects on long-horizon predictability if f1,t is I(1) and the discount factor is large.
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further elaborate these expressions into:

Pt+h =
h∑

j=1

εt+j

Tt+h =
b

1− bφ

(φh − 1)u2,t +
h−1∑
j=0

φjvt+h−j

 . (25)

It is helpful to recognize that the right-hand-side of long-horizon regressions is proportional to u2,t:

zt = st − f1t =
bu2,t

1− bφ
. (26)

As a result, the term containing u2,t in Tt+h can be predicted by zt. If one regresses Tt+h on u2,t (and similarly

on zt, since zt is proportional to u2,t), the population R-squared equals 1−φh

2 , which increases with time horizon

h with an upper bound of 0.5. When u2,t is very persistent (φ is close to one), Tt+1 is difficult to predict at

the short horizon because the R-squared ( 1−φ
2 ) of the short-horizon regression is small when φ is close to one.

However, it converges to 0.5 as h →∞. In this case, the transitory part Tt+h is helpful for finding long-horizon

predictability. �

In short, Proposition 2 and Example 3 show that when f2t + u2t is stationary, but persistent, the E-W

explanation is consistent with the finding that exchange rate models can forecast exchange rates at long- but not

short-horizons.

4 Simulations

Proposition 2 opens up the possibility of finding a non-trivial R-squared in long-horizon regressions even when the

discount factor b is close to one. The power of long-horizon regressions depends on the structure of the underlying

economic variables. Different parameter values give rise to different degrees of long-horizon predictability. We

explore this issue by simulating two standard models in the literature: the Monetary and Taylor Rule models.

In the Monetary model with stationary fundamentals of equation (7), the matrix ∆Xt is defined as:

∆Xt ≡
[

∆mt ∆m∗
t ∆yt ∆y∗t ∆qt ∆vt ∆v∗t ρt

]
. (27)

The stationary fundamental in this model is u2t = −ρt, which is typically unobservable to the econometrician.

14



The risk premium equals:

ρt = Em
t st+1 − st − (ft − st), (28)

where Em
t st+1 is the market expectation of the exchange rate at time t + 1, st is the spot exchange rate, and ft

is the forward exchange rate.

The risk premium is unobservable because the market expectation of the exchange rate is typically unob-

servable to the econometrician. For our exercise, we assume that expectations are formed as in the surveys.

That is, we calculate the risk premium from survey data (Consensus Forecasts) by assuming that the survey

data is a correct measure of market expectations of the exchange rate. 3-month forecasts of the exchange rate

are available for 8 countries: Canada, Denmark, Germany, Japan, Norway, Switzerland, UK, and US during

1989Q4-2007Q2.11 For each country, ρt is calculated from equation (28) with Em
t st+1 replaced by 3-month

forecasts of the exchange rate. Figure 3 shows the risk premium that is calculated using the survey data. The

risk premium appears to be stationary in the plot. Using the Augmented Dickey-Fuller test, we reject the unit

root hypothesis for the risk premium at a 1% significance level for all exchange rates (Table 1).

Most remaining data are obtained from the G10+ dataset provided by Haver Analytics. The money demand

shock vt is recovered from the money demand function:

mt − pt = α + γyt + βit + vt. (29)

The money stock mt is the seasonally adjusted M2 for all countries except Japan, for which it is M2 plus CDs.12

pt is the CPI index and yt is GDP. The short-term nominal interest rate is measured using 3-month treasure bill

rate in Canada and the US, and three-month interbank offer rate for Denmark, Germany, Norway, Switzerland,

and the UK. The short-term interest rate in Japan is measured using the 3-month Certificate of Deposit (Gensaki)

rate.

We cannot reject the unit root hypothesis for mt, pt, yt, and it and the null hypothesis that these variables

are not cointegrated at the 5% significance level for most countries. We proceed to take first differences when

estimating (29).13 The OLS regression errors are recovered as ∆vt. Together with other economic variables, we

build ∆Xt and estimate a VAR(1) process for ∆Xt.14 The coefficient matrix and the variance-covariance matrix
11See Appendix A.4.2 for more details about the data.
12Norway’s M2 data is from International Financial Statistics and seasonally adjusted using EViews.
13Using the Augmented Dickey-Fuller test with a constant and time trend, we fail to reject unit roots for mt, pt, yt, and it at

various lags for most countries. Using the same test, we fail to reject the null hypothesis that mt, pt, yt, and it are not cointegrated
at a 1% significance level for all countries.

14We restrict the lag length in the VAR to 1 due to the short sample size and the large number of parameters that need to be
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of residuals are used to simulate exchange rates with b = 0.97 and this process is detailed in Appendix A.4. Long-

horizon regressions in equation (5) are estimated with the simulated exchange rate data, where the deviation of the

exchange rate from its long-run equilibrium level is defined as zt = st − [mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t )].

Figure 4(a) shows R2(h) at various horizons for different countries. Two interesting findings are noted. First,

the R-squared is generally small in the short-horizon regression: it is about 0.05 or less in 5 out of 7 countries.

Second, in 6 out of 7 countries, R2(h) displays a hump shape across h. In some countries, the increase of R2(h)

across h is substantial. It rises from about 0.07 to more than 0.3 for Germany and from about 0.11 to 0.28 for

Switzerland. Our results confirm the findings in Proposition 2 that the population R-squared does not converge

to zero even when the discount factor approaches one, as long as f2,t and u2,t are stationary. The hump shape

of R2(h) supports the notion that long-horizon predictability can exist even when short-horizon predictability is

lacking.

In a robustness check, we set up the simulation with cross-country differences of economic variables entering

∆Xt:

∆Xt =
[

∆(mt −m∗
t ) ∆(yt − y∗t ) ∆qt ∆(vt − v∗t ) ρt

]
.

We estimate a VAR(1) process for ∆Xt and simulate exchange rates in the same way as before. Simulation

results are reported in Figure 4(b). The shapes of the R2(h)’s are qualitatively similar to those found in the

Monetary model, though the R2(h) for Germany is significantly larger than before.

Next, the Taylor Rule model in equation (8) is simulated. In this example, f1,t = pt − p∗t and f2,t + u2,t =

−
(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t + ρt

)
. Data exhibits strong evidence that pt and p∗t are I(1) and ρt is

I(0). Unit root test results for other variables, however, are mixed. As previously mentioned, it may be difficult

to distinguish between an I(1) process and an I(0), but persistent, process. We follow our setup in Section 3.2

and assume that these variables are also I(0).

Following the definition of ∆Xt in Section 3.2, we have:

∆Xt =
[
yg

t yg∗
t πt π∗t vt v∗t ρt

]
. (30)

Notice that since pt and p∗t are logarithms of prices, ∆pt and ∆p∗t are the same as πt and π∗t . So we do not

include ∆pt and ∆p∗t in ∆Xt. GDP gaps yg
t and yg∗

t are quadratically detrended GDP.15 vt and v∗t are residuals

estimated.
15Using other detrending methods, such as the H-P filter, does not change our results qualitatively.
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of regressing the policy rate on the output gap and CPI inflation in each country. We estimate a VAR(1) process

for ∆Xt. The coefficient matrix and variance-covariance matrix of residuals are used to simulate exchange rates.

zt in long-horizon regressions is defined in four different ways, depending on the specification of f2,t:

• Case 1: zt = st − pt + p∗t − b
1−b

(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t + ρt

)
;

• Case 2(a): zt = st − pt + p∗t − b
1−b

(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t )

)
;

• Case 2(b): zt = st − pt + p∗t − b
1−b

(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t

)
• Case 3: zt = st − pt + p∗t .

These four cases differ in terms of how the stationary fundamental f2,t is defined. For instance, Case 2(a)

sets f2,t = −
(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t )

)
and u2,t = − (vt − v∗t + ρt), a case considered by Molodtsova and

Papell (2009). In Case 3, (u2,t = −
(
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t + ρt

)
) is used in studies of long-run

Purchasing Power Parity (PPP), for instance, Chinn and Meese (1995).

Figure 5 shows simulation results for each case. We notice several interesting findings in the long-horizon

regressions:

• As in the Monetary model, R2(h) is small (less than 0.1) in most short-horizon regressions.

• In most cases, the long-horizon regressions have much larger R2(h) than the short-horizon regressions for

some time horizon h > 1, in particular for Cases 2(b) and 3.

• Case 1 performs the best in all countries at the short horizon. This is intuitive as f2t includes all stationary

fundamentals, leaving nothing unobserved by the econometrician.

• At very long horizons, the R-squared remains relative high in the Taylor Rule model compared to that in

the Monetary model. This is because the stationary component f2t + u2t is very persistent in the Taylor

Rule model. Because this simulation is simply an illustration of the long-horizon predictability of Taylor

Rule fundamentals, we shy away from the fact that some fundamentals are borderline non-stationary in

the data. Simulation results come close to what we find in the Monetary model if, say, ∆yg
t and ∆yg∗

t are

used in f2t instead of their levels.

5 Conclusion

Engel and West (2005) propose an explanation to Meese and Rogoff’s (1983a) finding that exchange rate models

cannot forecast exchange rates better than the random walk. With a simple and reasonable modification to their
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nonstationarity assumption about economic fundamentals, we find that the E-W explanation is also consistent

with the finding that exchange rate models can forecast exchange rates at long horizons. When we allow

stationary, and potentially unobservable, fundamentals in the present-value asset pricing models studied in Engel

and West (2005), the population R-squared of long-horizon regressions can increase substantially although the

R-squared is close to zero in the short-horizon regression. A potential candidate for the stationary fundamental

is the risk premium. We calculate the risk premium from survey data and find strong evidence of stationarity.

The risk premium, along with other fundamentals, and the model coefficients estimated from the data are used to

simulate exchange rates from two standard exchange rate models. The fundamentals can forecast the simulated

exchange rates at long horizons, but not at the short one.

Our results suggest that the long-horizon predictability of the exchange rate, which has been found in the

literature, may come from some stationary unobservable fundamentals, such as the risk premium. If exchange

rate predictability is coming from the risk premium, perhaps panel estimation would perform better since there

may be a common component to the risk premium across dollar exchange rates. Groen (2000) and Mark and

Sul (2001) find exchange rate predictability by using panel data. Rogoff and Stavrakeva (2008) find forecast

improvement after allowing for common cross-country shocks in their panel forecasting specification, although

the improvement is not entirely robust to the forecast window.

For simplicity, we only consider a linear model. Incorporating other features, such as nonlinearity, has also

been found to be successful in forecasting exchange rates more accurately. For instance, Kilian and Taylor (2003)

find strong evidence of predictability at horizons of 2 to 3 years, but not at shorter horizons. Faust, Rogers and

Wright (2003) and Molodtsova, Nikolsko-Rzhevskyy and Papell (2008) also find exchange rate predictability

using real-time, but not revised, data. Engel and West (2005) and Chen, Rogoff, and Rossi (2008) find the

connection between exchange rates and fundamentals in the opposite direction: exchange rates are helpful to

forecast fundamentals. Further empirical research along these lines may be fruitful.

In this paper, we do not study the case of a finite sample. In small samples, long-horizon regressions may have

serious size distortions when asymptotic critical values are used. For instance, see Mark (1995) and Campbell

(2001). It is not clear whether the power advantage of the long-horizon regressions will remain after size is

corrected. We also only consider a less general case than Engel and West (2005). ∆Xt is assumed to follow

a VAR(p) process in this paper while Engel and West (2005) use an ARMA (or equivalently MA(∞)) process.

Our setup does not allow Xt to include stationary or conintegrated variables. The reason to consider a less

general setup in this paper is purely technical. We acknowledge that it is desirable to extend our results to a

more general setup.
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Table 1: Unit Root Tests for the Risk Premium

Canada Denmark Germany Japan Norway Switzerland UK
ADF test with constant and time trend -7.552 -7.535 -8.451 -6.982 -8.842 -7.916 -7.368
ADF test with constant only -8.657 -5.006 -5.599 -5.133 -5.669 -5.321 -7.201

Note:
–Entries are Augmented Dicky-Fuller t-statistics. The unit root hypothesis is rejected at a 99% confidence level in all cases.
–4 lags are included in the above tests. The results do not change qualitatively with the number of lags.

Figure 1: Asymptotic R-squared with AR(1) Fundamental
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The R-squared for horizons greater than 1 is normalized by the short-horizon R-squared (R2(1)).
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Figure 2: ρh and σ2
νt+h

at Different Time Horizons
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Figure 3: Exchange Rate Risk Premium Calculated From Survey Data

0.0500

0.1000

0.1500

‐0.1000

‐0.0500

0.0000

89
04

90
02

90
04

91
02

91
04

92
02

92
04

93
02

93
04

94
02

94
04

95
02

95
04

96
02

96
04

97
02

97
04

98
02

98
04

99
02

99
04

00
02

00
04

01
02

01
04

02
02

02
04

03
02

03
04

04
02

04
04

05
02

05
04

06
02

06
04

07
02

Canada Denmark Germany Japan Norway Switzerland UK

20



Figure 4: Population R-squared with VAR(1) Fundamental: Monetary Model
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(a) Monetary Model 1
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(b) Monetary Model 2

–Figure 4(a): ∆Xt ≡
ˆ

∆mt ∆m∗
t ∆yt ∆y∗t ∆qt ∆vt ∆v∗t ρt

˜
.

–Figure 4(b): ∆Xt =
ˆ

∆(mt −m∗
t ) ∆(yt − y∗t ) ∆qt ∆(vt − v∗t ) ρt

˜
.

21



Figure 5: Population R-squared with VAR(1) Fundamental: Taylor Rule Model
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(a) Case 1
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(b) Case 2(a)
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(c) Case 2(b)
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(d) Case 3

–Case 1: zt = st − pt + p∗t −
b

1−b

ˆ
rg(yg

t − y∗g
t ) + rπ(πt − π∗t ) + vt − v∗t + ρt

˜
–Case 2(a): zt = st − pt + p∗t −

b
1−b

ˆ
rg(yg

t − y∗g
t ) + rπ(πt − π∗t )

˜
–Case 2(b): zt = st − pt + p∗t −

b
1−b

ˆ
rg(yg

t − y∗g
t ) + rπ(πt − π∗t ) + vt − v∗t

˜
–Case 3: zt = st − pt + p∗t .
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APPENDIX

A.1 Connection with Campbell (2001)

In this section, we draw the analogy between Campbell’s (2001) long-horizon exercise and Engel, Mark, and

West’s (EMW, 2007) long-horizon exercise that we use in Section 3.2.

A useful starting place is to notice the close analogy of the Campbell-Shiller log linearization of the stock

price model to the EMW log linearization of the exchange rate model. Take equation (2) of Campbell and Shiller

(1988):

rt+1 = k + (1− ρ)dt + ρpt+1 − pt, (A.1.1)

where dt is the log of dividends, and pt is the log of the stock price. This is exactly equation (2’), but we have

rearranged and canceled terms on the right-hand side. We have also changed the notation on the left-hand side

to the one used in Campbell (2001).

In Campbell (2001), xt is defined by λxt ≡ Etrt+1. So from equation (A.1.1) we have:

λxt = k + (1− ρ)dt + ρEtpt+1 − pt. (A.1.2)

We can rewrite this equation (dropping the intercept for convenience) as:

pt = (1− ρ)dt + ρEtpt+1 − λxt. (A.1.3)

Now compare to Example 3 in Section 3.2:

st = (1− b)f1,t + bEtst+1 + bu2,t. (A.1.4)

Here is the mapping of notations from equation (A.1.3) of Campbell to equation (A.1.4) of EMW:

Table 2: Mapping of Campbell to EMW

Campbell (2001) pt dt −λxt ρ
EMW (2007) st f1,t bu2,t b
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Campbell (2001) assumes that xt is stationary and follows an AR(1) process:

xt+1 = φxt + ut+1. (A.1.5)

Campbell (2001) closes his model by modeling rt+1:

rt+1 − Etrt+1 = vt+1, (A.1.6)

where vt+1 is the expectation error and possibly correlated with ut+1. Comparing the above equation with

(A.1.1), we have:

pt+1 − Etpt+1 = vt+1/ρ. (A.1.7)

EMW (2007) models u2,t the same way as Campbell (2001) models xt

u2,t+1 = φu2,t + ut+1. (A.1.8)

They call u2,t the risk premium, which is unobservable to the econometrician. This interpretation is consistent

with the Monetary model. f1,t is assumed to be a random walk:

f1,t+1 = f1,t + εt+1. (A.1.9)

Substituting equations (A.1.8) and (A.1.9) into (A.1.4), we have:

st+1 − Etst+1 = εt+1 +
b

1− bφ
ut+1. (A.1.10)

So we have that εt+1+ b
1−bφut+1 is analogous to vt+1/ρ in equation (A.1.7). Note that because EMW assume εt+1

and ut+1 are uncorrelated, then EMW’s εt+1 + b
1−bφut+1 (analogous to Campbell’s vt+1) is necessarily correlated

with EMW’s ut+1 (analogous to Campbell’s ut+1.) Mark and Sul (2006) find that long-horizon regressions

have power advantage over the short-horizon regression when the regressor is endogenous (ut+1 and vt+1 are

correlated.) In this example, we show that the endogeneity exists under EMW’s setup.

It is useful to recognize that the long-horizon regression that Campbell simulates does not require a model of

the stochastic process of dt (which is f1,t in EMW.) All he needs to do is model (ex-post returns) the ex-ante risk
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premium, λxt. The only assumption Campbell actually makes is on the stochastic process of the risk premium,

and it is the same as in EMW. Campbell (2001) implicitly assumes that the change in dt is stationary. So,

Campbell’s simulations are consistent with any I(1) or I(0) data generating process for dt. As we will now note,

EMW’s long-horizon regression does require a model of their f1,t (which is analogous to Campbells dt), because

their simulations require that we be able to solve the model for st, or at least st+1 − st.

Next, we turn to the long-horizon regressions, which appear to be different. Campbell’s long-horizon regression

regresses rt+1 + ... + rt+k on xt, while EMW regress st+k − st on f1,t − st. While these seem to be completely

different regressions, under the assumptions made about the stochastic processes, they are in fact very similar.

First, note that under the assumptions of EMW, we have:

f1,t − st = − b

1− bφ
u2,t.

So, EMW’s r.h.s. variable in the long-horizon regression, f1,t − st, is just proportional to their risk premium,

−bu2,t. Likewise, Campbell’s r.h.s. variable, xt, is just proportional to his risk premium, λxt. If EMW had run

the same regression for exchange rates as Campbell does for stock prices, then, their r.h.s. variable would be

(1− bφ)(f1,t − st), which is analogous to Campbell’s r.h.s. variable, xt, because Campbell normalizes λ to one.

What is different is the dependent variable. From equation (A.1.1), we have:

rt+1 + ... + rt+k = (1− ρ)dt + ρpt+1 − pt + ... + (1− ρ)dt+k−1 + ρpt+k − pt+k−1

= pt+k − pt + (ρ− 1) [pt+k − dt+k−1 + ... + pt+1 − dt] . (A.1.11)

The l.h.s. variable in EMW would be, by analogy to equation (A.1.11) above

st+k − st + (b− 1) [st+k − f1,t+k−1 + ... + st+1 − f1,t] . (A.1.12)

It is straightforward that:

st+k − st + (b− 1) [st+k − f1,t+k−1 + ... + st+1 − f1,t]

= st+k − st + (b− 1) [st+k − st − f1,t+k−1 + ... + st+1 − f1,t + st]

= b(st+k − st) + (b− 1)
k−1∑
j=0

(st+j − f1,t+j). (A.1.13)

In short, EMW’s long-horizon regression regresses st+k − st on f1,t − st, but if they had followed the Campbell
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methodology, they would regress b(st+k − st) + (b− 1)
∑k−1

j=0 (st+j − f1,t+j) on (1− bφ)(f1,t − st). Note that the

two methodologies are very similar for b close to one.

A.2 Exchange Rate Models

A.2.1 Monetary Model

Assume the money market clearing condition in the home country is:

mt = pt + γyt − αit + vt,

where mt is the log of the money supply, pt is the log of the aggregate price, it is the nominal interest rate, yt

is the log of output, and vt is a money demand shock. A symmetric condition holds in the foreign country and

we use an asterisk in subscript to denote variables in the foreign country. Subtracting foreign money market

clearing condition from the home, we have:

it − i∗t =
1
α

[−(mt −m∗
t ) + (pt − p∗t ) + γ(yt − y∗t ) + (vt − v∗t )] . (A.2.1)

The nominal exchange rate is equal to its purchasing power value plus the real exchange rate:

st = pt − p∗t + qt. (A.2.2)

The uncovered interest rate parity condition in financial market takes the form

Etst+1 − st = it − i∗t + ρt, (A.2.3)

where ρt is the uncovered interest rate parity shock. Substituting equations (A.2.1) and (A.2.2) into (A.2.3), we

have:

st = (1− b) [mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t )]− bρt + bEtst+1, (A.2.4)
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where b = α/(1 + α). Solving st recursively and applying the “no-bubbles” condition, we have:

st = Et

(1− b)
∞∑

j=0

bj
[
mt+j −m∗

t+1 − γ(yt+j − y∗t+1) + qt+1 − (vt+j − v∗t+j)
]
− b

∞∑
j=1

bjρt+j

 . (A.2.5)

In the standard Monetary model, such as Mark (1999), purchasing power parity (qt = 0) and uncovered

interest rate parity hold (ρt = 0). Furthermore, it is assumed that the money demand shock is zero (vt = v∗t = 0)

and γ = 1. Equation (A.2.5) then reduces to:

st = Et

(1− b)
∞∑

j=0

bj
(
mt+j −m∗

t+j − (yt+j − y∗t+j)
) .

If we release the above assumptions and allow both observable and unobservable fundamentals in the model,

f1t = mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t ), u1t = 0, f2t = 0, and u2t = −ρt in this example. Assume the risk

premium ρt is stationary. By our definition of the error correction term zt:

zt ≡ st − f1t = st − (mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t )) (A.2.6)

= pt − p∗t − (mt −m∗
t ) + γ(yt − y∗t ) + vt − v∗t . (A.2.7)

In the second part of the above equation, we replace st − qt with pt − p∗t . If we assume purchasing power parity

(qt = 0), the error correction term becomes:

zt ≡ st − f1t = st − (mt −m∗
t − γ(yt − y∗t )− (vt − v∗t )) . (A.2.8)

A.2.2 Taylor Rule Model

We follow Engel and West (2005) to assume that both countries follow the Taylor Rule and the foreign country

targets the exchange rate in its Taylor Rule. The interest rate differential is:

it − i∗t = rs(st − s̄∗t ) + rg(y
g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t , (A.2.9)
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where s̄∗t is the targeted exchange rate. Assume that monetary authorities target the PPP level of the exchange

rate: s̄∗t = pt − p∗t . Substituting this condition and the interest rate differential of the UIP condition, we have:

st = (1− b)(pt − p∗t )− b
[
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t

]
− bρt + bEtst+1, (A.2.10)

where b = 1
1+rs

. Comparing to our models with both observable and unobservable fundamentals, in this example,

f1t = pt−p∗t , u1t = 0, and f2t+u2t = −
[
rg(y

g
t − y∗gt ) + rπ(πt − π∗t ) + vt − v∗t + ρt

]
. Under the condition that f1t

and f2t are I(1) and ρt is I(0), st, f1t, and f2t are cointegrated with the conintegrating vector of (1 − 1 − b
1−b ).

The error correction term is zt ≡ st − f1t − b
1−bf2t.

A.3 Proof of Propositions

Proof of 1(a). First note that using equation(6) and the definition of α(b), we have:

zt = bu2t + α
′
(b)

∞∑
j=1

bjEt∆Xt+j . (A.3.1)

Notice that:

∆Yt+j = F j∆Yt + ξt+j (A.3.2)

ξt+j ≡
j∑

i=1

F j−ivt+i.

Hence, Et∆Xt+j = ι
′
F j∆Yt, and

zt = bα
′

22ι
′
∆Yt + α

′
(b)ι

′

 ∞∑
j=1

bjF j

∆Yt

= β
′
(b)∆Yt.

For b < 1, zt is stationary because ∆Yt is stationary.

Now consider the one-step-ahead regression. Manipulations of equation (6) yield:

∆st+1 = ∆f1t +
b

1− b
∆f2t + α

′
(b)

∞∑
j=0

bj (Et+1∆Xt+1+j − Et∆Xt+j) .
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Equation (A9) of Engel and West (2005) shows that:

∞∑
j=0

bj (Et+1∆Xt+1+j − Et∆Xt+1+j) = (In − Φ(b))−1εt+1.

Substituting this and (A.3.1) into the expression for ∆st+1, we have:

∆st+1 = α
′
(b)∆Xt − bu2t + α

′
(b)


∞∑

j=0

bj (Et∆Xt+1+j − Et∆Xt+j) + (In − Φ(b))−1εt+1


=

1− b

b
α

′
(b)

∞∑
j=1

bjEt∆Xt+j − bu2t + α
′
(b)(In − Φ(b))−1εt+1

=
1− b

b
zt − u2t + α

′
(b)(In − Φ(b))−1εt+1.

Define the following matrices:

Γ
′

h(b)
n×nh

≡
[
(In − Φ(b))−1, ..., (In − Φ(b))−1

]
, εt,h

nh×1

≡
[
ε

′

t+1, ..., ε
′

t+h

]′
.

Then, by iterating the one-step-ahead regression h times, we have:

st+h − st =
1− b

b

h−1∑
k=0

zt+k −
h−1∑
k=0

u2t+k + α
′
(b)Γ

′

h(b)εt,h. (A.3.3)

Using (A.3.2) and the fact that for b < 1, β(b)β
′
(b) is non-singular, we obtain:

zt+k = β
′
(b)∆Yt+k

= β
′
(b)
(
F k∆Yt + ξt+k

)
= β

′
(b)F k(β(b)β

′
(b))−1β(b)zt + β

′
(b)ξt+k.

After some straightforward, but tedious, calculations,

h−1∑
k=0

ξt+k = F
′

hεt,h, F
′

h
np×nh

≡
[ ∑h−2

j=0 F jι
∑h−3

j=0 F jι ...
∑1

j=0 F jι Inpι 0

]
.

32



Plugging these expressions into (A.3.3), we have:

st+h − st =
1− b

b
β

′
(b)

(
h−1∑
k=0

F k

)(
β(b)β

′
(b)
)−1

β
′
(b)zt +

1− b

b
β

′
(b)

h−1∑
k=0

ξt+k − α
′

22ι
′

h−1∑
k=0

(
F k∆Yt + ξt+k

)
+ β

′
(b)Γ

′

h(b)εt,h

≡ ρhzt − α
′

22ι
′

(
h−1∑
k=0

F k

)
∆Yt + υt+h,

where

ρh ≡ 1− b

b
β

′
(b)

(
h−1∑
k=0

F k

)(
β(b)β

′
(b)
)−1

β
′
(b)

υt+h ≡
{(

1− b

b
β

′
(b)− α

′

22ι
′
)

F
′

h + α
′
(b)Γ

′

h(b)
}

εt,h.

�

Proof of 1(b).

Because E∆Xt = 0 and E(st+h − st) = Ezt = 0, we have R2(h) = {E(st+h−st)zt}2
Ez2

t E(st+h−st)2
. First, consider the

numerator. Using zt = β
′
(b)∆Yt and re-arranging, we have:

st+h − st =
{

1− b

b
β

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
∆Yt + υt+h.

Then,

{E(st+h − st)zt}2 =
{

1− b

b
β

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
E(∆Yt∆Y

′

t)β(b)β
′
(b)E(∆Yt∆Y

′

t)

(
h−1∑
k=0

F
′k

){
1− b

b
β(b)− ια22

}

= Ez2
t

{
1− b

b
β

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
E(∆Yt∆Y

′

t)

(
h−1∑
k=0

F
′k

){
1− b

b
β(b)− ια22

}
,

where the last equality is due to the fact that E2zt = β
′
(b)E(∆Yt∆Y

′

t)β(b) and (β(b)β
′
(b))−1 exists for b < 1.

Now define:

Ah,b ≡

(
h−1∑
k=0

F
′k

){
1− b

b
β(b)− ια22

}
. (A.3.4)
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Then, we have:

{E(st+h − st)zt}2 = Ez2
t A

′

h,bE(∆Yt∆Y
′

t)Ah,b

Ah,b
b→1→

(
h−1∑
k=0

F
′k

){
F

′
(b)ια21 − ια22

}
= O(1).

Next, consider the denominator:

E(st+h − st)2 =
{

1− b

b
β

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
E(∆Yt∆Y

′

t)

(
h−1∑
k=0

F
′k

){
1− b

b
β(b)− ια22

}
+ Eυ2

t+h

= A
′

h,bE(∆Yt∆Y
′

t)Ah,b + Eυ2
t+h

Eυ2
t+h =

{(
1− b

b
β

′
(b)− α

′

22ι
′
)

F
′

h + α
′
(b)Γ

′

h(b)
}

Ω⊗ Inh

{
Fh

(
1− b

b
β(b)− ια22

)
+ Γh(b)α(b)

}
,

where ⊗ denotes the Kronecker product. Using the definitions of Fh and Γh(b), and the fact that Q = ιΩι
′
and

ι
′
ι = In, we have:

Eυ2
t+h =

h−1∑
k=0


(

1− b

b
β

′
(b)− α

′

22ι
′
)k−1∑

j=0

F j

+ α
′
(b)(In − Φ(b))−1ι

′

Q


k−1∑

j=0

F
′j

(1− b

b
β(b)− ια22

)
+ ι(In − Φ

′
(b))−1α(b)

 .

Define:

Bk,b ≡


k−1∑

j=0

F
′j

(1− b

b
β(b)− ια22

)
+ ι(In − Φ

′
(b))−1α(b)

 . (A.3.5)

Then, we have:

E(st+h − st)2 = A
′

h,bE(∆Yt∆Y
′

t)Ah,b +
h−1∑
k=0

B
′

k,bQBk,b,

and

1− b

b
Bk,b

b→1→ ι(In − Φ
′
(1))−1α21

= O(1).
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Putting the numerator and denominator together, we have:

1
R2(h)

− 1 =
E(st+h − st)2

{E(st+h − st)zt}2 /Ez2
t

− 1

=

∑h−1
k=0 B

′

k,bQBk,b

A
′
h,bE(∆Yt∆Y′

t)Ah,b

�

Proof of 2(a).

The proof of Proposition 2(a) is similar to the proof of Proposition 1(a), but there are some critical differences.

First, notice that using the definition of η(b), we have:

zt =
−b2

1− b
f2t + bu2t + η

′
(b)

∞∑
j=1

bjEt∆Xt+j . (A.3.6)

Again using the fact that Et∆Xt+j = ι
′
F j∆Yt, we have:

zt = b

(
α

′

22 −
b

1− b
α

′

21

)
ι
′
∆Yt + η

′
(b)ι

′

 ∞∑
j=1

bjF j

∆Yt

= ω
′
(b)∆Yt.

For b < 1, zt is stationary because ∆Yt is stationary.

Using the same mechanics as the derivation for the one-step-ahead regression in Proposition 1(a), it can be

shown that:

∆st+1 =
1− b

b
zt − u2t + η

′
(b)(In − Φ(b))−1εt+1.

Notice that the key difference between propositions 1(a) and 2(a) lies in the difference between α(b), β(b) and

η(b), ω(b). By iterating the one-step-ahead regression ahead h times, we have:

st+h − st =
1− b

b

h−1∑
k=0

zt+k −
h−1∑
k=0

u2t+k + η
′
(b)Γ

′

h(b)εt,h. (A.3.7)
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Again, following the same mechanics as in Proposition 1(a), we have:

zt+k = ω
′
(b)F k(ω(b)ω

′
(b))−1ω(b)zt + ω

′
(b)ξt+k.

Plugging this into (A.3.7), we have:

st+h − st =
1− b

b
ω

′
(b)

(
h−1∑
k=0

F k

)(
ω(b)ω

′
(b)
)−1

ω
′
(b)zt +

1− b

b
ω

′
(b)

h−1∑
k=0

ξt+k − α
′

22ι
′

h−1∑
k=0

(
F k∆Yt + ξt+k

)
+ η

′
(b)Γ

′

h(b)εt,h

≡ θhzt − α
′

22ι
′

(
h−1∑
k=0

F k

)
∆Yt + νt+h,

where

θh ≡ 1− b

b
ω

′
(b)

(
h−1∑
k=0

F k

)(
ω(b)ω

′
(b)
)−1

ω
′
(b)

νt+h ≡
{(

1− b

b
ω

′
(b)− α

′

22ι
′
)

F
′

h + η
′
(b)Γ

′

h(b)
}

εt,h.

�

Proof of 2(b).

Using the same derivation as in Proposition 1(b), and the fact that zt = ω
′
(b)∆Yt, we have:

st+h − st =
{

1− b

b
ω

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
∆Yt + νt+h.

As a result,

{E(st+h − st)zt}2 = Ez2
t

{
1− b

b
ω

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
E(∆Yt∆Y

′

t)

(
h−1∑
k=0

F
′k

){
1− b

b
ω(b)− ια22

}
,
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and

E(st+h − st)2 =
{

1− b

b
ω

′
(b)− α

′

22ι
′
}(h−1∑

k=0

F k

)
E(∆Yt∆Y

′

t)

(
h−1∑
k=0

F
′k

){
1− b

b
ω(b)− ια22

}
+ Eν2

t+h

Eν2
t+h =

h−1∑
k=0


(

1− b

b
ω

′
(b)− α

′

22ι
′
)k−1∑

j=0

F j

+ η
′
(b)(In − Φ(b))−1ι

′

Q


k−1∑

j=0

F
′j

(1− b

b
ω(b)− ια22

)
+ ι(In − Φ

′
(b))−1η(b)


If b = 1, 1−b

b ω(b)|b=1 = −ια21, and η(b)|b=1 = η(1) = α1 + α21 + α22. Therefore, if we define:

Ch ≡

(
h−1∑
k=0

F
′k

)
ι(α21 + α22) (A.3.8)

Dk ≡

k−1∑
j=0

F
′j

 ι(α21 + α22) + ι(In − Φ
′
(b))−1η(1), (A.3.9)

for b = 1, we have:

1
R2(h)

− 1 =
E(st+h − st)2

{E(st+h − st)zt}2 /Ez2
t

− 1

=
∑h−1

k=0 D
′

kQDk

C
′
hE(∆Yt∆Y′

t)Ch

as required. Inspecting the denominator of this expression, we see: that

C
′

hE(∆Yt∆Y
′

t)Ch = E(C
′

h∆Yt)2

= V ar

(
(α

′

21 + α
′

22)ι
′

(
h−1∑
k=0

F k

)
∆Yt

)

= V ar

(
(α

′

21 + α
′

22)ι
′

h−1∑
k=0

Et∆Yt+k

)

= V ar

(
h−1∑
k=0

Et(f2,t+k + u2,t+k)

)

= V ar

(
h−1∑
k=0

Pt+k

)
,
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while the numerator can be expressed as:

h−1∑
k=0

D
′

kQDk = V ar(νt+h)

= V ar
((
−(α

′

21 + α
′

22)ι
′
F

′

h + η
′
(1)Γ

′
(1)
)

εt,h

)
= V ar

(
−(α

′

21 + α
′

22)ι
′

h−1∑
k=0

ξt+k + η
′
(1)(In − Φ(b))−1

h∑
k=1

εt+k

)
.

To complete the proof, note that:

(α
′

21 + α
′

22)ι
′
ξt+k = (α

′

21 + α
′

22)ι
′
(∆Yt+k − Et∆Yt+k)

= (α
′

21 + α
′

22)(∆Xt+k − Et∆Xt+k)

≡ Ξ1,t+k.

By equation (A9) of Engel and West (2005) and the fact that η(1) = α1 + α21 + α22, we have:

η
′
(1)(In − Φ(b))−1εt+k = η

′
(1)

Et+k

∞∑
j=0

∆Xt+k+j − Et+k−1

∞∑
j=0

∆Xt+k+j


≡ Ξ2,t+k.

Therefore, we have
∑h−1

k=0 D
′

kQDk = V ar
(∑h−1

k=0(Ξ1,t+k − Ξ2,t+k+1)
)
. �

A.4 Details on Simulations

A.4.1 General Setup

As discussed in Section 4, the data vector ∆Xt is set up according to different models.16 For a given lag order

p, a VAR(p) process on ∆Xt can be estimated. The coefficients estimates, Φ̂(L) and error variance-covariance

matrix Ω̂ are obtained. This process is detailed in Appendix A.4.3.

The coefficient vectors α1, α21 and α22 may contain coefficient estimates. For instance, in the Taylor Rule

model, coefficients on cross-country output gap and inflation differences need to be estimated from the Taylor

Rule relationship.

Let Sim = 1, 000, 000 and the superscript ∗ denote simulated variables. n × 1 vectors of Gaussian errors
16We subtract the sample means from the data so that ∆Xt is mean-zero.
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ε∗t are drawn for t = 1, ..., Sim. With that, pseudo-true fundamentals ∆X∗
t are generated recursively using the

equation:

(In − Φ̂(L))∆X∗
t = Ω̂1/2ε∗t

for t = 1, ..., Sim and Ω̂1/2 is obtained by Cholesky decomposition. To begin the recursion, we assume

∆X∗
0, ...,∆X∗

−p = 0.

Next we generate z∗t . Because all our simulation exercises falls under Case 2, using Proposition 2, we have:

z∗t = ω̂
′
(b)∆Y∗

t

ω̂(b) =
{

b

(
α

′

22 −
1− b

b
α

′

21

)
ι
′
+ (α

′

1 + bα
′

21 + bα
′

22)ι
′
F̂ (b)

}
∆Y∗

t ,

where F̂ (b) is an estimate of F (b) by replacing Φ′s with Φ̂′s and ∆Y∗
t = [∆X∗′

t , ...,∆X∗′
t−p+1]

′.

Finally, following the one-horizon regression in the proof of Proposition 1, ∆s∗t+1 for t = 0, ..., Sim − 1 is

generated using:

∆s∗t+1 =
1− b

b
z∗t − α

′

22∆X∗
t + (α

′

1 + bα
′

21 + bα
′

22)(In − Φ̂(b))−1Ω̂1/2ε∗t+1.

Assuming s∗0 = 0, s∗t , t = 1, ..., Sim can be calculated recurisvely. We discard the first 1,000 observations of all

generated variables to avoid start-up effects.

Then, using Sim− 1000 observations we run the long-horizon regressions (i.e. regressing s∗t+h − s∗t on z∗t ) to

obtain R2(h). Since Sim is already large, increases in Sim did not affect the results qualitatively.

A.4.2 Data Description

We collected quarterly data (1989Q4 to 2007Q2)17 for 8 countries: US, Canada, Denmark, Germany, Japan,

Norway, Switzerland, and UK. From the Consensus Forecast, we obtain the Uncovered Interest-rate Parity

(UIP) risk premium between the US and other countries. Most remaining data are from the G10+ dataset

provided by Haver Analytics. Our dataset includes:

• Uncovered Interest-rate Parity (UIP) risk premium

• Money supply (Seasonally adjusted M2 for all countries other than Japan, in which M2+CDs is used.

17The data for Denmark is restricted to 1990Q1 and 2007Q2 due to missing GDP data.
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Norway’s M2 data are from International Financial Statistics (IFS) and are not seasonally adjusted. We

seasonally adjusted the data using Eviews.)

• GDP (Chained real GDP for all countries. Data for Germany and Japan are calculated from nominal GDP

and the GDP deflator, which we obtained from IFS.)

• CPI (In UK, we use HICP. The data for Canada and Japan are from OECD.)

• Short term interest rate (For Canada and US: 3-month treasury bill rate; for Denmark, Germany, Norway,

Switzerland, and UK: 3-month interbank offer rate; for Japan: 3-month Certificate of Deposit (Gensaki)

Rate. Japan’s data are obtained from OECD).

• Short term interest rate targeted by the central bank (for Canada: Overnight Money Market Financ-

ing Rate (Effective); for Denmark: National Bank Discount Rate; for Germany: Base Rate; for Japan:

Overnight Call Rate (Uncollateralized); for Norway: 3-month Interbank Offer Rate; for Switzerland: 3-

month Interbank Offer Rate; for United Kingdom: Base Rate; and for US: Federal Funds (effective) Rate.)

• Exchange rates (All exchange rates are in the form of units of foreign currency per US dollar.)

A.4.3 Estimating VAR(p)

A.4.3.1 Monetary Model

Fundamentals in the Monetary model include (log) money supply (mt, m∗
t ), (log) output (yt, y∗t ), the (log)

real exchange rate (qt), a money demand shock (vt, v∗t ), and risk premium (ρt).18 We use the US as the base

country and denote its variables with an asterisk. For each country, real money supply (mt − pt) is regrssed on

total income (yt) and the short-term interest rate (it). We cannot reject the unit root hypothesis for mt, pt,

yt, and it and the null hypothesis that these variables are not cointegrated at a 5% significance level for most

countries. Therefore, we proceed to take the first difference for all variables in our regression. The regression

residuals are recovered as ∆vt and ∆v∗t . The real exchange rate is calculated from qt = st + p∗t − pt, where st is

the (log) nominal exchange rate, which is in the form of units of national currency per US dollar.

Under the Augmented Dickey-Fuller Unit Root test, we generally cannot reject the null hypothesis at a 95%

confidence level in all countries for mt, m∗
t , yt, y∗t , qt, vt, and v∗t . Unit roots are strongly rejected for ρt in all

18If we assume PPP holds, the real exchange rate is zero.
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countries.19 Following the definition in the paper, we have:

∆Xt ≡
[

∆mt ∆m∗
t ∆yt ∆y∗t ∆qt ∆vt ∆v∗t ρt

]
. (A.4.10)

We estimate VAR(p) coefficients for ∆Xt and the covariance matrix of residuals with p = 1, 2, 3, 4. The estimated

coefficients and covariance matrix are used for simulations.

In an alternative setup, we regress ∆[(mt − pt) − (m∗
t − p∗t )] on ∆(yt − y∗t ) and (it − i∗t ). The residuals are

recovered as ∆(vt − v∗t ). The matrix ∆Xt contains the following variables:

∆Xt =
[

∆(mt −m∗
t ) ∆(yt − y∗t ) ∆qt ∆(vt − v∗t ) ρt

]
. (A.4.11)

A.4.3.2 Taylor Rule Model

The economic variables in the Taylor Rule model include: the (log) aggregate price (pt), the output gap (yg
t ),

CPI inflation (πt), the monetary policy shock in the Taylor Rule (vt), and the risk premium in the UIP condition

(ρt). Corresponding variables in the foreign country are denoted with asterisks. As discussed in the paper, CPI

is I(1) and all other variables are I(0). As a result, we define:

∆Xt =
[
∆pt ∆p∗t yg

t yg∗
t πt π∗t vt v∗t ρt

]
. (A.4.12)

Note that ∆pt (∆p∗t ) and πt (π∗t ) are collinear. We drop ∆pt and ∆p∗t from ∆Xt when estimating VAR(p)

coefficients and variance matrixes.

We also tried an alternative setup in which the matrix ∆Xt is defined as:

∆Xt =
[
yg

t − yg∗
t πt − π∗t vt − v∗t ρt

]
. (A.4.13)

Note that we drop ∆(pt − p∗t ) from ∆Xt because it is collinear with πt − π∗t .

19This result is true whether or not we include a time trend in our test, and for various lags (from 4 to 8) in a VAR(p).
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