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1 Introduction

Economic theory tells us that globalization– greater openness to trade, capital and labor flows– should

matter for more than how much countries trade with each other. Martínez-García (2008) and Martínez-

García and Wynne (2010), building on recent developments in the New Open Economy Macro (NOEM)

literature (see, e.g., Clarida et al. (2002)) develop a tractable structural framework to evaluate the nature

of the relationship between global slack and the cyclical component of inflation (the so-called global slack

hypothesis). The main postulate of the model is that globalization may have altered the cyclical behavior of

inflation simply by changing the composition of the basket of goods– from which the aggregate price indexes

are calculated– and its origin. 1

The work of Martínez-García and Wynne (2010) also raises questions about the potential estimation

biases in detecting the effects of globalization with partial equilibrium, reduced-form regressions. Partial

equilibrium analysis misses potentially important cross-equation restrictions that could result in misleading

empirical inferences. To that, however, we must add the problem that the economically relevant concepts

may not be observable– but model-dependent– and that the use of estimation techniques may be limited by

data availability on related observables. In the model investigated by Martínez-García and Wynne (2010),

as in most New Keynesian-type models, the key variables that we do not observe are the Home and Foreign

output gaps. The emphasis of that paper is, therefore, placed on the poor quality of the statistical proxies

for local or global slack often used in the empirical literature.2

Ultimately, the evaluation of Martínez-García and Wynne (2010) suggests that the validity of the global

slack hypothesis– or, more broadly, the role of globalization in the cyclical component of U.S. inflation–

cannot be determined solely on the basis of simple least squares regressions on reduced-form (partial equi-

librium) relationships of the sort reported in certain strands of the empirical literature. A fuller evaluation

of the importance of openness for inflation dynamics seemingly requires a more structural approach to the

multiple factors and diverse channels influencing the economy that can be taken to the data and tested.3

In this paper we focus on estimation implementation, as identification is a serious concern even when

researchers are confident about their model’s accurate characterization of the DGP process. To do that,

we calibrate the model of Martínez-García and Wynne (2010) and use it as our DGP process.4 We explore

the challenges of estimation on data simulated from that model. A large number of the existing papers on

estimating open eocnomy models– and Adolfson et al. (2008) is no exception– rely on Bayesian techniques.

Classical methods can also be used, but classical inference is conditional on the estimation of the parameters.

In contrast, the treatment of unobserved variables (output gaps) and parameters as jointly distributed

random variables means that with the Bayesian estimationapproach, estimates of each appropriately reffl ect

uncertainty about the others– that is one of the powerful reasons behind the appeal and popularity of

Bayesian estimation. More so in models like the one we investigate here where some of the key variables

(the output gaps) are, indeed, best thought as unobserved.

1Other channels through which globalization may operate have been explored in the literature as well. For example, Engler
(2009) investigates the implications of immigration on the Phillips curve relationship, while Rumler (2007) and Leith and Malley
(2007) examine the effects of imported intermediate goods.

2A similar point is made in the closed-economy context by Neiss and Nelson (2003) and Neiss and Nelson (2005).
3Adolfson et al. (2005), Adolfson et al. (2007) and Adolfson et al. (2008) are among the recent papers that have attempted

a more structural approach to open-economy economy issues based on estimation.
4To be more precise, we work with a slightly simplified version of the model which assumes countries have equal size (i.e.,

n = 1
2
) and home-product bias in consumption is symmetric in both countries (i.e., ξ∗ = (1− ξ)).

1



Bayesian methods have a long history in econometrics– the seminal work is Zellner (1971). Classical

inference is based only on sample information and thus is purely objective, whereas one can take advantage

of subjective and/or nonsample prior information for Bayesian inference. Bayesian methods combine the

prior distribution with the likelihood function to form a posterior density. The choice of the prior distribution

might be problematic along several dimensions and, most importantly, the estimation can be sensitive to

the prior selected. Hence, how to elicit priors effectively (or how to constraint the subjective component in

prior-selection) is a significant concern in applied work that we address in this paper.

If accounting for parameter uncertainty in the estimation of the unobserved variables (such as the output

gap) is one of the advantages of Bayesian estimation, the choice of observable variables used in the estimation

might be important to help us identify more or less precisely the estimated parameters or to infer the

unobservable output gap variables. This latter point is of particular importance in estimating open-economy

models because lack of data or the poor quality of the data available for most countries around the world

restricts the time series of macro data that can be used in the estimation.

Since the majority of the literature on Bayesian estimation of Dynamic Stochastic General Equilibrium

(DSGE) models has focused on a closed economy set-up or small-open economy models, we seek to make

a contribution by assessing the “art” of eliciting priors and choosing observable variables to address the

fundamental questions about the role of openness posed by the workhorse NOEM model. Our aim is to

provide a practitioners’viewpoint on the complexities of estimating open-economy models, which is a subjec

that has been relatively less documented than for closed-economy models. We will employ a variant of the

two-country model of Martínez-García and Wynne (2010) to derive a benchmark specification– a DGP–

for the open economy. Working with simulated data from a fully-specified model rather than actual data

allows us a more precise assessment of the performance of the Bayesian technique and its sensitivity to

implementation, as we would know at every step whether the model is well-specified and which properties

it must satisfy. We use this version of the workhorse NOEM model to illustrate the challenges of estimating

an open-economy model with regards to two fundamental questions: (1) which priors should used?; and (2)

which observable variables should be considered?

In terms of the first question, eliciting priors to estimate the parameters of the model can have an effect

on the estimate of the unobservables. There are a number of recurrent problems that a researcher must be

aware of. First, we analyze and discuss parameter identification. Even when estimating a model that is linear

in its variables, the structural parameters may enter in a highly non-linear form. In some cases, that would

make it impossible to estimate all the structural parameters of the model independently. That forces the

researcher to either estimate reduced-form parameters– giving up on the possibility of attaching a structural

interpretation to those estimates– or to design an identification strategy that often involves the calibration

of some of those structural parameters– but can be model-dependent.5 In general, it pays to know one’s

model before estimating it. However, we also document how the estimation can be biased whenever those

parameterized values are off-the-mark, and discuss the implications of doing so. More broadly, we also

consider the role of misspecification in model selection.

Secondly, we analyze and discuss the standard conventions in Bayesian estimation used for the selection of

priors. (a) Pre-filtering the data before estimating the model, in order to investigate primarily the business

cycle features of the data. Ferroni (2011) offers an interesting discussion on pre-filtering the data before

5Calibration can be viewed as selecting a degenerate prior with mass one at a given point.
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estimating a DSGE model vs. estimating the trend and trend-deviations simultaneously. (b) The choice

of a prior density does not mean that any distribution would do. A normal density might not be used for

variances because those cannot take on negative values. Theoretical restrictions on the range of values that

a parameter can take must be factored accordingly in the selection of a prior. (c) Transforming a parameter

to change its parameter space is a convenient way to implement certain prior distributions. (d) The Bayesian

estimation procedure lends itself to recursive estimation– as long as the distributions that we characterize

describe a well-behaved joint distribution– so we also consider the possibility of recursively selecting priors

for subsets of parameters as a way to articulate the estimation.

In terms of the second question, we tackle the issue of selecting the model’s observables. First, we discuss

how the number of parameters limits the number of observables that we can use for Bayesian estimation.

We also discuss the effect that this has on the VAR representation of a dynamic stochastic general equi-

librium model– especially if the number of shocks is less than the number of core equations of the model.

Moreover, we also point out that identification problems (and invertibility problems) can affect our ability

to identify shocks, parameters and unobserved variables– for a related point see Carlstrom et al. (2009) on

the identification of monetary shocks in a (closed-economy) New Keynesian model.

We also explore the precision of the estimation of open-economy models when measurement errors abound

and data availability is short even for some advanced countries. Furthermore, the difference in methodologies

across countries may also further complicate the task of the researcher. In particular, we seek to understand

if certain trade variables could be effectively used in estimation to exploit the information content that they

reveal about diffi cult-to-measure foreign variables. This last result implied by the model of Martínez-García

and Wynne (2010) ties in with an older literature that includes variables like import and commodity prices

on the right-hand side of Phillips curve regressions. We assess whether the same precision can be achieved

by employing the simulated data generated from the calibrated version of the model and testing for the

estimation effi ciency under different sets of observable variables. We provide evidence that some measures

of foreign trade might be useful when output and inflation data from the rest of the world are problematic,

but may also lead to different estimation results.

2 The Two-Country Model

We postulate a two-country dynamic stochastic general equilibrium (DSGE) model with complete asset

markets and nominal rigidities, subject to country-specific productivity and monetary shocks, as in Martínez-

García and Wynne (2010). The framework is similar to that of Clarida et al. (2002) in its representation of

the standard workhorse New Open Economy Macro (NOEM) model. Its building blocks are summarized in

the Appendix, but a more detailed derivation of this model can be found in Martínez-García (2008).

We abstract from capital accumulation– considering only linear-in-labor technologies– and trend growth.

We also adopt a cashless economy assumption, where money plays the sole role of unit of account.6 These

simplification generate a very stylized economic environment, but are not essential for our investigation.

We are concerned primarily with the identification of structural monetary shocks and of the key structural

parameters that affect the (domestic and international) propagation mechanism for these shocks. For that,

the workhorse NOEM model of Martínez-García (2008) provides us with a tractable environment that breaks

6For further discussion of the cashless economy assumption, see chapter 2 in Woodford (2003).
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monetary non-neutrality and permits the international transmission of shocks.

The NOEM model features two standard distortions in the goods markets– monopolistic competition in

production and price-setting subject to Calvo (1983) contracts– but of those two the key assumption on which

monetary non-neutrality hinges is price stickiness. Openness to trade in goods, supported with international

borrowing and lending under complete international asset markets, is the endogenous channel through which

monetary shocks get transmitted.7 We cancel out the distortion caused by a market structure that is not

perfectly competitive. As before, the added complexity of the model is not essential for our investigation of

identification in Bayesian estimation.

Pass-through is complete and the law of one price holds at the variety level (even under price stickiness)

by assuming that prices are set always in the producer’s own currency. Deviations from purchasing-power

parity (PPP) still arise from the assumption of home-product bias in consumption– and their magnitude

depends on the degree of openness in both countries. Nonetheless, movements in real exchange rates and

terms of trade do not cause a misallocation of demand across countries.8 Monopolistic competition in final

goods markets also introduces a distortion in the allocation of resources (labor) within a country, but we

correct for that by introducing an optimal labor subsidy for firms funded with non-distortionary, lump-sum

taxes raised from the local households. Under flexible prices, that labor subsidy suffi ces to restore the

perfectly competitive factor allocation.

Finally, price stickiness breaks monetary policy neutrality in the short-run– establishing a Phillips curve

relationship between domestic inflation and global slack that monetary policy exploits– but preserves it in

the long-run. Absent nominal rigidities (which would happen under flexible prices), monetary policy has no

real effects neither in the long-run (steady state) nor the short-run (dynamics). The presence of this friction

is fundamental to explain the dynamics of the model, and also crucial to identify monetary shocks and their

propagation mechanism. Understanding this channel for monetary non-neutrality and the resulting real

effects is, naturally, of great importance for monetary policy as it would determine the reach and trade-offs

of monetary policy itself.

2.1 The NOEM Model Dynamics

We summarize the log-linearized equilibrium conditions of the model that we use to characterize the solution

(locally) in Tables 1 and 2. We denote ĝt ≡ lnGt − lnG the deviation of a variable in logs from its steady-

state. We define a vector of endogenous variables, Ŷt, and a vector of exogenous (state) variables, X̂t. The

vector of endogenous variables can be split in a vector of endogenous core (or state) variables, Ŷ ct , and

a vector of non-core variables, Ŷ nt . In our model, the endogenous core variables π̂t and π̂
∗
t denote Home

and Foreign inflation (quarter-over-quarter changes in the consumption-based price index), x̂t and x̂∗t define

the Home and Foreign output gaps (deviations of output from its potential in a frictionless environment),

while ît and î∗t are the Home and Foreign short-term nominal interest rates set by the policy-makers for the

conduct of monetary policy.

7Another often-cited distortion in the goods markets that can affect the size of the real effects from monetary shocks
across countries comes from international pricing behavior that results in incomplete exchange rate pass-through. However, for
clarity of exposition we do not incorporate this feature to emphasize that identification of monetary shocks and the structural
parameters that determine their propagation can be non-trivial even in the presence of the simplest possible departure from
flexible prices.

8For details on the role of international price-setting in the missallocation of demand across countries and the design of
optimal monetary policy, see also Engel (2009).
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The non-core endogenous variables of the model include aggregate output, ŷt and ŷ∗t , aggregate consump-

tion, ĉt and ĉ∗t , aggregate employment, l̂t and l̂
∗
t , and real wages, ŵt − p̂t and ŵ∗t − p̂∗t , in both countries.

We also derive expressions for the terms of trade, t̂ott, the real exchange rate, r̂st, real exports and real

imports, êxpt and împt, and the real trade balance, t̂bt.
9 There are two types of country-specific, exoge-

nous shocks in the model: productivity shocks, ât and â∗t , and monetary shocks, m̂t and m̂∗t . We model

the productivity shocks and the monetary shocks as two VAR(1) stochastic processes, but we only incor-

porate cross-country spillovers in the stochastic process for productivity shocks (not for monetary shocks).

Productivity innovations and monetary innovations can be correlated across countries, but not with each

other.

As shown in Table 1, the log-linearized core equilibrium conditions can be described with an open-

economy Phillips curve, an open-economy investment-savings (IS) equation and a Taylor rule for monetary

policy in each country.10 The dynamics of the core endogenous variables can be cast in a canonical linear

expectational difference model under rational expections, i.e.,

AEt
[
Ŷ ct+1

]
= BŶ ct + CX̂t,

where the matrices A, B, and C are expressed in terms of the structural parameters of the model. As shown

in Table 2, the log-linearized conditions for the non-core endogenous variables can be expressed as a linear

transformation of the endogeneous core variables and the exogenous shocks, i.e.,

Ŷ nt = DŶ ct + FX̂t,

where the matrices D and F are expressed in terms of a subset of the structural parameters of the model.

Finally, we specify a driving process for the exogenous variables– reported in Table 1– of the form,

X̂t = ρX̂t−1 + ε̂t, Et
[
ε̂tε̂

T
t

]
= Ω,

where ρ governs the dynamics and Ω the variances-covariances of the exogenous (state) variables of the

model.

[Insert Table 1 about here.]

[Insert Table 2 about here.]

The core structure of the model descibed in Table 1 incorporates an open-economy Phillips curve. This

equilibrium condition fleshes out the global slack hypothesis– that is, the idea that in a world open to

9 In a two-country model, suffi ces to determine the trade patterns from the point of view of the Home country only, as we
do here.
10The core of the model refers to a (minimal) set of equations that uniquely determines the path of a subset of endogenous

variables (the core or state variables) by their initial conditions and the path of the exogenous shocks specified. In turn, all
non-core (or non-state) variables can be expressed as functions of the core endogenous variables and the specified exogenous
shocks. The core system of equations, therefore, suffi ces to determine uniquely the future paths of all the core and non-core
endogenous variables. Often there is no unique way of characterizing the core and solving the model. Moreover, for Bayesian
estimation purposes the number of observables and– therefore the number of estimating equations (core or noncore)– is bound
to the number of shocks to be estimated from the data. Hence, the core equations may need to be complemented with non-core
equations for estimation purposes (e.g., if exogenous labor supply shocks and government consumption shocks in each country
were added to our model).
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trade and under short-run monetary non-neutrality (arising from nominal rigidities in the goods market

modelled as price stickiness), the relevant trade-off for monetary policy is between domestic inflation and

global (rather than local) slack. Martínez-García and Wynne (2010) provides some further discussion of

the open-economy Phillips curve and describes its extension under alternative assumptions on international

price-setting behavior of firms.

The open-economy IS equation illustrates how the output gaps– output deviations from potential, where

potential output is defined as the output that would prevail in a frictionless environment under the same

shock realization and denoted as ŷt and ŷ
∗
t in the Home and Foreign country respectively– are tied to both

Home and Foreign demand forces. The Fisher equation for real interest rates in the Home and Foreign

country defines them as r̂t ≡ ît − Et [π̂t+1] and r̂∗t ≡ î∗t − Et
[
π̂∗t+1

]
respectively. Nominal rigidities à la

Calvo (1983) introduce an intertemporal wedge between the actual real interest rate (the opportunity cost of

consumption today versus consumption tomorrow) and the natural (real) rate of interest that would prevail

in a frictionless equilibrium. The natural (real) rates of interest are denoted r̂t for the Home country and

r̂
∗
t for the Foreign country, and are invariant to monetary policy or the monetary policy shocks. Demand

itself responds to deviations of each country’s real interest rate from its natural real rate as that would shift

consumption demand across time.

Whenever the real interest rate is above its natural real rate, more consumption today is being postponed

for consumption tomorrow than would be the case in the frictionless environment. Ceteris paribus, that

implies a demand shortfall today (a decline in the output gap or a fall in output relative to potential) and

the expectation of that slack unwinding in the future. Analogously, when the real interest rate is below the

natural rate, the resulting boost in consumption today (at the expense of future consumption) leads to a

temporary increase in the output gap that is expected to dissipate over time. The open-economy IS equation

illustrates that demand for local goods can be either domestic or foreign (the latter resulting in exports), so

real interest rate deviations in both countries matter.

The Home and Foreign monetary policy rules complete the specification of the core model. Those rules

reflect the conventional view that monetary policy still pursues the goal of domestic stabilization (even in a

fully integrated world) and, hence, solely responds to changes in domestic economic conditions. Monetary

policy is modelled with a Taylor (1993)-type rule and is assumed to react to local conditions as determined

by each country’s inflation and output gap alone.1112 To be consistent with the simple rule laid out in

Taylor (1993), we assume that the persistence in policy rates can be thought of as extrinsic or exogenous

inertia in the policy-making process (and out of the policy-makers control). Extrinsic persistence could

result from imperfections such as the slow acquisition of information relevant for setting monetary policy. In

contrast, intrinsic or endogenous inertia results from policy-makers intentionally smoothing out their policy

response to changing economic conditions (see, e.g., Rudebusch (2002) and Rudebusch (2006) for further

discussion).13

11The frictionless allocation would be attained if monetary policy-makers in both countries aggressively target local inflation
alone to ensure that π̂t = 0 and π̂∗t = 0 for all t. That would be a limiting case of the Taylor rule posited here when the
response to inflation deviations becomes arbitrarily large.
12The Taylor rule specification in Table 1 is consistent with different institutional arrangements. For example, it would be

consistent with a policy framework where the central bank operates under a dual mandate (the Fed) or under a single mandate
on price stability (the ECB), depending on how we parameterize the monetary policy’s reaction to inflation and the output gap
in each case.
13The distinction between extrinsic and intrinsic inertia is of great importance for policy evaluation, as it changes the

dynamics of the model and the transmission mechanism of shocks. Uncertainty about the source of inertia in monetary policy
is one of the key problems related to misspecification and model selection that we investigate in the context of implementing
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A common problem in estimating many standard (open- or closed-economy) New Keynesian models is

that the subset of core endogenous variables includes Home and Foreign output gaps that are not directly

observable– as only output can be directly measured in the data, but not potential output which is model

dependent. Moreover, in our model, the other two core variables (inflation and nominal interest rates) are

nominal– not real– while conventional practice suggests that it would be “best”to include both nominal and

real variables in the estimation in order to test the real-nominal trade-off implied by monetary non-neutrality

(the Phillips curve). One conventional approach often used in applied work to deal with unobservable output

gaps consists in replacing the output gap with a statistical proxy derived from observable data in reduced-

form regressions (e.g., Martínez-García and Wynne (2010) investigate the usefulness of HP-filtered output

as a proxy for the output gap). Another alternative consists in adopting a more structural approach to

estimation making use of the constraints implied by theory itself for identification. In that case, which is more

relevant for our paper, an observation equation for each country relating the output gap to other observables

(e.g., current ouput or other macro and trade aggregates) and a model-consistent specification of the output

potential must be added to the core model, hence jointly estimating the core model and the specification of

output potential. The selection of observables in this context and its influence on identification are another

area of interest for us. Moreover, the endogenous non-core variables impose theoretical constraints on the

data that can also be exploited to estimate the model and to facilitate the identification of certain key

structural parameters. That is another aspect of the “art”of estimation that we attempt to highlight in this

paper.

2.2 The Frictionless Model Dynamics

Table 3 describes the full dynamics of the economy in a frictionless environment under flexible prices and

perfect competition. We distinguish variables in the frictionless equilibrium by marking them with an upper

bar. In the frictionless model, we let ĝt ≡ lnGt − lnG denote the deviation of an endogenous variable in

logs from its steady-state value. The exogenous monetary and productivity shocks are, however, invariant

to the specification of the model– the frictionless and the NOEM models are subject to the same realization

of these shocks. All endogenous variables described before have a natural counterpart in the frictionless

equilibrium except for the output gaps because by definition current and potential output must be the same

in a model without frictions.

Inflation dynamics are determined by the monetary policy rule and are sensitive to both productivity

and monetary shocks. In the limit as the response to inflation deviations becames arbitrarily large, inflation

tends to zero. As expected under monetary neutrality, it follows from the characterization of the dynamics of

the frictionless model that neither the monetary policy rule nor monetary shocks have an impact on any real

variables (i.e., on (potential) output, consumption, employment, real wages and the (natural) real interest

rates).

The natural (real) rates of interest in the frictionless model, r̂t and r̂
∗
t , can be expressed as a function

of expected changes in Home and Foreign potential output, reflecting the fact that real rates respond to

expected changes in real economic activity– as measured by output– rather than to the overall level of

economic activity. We characterize potential output for each country, ŷt and ŷ
∗
t , as a function of the Home

Bayesian estimation. This distinction is not trivial because the dynamics of this simple model would be different. In the
presence of intrinsec inertia, the model incorporates a backward-looking element (a state variable) that is otherwise not present
in the current specification with extrinsic inertia.
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and Foreign productivity shocks. As a result, the real interest rates in a frictionless economy (natural rates)

are a function of productivity shocks alone and invariant to the specification of the monetary policy rule or

to monetary policy shocks. The natural real interest rate is affected by the dynamics of productivity in the

Home and Foreign countries due to openness to trade, but the rates do not equalize across countries in spite of

the symmetry embedded in the model because we have assumed home-product bias in consumption. Home-

product bias, in turn, translates into different consumption baskets for the Home and Foreign countries,14 and

differences in the consumption baskets imply that each country’s consumption demand responds differently

to a given country-specific shock (resulting in different natural rates of interest across countries).

[Insert Table 3 about here.]

As a convenient first step for the estimation of the NOEM model, we derive a characterization of the

dynamics of potential output and the natural rates of interest based on the frictionless model described in

Table 3. The estimation of the NOEM model could be attempted by assuming a reduced form representation

for potential output and the natural rates, but it would not constitute a truly structural approach to

estimation as we would be ignoring constraints implied by the thoery on the dynamics of these variables.

Here we adopt a fully structural approach and derive an analytic solution to both, so that when we estimate

jointly the NOEM model and its frictionless counterpart we do it consistently. Hence, in that spirit, the

following proposition gives us a characterization of potential output for both countries derived from the

stochastic VAR(1) process for the productivity shocks in the following terms,

Proposition 1 The potential output of the Home and Foreign countries ŷt and ŷ
∗
t described in Table 3 can

be defined as a linear transformation of the Home and Foreign productivity shocks ât and â∗t , i.e.,(
ŷt

ŷ
∗
t

)
≈
(

1 + ϕ

γ + ϕ

)(
Λ (1− Λ)

(1− Λ) Λ

)(
ât

â∗t

)
.

Given the V AR (1) structure assumed for the productivity shocks, we can derive the following V AR (1)

stochastic process to characterize the dynamics of potential output,(
ŷt

ŷ
∗
t

)
≈

(
δa δa,a∗

δa,a∗ δa

)(
ŷt−1

ŷ
∗
t−1

)
+

(
ε̂yt

ε̂y∗t

)
, (1)(

ε̂yt

ε̂y∗t

)
∼ N

((
0

0

)
, σ2
y

(
1 ρy,y∗

ρy,y∗ 1

))
, (2)

where we define the volatility and the correlation of the potential output innovations in the following fashion,

σ2
y = σ2

a

(
1 + ϕ

γ + ϕ

)2 (
(Λ)

2
+ 2ρa,a∗Λ (1− Λ) + (1− Λ)

2
)
,

ρy,y∗ =
ρa,a∗ (Λ)

2
+ 2Λ (1− Λ) + ρa,a∗ (1− Λ)

2

(Λ)
2

+ 2ρa,a∗Λ (1− Λ) + (1− Λ)
2 .

14That is the case except in a knife-edge situation where both Home and Foreign households’share of domestic and imported
goods coincides with the share of locally-produced goods. In the context of our model, there is a mass one of varieties equally
split across countries, so the share of locally-produced goods in the consumption basket of each country would have to be 1

2
.
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Proof. See the Appendix.
The following corollary gives us a simple characterization of the natural rates in the Home and Foreign

countries r̂t and r̂
∗
t derived also from the stochastic VAR(1) process for the productivity shocks in the

following terms,

Corollary 1 The natural rates of the Home and Foreign countries r̂t and r̂
∗
t described in Table 3 can be

defined as a linear transformation of the Home and Foreign productivity shocks ât and â∗t , i.e.,(
r̂t

r̂
∗
t

)
≈ γ

(
1+ϕ
γ+ϕ

)( (ΘΛ + (1−Θ) (1− Λ)) (1− (ΘΛ + (1−Θ) (1− Λ)))

(1− (ΘΛ + (1−Θ) (1− Λ))) (ΘΛ + (1−Θ) (1− Λ))

)(
Et [∆ât+1]

Et
[
∆â∗t+1

] )

≈ γ
(

1+ϕ
γ+ϕ

)( (ΘΛ + (1−Θ) (1− Λ)) (1− (ΘΛ + (1−Θ) (1− Λ)))

(1− (ΘΛ + (1−Θ) (1− Λ))) (ΘΛ + (1−Θ) (1− Λ))

)(
δa − 1 δa,a∗

δa,a∗ δa − 1

)(
ât

â∗t

)
.

Given the VAR(1) structure assumed for the productivity shocks, we can derive the following V AR (1) sto-

chastic process to characterize the dynamics of the natural rates,(
r̂t

r̂
∗
t

)
≈

(
δa δa,a∗

δa,a∗ δa

)(
r̂t−1

r̂
∗
t−1

)
+

(
ε̂rt

ε̂r∗t

)
, (3)(

ε̂rt

ε̂r∗t

)
∼ N

((
0

0

)
, σ2
r

(
1 ρr,r∗

ρr,r∗ 1

))
, (4)

where we define the volatility and the correlation of the natural rate innovations in the following way,

σ2
r = σ2

aγ
2

(
1 + ϕ

γ + ϕ

)2 (
(Π1)

2
+ 2ρa,a∗Π1Π2 + (Π2)

2
)
,

ρr,r∗ =
ρa,a∗ (Π1)

2
+ 2Π1Π2 + ρa,a∗ (Π2)

2

(Π1)
2

+ 2ρa,a∗Π1Π2 + (Π2)
2 ,

and,

Π1 ≡ (ΘΛ + (1−Θ) (1− Λ)) (δa − 1) + (1− (ΘΛ + (1−Θ) (1− Λ))) δa,a∗

= δa,a∗ − ξ

 ϕ (σγ − (σγ − 1) (2ξ − 1)) + γ

ϕ
(
σγ − (σγ − 1) (2ξ − 1)

2
)

+ γ

 (1 + δa,a∗ − δa) ,

Π2 ≡ (ΘΛ + (1−Θ) (1− Λ)) δa,a∗ + (1− (ΘΛ + (1−Θ) (1− Λ))) (δa − 1)

= (δa − 1) + ξ

 ϕ (σγ − (σγ − 1) (2ξ − 1)) + γ

ϕ
(
σγ − (σγ − 1) (2ξ − 1)

2
)

+ γ

 (1 + δa,a∗ − δa) .

Proof. See the Appendix.
We note that the productivity shocks enter into the dynamics described in Table 1 only through their

impact on the dynamics of the natural real rates in this economy r̂t and r̂
∗
t . Having established the solution to

the natural rates in the frictionless model in Corollary 1 allows us to simplify the presentation of the NOEM

model, as we adopt the specification of the natural rates and monetary shocks as our forcing processes from

now on. The Home and Foreign monetary shock processes m̂t and m̂∗t do not require transformation as they

9



enter directly into the model through the specification of the Taylor rule for monetary policy in each country.

Home and Foreign potential output– as well as the Home and Foreign natural rates– inherit the VAR(1)

stochastic structure of the productivity shocks and, moreover, some of the basic features of the underlying

productivity shocks– in particular, their persistence and spillovers. This is an interesting finding in its own

right because it illustrates the oft-made claim that endogenous persistence is inherited from the assumed

persistence of productivity shocks. That certainly is true for potential output and for the natural rates in

our frictionless model. However, Proposition 1 and Corollary 1 also indicate that– unlike what happens with

persistence and spillovers– the matrix of variances-covariances (both the volatility and the correlation) of the

potential output and natural rate processes is different from the one posited for the exogenous productivity

shocks. The structural parameters of the model are going to modify the volatility and correlations, so we

would not be identifying structural productivity shocks from the model if we were to postulate a reduced-form

VAR(1) for the output potential and natural rate processes. Moreover, if we were to ignore the restrictions

implied by theory on the matrix of variances-covariances, we would be ignoring relevant cross-equation

restrictions that can be exploited to identify the structural parameters of the model (not only the volatility

and correlation of the productivity shocks).

In this case, the linear rational expectations frictionless model that completes the characterization of the

core endogenous variables reduces to a simple two-equation system for Home and Foreign inflation π̂t and

π̂
∗
t , described in Table 3 as,

Et
[
π̂t+1

]
≈ ψππ̂t + m̂t − r̂t, (5)

Et
[
π̂
∗
t+1

]
≈ ψππ̂

∗
t + m̂∗t − r̂

∗
t , (6)

where r̂t and r̂
∗
t denote the Home and Foreign natural rates and m̂t and m̂∗t are the Home and Foreign

monetary shocks. Naturally, monetary shocks only have an effect on nominal variables in the frictionless

model, as monetary neutrality holds in the short-run as well as in the long-run. Moreover, we find that

whenever ψπ converges towards infinity, the solution implies zero-inflation in both countries. That is the

costumary simplification embedded in most real business cycle (RBC) models. In our context, it happens

to be also the optimal monetary policy for the NOEM model that we have postulated here, as zero inflation

prevents the relative price dispersion that results from firms adjusting their prices in response to changes in

the price level at different times– and relative price dispersion is at the heart of the distortion arising from

price stickiness.

Finally, the deterministic steady state of the model is presented in Table 4. The steady state is identical

for the NOEM and frictionless models, reflecting the fact that monetary neutrality holds in the long-run.

Monetary policy has no direct impact on real variables in steady state, so long-run neutrality is preserved

even though nominal rigidities in the NOEM model introduce a trade-off between local inflation and global

output gap in the short-run dynamics.

[Insert Table 4 about here.]
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3 Calibration and Simulation

Both countries are of equal size in terms of household population and the share of varieties they produce.

We also assume that the deep structural parameters governing tastes (and technologies) are the same in the

two countries. The parameters governing the degree of price stickiness (that is, the goods market friction)

and the home-product bias (that is, the degree of openness) are common in the two countries, and the

monetary policy regime is characterized by an identical Taylor rule in both economies. The productivity

and monetary stochastic processes are modelled as symmetric as well. Moreover, the imposition of an

optimal labor subsidy, φ, to compensate for the mark-up distortion introduced by monopolistic competition

means that the subsidy itself and the elasticity of substitution across varieties, θ, drop entirely from the

log-linearized rational expectations NOEM model (with or without the goods market friction) and from its

steady state.15

Yet, even with the inherent symmetry of both countries and the simplification arising from the adoption

of an optimal labor subsidy, the long-run (steady state) and short-run (dynamics) of the model still depend

on a large number of parameters– 18 in total. Up to 15 of those parameters affect the dynamics of the

model depending on whether the goods market friction is present or not. The remaining 3 model parameters

affect solely the long-run features of the model but not the endogenous short-run propagation, and 2 of

them that are unrestricted by the steady state itself would be subject to a normalization. There are 2 other

model parameters entering into the steady state that also affect the short-run dynamics, and those can be

pinned down irrespectively of how we tackle the steady state normalization. Those 15 model parameters

that influence the short-run dynamics need to be calibrated in order to simulate data, as we subsequently

attempt to recover them with recourse to Bayesian estimation techniques.

We split the full set of 18 model parameters between 9 shock parameters that characterize the exogenous

shock processes (7 of which affect the exogenous dynamics of the shocks) and 9 structural parameters that

are related to preferences, nominal frictions and policy (8 of which affect the endogenous propagation of the

shocks). In turn, we distinguish the structural parameters between those that enter into the characterization

of the deterministic steady state (3 of them, but one subject to normalization) and those that influence the

endogenous propagation of shocks within the model (8 of them). The intersection is a non-empty set, as

there are 2 structural parameters that affect both the steady state as well as the dynamics of the model. We

list all of the parameters of the model and summarize the role of each structural and shock parameter in the

steady state and the dynamics of the model in Table 5– as this information is relevant both to calibrate the

model and to elicit proper priors.

[Insert Table 5 about here.]

But, which model parameters are really crucial for us to identify and recover precisely in this open-

economy, monetary model? The answer to this question has to be tied to the fundamental question(s)

that the model is designed to address. The aims of the model that we are investigating are two-fold and

well-defined in the international macro literature: (a) to quantify the real effects of monetary non-neutrality

(which depend on the assumption of nominal rigidities as summarized by the structural parameter α), and (b)

15Monopolistic competition introduces a mark-up over marginal costs that is a function of the elasticity of substitution across
varieties within a country, θ. The mark-up is the only place where the parameter θ shows up in the model up to a first-order
approximation, so the optimal labor subsidy φ which neutralizes the mark-up distortion also makes the pair (φ, θ) irrelevant
for the characterization of the steady state and the dynamics of the model.
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to quantify the strength of the international transmission mechanism of shocks (which for monetary shocks

requires also monetary non-neutrality, but more generally it depends on the degree of openness of these

economies as given by the parameter ξ). Obviously, the proper identification of the structural parameters

α and ξ seems crucial given the central role they play in the model set-up. The structural parameters of

interest, however, are not limited to α and ξ alone. Consider the following16 :

—The sub-optimality of the monetary policy regime specified by the policy parameters ψπ
and ψx.
Approximating the optimal monetary policy in this model requires us to set ψπ arbitrarily large to ensure

that π̂t and π̂
∗
t are arbitrarily close to zero and that the paths of ŷt and ŷ

∗
t are arbitrarily close to their

respective potential ŷt and ŷ
∗
t . Under an optimal monetary policy rule in both countries, we will not find

evidence of real effects from monetary policy shocks or evidence that Foreign monetary shocks could have

an effect on the domestic macro aggregates irrespective of the degree of price stickiness α and openness ξ

that characterizes both economies. Hence, how “far” the prevailing monetary policy regime is from that

first-best monetary policy rule is crucial to detecting (and quantifying) the real effects and the propagation

channels implied by the nominal rigidity and openness.

—The responsiveness of demand regulated by the inverse of the Frisch elasticity of labor
supply, ϕ, and the inverse of the intertemporal elasticity of substitution, γ.
These preference parameters enter into the calculations of the slope of the Phillips curve with respect

to the output gaps and, therefore, have a measurable impact on the real effects arising from monetary

non-neutrality (see Table 1). These two parameters affect the sensitivity of marginal costs (real wages) to

demand-driven increases in production and employment as well as the consumption demand (in response to

shocks). Their impact cannot be ignored as they directly influence the trade-offs that policy-makers face

between nominal and real variables.

—The risk-sharing role of the terms of trade implied by the elasticity of substitution between
Home and Foreign bundles, σ.
Irrespective of the structure of financial markets, it is well-known that full insulation from foreign pro-

ductivity shocks can be attained in the frictionless model through movements of the terms of trade alone

whenever σγ = 1. The sign of the effect of a foreign productivity shock on domestic output would depend on

whether σγ is greater or smaller than one. Moreover, monetary non-neutrality implies that foreign monetary

shocks have no real effects in any case. Similarly, the international transmission of shocks will be affected by

the degree of substitutability between locally-produced and imported goods. In fact, not only the magnitude

but the sign of the international propagation of the shocks in this model depends on our ability to correctly

identify the parameters σ and γ.

[Insert Table 6 and Figure 1 about here.]

We proceed now by describing the strategy to calibrate all the structural parameters that we have

encountered in the model, so that we can turn it into our DGP process.17 In eliciting appropriate priors for

16The parameter ξ affects the short-run dynamics of the model, but it can be pinned down in the steady state. The other
structural parameter that enters both into the steady state and the dynamics of the model is β. In turn, α only affects
the dynamics and, therefore, we cannot rely on long-run features of the data to set its parameterization. Similarly, all other
structural parameters that cannot be identified through steady state relationships can still alter our interpretation/quantification
of the model and are subject of considerable debate.
17An important recommendation for calibration that we only treat in passing is to choose parameter values that would be
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Bayesian estimation, the range on which the structural parameters are defined is one of the first issues that

researchers need to take into account. This, however, is very important as well in calibration as we want to

set parameter values that are consistent with a well-behaved solution. We summarize our calibration and

the range of parameter values that we invoke to guarantee the existence of a unique solution in Table 6.

Figure 1 describes the region of the policy parameter space for ψπ and ψx where a unique solution exists (the

necessary and suffi cent conditions for determinacy of our model), given our calibration of all other non-policy

parameters.

Parameters related to the steady state (long-run). Typically, long-run historical averages of the

relevant macroeconomic time-series are used to calibrate steady state parameters. Given our model spec-

ification, there are at most 7 parameters (as indicated in Table 5) that enter into the steady state: the

intertemporal discount factor, β, the inverse of the intertemporal elasticity of substitution, γ, the inverse of

the Frisch elasticity of labor supply, ϕ, the labor disutility scaling factor, κ, the share of locally-produced

goods, ξ, the unconditional mean of the productivity shocks, A, and the unconditional mean of the monetary

shock, M . Of those 7 parameters, the unconditional mean of the monetary shock is pinned down by the

steady state Taylor rule to be equal to one– although it does not affect the short-run dynamics. Only 4

of the remaining 6 parameters can be matched to long-run historical averages simultaneously based on the

steady state relationships described in Table 4.

A calibration strategy that can be easily applied in our model is to choose A in order to match the long-

run average of labor productivity (expressed in units of output per unit of employment or hours worked,
Y
L
). Then, given the set A as well as the calibration imposed on the preference parameters γ and ϕ, we

would select the scaling factor κ to match the long-run average of the level of output (or, alternatively, the

level of consumption or employment).18 The preference parameters γ and ϕ would have to be pinned down

in some other way. Notice that the parameters A and κ are two of the three parameters that characterize

the steady state but that do not affect the dynamics of the model (the other one being the parameter M),

so a normalization can be imposed on both without loss of generality– as it would not interfere with the

endogenous propagation channels. For tractability, we simply normalize them such that A = κ = 1 and

obtain a steady state in which output, consumption and employment (in levels) for the Home and Foreign

countries are all equal to one.

The preference parameters γ and ϕ cannot be pinned down by the steady state relationships, indepen-

dently of how we parameterize/normalize A and κ. In turn, the intertemporal discount factor, β, and the

share of locally-produced goods, ξ, are two preference parameters that can be matched to historical macro-

consistent with the determinacy (existence and uniqueness) of the solution. The standard practice with linearized/log-linearized
models is to calibrate the parameter values to satisfy the Blanchard-Kahn conditions for existence and uniqueness. For the
model investigated here, this is not a major issue as the calibration in Table 5 is indeed consistent with the Blanchard-Kahn
conditions ensuring that a unique solution exists. However, this might be an issue depending on the parameter values that
we consider for the monetary policy rule and possibly under asymmetric policy rules and other alternative open-economy
specifications. If a modified version of the Taylor principle– that is, the principle that central banks should increase interest
rates more than one-for-one in response to higher inflation in order to "stabilize" the economy– is not satisfied, then the NOEM
model presented here does not have a unique solution. Figure 1 illustrates the region of indeterminacy (multiple solutions) and
determinacy (unique solution) for our model. Monetary policy can lead to indeterminacy even if only one country is thought
to be in violation of the open-economy version of the Taylor principle. For further discussion of this point in a related New
Keynesian model, see Bullard and Mitra (2007) and more specifically Bullard and Singh (2008).
18The model does not incorporate growth explicitly, so matching the long-run average of labor productivity and output level

makes sense. However, most of these macroeconomic time series trend upwards in the data. Therefore, the parameterization
strategy would need to be adjusted in the presence of (deterministic or stochastic) time trends. See Ferroni (2011) for a recent
discussion on pre-filtering the data versus estimating the trend jointly with the rest of the model.
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economic time series based on steady state relationships. We set the intertemporal discount factor β at 0.99

to attain an average yearly interest rate of 4% (i.e., we choose β to imply that
(

1
β

)4

= 1.041). We set the

share of locally-produced goods in the consumption basket ξ at 0.94 in order to obtain an average import

share of 6% for the U.S. These parametric choices are taken from Chari et al. (2002), which rely on U.S.

and European data for their calibration.19

On the one hand, it is important to note that the parameters M , A and κ do not affect the dynamics of

the NOEM model or the dynamics of its flexible price (frictionless) counterpart. Therefore, none of them has

a direct impact on the propagation channels of the model that we aim to investigate. So we simply do not

count these three parameters among those to be calibrated and estimated, reducing effectively the number

of parameters of interest to the 15 other parameters that enter into the short-run dynamics of the NOEM

model (indicated in Table 5). On the other hand, the preference parameters β and ξ that we pin down in

steady state also affect the short-run dynamics of the model. The parameter β affects the dynamics of the

NOEM model (but not those of the frictionless model) as it enters into the Phillips curve specification and

together with the degree of price stickiness (the Calvo parameter, α) is a key determinant of its slope.

The parameter ξ affects the short-run dynamics of the model– in this case, the NOEM model as well

as the flexible price model– by regulating the degree of openness to trade. This parameter has only a role

to play in the transmission of productivity shocks in the flexible price environment, as monetary neutrality

implies there is no real effect in the transmission of monetary shocks. However, it affects the propagation

of both productivity and monetary shocks in the NOEM model. In other words, the relative importance of

foreign productivity and monetary shocks on domestic endogenous macro aggregates not only depends on

the relevance of the friction (as measured by the parameter α) but also on the degree of openness of these

economies (as measured by ξ).

Identifying precisely both parameters β and ξ through steady state relationships is, therefore, of great

empirical relevance and practical importance.

Parameters related to the model dynamics (short-run). Typically, it is not recommended to base

the identification of the key endogenous propagation parameters on time series macro data that is directly

linked to the questions being investigated in order to avoid an inherent circularity problem. In open-economy

monetary models like the one we explore here where the central questions are to quantify the (short-run)

monetary non-neutrality and the contribution of Home and Foreign monetary shocks over the business cycle,

this prescription translates into the recommendation of not using aggregate output (or some measure of

aggregate consumption or employment) and inflation as our primary data sources on which to base the

identification of the parameters in the propagation mechanim. In our model, trade and international relative

price data can play an important auxiliary role in calibrating some of those parameters.

It is also not recommended to use parameter estimates that are derived from theoretical constraints or

relationships that are not compatible with (or easily mapped into) the structure of the model being proposed

in order to avoid introducing a parameter bias in the calibration. Sometimes the structural parameters are

identified from a pre-sample period of the time series macro aggregates that we want to explain with the

aim of mitigating the circularity problem.20 It might even be possible to map some parameter estimates

19We assume that households in each country include the same share of locally-produced goods ξ and imported goods (1− ξ)
in their respective consumption baskets. In contrast, Clarida et al. (2002) and Woodford (2010)– among others– make the
assumption that both countries have idential consumption baskets.
20 In practice, however, the pre-sample identification of the parameters should not differ greatly from those obtained in-sample
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obtained from similar models. Most often, however, the techniques preferred to identify the structural

parameters affecting the short-run dynamics involve in-sample macro data (not primarily of the same series

we are interested in) that: (a) exploit steady state relationships and long-run historical averages, (b) match

some second-order moments of the time series (e.g., by the simulated method of moments, SMM), or (c)

estimate in the data reduced-form or partial equilibrium relationships (a subset of relationships) that must

be satisfied by the model. Micro evidence is also frequently cited as the main data source used to pin down

a number of those structural parameters, as it diminishes the danger that the calibration may become an

exercise to fit the macro data.

Given our model specification, there are 6 structural (non-policy) parameters and 2 policy parameters that

affect the dynamics of the NOEM model. The structural (non-policy) parameters include the intertemporal

discount factor, β, the inverse of the intertemporal elasticity of substitution, γ, the inverse of the Frisch

elasticity of labor supply, ϕ, the elasticity of substitution between Home and Foreign bundles, σ, the share

of locally-produced goods, ξ, and the Calvo price stickiness parameter, α. The policy parameters include

the sensitivity of the monetary policy rule to deviations from the inflation target, ψπ, and from the potential

output target, ψx.

In the dynamics of the flexible price model, there are just 4 structural (non-policy) parameters and 1

policy parameter. The intertemporal discount factor, β, and the Calvo parameter, α, are not present, as

there is no Phillips curve relationship under monetary neutrality. By definition, current output and potential

output are the same object in the flexible price economy, so there is no need for monetary policy to respond to

the output gap as there will be no gap. Hence, the policy parameter ψx becomes irrelevant for the resulting

endogenous dynamics.

The calibration of these (policy and non-policy) structural parameters can be done many different ways,

leading to a wide range of possible values. We illustrate some of the most conventional calibration strategies

and the dispersion of their suggested parameter values in the context of parameterizing our model (our DGP

process):

I. Exploit steady state relationships.21 Some parameters affect both the steady state as well as the dynam-

ics of the model, so we can pin them down using the steady state relationships and long-run macroeconomic

time series averages. Steady state relationships and data on long-run average import shares and interest rates

allow us to identify the intertemporal discount factor, β, and the share of locally-produced goods, ξ. As noted

before, the parameter β enters into the Phillips curve specification and together with the Calvo parameter,

α, determines its slope. The slope of the Phillips curve is critical to the trade-off between domestic inflation

and global slack in our model and, therefore, the impact of monetary non-neutrality. Hence, exploiting the

steady state relationship linking β to the long-run real interest rates facilitates our task. However, the Calvo

parameter α does not enter into the deterministic steady state and other alternative sources of information

are needed to identify it and– ultimately– to validate the ‘global slack hypothesis’articulated in our model

under the assumption of price stickiness.22

unless the data-generating process has changed significantly over time. If that is the case, the pre-sample calibration may not
be of much use to avoid the circularity anyway or may bias the results by not recognizing a possible structural change.
21Our model does not explicitly incorporate trend growth (whether endogenous or exogenous), but often the data appears

to be trending upwards. Ferroni (2011) offers an interesting analysis of the merits of pre-filtering the data before estimating
a DSGE model vs. estimating the trend and deviations around trend simultaneously. Either way, it should be noted that
balanced growth path considerations may impose additional restrictions that we can use to calibrate certain parameters. See,
e.g., the discussion in Chari et al. (2002) on the parameterization of preferences.
22As carefully documented in Ríos-Rull et al. (2011), the specification of the building blocks of the model can be critical
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II. Exploit available micro-level data or second-order moments of the macro-level data.23 Often the

micro- and macro-level data provide different indications for calibrating a parameter, and naturally different

calibrations can lead to significantly different model predictions. Reconciling the micro and macro evidence

is often a challenge for researchers, as it may be a signal that a model is misspecified. The proponents

of Bayesian estimation would argue that an advantage of this technique is that this wide range of often

contradictory evidence on key structural parameters can always be subsumed into priors so that the researcher

does not have to take a stand one way or another. From this view, Bayesian techniques let the data reveal

the parametric values that are most favored by the macro time series data. However, while micro evidence

can be incorporated in the formation of priors intended to explain macro aggregates, micro data do not

enter into the likelihood function which conventionally incorporates macro data alone. Moreover, if model

misspecification is indeed an issue, the Bayesian estimates may fall far from their true values anyway because

the misspecified data-genetaring (DGP) process introduces a bias in attempting to better fit the model to the

data. Working with simulated data, however, we control when misspecification occurs and can concentrate

on assessing the ability of the Bayesian methods to accurately identify the parameters of the model when

the prior information is as wide for some of these structural parameters as the current empirical evidence

would suggest.

The moments used in calibration should be as informative as possible, in the sense of being distinctly

linked to the structural parameters. While it is often diffi cult to evaluate in a stringent way whether that

is the case, the selection of moments may be guided by economic theory. Indeed, it is recommendable to

consider aspects of the data that are important because they shed light on the merits of the theory (whether

it can be refuted) or because they matter most for policy analysis. In turn, one can also consider other

objects such as impulse response functions (estimated from VARs) as the most relevant feature of the data

to match. This is particularly common when characterizing the transmission of monetary shocks in the model

and comparing that to the data. While that plays a role in how we think about calibrating the model, we’ll

discuss it later more in the context of Bayesian estimation– as in our exercise we are able to determine how

well the estimation does in recovering the true impulse response functions (impulse response identification),

not just how well it does in recovering the true structural parameters (parameter identification).

Frisch elasticity of labor supply : The Frisch elasticity of labor supply, 1
ϕ , is commonly identified in the

literature on the basis of micro-level data. Pencavel (1986) reports that the typical point estimate of the

labor supply elasticity for men is 0.2 among the studies he surveyed, with a range of estimates going from 0

to 0.45. Other classical surveys on the empirical micro literature include Card (1994) and Browning et al.

(1999), and more recently the one by Keane (2010). Most micro studies consistently indicate that the Frisch

elasticity of labor supply lies below 1. Based on that micro evidence, we set the Frisch elasticity of labor

supply 1
ϕ at 0.2 to match the representative point estimate reported by Pencavel (1986).24

to the steady state relationships that can be used to estimate some of the key propagation parameters of the model. They
illustrate that point with examples of alternative preference specifications that constrain the Frisch elasticity of labor supply
ϕ in steady state and others that do not. However, altering preferences or other key building blocks of the model may also
impose other unwanted features that are inconsistent with the data in other dimensions (e.g., changing the trade-off between
income and substitution effects on labor, etc.). In any case, in our model we cannot parameterize ϕ based on the steady state
relationships reported in Table 4.
23By second- or higher-order moments, we often refer to the covariance structure of the macro data or the autocorrelation of

the time series data.
24Ríos-Rull et al. (2011), however, emphasize the heterogeneity in the micro data measurements used to parameterize ϕ.

For instance, the survey of Pencavel (1986) refers exclusively to the labor supply of men and does not distinguish between
the intensive and extensive margins on employment. Depending on the question at hand, the evidence provided by Pencavel
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Macro-estimates can also be used in order to pin down the Fisch elasticity of labor supply. Rotemberg and

Woodford (1998b) and Rotemberg and Woodford (1998a) argue that the inverse of the Frisch elasticity needs

to be as low as 1
9.5 = 0.10526 to match the relatively weak observed-response of real wages to monetary

disturbances and other macro features of the labor market. Ríos-Rull et al. (2011), using a standard

Neoclassical growth model investigate conditions under which the impulse response functions of wages can

be used to identify the labor supply elasticity. They conclude that to match the response to a neutral

technology shock requires a low value of the inverse of the Frisch elasticity of labor supply, while matching

the response to invesment-specific technology shocks and preference shocks requires a high value of the same

parameter. Reconciling those different macro estimates is always contentious, as it presumes that we can

properly identify the shocks themselves and their contribution to the business cycle (as the calibration of

the labor supply would depend on the relative importance of each shock over the cycle).

Intertemporal elasticity of substitution: The elasticity of intertemporal substitution, 1
γ , is often identified

on the basis of macro-level data. The empirical literature provides a wide range of possible values for this

parameter. Even when using essentially the same macro data on aggregate consumption and real yields,

researchers seem to arrive at different conclusions. On one hand, Hall (1988) uses the conditional consumption

Euler equation to estimate the elasticity of intertemporal substitution from the co-movement of aggregate

consumption with the real yields. Hall (1988) argues that the inverse of the elasticity of intertemporal

substitution γ is likely above 5 based on the observed data. Yogo (2004) finds general agreement with

Hall (1988)’s findings on a sample of eleven developed countries, while also taking account of the problem

of weak instruments in the estimation. On the other hand, most business cycle models– including many

international business cycle models– typically assume a much lower value for the inverse elasticity γ. Lucas

(1990), for example, using the same macro data argues that: “If two countries have consumption growth

rates differing by one percentage point, their interest rates must differ by γ percentage points (assuming

similar time discount rates). A value of γ as high as 4 would thus produce cross-country interest differentials

much higher than anything we observe, and from this viewpoint even γ = 2 seems high.”25

The inverse of the intertemporal elasticity of substitution, γ, can also be calibrated with the simulated

method of moments (SMM), as in Chari et al. (2002).26 Following their example, we can use macro

data on international relative prices or trade to pin down this parameter. In fact, we set the preference

parameter γ at 5, as in Chari et al. (2002) and Martínez-García and Søndergaard (2008), in order to match

the volatility of the real exchange rate relative to output. Given our specification of preferences and the

assumption of complete international asset markets, the standard deviation of the real exchange rate ought

to be proportional to the standard deviation of relative consumption, and the constant of proportionality is

(1986) might be out-dated or might simply be too narrow missing important dimensions of the labor market. This suggests
that scholars may want to look at other sources of information to calibrate this parameter depending on the question addressed
in their work.
25For consistency, we have replaced here the notation in Lucas (1990) for the inverse of the elasticity of intertemporal

substitution with ours (i.e. with γ).
26The simulated method of moments (SMM) can be applied simultaneously to calibrate other structural parameters such as

the inverse Frisch elasticity of labor supply ϕ. We could match the volatility of employment (or hours worked) in the data
to pin down the labor supply elasticity. This may not be trivial anyway, because the labor supply equation embedded in our
framework is known to be very restrictive (and possibly misspecified). As it will be discuss later, the elasticity of substitution
between Home and Foreign bundles, σ, can also be calibrated in this fashion. It is recommended that the moments and the
data used to calibrate these parameters under the SMM approach do not correspond with the same moments and data that we
aim to explain, so that circularity does not become an issue. By focusing on labor or, most significantly, on trade data, we also
provide some cross-validation for the theory (on the real effects and international transmission of monetary shocks) outside its
core.
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given by the parameter γ. As we vary γ, hence, we are changing the volatility of the real exchange rate in

relation to the volatility of relative consumption as well.27

In a bond economy, a similar exercise can be conducted with similar results for the calibration of this

parameter. The equilibrium condition that forms the basis of these calculations is often known as the

international risk-sharing condition, and it relates the expected change in the real exchange rate to the

expected consumption growth differential between the two countries (based on all available past and current

information). Under complete asset markets it holds for every possible state of nature. Together with the

uncovered interest rate parity condition that relates expected changes in the real exchange rate to real interest

rate differentials across countries, it provides the theoretical underpinnings for Lucas (1990)’s argument.

However, Lucas (1990) points to data on consumption and yields rather than real exchange rates to reach

a very different conclusion on the proper calibration of the inverse intertemporal elasticity of substitution

γ than Chari et al. (2002). This case illustrates how the choice of the empirical moments and the data to

match is not inconsecuential when following the SMM approach.

Intratemporal elasticity of substitution between Home and Foreign goods: The elasticity of intratemporal

substitution between Home and Foreign goods, σ, is commonly identified on the basis of macro-level data.

Based on empirical estimates of trade models, it is generally noted that plausible values of the U.S. elasticity

of intratemporal substitution lie between 1 and 2. However, it is also known that the model predictions

are quite sensitive to the choice of σ. For instance, we know that in the model investigated in this paper

the parameter σ affects the magnitude and the inequality σ R 1
γ determines the sign of the propagation

of foreign shocks into the domestic economy. Here we follow in the footsteps of Backus et al. (1994) and

Chari et al. (2002) setting the elasticity σ to be equal to 1.5. We could also use macro data on trade and

international relative prices to pin down this parameter following the logic of the SMM method. As implied

by the relationships in Table 2, the trade balance must be proportional to terms of trade in the model and

their correlation must be equal to one always. However, as we vary the parameter σ, we change the ratio

between the volatility of the trade balance and the volatility of terms of trade (or the real exchange rate)

approximating its empirical counterpart.28 That gives us a way to relate the calibration of this parameter

to macro data on trade as well.

Frequency of price adjustments: The Calvo parameter, α, is often identified using micro-level data.

However, the empirical micro literature provides a wide range of possible values for α. The convention

prevalent in most of the NOEM literature is that prices remain unchanged for on average four quarters

(implying that α = 0.75), as noted by Chari et al. (2002) among others. Bils and Klenow (2004) shook this

perception with evidence on U.S. CPI data suggesting that the median frequency of price changes implied

a duration of merely 4.3 months. Klenow and Kryvtsov (2008) and Nakamura and Steinsson (2008) report

a similar range of 7− 10 months based also on U.S. CPI data, while prices in the Euro-Area CPI appear to

change even less frequently according to Dhyne et al. (2006). The evidence surveyed by Taylor (1999) and

27The model used by Chari et al. (2002) and Martínez-García and Søndergaard (2008) allows for deviations of the law
of one price to explain fluctuations in the real exchange rate, under the assumption of local-currency pricing. Our model, in
turn, under producer-currency pricing only permits deviations from purchasing power parity to arise due to differences in the
consumption basket across countries. That, in turns, as can be seen in Table 2 implies that real exchange rates are proportional
to terms of trade by a factor of less than one. Therefore, terms of trade are always more volatile than the real exchange rate in
our model, which is counterfactual. An alternative would have been to match the volatility of terms of trade relative to output
instead, which is likely to give us a lower value for γ. Instead, for expositional purposes and simplicity, we simply adopt the
parametric value of 5 used by Chari et al. (2002) and Martínez-García and Søndergaard (2008).
28For a similar strategy, see Heathcote and Perri (2002).
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more recently the micro price studies reviewed by Klenow and Malin (2010) are consistent with the view

that prices change on average closer to once a year (after excluding most short-lived price changes). We

adopt the standard value of 0.75 for the degree of price stickiness α, implying an expected price duration of

four quarters, to be consistent with the NOEM literature.

Policy parameters: We assume that the Taylor rule is inertial of the extrinsic type, as the original rule

proposed in Taylor (1993) did not include intrinsic inertia. The parameters of the Taylor rule are often

estimated to fit the data, but quite often the values estimated for ψπ and ψx are close to those proposed by

Taylor (1993) on the basis of his exploration of the behavior of the U.S. Fed Funds rate during the period

1987 − 1992. We adopt the policy parameters estimated for the U.S. by Rudebusch (2006) jointly with

the AR (1) stochastic process parameters for the monetary policy shocks, and assume they are identical in

both countries. Hence, we set ψπ at 1.24 and ψx at 0.33 which are fairly close to the values of 1.5 and 0.5

respectively proposed by Taylor (1993).

Parameters related to the exogenous shock processes. Typically, the identification of the parameters

associated with the exogenous shock processes often involves two steps. The first step consists in deriving–

whenever possible– a time series for the realization of the shocks. To do so we have to map the data as

closely as possible to the model variables by using consistent measures for the macro aggregates. The use

of a few key equilibrium conditions and some previously calibrated structural parameters is often necessary.

However, it is preferable if the parameters used to infer the realization of the shocks are calibrated on the basis

of long-run historical data averages and steady state relationships– particularly to avoid parametric values

that have been selected with the same time series macro data that we would need to derive the realization

of the shocks. Moreover, it is also preferred if deriving a realization of the shocks does not require us to

use the calibration of some of the key propagation parameters that are central to our question. The second

step involves characterizing the dynamics of the shock processes, generally by estimating a pre-specified

stochastic process on the time series realization derived in the first step.

In our model, there are just two country-specific shocks that we have to consider: productivity shocks

and monetary shocks. The two key equations needed to infer a realization of these shocks are the production

function and the monetary policy rule. Under the assumption of linear-in-labor technologies, we can map

the labor productivity of these countries into the productivity shocks of the model denoted as ât and â∗t . In

this case, no structural parameters are needed to infer a realization of the shocks.29

For the parameterization of the VAR(1) productivity shock process, we follow Heathcote and Perri (2002)

which use real GDP and employment data from 1973 to 1998 to identify a realization of the productivity

shock for the U.S. and a foreign aggregate that bundles together 15 European countries, Canada and Japan.

Their approach is similar to the one we would need for our model (although they adjust the labor data with

a labor share set at 0.64 as their model includes capital). Based on their estimates, we set δa (the persistence

parameter) at 0.97 and δa,a∗ (the cross-country spill-over parameters) at 0.025. The volatility σa is set at

0.73 and the correlation between domestic and foreign innovations ρa,a∗ at 0.29. Monetary and productivity

innovations are assumed to be uncorrelated with each other, and we also rule out by construction the presence

of spillovers between monetary and productivity shocks.

29 In a richer model with capital and labor as inputs in a Cobb-Douglas production function and with competitive factor
markets, the capital share in the production function can be determined through the steady state relationships (see, e.g., the
discussion in Ríos-Rull et al. (2011)). With the capital labor share as well as data on the stock of capital, hours worked and
aggregate output, we can infer a time series for the so-called Solow residual.
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The parameterization of the monetary policy shocks is a bit less straightforward. We can still derive a

realization of the monetary policy shock from the monetary policy rules specified for each country (which

are assumed to be inertial of the extrinsic type), but that requires taking a stand on the choice of the policy

parameters ψπ and ψx which are known to be very relevant to assessing the real effects of monetary policy.

In other words, the policy parameters are central to the propagation mechanism and policy trade-offs that we

are aiming to investigate, but cannot be pinned down through a convenient set of steady state relationships.

One conventional approach is to jointly estimate the Taylor rule parameters and the specification of the

monetary shock process– hence identifying the monetary shocks with the residual of that regression. The

danger of the approach is that the misspecification of one of its parts (the shock process or the reaction

function for monetary policy) may bias both the estimates of the monetary shock process as well as the

estimates of the policy parameters.

For simplicity, we adopt the policy parameter values estimated for the U.S. by Rudebusch (2002), i.e.,

ψπ = 1.24 and ψx = 0.33,for both countries. For the VAR(1)monetary shock process, we follow the estimates

of Rudebusch (2002) as well in setting δm at 0.92 and σm at 0.36 for the persistence and volatility in both

countries. We complete the description of the dynamics by choosing the correlation between Home and

Foreign monetary innovations ρm,m∗ to be 0.5 as in Chari et al. (2002).

Data simulation from the model. We use standard perturbation methods to solve the model. We

derive a deterministic, zero-inflation steady state. We log-linearize the equilibrium conditions around the

steady state. This local approximation is accurate for arbitrarily small exogenous shocks that are bounded

within a neighborhood of the steady state. Then, we solve the resulting linear rational expectations model

based on the generalized Schur decomposition method (see, e.g., Villemot (2011)) and estimate it using

a Monte-Carlo based optimization routine, as implemented by the software package Dynare.30 We use

this plain-vanilla log-linear approximation of the workhorse NOEM model as our Data-Generating Process

(DGP). Estimating this log-linearized model on the basis of simulated data (rather than actual data) allows

us to clearly distinguish between model misspecification biases and identification issues in-sample, as well

as to highlight the problems associated with identification of model parameters using conventional Bayesian

techniques.

We simulate the full model over 11, 000 periods, and drop the first 1, 000 observations of each series to

exclude any effect of the initial conditions on the simulation. Based on this single realization, we keep a long

sample with the remaining 10, 000 periods of the simulation but also select three shorter sub-samples of 160

observations each. We use Bayesian estimation methods on the long and short sub-samples to investigate the

ability of these techniques to recover the true parameters of the model. The short sub-samples correspond

to 40 years of quarterly data and are meant to capture a fairly long, but plausible length for time series

international macro data. The long sample corresponds to 2, 500 years of quarterly data. While unrealistically

long, this 10, 000-period long sample allows us to illustrate the estimation gains that can be attained as the

availability of time series data for estimation becomes arbitrarily large (relative to more conventional sample

30The proliferation of software to perform Bayesian estimation (e.g., the Dynare software) has significantly reduced the cost
of implementing Bayesian econometrics. We apply Dynare in our paper in part to illustrate the easiness of performing a
Bayesian estimation exercise, as this software is free and widely used. The downside of this has been that estimation (Bayesian
estimation) has become common practice, but less effort is made to explain or understand why and for what purpose. One of
the main themes of this paper is to raise awareness of the importance of understanding the limitations of the method as well
as to encourage researchers to consider the circumstances and questions for which it might be helpful in their work.
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sizes for macro aggregates).

Figure 2.A shows the long sample simulation corresponding to Home and Foreign output. It also marks

the three 160-period short samples that we have selected for our Bayesian exploration from those two

series. Figure 2.B plots the long and short samples corresponding to Home and Foreign (quarter-on-quarter)

inflation, and Figure 2.C similarly depicts the long and short samples corresponding to terms of trade and

the trade balance. Figure 3 further describes the simulated data that we will use in our Bayesian estimation

exercises by plotting Home and Foreign output, Home and Foreign inflation, terms of trade and the trade

balance for each one of the three short samples side-by-side. Figure 4 completes the description of the data by

showing scatter plots for domestic inflation and domestic output, for domestic inflation and foreign output

and for domestic inflation and terms of trade for each one of the sub-samples. The univariate evidence

provided in Figure 4 indicates that the within-sample linear correlation between domestic inflation and the

other endogenous variables can be very different across the three sub-samples that we consider here. As all

these figures illustrate, the time path of each of these endogenous variables can be quite different depending

on the sample that we select.

Whenever it is pertinent to simulate data from another version of the model such as the flexible price

specification (the RBC model), we maintain invariant the realization of the exogenous shocks and the strategy

to select a long sample and three shorter sub-samples while varying exclusively the structure of the model

and its endogenous propagation.

[Insert Figures 2.A,2.B,2.C,3,4 about here.]

We want to contrast the estimation results of these three short samples of 160 observations each against a

longer sample of 10, 000 observations to investigate the practical importance of the well-known ‘peso problem’

in small-sample inference. As noted by Evans (1996) in his survey of economic anomalies associated to the

‘peso problem’, this issue arises when the realized or ex post frequencies of the observables within sample

differ significantly from their ex ante distribution– implied by the true DGP process– leading to distorted

econometric inferences. The ‘peso problem’can be confounded in the data with the misspecification of the

DGP process, but that is something we can rule out by construction when working with simulated data. In

our exercise, the population distribution is potentially known to the econometrician as the true DGP process

is taken as given. However, the population distribution is a function of the model parameters that need to

be recovered and identified.

When the ‘peso problem’becomes a major concern is when the sample moments computed with the

available macro time series do not coincide with the population moments that would have been used by

economic agents when forming their expectations and making their economic decisions. In the context

of the model postulated here, those population moments and the distribution are assumed to be known

by the agents but not to the econometrician who only knows the distribution as a function of a number

of unobserved parameters. Hence, the empirical problem that comes from small samples exists precisely

because the data is insuffi cient to identify the population distribution and map them into the corresponding

model parameters. That is not only a problem for the evaluation of the model (or for model comparison),

but it can also seriously distort the policy analysis and forecasting for which these estimated models are

often used even though the true DGP process is actually known without any uncertainty.

In Table 7, we summarize how the features of these time series data (the long and short samples) compare

against the theoretical moments implied by the NOEM model. It is interesting to note how the divergence
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between the sample moments and the theoretical moments can be very large for samples of 40 years of

quarterly data (160 observations) and even be significant for a sample of 10, 000 observations, especially for

Home and Foreign output. In spite of the inherent symmetry of the model, the sample moments can differ

a lot between the Home and Foreign country in some cases. The mean and the volatility of the series seem

to be quite off from their population counterparts, but even persistence at long lags can differ. Looking

at the skewness and kurtosis of the long- and short-sample series using the Jarque-Bera statistic also gives

us a different reading about the normality of the observed series, although it is already known that the

Jarque-Bera statistic is less reliable in small samples. Indeed, all this evidence suggests that in the context

of our simulated data a conventional sample size of no more than 160 observations can be prone to the ‘peso

problem’.

[Insert Table 7 about here.]

4 Bayesian Estimation

The previous section gives us a broad perspective on the conventional calibration approach. The goal,

however, was two-fold: on the one hand, it helps us motivate the standard calibration chosen for the workhorse

NOEM model that we use as our benchmark data-generating process (DGP); on the other hand, it serves

also to introduce a number of different (sometimes contradictory) sources and evidence that will make their

way into our selection of priors for Bayesian estimation. The data that we use in all our estimations is

obtained from simulating the NOEM model under the benchmark calibration summarized in Table 6. We

assess the strength of the identification strategy implemented through Bayesian estimation techniques in

this controlled environment where we can determine in each of our experiments how much information does

the econometrician have available and whether the model structure to be estimated is misspecified to some

degree or not.

In the next two subsections, first, we give a brief overview of the assumptions we make about priors for

the structural parameters of the model and we explain how the available information factors into our choices;

and, second, we design a number of experiments intended to illustrate how the strength of the identification

may depend on features that are out of the researchers control (for instance, the prevailing monetary policy

regime or the sample size) or may result from the choices the researcher makes in attempting to bring

the model closer to the data (for example, in selecting the number of observables or even the number of

non-structural shocks). In all of our experiments, we emphasize also the importance of the sample size in

identification– suggesting that 40 years worth of quarterly data which is considered a long time series in

international macro, may not be “long enough”to get precise identification through Bayesian estimation.

4.1 Eliciting Priors

All our priors are summarized in Table 8 and Figure 5, exluding the three parameters that we normalized

before and take as given here. We only consider prior densities of the beta, gamma, inverse gamma, normal,

and uniform distributions as well as the degenerate distribution that puts mass one on a single value. We

choose among these priors because they are overwhelimingly the distributions most used in the Bayesian

estimation literature. In a few cases, we rely on transformations of the parameters of interest in order to

22



ensure the range of values that the parameter can take according to theory (indicated in Table 6) conforms

with the range of values that are supported by the preferred prior distribution function. In cases where a

transformation is pertinent, a linear transformation always suffi ces to help us match the ranges of the prior

distribution with those implied by theory. We also impose on all cases that the prior mean must be equal to

the true value of the parameter in our calibration to be consistent with our own views about the data used

to parameterize the model. In turn, we choose the prior distribution as well as the dispersion to reflect the

degree of uncertainty that exists regarding those parameter values.

Since we match the prior mean to the true parameter used to calibrate and simulate the model, the

main point of the estimation is to see whether the Bayesian techniques applied to observable macro time

series can contribute to reduce in some sense the dispersion (or uncertainty) surrounding the true value of

these parameters. The dispersion arises from the evidence about the parameters provided by the alternative

sources that we have discussed before. In other words, can we expect Bayesian techniques to help us reveal

additional information that is not already incorporated in the priors? If so, how large does the sample size

have to be for identification (and how significant can the introduction of small-sample biases be)?

We maintain these prior distributions invariant in all our subsequent estimations experiments, taking

them as given. While we acknowledge that there is no unique way of eliciting priors and that other researchers

may reach different conclusions on the selection of priors by emphasizing other sources of information not

covered here or weighting differently the ones we have mentioned before, we want to take the role of priors

seriously as reflecting our ex ante views and beliefs about these parameters. Moreover, by keeping the priors

invariant, we make comparisons across models and the implementation strategies for estimation much more

straightforward.

[Insert Table 8 and Figure 5 about here.]

Structural Parameters. As it is conventionally done, we use a degenerate prior for the intertemporal

discount factor β and fix it at 0.99. We impose a degenerate prior on β that targets an average yearly interest

rate of 4% as in our calibration, so this should not cause a bias in our estimates of the other parameters. This

value is also based on the long-run historical average of the real interest rate (nominal rate minus realized

inflation) that does not enter into the set of observables that we use to estimate the model.

While we do not use a degenerate prior for the share of locally-produced goods in the consumption

basket ξ, we choose a tight prior to recognize that this parameter is tied to the import share through the

steady state and hence cannot deviate too much from the import share’s historical average. We use a Beta

distribution for the prior and transform the parameter to 2ξ − 1 to ensure that the range of possible values

of this transformed parameter corresponds with the domain of the Beta distribution. Accordingly, we center

the prior of the transformed parameter around 0.88, which implies a prior mean for ξ that is equal to the

calibrated value of 0.94. We also impose a small standard deviation of 0.01, which implies that the prior

Beta is single-peaked and puts most of its mass within a small neighborhood around the mean. This prior

specification emphasizes the conventional view that with the historically low import share observed for the

U.S., one should not expect ex ante the parameter (1− ξ) in the model– which defines the degree of trade
openness– to be too large.

Other critical model parameters for monetary non-neutrality and the strenght of the propagation mecha-

nism in the NOEM model are the remaining (non-policy) structural parameters: the inverse of the intertem-
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poral elasticity of substitution, γ, the inverse of the Frisch elasticity of labor supply, ϕ, the elasticity of

substitution between Home and Foreign bundles, σ, and the Calvo price stickiness parameter, α. As we dis-

cussed earlier, the different information sources that can be brought to bear in calibrating these parameters

are sometimes hard to reconcile with each other or simply give us a wide range (and very different perspec-

tives) of possible values for these parameters. As Bayesian proponents would argue, all those concerns can

be effectively subsumed into a wide-enough prior distribution so that ultimately we let the data pick the

most likely candidate for us.

In that spirit, we adopt the Gamma distribution centered around 5 for γ and ϕ, ensuring that the prior

means correspond to their true values according to our benchmark parameterization of the data-generating

process (DGP). In turn, we impose a wide standard deviation of 5 for both γ and ϕ to encompass the

wide range of values considered as plausible in the calibration literature for both paramters. This standard

deviation also implies a strictly decreasing prior distribution that puts higher mass on values below the mean

than it does on values above it. We adopt the Gamma distribution centered around 1.5 for σ, making the

prior mean correspond to the true value of the parameter in the benchmark calibration. We impose a wide

standard deviation of 1 to recognize the importance of this parameter for the international transmission of

shocks (especially depending on whether the parameter is greater or smaller than 1
γ ) and to capture the

uncertainty surrounding its value. This prior specification results in a wide range of plausible values for the

intratemporal elasticity of substitution between Home and Foreign bundles, with a unimodal distribution

skewed towards the left.

We adopt the Beta distribution centered around 0.75 for the Calvo parameter, α, also ensuring that

the prior mean corresponds to its true value in our benchmark calibration.31 For α, we pick a wide prior

Beta distribution with standard deviation 0.07. The Calvo parameter α indicates the fraction of firms that

are not able to re-optimize in any given period, so we favor a unimodal Beta prior that internalizes the

empirical evidence referenced earlier– mostly micro evidence– suggesting 0.75 could be on the high end of

the plausible values for this parameter. This prior distribution puts little mass on values of the parameter

range above 0.9 (which imply expected durations of more than ten quarters) and below 0.5 (which imply

expected durations of less than two quarters).

Similarly, other key model parameters for monetary non-neutrality and the strength of the propagation

mechanism in the NOEM model are the policy parameters ψπ and ψx. We center the policy parameters

around their calibrated values, but we impose an Inverse Gamma distribution for both of them and select

fairly wide priors. The parameter for the policy response to deviations from the inflation target needs to be

transformed in order to be consistent with the domain of the Inverse Gamma distribution and to rule out

violations of the Taylor principle where the Blanchard-Kahn conditions are not satisfied because monetary

policy is not aggressive enough. Hence, we estimate ψπ− 1 with a prior centered at 0.24 that implies a prior

mean of 1.24 for the corresponding policy parameter. The prior mean of the sensitivity to deviations from

potential output ψx is maintained at 0.33, which also coincides with the benchmark calibration. Monetary

policy parameters are somewhat less controversial in the literature, so we select a prior standard deviation

31The Calvo parameter α is of great importance for it explains monetary non-neutrality in the short-run dynamics of the
model. However, β and α tend to be hard to identify simultaneously through the Phillips curve relationship. The Calvo
parameter α is regarded as more uncertain than the parameter β, and of greater interest to the researcher because it is directly
connected to the nominal friction of the model (the degree of nominal rigidity). Hence, we follow the costumary practice in the
Bayesian estimation literature of imposing a degenerate prior on β which is meant (at least in part) to facilitate a more precise
estimation of the Calvo parameter α.
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of 2 for both of them that is not too wide.

Parameters of the Shock Processes. Priors for certain features of the exogenous shock processes may

have to be rather diffuse, even though we have realizations of the Solow residuals and the monetary residuals

that we can use for guidance. The selection of priors on parameters related to the shock processes conven-

tionally involves imposing restrictions on the feasible range of some of these parameters to discard draws

from regions of the parameter space that may lead to non-stationary solutions or that are simply deemed

unrealistic to match the data. For starters, the prior distributions for the partial autocorrelations of both

shocks is restricted to lie within the interval (0, 1), so as to rule out negative values for δa and δm which seem

unsopported by the data. However, that does not suffi ce to also ensure the stationarity of the productivity

V AR (1) process as we have to consider the possible values of the spill-over parameter δa,a∗ .

For simplicity, we adopt a degenerate distribution for the persistence of the productivity shock δa to

match its calibrated value of 0.97, as there seems to be broad agreement that the Solow residuals are pretty

persistent. Adopting a degenerate prior for δa, in turn, allows us more flexibility to impose a diffuse prior on

the key spillover parameter δa,a∗ and still guarantee the stationarity of the stochastic process for productivity.

It follows from the choice of δa that in order for the VAR(1) process that describes the productivity shocks to

remain stationary (with both its eigenvalues inside the unit circle) we would need δa,a∗ to be between −0.03

and 0.03. We transform the spill-over parameter to become 1
2 + 1

2

δa,a∗

0.03 so that its range can be defined over

the (0, 1)-interval and select the Beta distribution as our prior. We center the distribution around 0.91667

to be consistent with our calibration of δa,a∗ to be equal to 0.025. Moreover, we set the prior standard

deviation at 0.05. This Beta prior is unimodal and skewed to the right to explicitly incorporate the common

view that positive spillovers in productivity are more plausible than negative ones.

Having imposed extrinsic inertia on monetary policy, the first-order autocorrelation of the monetary

shocks δm ought to be positive and high in order to match the parsimonious interest rate movements that

we observe in the data. We reflect this in our prior for δm by restricting the parameter space to the interval

(0, 1) and by selecting a Beta distribution centered around its calibrated value of 0.92 with a prior standard

deviation equal to 0.02. This implies that the prior Beta for δm is unimodal, and it recognizes that the

empirical evidence seems to favor values consistent with high persistence of the monetary shock. The prior

means of the productivity shock and monetary shock volatilities, σa and σm, are set at their calibrated values

of 0.73 and 0.36, respectively. As customary, we select an Inverse Gamma distribution to represent the prior

distribution of both volatility parameters. However, we impose a large standard deviation of 5 on both cases

leaving it open for the data to determine the contribution of each shock to explain the endogenous volatility.

Finally, we restrict the range of the parameter space for the cross-country correlation of innovations

ρa,a∗ and ρm,m∗ to lie in the (0, 1)-interval. We select the Beta distribution again because it gives us

more flexibility to match the calibrated parameters with the prior mean than the uniform distribution while

imposing a relatively uninformative prior. We choose rather diffuse priors for these cross-country correlations

because these parameters can be crucial for the dynamics of the model (e.g., for the cross-country endogenous

correlations), but their values are often greatly debated in calibrated and estimated models. We center ρa,a∗

at 0.29 with a standard deviation of 0.18, and ρm,m∗ at 0.5 with a standard deviation of 0.22. As a result,

the prior Beta distribution for the cross-correlation of the productivity innovations is skewed toward the

left reflecting the fact that very large correlations are not what is commonly reported in the empirical

literature or consistent with the reported estimates on the Solow residuals. In turn, our prior Beta for the
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cross-correlations of the monetary innovations is somewhat similar to imposing a non-informative uniform

distribution, except that it puts significantly less mass on the extremes of the parameter space. In choosing

this specification, we are indicating that our understanding of the proper value for this correlation is rather

limited.

In some of our estimation exercises, we also incorporate a measurement error term modelled in terms of

pure white noise. This is a non-structural shock added to the especification of the estimated model for the

purposes of increasing the set of observables variables that we consider in the estimation. The shock process

is characterized with only one parameter, the volatility term σv. The prior mean of this ad hoc measurement

error shock volatility, σv, is naturally set at a low value of 0.10 (as this shock is considered to have only a

"small" or "marginal" contribution to business cycle). As customary for all volatility parameters, we also

select an Inverse Gamma distribution to represent the shape of the prior distribution. We impose a standard

deviation of 1 allowing for the possibility that this volatility may take larger values than what we would

expect, but not too large.

4.2 Estimation

The model is estimated based on three samples of 160 observations each generated from our benchmark cal-

ibrated NOEM model, and a long sample of 10, 000 observations. A sample of 160 observations is equivalent

to 40 years of quarterly macro data, which is typically a longer time span than most estimated open-economy

macro models can cover due to data limitations and other coverage problems, due to the implicit assumption

of an invariant monetary policy regime over the entire period, etc. The long sample of 10, 000 periods is

used as a reference to assess the precision of the estimation in small samples and evaluate the severity of the

so-called ‘peso problem’, as mentioned earlier. In all of our experiments we take the data-generating process

(DGP) as given and rule out the possibility of model misspecification. We also keep the priors invariant. In

turn, we investigate the sensitivity of Bayesian inference in small-samples to the implementation strategy

that an econometrician dealing with this model will have to develop in three dimensions: (a) the decision of

whether to prefilter the data or not prior to estimating the model, (b) the choice of observable variables for

the estimation, and (c) the choice of whether to include non-structural shocks in the estimation.

In this section, we shall revise all three aspects of the implementation in the context of applying the

Bayesian techniques to estimate the NOEM model and their effect on structural identification in small

samples.

Pre-filtering the Data. The NOEM model posits monetary non-neutrality and opens the door to the

international propagation of shocks. Given our emphasis on monetary shocks and monetary non-neutrality,

it would seem pertinent to include both real and nominal variables in the set of observables that we estimate

in order to help us detect those real effects. In order to avoid stochastic singularity in Bayesian estimation,

we must have the same number of observable variables as structural shocks in our model. Since we have

monetary and productivity shocks that are country-specific, that means we have four structural shocks and

we accordingly we should have four observable variables. As it is conventionally done, we postulate in our

benchmark estimation that the observable variables are Home and Foreign output as well as Home and

Foreign inflation.

The core of the NOEM model described in Table 1 would suggest that the trade-off between nominal
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and real variables can be articulated in terms of inflation and the output gaps (more specifically, between

local inflation and a combination of Home and Foreign output gaps). However, the output gaps are not

economic concepts that can be directly measured in the macro data as they require taking a stand on what

potential output is and the answer to that is model-dependent. In order to complete the estimation model,

therefore, we require a measurement equation that relates actual observed output to the output gap and

its potential (described in Table 2). In other words, we are in fact estimating jointly a model for potential

output together with the fully-fledged NOEM model that articulates the so-called ‘global slack hypothesis’.

In our Bayesian estimation exercises, we distinguish between the power of these techniques to recover

the true structural parameter (which we refer to as the strength of structural identification) and the actual

economic content that is revealed a posteriori. We look at our results primarily from the perspective of

the economic insight that we gain from applying the Bayesian estimation techniques, as the structural

identification (the recovery of the true parameters) can be reasonably attained for all 13 parameters that we

are estimating if the sample size is long enough and we rule out model misspecification. From this economic

viewpoint, we take as given our belief about the structural parameters represented through probabilistic

distributions, and define the goal of the estimation to be the extraction of all useful information from the

available realization of observable macro aggregates to alter our prior belief about the model parameters.

In this paper, we are taking the data generating process seriously in the terminology of Canova (1994), and

using the very same time series that we are trying to explain in order to update our beliefs– something that

runs counter to the conventional recommendations of the calibration approach as stated earlier.

Our benchmark estimation applied to the workhorse NOEM model described in this paper suggests that,

given our priors, there is a number of model parameters for which their posterior distributions are going to be

dominated by their priors. In other words, there is always a significant number of parameters for which the

posterior distribution differs little from the prior distribution and, therefore, for which the economic insight

gained from estimation is very limited. Some of those parameters are, in fact, crucial for the questions posited

by the model– so Bayesian estimation becomes less useful in practice as a tool for economic thinking. The

structural (policy and non-policy) parameters that present fairly similar prior and posterior distributions

are σ (which affects international risk-sharing through terms of trade fluctuations), ξ (which defines the

degree of trade openness in this environment), and ψπ (which describes the policy response to inflation). In

turn, the posterior distributions change significantly for γ and ϕ (which enter into the slope of the Phillips

curve), α (which indicates the degree of price stickiness), and ψx (which describes the policy response to the

output gap). For the shock parameters, however, only the persistence parameter of the monetary shocks,

δm, appears to change as we update our priors with the information extracted from the realization of the

observables.

An important caveat to this is that, even though we maintain our priors invariant, the set of parameters

for which economic insight can be gained from these estimation exercises varies depending on the set of

observables. We elaborate further on this point later on. It is worth noticing that, among the structural pa-

rameters for which the gained economic insight from Bayesian estimation is marginal, we have the parameter

ξ that is tied in steady state to the import shares and is key for the international propagation of shocks.

The other two parameters, σ and ψπ cannot be linked to steady state relationships in the NOEM model, but

their posterior distributions can be sensitive to the choice of the observable variables. We can include trade

or interest rate variables in the set of observables for the purpose of estimating them with greater precision

than in our priors. It is interesting to note that while the posterior distribution for ψx is somewhat sensitive
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to the selection of observable variables, it is one notable case in which sample size matters a lot. While the

prior and posterior distributions are close for the short sample of 160 periods, they both differ significantly

as we increase the sample size (vastly enhancing the precision of our estimates). However, the same cannot

be said for the other policy parameter ψπ, as the posterior distributions do not vary much with different

selection of observables or a larger sample size.

Finally, we confirm in all our exercises that it is possible to recover some of the persistence parameters with

less dispersion around the mean than in their priors, while generally that is not the case for the parameters

that characterize the variance-covariance matrix of the exogenous shocks. This has a direct effect on the

perceived contribution of the structural shocks of the model to explain business cycle fluctuations and, in

fact, it can be said that what we learn about the contribution of these shocks is very little relative to what

our prior believes already dictated.

In most instances, we observe that Bayesian estimation is able to recover the true parameters, even for

short samples of 160 observations. However, the presence of “Peso Problems” in short samples is vividly

illustrated with the estimation of the third sub-sample (S3). We can see how in that case the posterior

mean estimated for ϕ is 40% higher than the true parameter, with little effi ciency gain in the estimation

of the other model parameters. This is not trivial, as ϕ enters into the determination of the slope of the

Phillips curve (Table 1) and affects the perceived trade-offs that monetary policy is facing. Generally, the

set of parameters for which the posterior distribution differs from the prior distribution conforms with the

principle that posterior dispersion is smaller than prior dispersion around the mean and declines with the

sample size. This is most noticeable in the comparison between the posterior distribution derived from 160-

observation samples and 10, 000-observation samples, or in the confidence intervals reported and summarized

in the first block of Table 9. The posterior and prior distributions can be compared in Figures 6.A, 6.B, and

6.C.

[Insert Table 9 and Figures 6.A, 6.B and 6.C about here.]

The NOEM model we are investigating here does not incorporate deterministic or stochastic time trends

explicitly.32 Hence, the question of pre-filtering in our model can be stated in terms of whether to demean

or not to demean the data for estimation purposes. Three parameters are fundamental in that regard: the

parameters κ, A and M . These three parameters enter into the determination of the steady state, but they

do not affect the short-run dynamics of the model. That was the primary reason why we chose to normalize

them in the first place before simulating the model. These three parameters, however, have a direct effect

on the steady state level of output in each country– as can be seen from Table 4– which are among our

observable variables.

Looking at the population (theoretical) and sample means– in particular for the short samples of 160

periods– for Home and Foreign output in Table 7 it would be possible to argue that the steady state does not

correspond to the actual value implied by the normalization that we have adopted for those three parameters.

Therefore, the question arises as to the usefulness of pre-filtering (de-meaning) the data prior to estimation

or not. Since the parameters that determine the steady state level of output do not affect the short-run

dynamics, pre-filtering the data rather than augmenting the model with the steady state equations for Home

and Foreign output to estimate those three parameters jointly with the rest of the model should not affect

32For a recent discussion on pre-filtering the data versus estimating the trend jointly with the rest of the model, see Ferroni
(2011).
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the identification of the parameters we are really interested in. Hence, for simplicity, we conjecture that the

normalization of the steady state output might be different and simply estimate the model after de-meaning

the data. We do not attempt to extend the estimation to include those three normalized parameters and

the steady state. However, our results reported in the second block of Table 9 suggest that the prefiltering

does little to alter the results of the estimation or the precision of the estimation as implied by the posterior

distributions of the model parameters– even for the short-samples of 160 quarters.

Selection of Observables. In order to avoid stochastic singularity, we must have at least as many shocks

or measurement errors in the model as we have observed variables. Therefore, some of the key practical

decisions that researchers have to make in using Bayesian estimation involve deciding: how many observables

to estimate and, most importantly, which observables among all the available macro time series ought to

be incorporated in the estimation. Here we consider a model characterized by only four structural shocks–

which suggests that we need four observable variables– and experiment with the selection of alternative

sets of four macro time series. In our benchmark implementation, we make inferences based on Home and

Foreign output, as well as Home and Foreign inflation, and report the results in Table 9. Now we evaluate

the model estimation findings when we replace Foreign output with either the terms of trade or the trade

balance, while keeping the number of observables always at four. We summarize the results in Table 10 and

with Figures 7.A, 7.B, and 7.C.

[Insert Table 10 and Figures 7.A, 7.B and 7.C about here.]

Looking at the estimation results for the long sample of 10, 000 observations including the terms of trade

among the observables instead of foreign output, the most significant change we observe is in the estimation

of the parameter σ. Those findings can be found in the first block of Table 10. This increased precision

of the estimate can also be observed in the evidence reported for the shorter samples of 160 periods. The

parameter σ plays an important role in regulating trade flows and allowing international risk-sharing through

fluctuations of the terms of trade; hence adding the terms of trade to the set of observables that we use

has the natural advantage of helping us reveal further information about that parameter that we could not

uncover using the set of observables in our benchmark implementation. We also observe that under this

alternative implementation of our estimation the prior and posterior distributions for the parameter σ differ

greatly in Figures 7.A, 7.B, and 7.C, unlike what happens in our benchmark implementation as shown in

Figures 6.A, 6.B, and 6.C. This is the most significant difference, but it indicates that the estimation results

and what we learn from the data can depend on our data selection– an issue already noted, among others,

by Guerron-Quintana (2010).

The second block of Table 10 reports the empirical results of the estimation for the case in which foreign

output is replaced by the trade balance instead. The information content, however, is less relevant as we do

not see a gain in the precision of our estimates of the parameter σ relative to the benchmark implementation–

not even for the full length sample of 10, 000 periods. However, it is interesting to note from this exercise

that ‘peso problems’may appear anew for short samples, depending on the selection of variables that we use

for estimation. For instance, we observe the case of sample S1, where the point estimates in the benchmark

implementation are very close to their true values across all model parameters. If we estimate the same

model with the trade balance as an observable in place of foreign output, we end up with a significantly

biased estimate of the policy parameter ψπ, which is a policy parameter that describes the sensitivity of
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the policy response to inflation. As we discussed earlier, this policy parameter is very important in order to

quantify the real effects implied by the NOEM model, as a more aggressive policy stance should in general

correspond with less inflation and smaller deviations from potential.33

The lesson we derive from these very simple exercises is that researchers must be mindful of these issues

in the selection of observables for Bayesian estimation. Moreover, it is not obvious how to establish general

guidelines on selecting observables that can be applied in every occasion. Common sense suggests that one

may have to experiment with a number of possible combinations of observable variables and develop an

understanding of the model that could help in the selection of observables (by pointing towards the data

that can reveal the most useful information about the key structural parameters that the researcher is most

interested to learn about). Having said that, under ideal circumstances the choice would solely depend on

the type of question that the estimation exercise is meant to address. In practice, though, the data selection

may be already significantly limited simply due to data availability limitations, and other data related issues

that prevent us from using the kind of data that would be most relevant for our question. For example, in

international macro economics, the quality and availability of time series macro data for emerging economies

or the sample length of the data available and its quality are always a major handicap.

Inclusion of Non-Structural Shocks. We often see in applications of Bayesian estimation techniques

that the set of observables is conveniently expanded with the addition of non-structural shocks. The ultimate

goal of that is often to increase the information set that the Bayesian procedures can use to arguably help us

refine our beliefs about the structural parameters of the model. One common practice is to increase the set

of observables with the addition of measurement error shocks into the estimated model, which can also help

capture the likely errors in the measurement of some of the variables themselves. The specification of those

errors, however, is often rather ad hoc, and little motivation is given for the exogenous processes adscribed to

these measurement errors. While this may be capturing important features of the data that is appropriate

to take into account and serves to expand the set of observables, it might also introduce a misspecification

problem. Here we consider the following case: one in which the true data observed is without error, but

where we introduce in all our estimations a measurement error on either foreign output or the terms of trade.

We model the measurement error as white noise with low volatility in hopes of keeping the distortion (or

misspecification) from biasing our findings while taking advantage of the additional informational content of

one more observable variable. In this case, we consider as our observables Home and Foreign output, Home

and Foreign inflation, and the terms of trade.

[Insert Table 11 about here.]

The evidence is reported and summarized in Table 11, where the first block conducts the estimation under

the assumption that the error term appears in measuring Foreign output while the second block assumes

that it appears in the measurement of terms of trade. The most interesting finding is that we can obtain

greater precision in the estimates of the parameter σ from the inclusion of terms of trade among the set of

observables, but only if the non-structural measurement error is added to the terms of trade equation and

not to the foreign output equation. This is an interesting observation, because it clearly indicates that the
33 In results not reported in the current draft, we also experimented replacing foreign output with a nominal variable such as

home nominal interest rates. The interesting thing is that including interest rates in this way did not seem to help us gain more
information about policy parameters than before, but it generally resulted in tighter estimates of the preference parameters ϕ
and γ that are connected with the slope of the Phillips curve.
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addition of ad hoc non-structural shocks does not guarantee that more information will ultimately result into

better estimates for the parameters we are interested in. We can also point out that ‘Peso Problems’can be

confounded with misspeficiation biases whenever we incorporate shocks arbitrarily (solely for the purpose of

expanding the number of observables) in our estimated model. This may also occur depending on where we

locate those measurement errors. We see, for instance, that the estimates of the volatility of the productivity

shocks on the short sample of 160 observations (S2) vary significantly by a third depending on whether we

have measurement errors placed on the foreign output equation or the terms of trade equation.

Setting up guidelines to deal with measurement errors is not a trivial matter. Our examples would

suggest that it is preferable not to include measurement errors in the model solely for the sake of increasing

the number of observables that we can use in our estimation exercise, as this may become a source of

misspecification and introduce a bias in our estimation. It seems much more robust to add measurement

errors when we have actual evidence that the data may be measured with error to help us both define the

structure of the stochastic process that those non-structural shocks follow as well as to determine the proper

measurement equations that would be affected in their presence. In any case, it seems plausible to suggest

that the presence of measurement errors in the data may help us increase the number of observable variables

that we can use for Bayesian estimation, but that does not necessarily mean we will necessarily end up with

more information revealed through the posterior distributions of the key structural parameters of interest in

our model.

4.3 Other Insights

As we have discussed extensively, the identification of the structural parameters given our priors about

them through the implementation of conventional Bayesian techniques does not necessarily mean that the

information revealed by the macro data is giving us greater economic insight about all of them. "Peso

problems" will always be present when making inferences in small samples, and in those instances it truly

matters the implementation strategy that the researcher follows (for example, regarding the pre-filtering of

the data, the selection of observables or the inclusion of non-structural shocks as discussed before). One

way in which we can assess the economic insight gained through Bayesian estimation is by looking at the

Bayesian impulse response functions (IRFs) in relation to the theretical IRFs of the calibrated NOEM model

that we are using as our data-generating process (DGP).

Figures 8.A, 8.B, 8.C and 8.D summarize those Bayesian IRFs for our benchmark implementation based

on Home and Foreign output as well as Home and Foreign inflation as the observables. We easily conclude

from those graphs that the posterior mean trajectory is often fairly well-aligned with the corresponding

theoretical IRFs. However, the precision by which the model estimation can recover the true IRFs is

dependent on the type of shock, and also dependent on the endogenous variable that is being shocked. For

instance, the transmission of monetary shocks is less tightly estimated than the propagation of productivity

shocks. The responses of terms of trade and inflation are also less precisely identified in this context.

Naturally, we observe that the tightness of those estimated IRFs increases as we increase the sample size,

but that (long sample size) is something that remains a luxury for international macroeconomists. It is

interesting to point out, however, that consistently with our earlier discussion on the information content of

terms of trade, we observe that in this benchmark implementation the estimation of the response of terms

of trade to all the structural shocks remains significantly wider than that of other macro aggregates even
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when we are looking at a very long sample of 10, 000 observations.

[Insert Figures 8.A, 8.B, 8.C and 8.D about here.]

Another important by-product of Bayesian estimation that we can exploit and investigate further in the

context of small sample inference is the techniques of Bayesian model comparison and selection. In this case,

we restrict ourselves to compare just two different model specifications: one is the Workhorse NOEM Model

described in Tables 1 and 2, while the other is the Flexible Price (RBC) Model described in Table 3. We have

already indicated that the optimal monetary policy within the NOEM framework would set inflation at zero

in both countries, ensuring that the resulting allocation corresponds to the allocation under flexible prices

(even though nominal rigidities are still present). Therefore, more aggressive policy responses to inflation

should result– in general– in allocations that are increasingly more similar between the NOEM Model and

the RBC Model, in turn, making it harder for the researcher to distinguish empirically between both of them

based on observed macro data alone. Taking that into account, we use conventional posterior odds tests in

Bayesian estimation to compare the two models. We keep the realization of the exogenous shocks invariant

in each short sample of 160 periods and for the long sample of 10, 000 periods for every comparison that

we conduct, but we simulate the endogenous data that we will use for model comparison from the NOEM

Model with nominal rigidities under different monetary policy regimes. Here, differences in the monetary

policy regime correspond simply to differences in the aggressiveness of policy to inflation fluctuations.

All our results are summarized in Table 12, including up to five different monetary policy regimes of

increasing anti-inflation aggressiveness. The first monetary policy regime corresponds to the benchmark

monetary policy specification described in the calibration of the NOEM model. The priors are the same

for the common parameters across the two models. Moreover, all prior distributions are kept invariant for

estimation purposes in all exercises– except for the prior corresponding to the policy parameter ψπ. In that

case, we set the prior mean of the ψπ parameter to be equal to the true sensitivity of the monetary policy

reaction function to inflation adopted, but we keep the standard deviation of the prior distribution equal to

the one specified in the benchmark. We also specify a purely uninformative prior distribution on the two

models we are comparing assigning half the probability to each one of them.

It is comforting to see that the posteriors odds test overwhelmingly favors the NOEM specification under

the benchmark monetary policy regime, even for the case of the three short samples of 160 periods that we

have investigated here. However, in all other comparison experiments with more aggressive monetary policy

regimes, there is at least one subsample on which the RBC model is clearly favored or under which the

posterior probability assigned to the RBC model is large. This empirical evidence in support of the RBC

model naturally declines when we look at long samples, to the point that the evidence almost surely suggests

the true DGP process is the one described by the NOEM model. Under these circumstances, however, it

might be possible that our Bayesian estimates would end up supporting the RBC model under reasonably

aggressive monetary policy regimes for shorter samples– even though the actual model specification behind

the DGP process is the one corresponding to the NOEM Model with nominal rigidities.

This is another dimension of the so-called ‘Peso Problem’, as in short samples we might be inclined to

prefer the wrong model. Also, it is an example of the practical limitations that researchers may encounter

to successfully apply Bayesian model comparison techniques to recover the true model specification cor-

responding to the DGP of the data. The consequences could not be more severe on two grounds: First,

because if we opt for the wrong model, then the structural parameter estimates themselves are subject to
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misspecification biases, which makes their economic interpretation more diffi cult; second, because the wrong

model selection also gravely invalidates the policy analysis that can be conducted with the estimated model

(as well as its forecasting ability). On the later point, it is important to recall that the crucial difference

between the NOEM model and the RBC model is that one contemplates rigidities in the pricing behavior of

firms that result in monetary non-neutrality, while the other (the RBC model) is one economic environment

where monetary policy is neutral both in the long- and in the short-run. Therefore, if we were to conclude

on the basis of the evidence available that the RBC model is favored by the data when it is actually the

wrong model, then we may also conclude that a loosening of monetary policy will have no real effects on

economic activity, when in reality it would have severe consequences that would only become obvious if the

policy change were actually implemented and followed through.

[Insert Table 12 about here.]

5 Concluding Remarks

In this paper we have evaluated some of the challenges that researchers are faced with when attempting a

structural evaluation of the global slack hypothesis. Working with the simplest possible specification of an

open economy model that generates a short run relationship between global slack and domestic inflation

we explore the problems assocaited with parameter identification and estimation in samples of the size

typically available to international macroeconomists. We find that – even absent a problem of model

misspecification– weak identification of key parameters is an issue in applying Bayesian techniques to these

types of models. Using a convetional calibration of the basic model, we generate artificial data series which

we then use to explore the ability of Bayesian techniques to recover the true parameter values. We find in our

estimation with simulated data that identification is sensitive to the choice of observables and to the addition

of non-structural shocks. We also show that misspecification can introduce severe biases and that model

selection can be very diffi cult precisely when it is most needed (e.g., when monetary policy is near optimal).

As a possible soloution to these problems in more complex model environmenst, we propose ‘testing’the

model– as a preliminary step in Bayesian estimation– with simulated data to detect weak identification of

key structural parameters.
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Appendix

A Benchmark Open-Economy Model

For tractability, we abstract from a number of relevant features like capital and investment (see, e.g., Chari

et al. (2002), and Martínez-García and Søndergaard (2008)) and durable goods (see, e.g., Engel and Wang

(2011)). We consider a two-country model with a continuum of unit mass of households and consumption

varieties equally distributed between the Home country and the Foreign country. The structure of the model

is a simplified version of the Martínez-García and Wynne (2010) with equal population sizes in both countries

and local bias in consumption.

Households. The lifetime utility for a representative household in the Home country is additively separable

in consumption, Ct, and labor, Lt, i.e.,

∑+∞

τ=0
βτEt

[
1

1− γ (Ct+τ )
1−γ − κ

1 + ϕ
(Lt+τ )

1+ϕ

]
, (7)

where 0 < β < 1 is the subjective intertemporal discount factor. The inverse of the intertemporal elasticity of

substitution and the inverse of the Frisch elasticity of labor supply satisfy that γ > 0 and ϕ > 0, respectively.

The scaling factor κ must be nonnegative. The Home household maximizes its lifetime utility subject to the

sequence of budget constraints,

PtCt +

∫
ωt+1∈Ω

Qt (ωt+1)Bt (ωt+1) ≤ Bt−1 (ωt) +WtLt + Prt − Tt, (8)

whereWt is the nominal wage in the Home country, Pt is the Home consumption price index (CPI), St is the

nominal exchange rate, Tt is the nominal lump-sum tax (or transfer) from the Home government, and Prt
are (per-period) nominal profits from all firms producing the Home varieties. We assume a set of one-period

Arrow-Debreu securities (contingent bonds) internationally traded and in zero net supply, Bt (ωt+1). For

simplicity, these contingent bonds are quoted in the units of account of the Home country. The Home price of

the contingent bonds is denoted Qt (ωt+1), while the Foreign price is Q∗t (ωt+1) = 1
St
Qt (ωt+1). Similarly, for

the representative household in the Foreign country. The existence of a full set of one-period Arrow-Debreu

securities suffi ces to complete the local and international asset markets recursively.

Under complete asset markets, households can perfectly share risks internationally and the intertemporal

marginal rate of substitution is equalized across countries in every state of nature,

β

(
Ct+1

Ct

)−γ
Pt
Pt+1

= β

(
C∗t+1

C∗t

)−γ
P ∗t St

P ∗t+1St+1
,

where P ∗t is the Foreign CPI and C
∗
t stands for Foreign consumption. We define the real exchange rate as

RSt ≡ StP
∗
t

Pt
, so by backward recursion we can express this perfect international risk-sharing condition as,

RSt = υ

(
C∗t
Ct

)−γ
, (9)
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where υ ≡ S0P
∗
0

P0

(
C∗
0

C0

)γ
is a constant that depends on the initial conditions.34 We can also price a redundant

one-period, uncontingent nominal bond with the price of the contigent Arrow-Debreu securities and obtain

a conventional set of stochastic Euler equations for both countries,

1

1 + it
= βEt

[(
Ct+1

Ct

)−γ
Pt
Pt+1

]
, (10)

1

1 + i∗t
= βEt

[(
C∗t+1

C∗t

)−γ
P ∗t
P ∗t+1

]
, (11)

where it is the riskless, nominal interest rate in the Home country and i∗t is its Foreign country counterpart.

The households’optimization problem also defines a pair of labor supply equations which can be expressed

as,

Wt

Pt
= κ (Ct)

γ
(Lt)

ϕ
, (12)

W ∗t
P ∗t

= κ (C∗t )
γ

(L∗t )
ϕ
, (13)

plus the appropriate no-Ponzi games, transversality conditions and the budget constraint of both represen-

tative households.

Ct is a CES aggregator of Home and Foreign goods for a representative Home country household defined

as,

Ct =

[
ξ
1
σ
(
CHt
)σ−1

σ + (1− ξ)
1
σ
(
CFt
)σ−1

σ

]
, (14)

where σ > 0 is the elasticity of substitution between the Home-produced and the Foreign-produced con-

sumption bundles CHt and CFt . The share of Home-produced goods in the Home consumption basket must

satisfy that 1
2 ≤ ξ < 1. Analogous preferences are assumed for the Foreign country representative household,

except that C∗t is defined as a CES aggregator of Home and Foreign goods in the following terms,

C∗t =

[
(ξ∗)

1
σ
(
CH∗t

)σ−1
σ + (1− ξ∗)

1
σ
(
CF∗t

)σ−1
σ

]
, (15)

where the share of Foreign-produced goods in the Foreign consumption basket must satisfy that (1− ξ∗) = ξ

ensuring symmetry while allowing the consumption basket to differ across countries (whenever ξ 6= 1
2 ).

The sub-indexes CHt and CH∗t indicate respectively Home and Foreign consumption of the bundle of

differentiated variaties produced in the Home country. Similarly, CFt and CF∗t denote Home and Foreign

consumption of the bundle of differentiated varieties produced in the Foreign country. These sub-indexes

34 In a symmetric steady state, the constant υ in the above expression is equal to one assuming the initial conditions are
equated with the steady state.
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are defined as follows,

CHt =

[(
1

2

)− 1
θ
∫ 1

2

0

Ct (h)
θ−1
θ dh

] θ
θ−1

, CFt =

[(
1

2

)− 1
θ
∫ 1

1
2

Ct (f)
θ−1
θ df

] θ
θ−1

, (16)

CH∗t =

[(
1

2

)− 1
θ
∫ 1

2

0

C∗t (h)
θ−1
θ dh

] θ
θ−1

, CF∗t =

[(
1

2

)− 1
θ
∫ 1

1
2

C∗t (f)
θ−1
θ df

] θ
θ−1

, (17)

where θ > 1 is the elasticity of substitution across differentiated varieties within a country. Similarly,

per-household total output and labor are expressed as,

1

2
Yt =

[(
1

2

)− 1
θ
∫ 1

2

0

Yt (h)
θ−1
θ dh

] θ
θ−1

,
1

2
Y ∗t =

[(
1

2

)− 1
θ
∫ 1

1
2

Y ∗t (f)
θ−1
θ df

] θ
θ−1

, (18)

1

2
Lt =

[(
1

2

)− 1
θ
∫ 1

2

0

Lt (h)
θ−1
θ dh

] θ
θ−1

,
1

2
L∗t =

[(
1

2

)− 1
θ
∫ 1

1
2

L∗t (f)
θ−1
θ df

] θ
θ−1

, (19)

where Yt and Y ∗t denote the total output per household produced by firms in the Home and Foreign countries

respectively, while Lt and L∗t refer to the per-household total labor employed. The consumption-based price

indexes which correspond to this specification of consumption preferences are,

Pt =
[
ξ
(
PHt
)1−σ

+ (1− ξ)
(
PFt
)1−σ] 1

1−σ
, (20)

P ∗t =
[
ξ∗
(
PH∗t

)1−σ
+ (1− ξ∗)

(
PF∗t

)1−σ] 1
1−σ

=
[
(1− ξ)

(
PH∗t

)1−σ
+ ξ

(
PF∗t

)1−σ] 1
1−σ

, (21)

and,

PHt =

[
2

∫ 1
2

0

Pt (h)
1−θ

dh

] 1
1−θ

, PFt =

[
2

∫ 1

1
2

Pt (f)
1−θ

df

] 1
1−θ

, (22)

PH∗t =

[
2

∫ 1
2

0

P ∗t (h)
1−θ

dh

] 1
1−θ

, PF∗t =

[
2

∫ 1

1
2

P ∗t (f)
1−θ

df

] 1
1−θ

, (23)

where PHt and PFt are the price sub-indexes for the Home-produced and Foreign-produced bundles of varieties

in the Home market. The Home and Foreign price of the Home-produced variety h is given by Pt (h) and

P ∗t (h), respectively. Similarly for the sub-indexes PH∗t and PF∗t in the Foreign market and the prices of the

Foreign-produced variety f given by Pt (f) and P ∗t (f).

Firms. Each firm supplies the Home and Foreign markets under monopolistic competition in its own

variety. Each firm produces only one differentiated variety, so there is a mass one of firms equally-distributed

between the two countries. We assume producer currency pricing (PCP), so firms set Home and Foreign

prices invoicing local sales and exports in their local currency. The PCP assumption implies complete

exchange rate pass-through and also that the law of one price (LOOP) holds (i.e. Pt (h) = StP
∗
t (h) and

Pt (f) = StP
∗
t (f)). So it follows that PHt = StP

H∗
t and PFt = StP

F∗
t . However, the assumption of Home-

product bias in consumption leads to different consumption-based price indexes across countries and to
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deviations from purchasing power parity (PPP) in the model whenever ξ 6= 1
2 . For this reason, Pt 6= StP

∗
t

and the real exchange rate becomes RSt ≡ StP
∗
t

Pt
6= 1.

Given the households’preferences, we can derive the demand for any Home variety h and for any Foreign

variety f as,

Yt (h) =
1

2
Ct (h) +

1

2
C∗t (h) =

(
Pt (h)

PHt

)−θ{(
PHt
Pt

)−σ [
ξCt + (1− ξ)

(
1

RSt

)−σ
C∗t

]}
, if h ∈

[
0,

1

2

]
,(24)

Y ∗t (f) =
1

2
Ct (f) +

1

2
C∗t (f) =

(
Pt (f)

PFt

)−θ{(
PFt
Pt

)−σ [
(1− ξ)Ct + ξ

(
1

RSt

)−σ
C∗t

]}
, if f ∈

(
1

2
, 1

]
.(25)

Movements in the real exchange rate affect the total demand of all Home and Foreign varieties. Firms know

the form of the individual demand functions given by (24) and (25), and produce their own varieties subject

to a linear-in-labor technology. We impose competitive national labor markets, homogeneity of the labor

input and labor immobility across countries, so wages equalize within a country. We assume that the local

governments raises lump-sum taxes from households in order to subsize their local labor market, and define

the (before-subsidy) nominal marginal cost in both countries as,

MCt ≡
(
Wt

At

)
, MC∗t ≡

(
W ∗t
A∗t

)
, (26)

where Wt and W ∗t are the Home and Foreign nominal wages. Home and Foreign productivity shocks are

denoted by At and A∗t respectively.

We model frictions in the goods market with firms maximizing profits subject to a partial adjustment

rule à la Calvo (1983) on nominal prices at the variety level. In each period, every given firm receives with

probability 0 < α < 1 a signal to maintain their prices and with probability 1 − α a signal to re-optimize.
The fraction of re-optimizing Home firms in every period chooses a price P̃t (h) optimally by maximizing the

expected discounted value of their profits, i.e.,

∑+∞

τ=0
Et

{
(αβ)

τ

(
Ct+τ
Ct

)−γ
Pt
Pt+τ

[
Ỹt,t+τ (h)

(
P̃t (h)− (1− φ)MCt+τ

)]}
, (27)

subject to the constraint of always satisfying demand at the chosen price P̃t (h) as long as those prices

remain unchanged. Ỹt,t+τ (h) indicates the total consumption demand of variety h at time t + τ whenever

the prevailing prices are unchanged since time t, i.e. whenever Pt+τ (h) = P̃t (h). We introduce the labor

subsidy as proportional to the nominal marginal cost, with the proportion φ being time-invariant. Similarly,

we describe the problem of the re-optimizing Foreign firms and define the optimal price P̃ ∗t (f) and the

corresponding demand schedule Ỹ ∗t,t+τ (f).

Therefore, the optimal choice of re-optimizing Home firms at time t is given by,

P̃t (h) =

(
θ

θ − 1
(1− φ)

)∑+∞

τ=0
(αβ)

τ Et
[(

C−γ
t+τ

Pt+τ

)
Ỹt,t+τ (h)MCt+τ

]
∑+∞

τ=0
(αβ)

τ Et
[(

C−γ
t+τ

Pt+τ

)
Ỹt,t+τ (h)

] , (28)
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and the optimal choice of re-optimizing Foreign firms is,

P̃ ∗t (f) =

(
θ

θ − 1
(1− φ)

)∑+∞

τ=0
(αβ)

τ Et
[(

C∗−γ
t+τ

P∗
t+τ

)
Ỹ ∗t,t+τ (f)MC∗t+τ

]
∑+∞

τ=0
(αβ)

τ Et
[(

C∗−γ
t+τ

P∗
t+τ

)
Ỹ ∗t,t+τ (f)

] , (29)

Monopolistic competition in production introduces a mark-up between prices and marginal costs, θ
θ−1 , which

is a function of the elasticity of substitution across varieties within a country θ > 1. We choose an optimal

labor subsidy φ = 1
θ in both countries to neutralize this mark-up wedge, fully funded by lump-sum taxes

raised on the local households. Given the inherent symmetry of the Calvo-type pricing scheme, the price

sub-indexes PHt and evolves according to the following pair of equations,

(
PHt
)1−θ

= α
(
PHt−1

)1−θ
+ (1− α)

(
P̃t (h)

)1−θ
, (30)(

PF∗t
)1−θ

= α
(
PF∗t−1

)1−θ
+ (1− α)

(
P̃ ∗t (f)

)1−θ
. (31)

The other pair of price sub-indexes, PH∗t and PFt , follow from these two and the LOOP condition.

Monetary Policy. We assume that the monetary authorities of the Home and Foreign countries set short

term nominal interest rates, it and i∗t , according to Taylor (1993) type rules,

1 + it =
(
1 + i

)
Mt

[(
Πt

Π

)ψπ ( Yt
Y t

)ψx]
, (32)

1 + i∗t =
(

1 + i
∗
)
M∗t

(Π∗t

Π
∗

)ψπ (Y ∗t
Y
∗
t

)ψx , (33)

where Mt and M∗t are the Home and Foreign monetary policy shocks, i and i
∗
are the Home and Foreign

nominal interest rates, and ψπ > 1 and ψx > 0 represent the sensitivity of the monetary policy rule to

movements in inflation and the output gap respectively. Πt ≡ Pt
Pt−1

and Π∗t ≡
P∗
t

P∗
t−1

are the (gross) CPI

inflation rates, while Π and Π
∗
are the corresponding steady state inflation rates that are targeted by the

national monetary authorities. Yt and Y ∗t define the per capita output levels, while Y t and Y
∗
t are the

potential per capita output levels that monetary policy tracks. The ratios Yt
Y t

and Y ∗
t

Y
∗
t

define the output

gaps in levels for the Home and Foreign country. Potential per capita output is aggregated in the same way

as per capita output, but it is defined as the output level that would prevail in the economy if all frictions

could be eliminated– that is, in a frictionless economy with competitive firms and flexible prices. This index

specification of the monetary policy rules take the standard form postulated by Taylor (1993) once they are

log-linearized.
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B Proofs

Proof of Proposition 1. The potential output of both countries can be expressed as a linear transfor-

mation of the productivity shocks in the following terms,(
ŷt

ŷ
∗
t

)
≈
(

1 + ϕ

γ + ϕ

)(
Λ (1− Λ)

(1− Λ) Λ

)(
ât

â∗t

)
.

Assuming invertibility, the vector of potential output inherits the V AR (1) stochastic structure of the pro-

ductivity shocks. Accordingly, the potential output process takes the following stochastic form,(
ŷt

ŷ
∗
t

)
≈
(

Λ 1− Λ

1− Λ Λ

)(
δa δa,a∗

δa,a∗ δa

)(
Λ 1− Λ

1− Λ Λ

)−1(
ŷt−1

ŷ
∗
t−1

)
+
(

1+ϕ
γ+ϕ

)( Λ 1− Λ

1− Λ Λ

)(
ε̂at

ε̂a∗t

)
,(

ε̂at

ε̂a∗t

)
∼ N

((
0

0

)
,

(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

))
.

where, (
Λ 1− Λ

1− Λ Λ

)−1

=
1

2Λ− 1

(
Λ Λ− 1

Λ− 1 Λ

)
.

Hence, it follows from here that,(
Λ 1− Λ

1− Λ Λ

)(
δa δa,a∗

δa,a∗ δa

)(
Λ 1− Λ

1− Λ Λ

)−1

= 1
2Λ−1

(
Λ 1− Λ

1− Λ Λ

)(
δa δa,a∗

δa,a∗ δa

)(
Λ Λ− 1

Λ− 1 Λ

)

=

(
δa δa,a∗

δa,a∗ δa

)
,

which implies that the structure of the V AR (1) for the potential output inherits the persistence structure

of the underlying productivity shocks. Moreover, we can simplify the notation by expressing the innovations

to the output potential process in the following terms,(
ε̂rt

ε̂r∗t

)
≡

(
1 + ϕ

γ + ϕ

)(
Λ 1− Λ

1− Λ Λ

)(
ε̂at

ε̂a∗t

)
,

(
ε̂rt

ε̂r∗t

)
∼ N

( 0

0

)
,

(
1 + ϕ

γ + ϕ

)2
(

Λ 1− Λ

1− Λ Λ

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Λ 1− Λ

1− Λ Λ

)T ,
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where,

(
1 + ϕ

γ + ϕ

)2
(

Λ 1− Λ

1− Λ Λ

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Λ 1− Λ

1− Λ Λ

)T

=

(
1 + ϕ

γ + ϕ

)2
(

Λ 1− Λ

1− Λ Λ

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Λ 1− Λ

1− Λ Λ

)

= σ2
a

(
1 + ϕ

γ + ϕ

)2
(

(Λ)
2

+ 2ρa,a∗Λ (1− Λ) + (1− Λ)
2

ρa,a∗ (Λ)
2

+ 2Λ (1− Λ) + ρa,a∗ (1− Λ)
2

ρa,a∗ (Λ)
2

+ 2Λ (1− Λ) + ρa,a∗ (1− Λ)
2

(Λ)
2

+ 2ρa,a∗Λ (1− Λ) + (1− Λ)
2

)

= σ2
a

(
1 + ϕ

γ + ϕ

)2 (
(Λ)

2
+ 2ρa,a∗Λ (1− Λ) + (1− Λ)

2
) 1

ρa,a∗ (Λ)2+2Λ(1−Λ)+ρa,a∗ (1−Λ)2

(Λ)2+2ρa,a∗Λ(1−Λ)+(1−Λ)2

ρa,a∗ (Λ)2+2Λ(1−Λ)+ρa,a∗ (1−Λ)2

(Λ)2+2ρa,a∗Λ(1−Λ)+(1−Λ)2
1

 .

Hence, we define the volatility and the correlation of the output potential innovations in the following fashion,

σ2
y = σ2

a

(
1 + ϕ

γ + ϕ

)2 (
(Λ)

2
+ 2ρa,a∗Λ (1− Λ) + (1− Λ)

2
)
,

ρy,y∗ =
ρa,a∗ (Λ)

2
+ 2Λ (1− Λ) + ρa,a∗ (1− Λ)

2

(Λ)
2

+ 2ρa,a∗Λ (1− Λ) + (1− Λ)
2 .

Proof of Corollary 1. The natural rates of both countries can be expressed as a linear transformation

of the productivity shocks in the following terms,(
r̂t

r̂
∗
t

)
≈ γ

(
1 + ϕ

γ + ϕ

)(
(ΘΛ + (1−Θ) (1− Λ)) (1− (ΘΛ + (1−Θ) (1− Λ)))

(1− (ΘΛ + (1−Θ) (1− Λ))) (ΘΛ + (1−Θ) (1− Λ))

)(
Et [∆ât+1]

Et
[
∆â∗t+1

] )

≈ γ

(
1 + ϕ

γ + ϕ

)(
(ΘΛ + (1−Θ) (1− Λ)) (1− (ΘΛ + (1−Θ) (1− Λ)))

(1− (ΘΛ + (1−Θ) (1− Λ))) (ΘΛ + (1−Θ) (1− Λ))

)(
δa − 1 δa,a∗

δa,a∗ δa − 1

)(
ât

â∗t

)

≈ γ

(
1 + ϕ

γ + ϕ

)(
Π1 Π2

Π2 Π1

)(
ât

â∗t

)
,

where,

ΘΛ + (1−Θ) (1− Λ) = ξ

 ϕ (σγ − (σγ − 1) (2ξ − 1)) + γ

ϕ
(
σγ − (σγ − 1) (2ξ − 1)

2
)

+ γ

 ,

Π1 ≡ (ΘΛ + (1−Θ) (1− Λ)) (δa − 1) + (1− (ΘΛ + (1−Θ) (1− Λ))) δa,a∗

= δa,a∗ − ξ
(

ϕ(σγ−(σγ−1)(2ξ−1))+γ

ϕ(σγ−(σγ−1)(2ξ−1)2)+γ

)
(1 + δa,a∗ − δa) ,

Π2 ≡ (ΘΛ + (1−Θ) (1− Λ)) δa,a∗ + (1− (ΘΛ + (1−Θ) (1− Λ))) (δa − 1)

= (δa − 1) + ξ

(
ϕ(σγ−(σγ−1)(2ξ−1))+γ

ϕ(σγ−(σγ−1)(2ξ−1)2)+γ

)
(1 + δa,a∗ − δa) .

Assuming invertibility, the vector of natural rates inherits the V AR (1) stochastic structure of the produc-
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tivity shocks. Accordingly, the natural rates take the following stochastic form,(
r̂t

r̂
∗
t

)
≈

(
Π1 Π2

Π2 Π1

)(
δa δa,a∗

δa,a∗ δa

)(
Π1 Π2

Π2 Π1

)−1(
r̂t−1

r̂
∗
t−1

)
+ γ

(
1 + ϕ

γ + ϕ

)(
Π1 Π2

Π2 Π1

)(
ε̂at

ε̂a∗t

)
,(

ε̂at

ε̂a∗t

)
∼ N

((
0

0

)
,

(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

))
.

where, (
Π1 Π2

Π2 Π1

)−1

=
1

(Π1)
2 − (Π2)

2

(
Π1 −Π2

−Π2 Π1

)
,

(Π1)
2 − (Π2)

2
=

 (γ + ϕ) (2ξ − 1)

ϕ
(
σγ − (σγ − 1) (2ξ − 1)

2
)

+ γ

((δa − 1)
2 − (δa,a∗)

2
)
.

Hence, it follows from here that,(
Π1 Π2

Π2 Π1

)(
δa δa,a∗

δa,a∗ δa

)(
Π1 Π2

Π2 Π1

)−1

= 1
(Π1)2−(Π2)2

(
Π1 Π2

Π2 Π1

)(
δa δa,a∗

δa,a∗ δa

)(
Π1 −Π2

−Π2 Π1

)

=

(
δa δa,a∗

δa,a∗ δa

)
,

which implies that the structure of the V AR (1) for the natural rates inherits the persistence structure of

the underlying productivity shocks. Moreover, we can simplify the notation by expressing the innovations

to the natural interest rate process in the following terms,(
ε̂rt

ε̂r∗t

)
≡ γ

(
1 + ϕ

γ + ϕ

)(
Π1 Π2

Π2 Π1

)(
ε̂at

ε̂a∗t

)
,

(
ε̂rt

ε̂r∗t

)
∼ N

( 0

0

)
, γ2

(
1 + ϕ

γ + ϕ

)2
(

Π1 Π2

Π2 Π1

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Π1 Π2

Π2 Π1

)T ,
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where,

γ2

(
1 + ϕ

γ + ϕ

)2
(

Π1 Π2

Π2 Π1

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Π1 Π2

Π2 Π1

)T

= γ2

(
1 + ϕ

γ + ϕ

)2
(

Π1 Π2

Π2 Π1

)(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

)(
Π1 Π2

Π2 Π1

)

= σ2
aγ

2

(
1 + ϕ

γ + ϕ

)2
(

(Π1)
2

+ 2ρa,a∗Π1Π2 + (Π2)
2

ρa,a∗ (Π1)
2

+ 2Π1Π2 + ρa,a∗ (Π2)
2

ρa,a∗ (Π1)
2

+ 2Π1Π2 + ρa,a∗ (Π2)
2

(Π1)
2

+ 2ρa,a∗Π1Π2 + (Π2)
2

)

= σ2
aγ

2

(
1 + ϕ

γ + ϕ

)2 (
(Π1)

2
+ 2ρa,a∗Π1Π2 + (Π2)

2
) 1

ρa,a∗ (Π1)2+2Π1Π2+ρa,a∗ (Π2)2

(Π1)2+2ρa,a∗Π1Π2+(Π2)2

ρa,a∗ (Π1)2+2Π1Π2+ρa,a∗ (Π2)2

(Π1)2+2ρa,a∗Π1Π2+(Π2)2
1

 .

Hence, we define the volatility and the correlation of the natural rate innovations in the following fashion,

σ2
r = σ2

aγ
2

(
1 + ϕ

γ + ϕ

)2 (
(Π1)

2
+ 2ρa,a∗Π1Π2 + (Π2)

2
)
,

ρr,r∗ =
ρa,a∗ (Π1)

2
+ 2Π1Π2 + ρa,a∗ (Π2)

2

(Π1)
2

+ 2ρa,a∗Π1Π2 + (Π2)
2 .
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Table 1 - New Open-Economy Macro (NOEM) Model: Core Equations
Home Economy

Phillips curve π̂t ≈ βEt (π̂t+1) +
(

(1−α)(1−βα)
α

)
[(ξϕ+ Θγ) x̂t + ((1− ξ)ϕ+ (1−Θ) γ) x̂∗t ]

Output gap γ (2ξ − 1) (Et [x̂t+1]− x̂t) ≈ ((2ξ − 1) + Γ)
[
r̂t − r̂t

]
− Γ

[
r̂∗t − r̂

∗
t

]
Monetary policy ît ≈ [ψππ̂t + ψxx̂t] + m̂t

Fisher equation r̂t ≡ ît − Et [π̂t+1]

Natural interest rate r̂t ≈ γ
[
Θ
(
Et
[
ŷt+1

]
− ŷt

)
+ (1−Θ)

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Potential output ŷt ≈

(
1+ϕ
γ+ϕ

)
[Λât + (1− Λ) â∗t ]

Foreign Economy

Phillips curve π̂∗t ≈ βEt
(
π̂∗t+1

)
+
(

(1−α)(1−βα)
α

)
[((1− ξ)ϕ+ (1−Θ) γ) x̂t + (ξϕ+ Θγ) x̂∗t ]

Output gap γ (2ξ − 1)
(
Et
[
x̂∗t+1

]
− x̂∗t

)
≈ −Γ

[
r̂t − r̂t

]
+ ((2ξ − 1) + Γ)

[
r̂∗t − r̂

∗
t

]
Monetary policy î∗t ≈ [ψππ̂

∗
t + ψxx̂

∗
t ] + m̂∗t

Fisher equation r̂∗t ≡ î∗t − Et
[
π̂∗t+1

]
Natural interest rate r̂

∗
t ≈ γ

[
(1−Θ)

(
Et
[
ŷt+1

]
− ŷt

)
+ Θ

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Potential output ŷ

∗
t ≈

(
1+ϕ
γ+ϕ

)
[(1− Λ) ât + Λâ∗t ]

Exogenous, Country-Specific Shocks

Productivity shock

(
ât
â∗t

)
≈
(

δa δa,a∗

δa,a∗ δa

)(
ât−1

â∗t−1

)
+

(
ε̂at
ε̂a∗t

)
(

ε̂at
ε̂a∗t

)
∼ N

((
0
0

)
,

(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

))

Monetary shock

(
m̂t

m̂∗t

)
≈
(
δm 0
0 δm

)(
m̂t−1

m̂∗t−1

)
+

(
ε̂mt
ε̂m∗t

)
(

ε̂mt
ε̂m∗t

)
∼ N

((
0
0

)
,

(
σ2
m ρm,m∗σ2

m

ρm,m∗σ2
m σ2

m

))
Composite Parameters

Θ ≡ ξ
[
σγ−(σγ−1)(2ξ−1)

σγ−(σγ−1)(2ξ−1)2

]
Λ ≡ 1 + (σγ − 1)

[
γ(1−ξ)(2ξ)

ϕ(σγ−(σγ−1)(2ξ−1)2)+γ

]
Γ ≡ (1− ξ) [σγ + (σγ − 1) (2ξ − 1)]
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Table 2 - New Open-Economy Macro (NOEM) Model: Non-Core Equations
Home Economy

Output ŷt = ŷt + x̂t
Consumption ĉt ≈ Θŷt + (1−Θ) ŷ∗t
Employment l̂t ≈ ŷt − ât
Real wages (ŵt − p̂t) ≈ γĉt + ϕl̂t ≈ (ϕ+ γΘ) ŷt + γ (1−Θ) ŷ∗t − ϕât

Foreign Economy
Output ŷ∗t = ŷ

∗
t + x̂∗t

Consumption ĉ∗t ≈ (1−Θ) ŷt + Θŷ∗t
Employment l̂∗t ≈ ŷ∗t − â∗t
Real wages (ŵ∗t − p̂∗t ) ≈ γĉ∗t + ϕl̂∗t ≈ γ (1−Θ) ŷt + (ϕ+ γΘ) ŷ∗t − ϕâ∗t

International Relative Prices and Trade
Real exchange rate r̂st ≈ (2ξ − 1) t̂ott

Terms of trade t̂ott ≈
[

γ
σγ−(σγ−1)(2ξ−1)2

]
(ŷt − ŷ∗t )

Home real exports êxpt ≈ Ξŷt + (1− Ξ) ŷ∗t
Home real imports împt ≈ − (1− Ξ) ŷt − Ξŷ∗t

Home real trade balance t̂bt ≡ ŷt − ĉt = (1− ξ)
(
êxpt − împt

)
≈ (1−Θ) (ŷt − ŷ∗t )

Composite Parameters

Θ ≡ ξ
[
σγ−(σγ−1)(2ξ−1)

σγ−(σγ−1)(2ξ−1)2

]
Ξ ≡

[
σγ+(σγ−1)(2ξ−1)(1−ξ)
σγ−(σγ−1)(2ξ−1)2

]
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Table 3 - Flexible Price (RBC) Model: Core and Non-Core Equations
Home Economy

Inflation Et
[
π̂t+1

]
≈ ψππ̂t + m̂t − r̂t

Output (potential) ŷt ≈
(

1+ϕ
γ+ϕ

)
[Λât + (1− Λ) â∗t ]

Monetary policy ît ≈ ψππ̂t + m̂t

Fisher equation r̂t ≡ ît − Et
[
π̂t+1

]
Natural interest rate r̂t ≈ γ

[
Θ
(
Et
[
ŷt+1

]
− ŷt

)
+ (1−Θ)

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Consumption ĉt ≈ Θŷt + (1−Θ) ŷ

∗
t

Employment l̂t ≈ ŷt − ât
Real wages

(
ŵt − p̂t

)
≈ γĉt + ϕ̂lt ≈ (ϕ+ γΘ) ŷt + γ (1−Θ) ŷ

∗
t − ϕât

Foreign Economy

Inflation Et
[
π̂
∗
t+1

]
≈ ψππ̂

∗
t + m̂∗t − r̂

∗
t

Output (potential) ŷ
∗
t ≈

(
1+ϕ
γ+ϕ

)
[(1− Λ) ât + Λâ∗t ]

Monetary policy î
∗
t ≈ ψππ̂

∗
t + m̂∗t

Fisher equation r̂
∗
t ≡ î

∗
t − Et

[
π̂
∗
t+1

]
Natural interest rate r̂

∗
t ≈ γ

[
(1−Θ)

(
Et
[
ŷt+1

]
− ŷt

)
+ Θ

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Consumption ĉ

∗
t ≈ (1−Θ) ŷt + Θŷ

∗
t

Employment l̂
∗
t ≈ ŷ

∗
t − â∗t

Real wages
(
ŵ
∗
t − p̂

∗
t

)
≈ γĉ∗t + ϕ̂l

∗
t ≈ γ (1−Θ) ŷt + (ϕ+ γΘ) ŷ

∗
t − ϕâ∗t

International Relative Prices and Trade

Real exchange rate r̂st ≈ (2ξ − 1) t̂ott

Terms of trade t̂ott ≈
[

γ
σγ−(σγ−1)(2ξ−1)2

] (
ŷt − ŷ

∗
t

)
Home real exports êxpt ≈ Ξŷt + (1− Ξ) ŷ

∗
t

Home real imports împt ≈ − (1− Ξ) ŷt − Ξŷ
∗
t

Home real trade balance t̂bt ≡ ŷt − ĉt = (1− ξ)
(
êxpt − împt

)
≈ (1−Θ)

(
ŷt − ŷ

∗
t

)
Exogenous, Country-Specific Shocks

Productivity shock

(
ât
â∗t

)
≈
(

δa δa,a∗

δa,a∗ δa

)(
ât−1

â∗t−1

)
+

(
ε̂at
ε̂a∗t

)
(

ε̂at
ε̂a∗t

)
∼ N

((
0
0

)
,

(
σ2
a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2

a

))

Monetary shock

(
m̂t

m̂∗t

)
≈
(
δm 0
0 δm

)(
m̂t−1

m̂∗t−1

)
+

(
ε̂mt
ε̂m∗t

)
(

ε̂mt
ε̂m∗t

)
∼ N

((
0
0

)
,

(
σ2
m ρm,m∗σ2

m

ρm,m∗σ2
m σ2

m

))
Composite Parameters

Θ ≡ ξ
[
σγ−(σγ−1)(2ξ−1)

σγ−(σγ−1)(2ξ−1)2

]
Λ ≡ 1 + (σγ − 1)

[
γ(1−ξ)(2ξ)

ϕ(σγ−(σγ−1)(2ξ−1)2)+γ

]
Ξ ≡

[
σγ+(σγ−1)(2ξ−1)(1−ξ)
σγ−(σγ−1)(2ξ−1)2

]
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Table 4 - New Open-Economy Macro (NOEM) and Flexible Price (RBC) Models: Steady State
Home Economy

Output Y = Y (h) = C

Consumption C =
(

1
κ

) 1
γ+ϕ (A)

1+ϕ
γ+ϕ

C (h) = 2C
H
, C (f) = 2C

F
, C

H
= ξC, C

F
= (1− ξ)C∗

Employment L = L (h) = Y
A

Real wages W
P

= A

Prices P = P
H

= P̃ (h)
Interest rates 1 + i = 1 + r = 1

β

Foreign Economy
Output Y

∗
= Y

∗
(f) = C

∗

Consumption C
∗

= C

C
∗

(h) = 2C
H∗
, C
∗

(f) = 2C
F∗
, C

H∗
= (1− ξ)C∗, CF∗ = ξC

∗

Employment L
∗

= L
∗

(f) = Y
∗

A

Real wages W
∗

P
∗ = A

Prices P
∗

= P
F∗

= P̃
∗

(f)

Interest rates 1 + i
∗

= 1 + r∗ = 1
β

International Relative Prices and Trade
Real exchange rate RS ≡ SP

∗

P
= 1

Terms of trade ToT ≡ P
F

SP
H∗ = P

F

P
H = P

F∗

P
H∗ = 1

Home real exports EXP = C
H∗

= (1− ξ)C∗ = (1− ξ)C
Home real imports IMP = C

F
= (1− ξ)C

Home real trade balance TB = EXP − IMP = 0
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FIGURE 1. Determinacy Region of the Parameter Space (Open­Economy Taylor Principle)

Note: The model is solved for the eigenvalues of its solution with code written for Dynare version 4.2.2 and
Matlab version 7.13.0.564, taking the non-policy structural and exogenous parameters of the NOEM model as
given and spanning the space for the policy parameters over a grid. This figure plots the relevant subset of the
policy parameter space for our Bayesian investigation of the NOEM model and marks in black the area where
the solution is indeterminate (multiple solutions) based on the Blanchard-Kahn conditions and in white where
the solution exists and is unique. The code used to describe the determinacy region of the parameter space is
available upon request from the authors.
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FIGURE 2.A Full Sample Simulation of Domestic and Foreign Output

 Sample 1  Sample 2 Sample 3

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.2 and Matlab version
7.13.0.564. This figure plots the entire realization for domestic and foreign output. The code for the simulation is
available upon request from the authors.
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FIGURE 2.B Full Sample Simulation of Domestic and Foreign Inflation (quarter­on­quarter)

 Sample 1  Sample 2 Sample 3

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.2 and Matlab version
7.13.0.564. This figure plots the entire realization for domestic and foreign inflation. The code for the simulation
is available upon request from the authors.
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FIGURE 2.C Full Sample Simulation of the Terms of Trade and the Trade Balance

 Sample 1  Sample 2 Sample 3

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.2 and Matlab version
7.13.0.564. This figure plots the entire realization for terms of trade and the trade balance. The code for the
simulation is available upon request from the authors.
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FIGURE 3. The Three Sub­Samples Of Simulated Data Used for Bayesian Estimation

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.2 and Matlab version
7.13.0.564. We select three sub-samples of 160 periods each for estimation purposes. This figure illustrates the
realization of each sub-sample including domestic and foreign output in the top panel, domestic and foreign
inflation in the middle panel, and the terms of trade and trade balance in the bottom panel. Each sub-sample is
plotted in a different column. The code for the simulation is available upon request from the authors.
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FIGURE 4. Scatter Plots Of Domestic Inflation Against Other Endogenous Variables For The Three Simulated Sub­Samples Used

Note: The model is simulated over 10000 periods with code written for Dynare version 4.2.2 and Matlab version
7.13.0.564. We select three sub-samples of 160 periods each for estimation purposes. Each sub-sample is plotted
in a different column. This figure illustrates the linear relationship apparent in each sub-sample between domestic
inflation and domestic output (top panel), domestic inflation and foreign output (middle panel), and domestic
inflation and terms of trade (bottom panel). The dashed red line is the least-squares line that summarizes the
type of relationship that we find between the data in each scatter plot. The code for the simulation is available
upon request from the authors.
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FIGURE 5. Prior Distributions for the Structural and Shock Parameters

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, The code for
this chart is available upon request from the authors.
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FIGURE 6.A Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S1) and the long sample of 10000
observations under the benchmark implementation based on four observables (Home and Foreign output, Home
and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 6.B Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S2) and the long sample of 10000
observations under the benchmark implementation based on four observables (Home and Foreign output, Home
and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 6.C Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S3) and the long sample of 10000
observations under the benchmark implementation based on four observables (Home and Foreign output, Home
and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 7.A Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S1) and the long sample of 10000
observations under the alternative implementation based on four observables (Home output, Home and Foreign
inflation, and terms of trade). The code for this chart is available upon request from the authors.
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FIGURE 7.B Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S2) and the long sample of 10000
observations under the alternative implementation based on four observables (Home output, Home and Foreign
inflation, and terms of trade). The code for this chart is available upon request from the authors.
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FIGURE 7.C Prior and Posterior Distributions for the Structural and Shock Parameters ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the prior distributions of all 13 structural
(policy and non-policy) and shock parameters that do not receive a degenerate prior distribution, It also includes
the posterior distribution estimated from a short sample of 160 observations (S3) and the long sample of 10000
observations under the alternative implementation based on four observables (Home output, Home and Foreign
inflation, and terms of trade). The code for this chart is available upon request from the authors.
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FIGURE 8.A Bayesian IRFs With Respect To Orthogonalized Home Productivity Innovations ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Home productivity shock innovations. The IRFs are estimated from a short sample of 160 observations
(S1) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.

69



5 10 15 20 25

­0.05

0

0.05

0.1

5 10 15 20 25
0.25

0.3

0.35

0.4

0.45

0.5

5 10 15 20 25
0

0.02

0.04

0.06

0.08

5 10 15 20 25

­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

5 10 15 20 25

­2

­1.5

­1

­0.5

5 10 15 20 25
­0.2

­0.15

­0.1

­0.05

Posterior IRF 90% Confidence Interval Area
Posterior IRF 90% Confidence Interval Bounds
Posterior IRF Mean Trajectory
Theoretical IRF

FIGURE 8.A Bayesian IRFs With Respect To Orthogonalized Foreign Productivity Innovations ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Foreign productivity shock innovations. The IRFs are estimated from a short sample of 160
observations (S1) under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.A Bayesian IRFs With Respect To Orthogonalized Home Monetary Shock Innovations ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Home monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S1) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.A Bayesian IRFs With Respect To Orthogonalized Foreign Monetary Shock Innovations ­ Short Sample, S1

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Foreign monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S1) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.B Bayesian IRFs With Respect To Orthogonalized Home Productivity Innovations ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Home productivity shock innovations. The IRFs are estimated from a short sample of 160 observations
(S2) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.B Bayesian IRFs With Respect To Orthogonalized Foreign Productivity Innovations ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Foreign productivity shock innovations. The IRFs are estimated from a short sample of 160
observations (S2) under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.B Bayesian IRFs With Respect To Orthogonalized Home Monetary Shock Innovations ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Home monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S2) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.

75



5 10 15 20 25

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5 10 15 20 25
­0.14

­0.12

­0.1

­0.08

­0.06

­0.04

­0.02

5 10 15 20 25

­0.01

0

0.01

0.02

5 10 15 20 25
­0.8

­0.6

­0.4

­0.2

5 10 15 20 25

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25

0.01

0.02

0.03

0.04

0.05

Posterior IRF 90% Confidence Interval Area
Posterior IRF 90% Confidence Interval Bounds
Posterior IRF Mean Trajectory
Theoretical IRF

FIGURE 8.B Bayesian IRFs With Respect To Orthogonalized Foreign Monetary Shock Innovations ­ Short Sample, S2

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Foreign monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S2) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.C Bayesian IRFs With Respect To Orthogonalized Home Productivity Innovations ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Home productivity shock innovations. The IRFs are estimated from a short sample of 160 observations
(S3) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.C Bayesian IRFs With Respect To Orthogonalized Foreign Productivity Innovations ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Foreign productivity shock innovations. The IRFs are estimated from a short sample of 160
observations (S3) under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.C Bayesian IRFs With Respect To Orthogonalized Home Monetary Shock Innovations ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Home monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S3) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.C Bayesian IRFs With Respect To Orthogonalized Foreign Monetary Shock Innovations ­ Short Sample, S3

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Foreign monetary shock innovations. The IRFs are estimated from a short sample of 160 observations
(S3) under the benchmark implementation of the model based on four observables (Home and Foreign output,
Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.D Bayesian IRFs With Respect To Orthogonalized Home Productivity Innovations ­ Long Sample

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Home productivity shock innovations. The IRFs are estimated from the long sample of 10000
observations under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.D Bayesian IRFs With Respect To Orthogonalized Foreign Productivity Innovations ­ Long Sample

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Foreign productivity shock innovations. The IRFs are estimated from the long sample of 10000
observations under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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FIGURE 8.D Bayesian IRFs With Respect To Orthogonalized Home Monetary Shock Innovations ­ Long Sample

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance in
response to Home monetary shock innovations. The IRFs are estimated from the long sample of 10000 observations
under the benchmark implementation of the model based on four observables (Home and Foreign output, Home
and Foreign inflation). The code for this chart is available upon request from the authors.

83



5 10 15 20 25

0.005

0.01

0.015

0.02

0.025

5 10 15 20 25

­0.1

­0.08

­0.06

­0.04

­0.02

5 10 15 20 25

­8

­6

­4

­2

x 10­3

5 10 15 20 25

­0.7

­0.6

­0.5

­0.4

­0.3

­0.2

­0.1

5 10 15 20 25

0.1

0.2

0.3

0.4

5 10 15 20 25

0.01

0.02

0.03

0.04

Posterior IRF 90% Confidence Interval Area
Posterior IRF 90% Confidence Interval Bounds
Posterior IRF Mean Trajectory
Theoretical IRF

FIGURE 8.D Bayesian IRFs With Respect To Orthogonalized Foreign Monetary Shock Innovations ­ Long Sample

Note: The code is written for Matlab version 7.13.0.564. This figure plots the Bayesian impulse response functions
(IRFs) for Home output, Foreign output, Home inflation, Foreign inflation, terms of trade and the trade balance
in response to Foreign monetary shock innovations. The IRFs are estimated from the long sample of 10000
observations under the benchmark implementation of the model based on four observables (Home and Foreign
output, Home and Foreign inflation). The code for this chart is available upon request from the authors.
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