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Abstract 
Model specification and selection are recurring themes in econometric analysis. Both topics 
become considerably more complicated in the case of large-dimensional data sets where the 
set of specification possibilities can become quite large. In the context of linear regression 
models, penalised regression has become the de facto benchmark technique used to trade off 
parsimony and fit when the number of possible covariates is large, often much larger than 
the number of available observations. However, issues such as the choice of a penalty 
function and tuning parameters associated with the use of penalised regressions remain 
contentious. In this paper, we provide an alternative approach that considers the statistical 
significance of the individual covariates one at a time, whilst taking full account of the 
multiple testing nature of the inferential problem involved. We refer to the proposed method 
as One Covariate at a Time Multiple Testing (OCMT) procedure. The OCMT has a number 
of advantages over the penalised regression methods: It is based on statistical inference and 
is therefore easier to interpret and relate to the classical statistical analysis, it allows working 
under more general assumptions, it is computationally simple and considerably faster, and it 
performs better in small samples for almost all of the five different sets of experiments 
considered in this paper. Despite its simplicity, the theory behind the proposed approach is 
quite complicated. We provide extensive theoretical and Monte Carlo results in support of 
adding the proposed OCMT model selection procedure to the toolbox of applied 
researchers. 
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1 Introduction

The problem of correctly specifying a model has been a major and recurring theme in econo-

metrics. There are a number of competing approaches such as those based on specification

testing or the use of information criteria that have been exhaustively analysed in a, hitherto,

standard framework where the number of observations is considerably larger than the number

of potential model candidates.

The recent advent of large datasets has made this specification task much harder. In

particular, the reality of having datasets where the number of potential regressors for a given

regression model can be of the same or larger order of magnitude compared to the number of

observations, has spurred considerable advances in statistical and econometric methodology.

Large datasets are becoming increasingly available in a number of areas. In macroeconomics,

an ever-increasing set of indicators and surveys are used to inform policy makers in central

banks and other policy-making institutions. In microeconomics, data sets cover thousands of

firms or individuals observed over space and time and across many different characteristics.

Even when the number of available covariates is relatively small, researchers rarely know

the exact functional form with which these variables enter the regression model, and they

might be interested in including non-linear transformations of the available covariates, such

as interaction terms, which lead to a much larger set of covariates to be considered. A general

discussion of high-dimensional data and their use in microeconomic analysis can be found in

Belloni, Chernozhukov, and Hansen (2014a).

Model selection and estimation in this high-dimensional regression setting has largely set-

tled around a set of methods collectively known as penalised regression. Penalised regression is

an extension of multiple regression where the vector of regression coeffi cients, β of a regression

of yt on xnt = (x1t, x2t, ..., xnt)
′ is estimated by β̂ where

β̂ = arg min
β

[
T∑
t=1

(yt − x′ntβ)2 + P (β,λ)

]
,

in which P (β,λ) is a penalty function that penalises the complexity of β, while λ is a

vector of tuning parameters to be set by the researcher. A wide variety of penalty functions

have been considered in the literature, yielding a wide range of penalised regression methods.

Chief among them is Lasso, where P (β,λ) is chosen to be proportional to the L1 norm of

β. This has subsequently been generalised to the analysis of functions involving Lq, 0 ≤
q ≤ 2, norms. While these techniques have found considerable use in econometrics, their

theoretical properties have been mainly analysed in the statistical literature starting with the

seminal work of Tibshirani (1996) and followed up with important contributions by Frank and

Friedman (1993), Zhou and Hastie (2005), Lv and Fan (2009), Efron, Hastie, Johnstone, and
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Tibshirani (2004), Bickel, Ritov, and Tsybakov (2009), Candes and Tao (2007), Zhang (2010),

Fan and Li (2001), Antoniadis and Fan (2001), Fan and Lv (2013) and Fan and Tang (2013).

Despite considerable advances made in the theory and practice of penalised regressions, there

are still a number of open questions. These include the choice of the penalty function with a

particular focus on the desirability of its convexity and the choice of the tuning parameter(s).

The latter seems particularly crucial given the fact that no fully satisfactory method has,

hitherto, been proposed in the literature, and the tuning parameters are typically chosen by

cross validation. A number of contributions, notably by Fan and Li (2001) and Zhang (2010),

have considered the use of nonconvex penalty functions with some success. However, the use of

nonconvex penalties introduce numerical challenges and can be unstable and time consuming

to implement.

As an alternative to penalised regression, a number of researchers have developed meth-

ods that focus on the predictive power of individual regressors instead of considering all the

n covariates together. This has led to a variety of alternative specification methods some-

times referred to collectively as “greedy methods”. In such settings, regressors are chosen

sequentially based on their individual ability to explain the dependent variable. Perhaps the

most widely known of such methods, developed in the machine learning literature, is “boost-

ing”whose statistical properties have received considerable attention (Friedman, Hastie, and

Tibshirani (2000) and Friedman (2001)). Boosting constructs a regression function by con-

sidering all regressors one by one in a simple regression setting and successively selecting the

best fitting ones. More details on boosting algorithms for linear models and their theoretical

properties can be found in Buhlmann (2006).

Boosting may also be viewed within the context of stepwise regression methods which are

methods that overlap, and to some extent predate, greedy methods. In stepwise regression

the choice of regressors is based on an automatic testing procedure. Two main approaches

are common: Forward selection involves successively adding variables based on which variable

has the highest t-statistic in absolute value when added to the regression, while backward

elimination starts with a model that contains all variables and successively removes variables

based again on the relevant t-statistics. An early reference is Hocking (1976). Stepwise

regression does not seem to have been rigorously analysed, as it has mainly been used in

practical and empirical contexts.

Related to stepwise regression, recent work by David Hendry and various co-authors has

used a variant of backward elimination for model specification. This is referred to as the

‘General-to-Specific’model specification methodology, see Hendry and Krolzig (2005). This

methodology has been applied to a variety of problems. More recently, it has been applied

to break detection as detailed in Doornik, Hendry, and Pretis (2013) and Hendry, Johansen,

and Santos (2008). Again, the approach does not seem to have been rigorously examined
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from a statistical point of view especially when the number of available regressors is allowed

to diverge.

A further approach that has a number of common elements with our proposal and combines

penalised regression with greedy algorithms has been put forward by Fan and Lv (2008) and

analysed further by Fan and Song (2010) and Fan, Samworth, and Wu (2009), among others.

This approach considers marginal correlations between each of the potential regressors and

yt, and selects either a fixed proportion of the regressors based on a ranking of the absolute

correlations, or those regressors whose absolute correlation with yt exceeds a threshold. The

latter variant requires selecting a threshold and so the former variant is used in practice. As

this approach is mainly an initial screening device, it selects too many regressors but enables

dimension reduction in the case of ultra large datasets. As a result, a second step is usually

considered where penalised regression is applied to the regressors selected at the first stage.

The present paper contributes to this general specification literature by proposing a new

model selection approach for high-dimensional datasets. The main idea is to test the statistical

significance of the net contribution of each potential covariate to yt separately, whilst taking

full and rigorous account of the multiple testing nature of the problem under consideration.

In a second step, all statistically significant covariates are included as joint determinants of

yt in a multiple regression setting. In some exceptional cases it might also be required to

iterate on this process by testing the statistical contribution of covariates that have not been

previously selected (again one at a time) to the unexplained part of yt. But, it is shown

that asymptotically the number of such additional iterations will be less than the number of

true covariates explaining yt. Whilst the initial regressions of our procedure are common to

boosting and to the screening approach of Fan and Lv (2008), the multiple testing element

provides a powerful stopping rule without needing to resort to model selection or penalised

regression subsequently.

In short, instead of considering all or sub-sets of the covariates together, we consider the

statistical significance of the individual covariates one at a time, whilst taking full account

of the multiple testing nature of the inferential problem involved. We refer to the proposed

method as One Covariate at a Time Multiple Testing (OCMT) procedure. In addition to its

theoretical properties which we shall discuss below, OCMT is computationally simple and fast

even for extremely large datasets, unlike penalised regression which presents some computa-

tional challenges in such cases. The method is extremely effective in selecting regressors that

are correlated with the true unknown conditional mean of the target variable and, as a result,

it also has good estimation properties for the unknown coeffi cient vector. Like penalised re-

gressions, the proposed method is applicable when the underlying regression model is sparse

but, unlike the penalised regressions, it does not require the xnt to have a sparse covariance

matrix, and is applicable even if the covariance matrix of the noise variables (to be defined
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below) is not sparse.

Despite its simplicity, the theory behind the proposed approach is quite complicated. We

provide extensive theoretical results for the proposed OCMT procedure under assumptions

that compare favourably in terms of their general applicability to those made in the analysis of

penalised regressions. In particular, we do not assume either a fixed design or time series inde-

pendence for xnt but consider a milder martingale difference condition. While the martingale

difference condition is our maintained assumption, we also provide theoretical arguments for

alternative variants of the main method that allow the covariates to follow mixing processes

that include autoregressive schemes as special cases.

We establish conditions under which the pseudo-true model (to be defined below) is selected

with probability approaching 1 and derive oracle type properties for Euclidean norms of the

estimated coeffi cients of the selected model and its in-sample errors. Under slightly milder

conditions, we also establish the consistency of the variable selection procedure in consistently

recovering the support of the true regression model. More specifically, we establish conditions

under which True Positive Rate and False Positive Rate of our proposed variable selection

procedure are 1 and 0, respectively, with probabilities tending to 1.

We also compare the small sample properties of our proposed method with three penalised

regressions and boosting techniques using a large number of Monte Carlo experiments under

five different data generating schemes. The results clearly highlight the advantages of the

OCMT procedure as compared to penalised regressions, with convex and nonconvex penalty

functions, as well as to boosting techniques. We also show that the OCMT approach is

reasonably robust to non-Gaussian innovations and, to a lesser extent, to serially correlated

covariates. Finally, we provide some evidence on the relative computational time of the

different methods considered and show that the proposed procedure is about 102 and 104 times

faster than penalised regressions with convex and nonconvex penalty functions, respectively,

and about 50 times faster than boosting.

The paper is structured as follows: Section 2 provides the setup of the problem. Section

3 introduces the new method. Its theoretical and small sample properties are analysed in

Sections 4 and 5, respectively. Section 6 concludes and technical proofs are relegated to

appendices. Two online supplements provide additional theoretical results and Monte Carlo

results for all the experiments conducted.
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2 The Variable Selection Problem

Suppose that the target variable, yt, is generated from the following standard sparse linear

regression equation, to be referred to as the DGP (data generating process)

yt = a+

k∑
i=1

βixit + ut, for t = 1, 2, ...., T , (1)

where k is small relative to T , ut is an error term whose properties will be specified below,

and 0 < |βi| ≤ C < ∞, for i = 1, 2, ..., k. However, the identity of the covariates, xit for

i = 1, 2, ..., k, also referred to as the “signal” variables, is not known to the investigator

who faces the task of identifying them from a large set of n covariates, denoted as Snt =

{xit, i = 1, 2, ..., n}, with n being potentially larger than T . We assume that the signal variables
xit, for i = 1, 2, ..., k belong to Snt, and without loss of generality suppose that they are
arranged as the first k variables of Snt. We refer to the remaining n − k regressors in Snt as
“noise”variables, defined by βi = 0 for i = k+ 1, k+ 2, ..., n. We do not require the regressors

to be normalised, in contrast with penalised regression, where normalisation of regressors

affects the selection outcome. In addition to the constant term, other deterministic terms can

also be easily incorporated in (1), without any significant complications. It is further assumed

that the following exact sparsity condition holds

n∑
i=1

I (βi 6= 0) = k,

where k is bounded but otherwise unknown, and I (A) is an indicator function which takes

the value of unity if A holds and zero otherwise. In the presence of n potential covariates, the

DGP can be written equivalently as

yt = a+
n∑
i=1

I(βi 6= 0)βixit + ut. (2)

Our variable selection approach focusses on the overall or net impact of xit (if any) on

yt rather than the marginal effects defined by I(βi 6= 0)βi. As noted by Pesaran and Smith

(2014), the mean net impact of xit on yt is given by

θi =

n∑
j=1

I(βj 6= 0)βjσji =

k∑
j=1

βjσji, (3)

where σji = cov (xjt, xit). The parameter θi plays a crucial role in our proposed approach.

Ideally, we would like to be able to base our selection decision directly on I(βi 6= 0)βi and

its estimate. But when n is large such a strategy is not feasible. Instead we propose to
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base inference on θi and then decide if such an inference can help in deciding whether or not

βi = 0. It is important to stress that knowing θi does not imply we can determine βi. But it is

possible to identify conditions under which knowing θi = 0 or θi 6= 0 will help identify whether

βi = 0 or not. Due to the correlation between variables, nonzero βi does not necessarily imply

nonzero θi and we have the following four possibilities:

θi 6= 0 θi = 0
βi 6= 0 (I) Signal net effect is nonzero (II) Signal net effect is zero
βi = 0 (III) Noise net effect is nonzero (IV) Noise net effect is zero

.

The first and the last case where θi 6= 0 if and only if βi 6= 0 is ideal. But there is also a

possibility of the second case where θi = 0 and βi 6= 0 and the third case where θi 6= 0 and

βi = 0. These cases will also be considered in our analysis. The specificity of zero signal net

effects (case II) makes it somewhat less plausible than the other scenario, since it requires

that βi = −
∑k

j=1,j 6=iβjσji. On the other hand, the third case of noise variables with nonzero

net effect is quite likely.

For the noise variables, we require their net effects on the target variable to be bounded,

which can be formalized by the absolute summability condition,
∑n

j=k+1 |θj| < K < ∞.
However, such a condition is too generic to be of use for deriving results and is specialised in

a few ways. The first and main assumption is that there exist further k∗ variables for which

θi 6= 0. We shall refer to these noise variables as “pseudo-signal” variables since they are

correlated with the signal variables and hence can be mistaken as possible determinants of yt.

Without loss of generality, these will be ordered so as to follow the k signal variables, so that

the first k + k∗ variables in Snt are signal/pseudo-signal variables. The remaining n− k − k∗

variables will be assumed to have θi = 0 and will be referred to as “pure noise” or simply

"noise" variables. We assume that k is an unknown fixed constant, but allow k∗ to rise with

n such that k∗/n → 0, at a suffi ciently slow rate. In future discussions, we shall refer to the

set of models that contain the true signal variables as well as one or more of the pseudo-signal

variables as the pseudo-true model.

Our secondary maintained assumptions are somewhat more general and, accordingly, lead

to fewer and weaker results. A first specification assumes that there exists an ordering (possibly

unknown) such that θi = Ki%
i, |%| < 1, i = 1, 2, ..., n. A second specification modifies the decay

rate and assumes that θi = Kii
−γ, for some γ > 0. In both specifications max1≤i≤n |Ki| <

K <∞. These specifications allow for various decays in the way noise variables are correlated
with the signals. This cases are of technical interest and cover the autoregressive type designs

considered in the literature (Zhang (2010) and Belloni, Chernozhukov, and Hansen (2014b))

to model the correlations across the covariates.
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As discussed in the Introduction, the standard approach to dealing with the problem of

identifying the signal variables from the noise variables is to use penalised regression techniques

such as the Lasso. In what follows, we introduce our alternative approach which is loosely

inspired by the multiple testing literature, although here we focus on correct identification of

the signal variables rather than controlling the size of the union of the multiple tests that are

being carried out.

Notation

Generic positive finite constants are denoted by Ci for i = 0, 1, 2, ... . They can take

different values at different instances. Let a = (a1, a2, ..., an)′ and A = (aij) be an n×1 vector

and an n × ` matrix, respectively. Then ‖a‖ = (Σn
i=1a

2
i )

1/2 and ‖a‖1 = Σn
i=1 |ai| are the

Euclidean (L2) norm and L1 norm of a, respectively. ‖A‖F = [Tr (AA′)]
1/2 is the Frobenius

norm of A. τ T is a T × 1 vector of ones, τ T = (1, 1, ..., 1)′. O (.) and o (.) denote the Big O

and Little o notations, respectively. If {fn}∞n=1 is any real sequence and {gn}
∞
n=1 is a sequences

of positive real numbers, then fn = O(gn) if there exists a positive finite constant C0 such that

|fn| /gn ≤ C0 for all n. fn = o(gn) if fn/gn → 0 as n → ∞. If {fn}∞n=1 and {gn}
∞
n=1 are both

positive sequences of real numbers, then fn = 	 (gn) if there exists N0 ≥ 1 and positive finite

constants C0 and C1, such that infn≥N0 (fn/gn) ≥ C0, and supn≥N0 (fn/gn) ≤ C1. Notation

→p denotes convergence in probability, and →d denotes convergence in distribution.

3 A Multiple Testing Approach

Suppose we have T observations on yt and the n covariates, xit, for i = 1, 2, ..., n; t = 1, 2, ..., T ,

and consider the n bivariate regressions of yt on a constant and xit, for i = 1, 2, ..., n,

yt = ci + φixit + eit, t = 1, 2, ..., T. (4)

Denote the t-ratio of φi in this simple regression by tφ̂i , and note that

tφ̂i =
φ̂i

s.e.
(
φ̂i

) =
T−1/2x′iM τy

σ̂i
√
x′iM τxi/T

, (5)

where xi = (xi1, xi2, ..., xiT )′, y = (y1, y2, ..., yT )′, φ̂i = (x′iM τxi)
−1 x′iM τy, σ̂2

i = e′iei/T ,

ei = M i,τy,M i,τ = IT −X i,τ (X
′
i,τX i,τ )

−1X ′i,τ , X i,τ = (xi, τ T ),M τ = IT − τ Tτ ′T/T , and
τ T is a T × 1 vector of ones.

Remark 1 If other deterministic terms, besides the constant, were considered they would be
included in the definition of the orthogonal projection matrixM τ that filters out these effects.

Similarly, if some variables were a priori known to be signals, then they would also be included

in the definition ofM τ . The multiple testing method can easily accommodate both possibilities.
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The multiple testing estimator of I (βi 6= 0) is given by

̂I (βi 6= 0) = I
[∣∣∣tφ̂i∣∣∣ > cp(n)

]
, for i = 1, 2, ..., n, (6)

where cp(n) is a "critical value function" defined by

cp(n) = Φ−1

(
1− p

2f (n)

)
. (7)

Φ−1 (.) is the inverse function of the cumulative standard normal distribution. f (n) can take

a variety of forms depending on modelling needs but we will consider mainly

f (n) = nδ, (8)

for 0 < δ < ∞. p (0 < p < 1) is the nominal size of the individual tests to be set by the

investigator.

Remark 2 The choice of the critical value function, cp(n), given by (7)-(8), is important

since it allows the investigator to relate the size and power of the selection procedure to the

inferential problem in the classical statistics, with this modification that p (type I error) is

now scaled by a function of the number of covariates under consideration. As we shall see, the

OCMT procedure applies irrespective of whether n is small or large relative to T , so long as

n = O (T κ), for some κ > 0. This follows from result (i) of Lemma 1, which establishes that

cp(n) = O
{

[ln (n)]1/2
}
. Note also that cp(n) = o

(
TC0

)
, for all C0 > 0, if there exists κ > 0

such that n = O (T κ).

Covariates for which ̂I (βi 6= 0) = 1 are selected as signals or pseudo-signals. Denote the

number of selected covariates by k̂ =
∑n

i=1
̂I (βi 6= 0). In a final step, the regression model is

estimated by running the ordinary least squares (OLS) regression of yt on all selected covari-

ates, namely the regressors xit for which ̂I (βi 6= 0) = 1, over all i = 1, 2, ..., n. Accordingly,

the OCMT estimator of βi, denoted by β̃i, is then given by

β̃i =

{
β̂

(k̂)
i , if ̂I (βi 6= 0) = 1

0, otherwise
, for i = 1, 2, ..., n, (9)

where β̂(k̂)
i is the OLS estimator of the coeffi cient of the ith variable in a regression that includes

all the covariates for which ̂I (βi 6= 0) = 1, and a constant term.

We investigate the asymptotic properties of the OCMT procedure and the associated

OCMT estimators, β̃i, for i = 1, 2, ..., n. To this end we consider the true positive rate

(TPR), and the false positive rate (FPR) defined by

TPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
∑n

i=1 I(βi 6= 0)
, (10)

FPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1, and βi = 0

]
∑n

i=1 I(βi = 0)
. (11)
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We also consider the Euclidean norms of the parameter estimation errors, β̃i − βi, and the

in-sample regression errors defined by

E
∥∥∥β̃n−βn∥∥∥ = E

√√√√ n∑
i=1

(
β̃i − βi

)2

,

and

Fũ = E

(
1

T

T∑
i=1

ũ2
t

)
,

where

ũt = yt − â(k) −
∑n

i=1β̃ixit = yt − â(k) − β̃′nxnt, (12)

βn = (β1, β2, ..., βn)′, β̃n = (β̃1, β̃2, ..., β̃n)′, and â(k) is the OLS estimator of the constant term

in the final regression.

We consider the following assumptions:

Assumption 1 (a) The error term in DGP (1), ut, is a martingale difference process with

respect to Fut−1 = σ (ut−1, ut−2, ..., ). In addition, ut has zero mean and a constant variance,

0 < σ2 < C < ∞. (b) Each of the n covariates considered by the researcher, collected in the
set Snt = {x1t, x2t, ..., xnt}, is independently distributed of the errors ut′ , for all t and t′.

Assumption 2 (a) Slope coeffi cients of the true regressors in DGP (1), βi, for i = 1, 2, ..., k,

are bounded constants different from zero. (b) Net effect coeffi cients, θi, defined by (3) are

nonzero for i = 1, 2, ..., k.

Assumption 3 There exist suffi ciently large positive constants C0, C1, C2 and C3 and sx, su >

0 such that the covariates Snt = {x1t, x2t, ..., xnt} satisfy

sup
i,t

Pr (|xit| > α) ≤ C0 exp (−C1α
sx) , for all α > 0, (13)

and the errors, ut, in DGP (1) satisfy

sup
t

Pr (|ut| > α) ≤ C2 exp (−C3α
su) , for all α > 0. (14)

Assumption 4 Let Fxit = σ (xit, xi,t−1, ....), where xit, for i = 1, 2, ..., n, is the i-th covariate

in the set Snt considered by the researcher. Define Fxnt = ∪nj=k+k∗+1Fxjt, Fxst = ∪k+k∗

i=1 Fxjt, and
Fxt = Fxnt ∪ Fxst . Then, xit, i = 1, 2, ..., n, are martingale difference processes with respect to

Fxt−1. xit is independent of xjt′ for i = 1, 2, ..., k + k∗, j = k + k∗ + 1, ..., n, and for all t and

t′, and E
[
xitxjt − E (xitxjt)

∣∣Fxt−1

]
= 0, for i, j = 1, 2, ..., n, and all t.
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Assumption 5 Consider the pair {xt, q·t}, for t = 1, 2, ..., T , where q·t = (q1,t, q2,t, ..., qlT ,t)
′

is an lT × 1 vector containing a constant and a subset of Snt, and xt is a generic element of
Snt that does not belong to q·t. It is assumed that E (q·txt) and Σqq = E (q·tq

′
·t) exist and Σqq

is invertible. Define γqx,T = Σ−1
qq

[
T−1

∑T
t=1 E (q·txt)

]
and

ux,t,T =: ux,t = xt − γ ′qx,Tq·t. (15)

All elements of the vector of projection coeffi cients γqx,T are uniformly bounded and only a

bounded number of the elements of γqx,T are different from zero.

Under Assumption 1(b), the net effect coeffi cient, θi, defined in (3), can be equivalently

written as

θi = E
(
T−1x′iM τXkβk

)
= E

(
T−1x′iM τy/T

)
=

k∑
j=1

βjσji, (16)

where

y = aτ T +Xkβk + u, (17)

is the DGP, (1), written in matrix form, in which as before τ T is a T ×1 vector of ones, Xk =

(x1,x2, ...,xk) is the T × k matrix of observations on the signal variables, βk = (β1, β2, ..., βk)
′

is the k × 1 vector of associated slope coeffi cients and u = (u1, u2, ..., uT )′ is T × 1 vector of

errors.

Before presenting our theoretical results we provide some remarks on the pros and cons

of our assumptions as compared to the ones typically assumed in the penalised and boosting

literature.

Remark 3 The signal and (pure) noise variables are allowed to be correlated amongst them-
selves; namely, no restrictions are imposed on ρij = E(xitxjt) for i, j = 1, 2, ..., k, and on

ρij for i, j = k + k∗ + 1, k + k∗ + 2, ..., n. Also signal and pseudo-signal variables are allowed

to be correlated; namely, ρij could be non-zero for i, j = 1, 2, ..., k + k∗. Therefore, signal

and pseudo-signal variables as well as pure noise variables can contain common factors. But

under Assumption 4, E [xit − E (xit) |xjt] = 0 for i = 1, 2, ..., k and j = k + k∗ + 1, ..., n. This

implies that, if there are common factors, they cannot be shared between signal/pseudo-signal

variables and noise variables.

Remark 4 The exponential bounds in Assumption 3 are suffi cient for the existence of all
moments of covariates, xit, and errors, ut. It is very common in the literature to assume some

form of exponentially declining bound for probability tails for ut and xit where appropriate.

Such an assumption can take the simplified form of assuming normality, as in, e.g., Zheng,

Fan, and Lv (2014).
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Remark 5 Assumption 2 is a set of regularity conditions. Condition (a) is needed for obvious
reasons. In our setting, it is assumed that βi 6= 0, for i = 1, 2, ..., k, and zero otherwise.

Theorem 3 can be used to extend this framework to small but nonzero βi as discussed in

Remark 13. Assumption 2.b is needed to preclude the possibility that the linear combination∑k
j=1βjρji is exactly zero despite a non-zero βi. This assumption can be relaxed as discussed

in Section 4.6.

Remark 6 Assumption 5 is a technical condition that is required for some results derived
in the Appendix, which consider a more general multiple regression context where subsets of

regressors in xnt are included in the regression equation. If Q = (q·1, q·2, ..., q·T )′ = τ T =

(1, 1, ..., 1)′, then Assumption 5 is trivially satisfied given the rest of the assumptions. Then,

γqx,T = µx,T = 1
T

∑T
t=1E(xt) and ux,t,T = xt − µx,T .

Remark 7 It is important to contrast our assumptions to those in the literature. In most
analyses of alternative methods, such as penalised regression, it is usual to assume that either

xit is deterministic or, in a more general setting, iid. See, for example, Buhlmann and van

de Geer (2011) or Zheng, Fan, and Lv (2014) for a more recent contribution. Our martingale

difference assumption compares favourably to the iid assumption. Further, in Section 4.7 we

relax this assumption in a variety of ways. See also Remark 20, on the need to assume that

noise variables are martingale difference processes.

Remark 8 It is also important to consider how our assumptions on the correlation between
signal and pseudo-signal covariates compare to those made in the literature. We allow for

noise variables to have a common factor, and do not require the covariance matrix of xnt to be

sparse, in contrast with the existing large-dataset literature, where sparsity of the covariance

matrix of the n potential regressor variables is a common assumption.

Remark 9 To identify the signal variables we do need to assume the sparsity of correlation
between the signal and non-signal variables as captured by the presence of k∗ pseudo-signal

variables. As our results will indicate, the OCMT approach can identify the k+ k∗ signal and

pseudo-signal variables with a probability tending towards 1. The selected regressors are then

considered in a multiple regression and the relevant regression coeffi cients are estimated con-

sistently, under mild restrictions on k∗ such as k∗ = o(T 1/4).1 In contrast, a number of crucial

1The rate O
(
T 1/4

)
is more restrictive than the rate O

(
T 1/3

)
commonly derived in the literature that deals

with an increasing number of regressors, see Berk (1974), Said and Dickey (1984) or Chudik and Pesaran
(2013). The difference comes from the assumption on the norm of the covariance matrix of regressors and
its inverse. The cited literature considers an increasing number of lags of a stationary variable as regressors
and, consequently, this norm is bounded in the number of regressors. In contrast, our analysis allows for the
presence of strong cross-sectional dependence among the regressors and, therefore, the norm of their covariance
matrix is no longer bounded in the number of regressors.
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issues arise in the context of Lasso, or more generally when Lq, 0 ≤ q ≤ 1, penalty functions

are used. Firstly, it is customary to assume a restrictive framework of fixed-design regressor

matrices, where in many cases a generalisation to stochastic regressors is not straightforward,

such as the spark condition of Donoho and Elad (2003) and Zheng, Fan, and Lv (2014).

Secondly, an essentially necessary condition for Lasso to be a valid variable selection method

is the irrepresentable condition which bounds the maximum of all regression coeffi cients, in

regression of any noise or pseudo-signal variable on the signal variables, to be less than one

in the case of normalised regressor variables, see, e.g., Section 7.5 of Buhlmann and van de

Geer (2011). This condition is acknowledged to be rather restrictive for a large n.

Remark 10 A final issue relates to the fact that most results for penalised regressions essen-
tially take as given the knowledge of the tuning parameter associated with the penalty function,

in order to obtain oracle results. In practice, cross-validation is recommended to determine

this parameter but theoretical results on the properties of such cross-validation schemes are

rarely reported. Finally, it is worth commenting on the assumptions underlying boosting as

presented in Buhlmann (2006). There, it is assumed that the regressors are iid and bounded

while few restrictions are placed on their correlation structure. Nevertheless, it is important

to note that the aim of boosting in that paper is to obtain a good approximation to the regres-

sion function and not to select the true regressors, and correlations among signal and noise

variables do not present a real problem.

4 Theoretical Results

In this section, we present the main theoretical results using a number of lemmas established

in the Appendix. The key result which we will be using repeatedly below is Lemma 16. This

lemma provides sharp bounds for Pr
(∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0

)
. It is important to appreciate the

complex tasks involved in deriving such bounds. These tasks include deriving exponential

inequalities for unbounded martingale difference processes (Lemma 9), handling products

involving martingale difference processes (Lemma 10), and dealing with the denominator of

the t−ratio, tφ̂i , which requires the exponential inequalities derived in Lemma 14. Further,
since we wish to accommodate extensions of the procedure for more general forms of time

dependence and allowing for the possibility of θi = 0 even if βi 6= 0, the results in the

appendix are obtained for t-ratios in multiple regression contexts where subsets of regressors

in xnt are included in the regression equation.
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4.1 True positive rate (TPRn,T)

We first examine the statistical properties of TPRn,T defined by (10), under the assumption

that θi 6= 0 if βi 6= 0. Note that

TPRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
∑n

i=1 I(βi 6= 0)
=

∑k
i=1 I

[
̂I (βi 6= 0) = 1 and βi 6= 0

]
k

.

Since the elements in the above summations are 0 or 1, then taking expectations we have

E |TPRn,T | =

∑k
i=1 Pr

[∣∣∣tφ̂i∣∣∣ > cp(n)|βi 6= 0
]

k
=

∑k
i=1 Pr

[∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0
]

k
.

Suppose there exists κ > 0 such that n = O (T κ). Using (A.87) of Lemma 16, where the

matrix Q, referred to in the statement of the Lemma, is set equal to τ T , and noting that

cp (n) is given by (7)-(8),

1− Pr
[∣∣∣tφ̂i∣∣∣ > cp(n) |θi 6= 0

]
= O

[
exp

(
−C2T

C3
)]
,

for some C2, C3 > 0, where as defined by (16), θi = E (x′iM τy/T ). Using P (A) = 1−P (Ac),
where Ac denotes the complement of event A, we obtain

Pr
[∣∣∣tφ̂i∣∣∣ ≤ cp(n) |θi 6= 0

]
= O

[
exp

(
−C2T

C3
)]
, (18)

and noting that θi 6= 0 for all signals i = 1, 2, ..., k, then under Assumption 2 we have

k−1

k∑
i=1

Pr
(∣∣∣tφ̂i∣∣∣ ≤ cp(n)|βi 6= 0

)
= k−1

k∑
i=1

O
[
exp

(
−C2T

C3
)]
. (19)

The above arguments lead to the following Theorem:

Theorem 1 Consider the DGP defined by (1), and suppose that Assumptions 1-4 hold, As-
sumption 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j = k + 1, k + 2, ..., k + k∗, cp(n) is

given by (7)-(8) for any positive finite δ and 0 < p < 1, and n, T →∞ such that n = O (T κ)

for some κ > 0. Then

E |TPRn,T | = 1−O
[
exp

(
−C2T

C3
)]
, (20)

for some C2, C3 > 0, where TPRn,T is the true positive rate defined by (10) with the OCMT

estimator of I (βi 6= 0) defined by (6).

Proof. (20) directly follows from (19).
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4.2 False positive rate (FPRn,T )

Consider now FPRn,T defined by (11). Again, note that the elements of FPRn are either 0

or 1 and hence |FPRn,T | = FPRn,T . Taking expectations of (11) we have

E |FPRn,T | =

∑n
i=k+1 Pr

[∣∣∣tφ̂i∣∣∣ > cp(n)|βi = 0
]

n− k

=

∑k+k∗

i=k+1 Pr
[∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0

]
+
∑n

i=k+k∗+1 Pr
[∣∣∣tφ̂i∣∣∣ > cp(n)|θi = 0

]
n− k , (21)

where, as before, θi = E (x′iM τy/T ) (see (16)). Recall that under Assumptions 2 and 4,

θi 6= 0 for i = 1, 2, ..., k + k∗ and θi = 0 for i = k + k∗ + 1, k + k∗ + 2, ..., n. Using (A.87) of

Lemma 16 and assuming there exists κ > 0 such that n = O (T κ), we have

k∗ −
k+k∗∑
i=k+1

Pr
[∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0

]
= O

[
exp

(
−C2T

C3
)]
,

for some finite positive constants C2 and C3. Moreover, (A.86) of Lemma 16 implies that for

any 0 < κ < 1 there exist finite positive constants C0 and C1 such that
n∑

i=k+k∗+1

Pr
[∣∣∣tφ̂i∣∣∣ > cp(n)|θi = 0

]
=

n∑
i=k+k∗+1

{
exp

[−κc2
p(n)

2

]
+ exp

(
−C0T

C1
)}
. (22)

Using these results in (21), overall we obtain

E |FPRn,T | =
(

k∗

n− k

)
+exp

[
−
κc2

p(n)

2

]
+O

[
exp(−C0T

C1)
]
+O

[
(n− k)−1 exp

(
−C2T

C3
)]
,

(23)

which establishes the following Theorem:

Theorem 2 Consider the DGP defined by (1), suppose that Assumptions 1, 3 and 4 hold,
Assumption 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j = k + 1, k + 2, ..., k + k∗, cp(n)

is given by (7)-(8) for any positive finite δ and 0 < p < 1, and there exists κ > 0 such that

n = O (T κ). Then

E |FPRn,T | =
(

k∗

n− k

)
+ exp

[
−
κc2

p(n)

2

]
+O

[
exp(−C0T

C1)
]
, (24)

for some 0 < κ < 1 and finite positive constants C0 and C1, where the false positive rate

FPRn,T is defined in (11) with the OCMT estimator of I (βi 6= 0) defined by (6). Furthermore,

assuming in addition that k∗ = o(n),

FPRn,T →p 0, (25)

as n, T →∞ such that n = O (T κ) for some κ > 0.
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Proof. (24) directly follows from (23). For k∗ = o(n) and n, T → ∞ such that n = O (T κ)

for some κ > 0, (24) implies E |FPRn,T | → 0, which is suffi cient for (25).

Remark 11 It is clear that the method of analysis that gives rise to (24) can be used for
related calculations. A prominent example is the false discovery rate (FDR) defined by

FDRn,T =

∑n
i=1 I

[
̂I (βi 6= 0) = 1, and βi = 0

]
∑n

i=1 I
[
̂I (βi 6= 0) = 1

] .

It is easily seen that

FDRn,T =
(n− k)FPRn,T

R̂
,

where R̂ =
∑n

i=1 I
[
̂I (βi 6= 0) = 1

]
. Then, it follows that p limn,T→∞ R̂ = k+ k∗ and, by (24),

p lim
n,T→∞

FDRn,T =
k∗

k + k∗
.

If k∗ = 0, then p limn,T→∞ FDRn,T = 0. But if k∗ > 0 then, it is worth noting that, as

discussed in Remark 16, the norm of the estimated coeffi cient, β̃n−βn, will not be adversely
affected since in the final multiple regression all estimated coeffi cients associated with pseudo-

signal variables will tend to zero.

Theorem 2 relates to the first maintained assumption about the pseudo-signal variables

where only k∗ of them have non-zero θi. This result can be extended to the case where

potentially all pseudo-signal variables have non-zero θi, as long as θi are absolutely summable.

Two leading cases considered in the literature are to assume that there exists a (possibly

unknown) ordering such that

θi = Ki%
i, for i = 1, 2, ..., n, , and |%| < 1, (26)

for a given set of constants, Ki, with supi |Ki| <∞, or

θi = Kii
−γ, for i = 1, 2, ..., n, and for some γ > 0. (27)

Then, we have the following extension of Theorem 2.

Theorem 3 Consider the DGP defined by (1), suppose that Assumptions 1, 3 and 4 hold,
Assumption 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j = k+ 1, k+ 2, ..., n, and instead of

Assumption 2(b), condition (26) holds. Moreover, let cp(n) be given by (7)-(8) for any positive

finite δ and 0 < p < 1, and suppose there exists κ > 0 such that n = O (T κ). Then for all

ζ > 0 we have

E |FPRn,T | = o(nζ−1) +O
[
exp(−C0T

C1)
]
,
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for some finite positive constants C0 and C1, where FPRn,T is defined by (11) with the OCMT

estimator of I (βi 6= 0) defined by (6). If condition (27) holds instead of condition (26), then,

assuming γ > 1/2κ2 and n, T →∞, such that n = T κ, for some κ > 0, we have

FPRn,T →p 0.

Proof. A proof is provided in Section A of the online theory supplement.

Remark 12 FPRn,T can be somewhat controlled by the choice of p. But, by result (ii) of

Lemma 1, it follows that exp
[
−κc2

p(n)/2
]

= O
(
n−δκ

)
, and hence E |FPRn,T | converges to

zero at the rate of n−min{1,δκ} so long as the number of pseudo-signal variables is bounded. The

main result of Theorem 2 also holds if the number of pseudo-signal variables, k∗, rise with n

so long as k∗/n→ 0, as n→∞.

Remark 13 Theorem 3 assumes that θi 6= 0, for i = k + 1, 2, ..., n while βi = 0, for i =

k + 1, 2, ..., n. Of course, exactly the same analysis as in the proof of Theorem 3 can be used

when βi 6= 0, for i = k+1, 2, ..., n, to allow an analysis of the ability of OCMT to pick up weak

signal variables, since in the proof of the Theorem we explore the probability that
∣∣∣tφ̂i∣∣∣ > cp(n)

when θi is small. It is clear that the relationship between
√
Tθi and cp(n) is crucial . Given

(i) of Lemma 1, a variable will be selected if ln(n)1/2/
(√

Tθi

)
= o(1) and so our analysis can

easily handle relatively weak signals as long as βi = 	 (θi).

4.3 The probability of choosing the pseudo-true model

We denote a selected regression model as a pseudo-true model if it contains the (true) regres-

sors xit, i = 1, 2, ..., k, and none of the noise variables, xit, i = k + k∗ + 1, k + k∗ + 2, ..., n.

The models in the set may contain one or more of the pseudo-signal variables, xit, i =

k + 1, k + 2, ..., k + k∗. We refer to all such regressions as the set of pseudo-true models.

Mathematically, the event of choosing the pseudo-true model is given by

A0 =

{
k∑
i=1

̂I (βi 6= 0) = k

}
∩
{

n∑
i=k+k∗+1

̂I (βi 6= 0) = 0

}
. (28)

The above definition implies that the probability of not choosing the pseudo-true model is

bounded by the following expression

Pr

(
k∑
i=1

̂I (βi 6= 0) < k

)
+ Pr

(
n∑

i=k+k∗+1

̂I (βi 6= 0) > 0

)
= A+B.
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However

A = Pr

(
k∑
i=1

̂I (βi 6= 0) < k

)
≤

k∑
i=1

Pr
(
̂I (βi 6= 0) = 0

)
=

k∑
i=1

Pr
[∣∣∣tφ̂i∣∣∣ ≤ cp(n) |θi 6= 0

]
≤ k sup

i
Pr
[∣∣∣tφ̂i∣∣∣ ≤ cp(n) |θi 6= 0

]
,

and using (18), assuming that n = O (T κ) for some κ > 0, we obtain (see also (A.87) of

Lemma 16)

A ≤ exp
(
−C2T

C3
)
.

for some finite positive constants C2 and C3. Similarly, using (22) and result (ii) of Lemma

1, for some C0 > 0,

B ≤
n∑

i=k+k∗+1

Pr
(
̂I (βi 6= 0) = 1

)
≤ C0pn

f (n)
. (29)

So, the probability of choosing the pseudo-true model is bounded from below, namely

Pr (A0) ≥ 1− C0
n

f (n)
− exp

(
−C2T

C3
)
. (30)

If, in addition, δ > 1, then n/f (n) = n1−δ → 0, and

Pr (A0)→ 1,

as n,T → ∞ such that n = O (T κ) for some κ > 0. A further result may be obtained by

considering Pr
(
k̂ − k − k∗ > j

)
where

k̂ =
∑n

i=1
̂I (βi 6= 0). (31)

A bound on this probability is obtained in Lemma 17. The results of that Lemma and the

above result on the probability of selecting the pseudo-true model are summarised in the

Theorem 4 below.

Theorem 4 Consider the DGP defined by (1), suppose that Assumptions 1-4 hold, Assump-
tion 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j = k + 1, k + 2, ..., k + k∗, cp(n) is

given by (7)-(8) for any positive finite δ and 0 < p < 1, θi, defined by (16), is zero for

i = k+ k∗+ 1, k+ k∗+ 2, ..., n, there exists κ > 0 such that n = O (T κ), and k∗ = o(n). Then

there exist finite positive constants C0, C1 and C2, such that

Pr (A0) ≥ 1− C0
n

f (n)
− exp

(
−C1T

C2
)
, (32)
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where A0 is the pseudo-true model defined by (28) with the OCMT estimator of I (βi 6= 0)

defined by (6). If, in addition, f (n) = nδ and δ > 1, then

Pr (A0)→ 1, (33)

as n, T →∞ such that n = O (T κ) for some κ > 0. Further, there exist 0 < κ < 1 and finite

positive constants C0, and C1, such that,

Pr
(
k̂ − k − k∗ > j

)
=

(n− k − k∗)
j

{
exp

[
−
κc2

p(n)

2

]
+O

[
exp(−C0T

C1)
]}

, (34)

for j = 1, 2, ..., n− k − k∗, where k̂ is defined by (31) with the OCMT estimator of I (βi 6= 0)

defined by (6).

Proof. Lower bound for Pr (A0) is derived in (30), from which (33) easily follows. Result

(34) directly follows from Lemma 17, noting that the term (k + k∗) j−1O
[
exp

(
−C2T

C3
)]
on

the right side of (A.92) is dominated by the remaining terms when k∗ = o(n).

Remark 14 The power of the OCMT procedure in selecting the signal xit rises with√
T |θi| /σei,(T )σxi,(T ), so long as cp(n)/

√
T → 0, as n and T → ∞ (see A.87), where σei,(T )

and σxi,(T ) are defined by (A.84), replacing e, x, and Q by ei, xi, and τ T , respectively.

When this ratio is low, a large T will be required for the OCMT approach to select the ith

signal. This condition is similar to the so-called ‘beta-min’condition assumed in the penalised

regression literature. (See, for example, Section 7.4 of Buhlmann and van de Geer (2011) for

a discussion.)

4.4 The norm of the estimated coeffi cients

In this section, we consider the coeffi cient norm E
∥∥∥β̃n−βn∥∥∥, where β̃n = (β̃1, β̃2, ..., β̃n)′,

is the vector of the OCMT estimators, β̃i, for i = 1, 2, ..., n, defined by (9), and βn is the

associated true values. We need to determine whether, and if so at what rates, E
∥∥∥β̃n−βn∥∥∥

tends to zero. We assume that we only consider models with a maximum of lmax regressors,

namely k̂ = dim
(
β̃n

)
≤ lmax. The choice of lmax will follow from our subsequent analysis. To

derive this we consider the set of mutually exclusive events given by

Ai,j =

{[
k+k∗∑
s=0

̂I (βs 6= 0) = i

]
∩
[

n∑
s=k+k∗+1

̂I (βs 6= 0) = j

]}
, i = 0, ..., k+k∗, j = 0, ..., n−k−k∗.

Using this decomposition we can proceed to prove the following Theorem.

Theorem 5 Consider the DGP defined by (1), suppose that Assumptions 1-4, conditions

(i)-(ii) of Lemma 19 hold, Assumption 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j =
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k+ 1, k+ 2, ..., k+ k∗, cp(n) is given by (7)-(8) for any positive finite δ and 0 < p < 1, θi = 0,

for i = k + k∗ + 1, ..., n, and there exists κ > 0 such that n = O (T κ). It then follows that

E
∥∥∥β̃n−βn∥∥∥ = O

[(
l4max

T
+ lmax

)
exp

(
−C1T

C2
)]

+O

[(
l4max

T

)
pn

f (n)

]
, (35)

for some finite positive constants C1 and C2, where lmax defines the maximum number of the

selected regressors, the vector of OCMT estimators β̃n is defined in (9), βn = (β1, β2, ..., βn)′

and f (n) is given by (8).

Proof. The proof is provided in Appendix A.1.1.

Remark 15 As can be seen from the statement of the above theorem, result (35) requires

stronger conditions than those needed for the proof of the earlier results on the limiting prop-

erties of TPRn,T and FPRn,T . In particular, the additional technical conditions (i) and

(ii) of Lemma 19 are needed for controlling the rate of convergence of the inverse of sam-

ple covariance matrix of the selected regressors. The first condition relates to the eigen-

values of the population covariance of the selected regressors, denoted by Σss, and aims to

control the rate at which ‖Σ−1
ss ‖F grows. The second condition bounds the expectation of(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4

, which is needed for our derivations. Under our conditions on

the number of selected regressors, ‖Σ−1
ss ‖F E

(∥∥∥Σ̂ss −Σss

∥∥∥
F

)
= o(1), but this is not suffi cient

for E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1), so an extra technical assumption is needed.

Remark 16 It is important to provide intuition on why we can get a consistency result for
the Frobenius norm of the estimated regressors even though the selection includes pseudo-

signal variables. There are two reasons for this. First, since OCMT procedure selects all the

signals with probability one as n and T →∞, then the coeffi cients of the additionally selected
regressors (whether pseudo-signal or noise) will tend to zero with T . Second, our restriction,

that there exist only a finite number of pseudo-signal (or, in an extended analysis, an infinite

number of them that grows at a much lower rate than T ), implies that their inclusion can

be accommodated since their estimated coeffi cients will tend to zero and the variance of these

estimated coeffi cients will be well controlled. Of course, some noise variables will also be

selected in small samples, but we restrict their number by using a bound on the number of

selected regressors (namely lT ≤ lmax in our proofs). In practice, our Monte Carlo evidence

suggests that the number of noise variables selected is very well controlled by our multiple

testing framework and there is no practical need for enforcing the bound in small samples, in

line with (34).
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4.5 The norm of the in-sample errors

Consider the following norm of the in-sample errors

Fũ = E

(
1

T

T∑
i=1

ũ2
t

)
=

1

T
E (ũ′ũ) =

1

T
E ‖ũ‖2 ,

where ũ = (ũ1, ũ2, ..., ũT )′, ũt is defined by (12), and ‖ũ‖2 = ũ′ũ.

Theorem 6 Consider the DGP defined by (1), suppose that Assumptions 1-4 hold, Assump-
tion 5 holds for the pairs (xit, xjt), i = 1, 2, ..., k, j = k + 1, k + 2, ..., k + k∗, cp(n) is given by

(7)-(8) for any positive finite δ and 0 < p < 1, and θi = 0, for i = k+ k∗+ 1, k+ k∗+ 2, ..., n.

Then

E

(
1

T

T∑
i=1

ũ2
t

)
− σ2 → 0, (36)

as n, T →∞ such that n = O (T κ) for some κ > 0. Also, if n/f (n) = o (1/T ), then

E

(
1

T

T∑
i=1

ũ2
t

)
− σ2 = O

(
1

T

)
. (37)

Proof. The proof is provided in Appendix A.1.2.

Remark 17 This theorem establishes the oracle property of the OCMT procedure for the in-

sample fit of the selected regression equation, and does not require the additional technical

conditions required for the proof of the Frobenius norm of the estimated coeffi cients. This is

because fitted values are defined even if the sample covariance of the selected regressors is not

invertible.

4.6 Relaxing the assumption of nonzero signal net effects: an iter-
ated multiple testing procedure

Assumption 2(b) states that regressors for which βi 6= 0, also satisfy θi 6= 0. Clearly, there

are circumstances when this condition does not hold. To deal with such a possibility we

propose the following iterated version of the multiple testing procedure. Initially, as before,

we consider the n bivariate regressions of yt on a constant and xit for i = 1, 2, ..., n (see (4)),

yt = ci,(1) + φ̂i,(1)xit + eit,(1),

and compute the t-ratios

tφ̂i,(1) =
φ̂i,(1)

s.e.
(
φ̂i,(1)

) =
T−1/2x′iM (0)y

σ̂i,(1)

√
x′iM (0)xi

, (38)

21



where φ̂i,(1) =
(
x′iM (0)xi

)−1
x′iM (0)y, σ̂2

i,(1) = e′i,(1)ei,(1)/T , ei,(1) = M i,(0)y, M i,(0) = IT −
X i,(0)(X

′
i,(0)X i,(0))

−1X ′i,(0), X i,(0) = (xi, τ T ), and M (0) = IT − τ Tτ ′T/T . The first stage
multiple testing estimator of I (βi 6= 0) is, similarly to (6), given by

̂I (βi 6= 0) = I
[∣∣∣tφ̂i,(1)∣∣∣ > cp(n)

]
, i = 1, 2, ..., n,

where cp(n) is given by (7). Regressors for which ̂I (βi 6= 0) = 1 are selected as signals in the

first stage. Denote the number of variables selected in the first stage by k̂s(1), the index set of

the selected variables by Ss(1), and the T × k̂s(1) matrix of the k̂
s
(1) selected variables by X

s
(1).

Finally, let X(1) = (τ T ,X
s
(1)), k̂(1) = k̂s(1), S(1) = Ss(1) and N(1) = {1, 2, ..., n} \ S(1).

In stages j = 2, 3, ..., we consider the n− k̂(j−1) regressions of yt on the variables in X(j−1)

and, one at the time, xit for i ∈ N(j−1). We then compute the following t-ratios

tφ̂i,(j) =
φ̂i,(j)

s.e.
(
φ̂i,(j)

) =
x′iM (j−1)y

σ̂i,(j)
√
x′iM (j−1)xi

, for i ∈ N(j−1), j = 2, 3, ..., (39)

where φ̂i,(j) =
(
x′iM (j−1)xi

)−1
x′iM (j−1)y denotes the estimated conditional net effect of xit

on yt in stage j, σ̂2
i,(j) = T−1e′i,(j)ei,(j),M (j−1) = IT −X(j−1)(X

′
(j−1)X(j−1))

−1X ′(j−1), ei,(j) =

M i,(j−1)y denotes the residual of the regression,M i,(j−1) = IT−X i,(j−1)(X
′
i,(j−1)X i,(j−1))

−1X ′i,(j−1),

and X i,(j−1) =
(
xi,X(j−1)

)
. Regressors for which

̂I (βi 6= 0) = I
[∣∣∣tφ̂i,(j)∣∣∣ > cp(n)

]
= 1

are then added to the set of already selected signal variables from the previous stages. Denote

the number of variables selected in stage j by k̂s(j), their index set by Ss(j), and the T×k̂s(j) matrix
of the k̂s(j) selected variables by Xs

(j). Also define X(j) = (X(j−1),X
s
(j)), k̂(j) = k̂s(j) + k̂(j−1),

S(j) = Ss(j) ∪ S(j−1), and N(j) = {1, 2, ..., n} \ S(j), and then proceed to stage j + 1. The

procedure stops when no regressors are selected at a given stage, which we denote by stage J .

In this multiple procedure, ̂I (βi 6= 0) = 1 as long as I
[∣∣∣tφ̂i,(j)∣∣∣ > cp(n)

]
= 1 for some

j = 1, 2, ..., J . We show in Lemma 20 in the Appendix that, when T is suffi ciently large, then

at least one signal must be selected in each stage of the iterated multiple testing procedure

with high probability. Thus, when signal variables are uncorrelated with noise variables, it

must be that J ≤ k. In practice, J is likely to be small, since the specificity of zero signal net

effects is less plausible, and all signals with nonzero θ will be picked up (with high probability)

in the first stage.

In a final step, the regression model is estimated by running the OLS regression of yt on all

selected variables, namely the regressors xit for which ̂I (βi 6= 0) = 1, over all i = 1, 2, ...., n.

We will continue to use OCMT to refer to this iterated version, which we will implement in the

Monte Carlo section below, since the possibility of signal variables with zero net effect cannot
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be ruled out in practice. Setting J = 1 tends to improve the small sample performance of the

OCMT approach marginally when all signal variables have nonzero net effects, namely θi 6= 0

for i = 1, 2, ..., k. In other words, our small sample evidence in the next section shows that

allowing J > 1, using the stopping rule defined above, does not significantly deteriorate the

small sample performance when θi 6= 0 for i = 1, 2, ..., k, while it picks-up the signal variables

with zero net effects with high probability.2

From a theoretical perspective, we note that our Lemmas, and in particular Lemma 16,

can provide an exponential inequality for t-statistics of the form (39) as long as the number

of regressors contained inX(j−1) is of lower order than T 1/3. This is a weaker restriction than

the restriction on lmax needed for our Frobenius norm result in Theorem 5, which requires

that lmax = o
(
T 1/4

)
. Therefore, it immediately follows that, under the restriction required for

the Frobenius norm, the results obtained in Theorems 1-2 hold for the iterated version of the

OCMT approach.

It is worth briefly comparing OCMT to a standard version of boosting (B). OCMT selects

more than one regressor at each iteration depending on the particular outcome of OCMT in

that iteration, while B only selects one regressor at each iteration. OCMT has a clear stopping

rule in that at some iteration the OCMT procedure will select no regressors while B requires

the specification of a stopping rule. This is the result of the fact that OCMT has a testing

component while B simply ranks regressors at each iteration based on some fitting criterion

such as R2. This difference turns out to be particularly important especially given that no

fully satisfactory stopping rule seems to be available in the boosting literature.

4.7 Allowing for serial correlation in the covariates

Another important assumption made so far is that noise variables are martingale difference

processes which could be quite restrictive in the case of time series applications. This assump-

tion can be relaxed. In particular, under the less restrictive assumption that noise variables

are exponentially mixing, it can be shown that all the theoretical results derived above hold.

Details are provided in Section B of the online theory Supplement.

A further extension involves relaxing the martingale difference assumption for the signal

and pseudo-signal covariates. Although, this assumption is considerably weaker than those

made in the high-dimensional model estimation and selection literature, where it is usually

assumed that regressors are either non-stochastic or independently distributed, it is neverthe-

less restrictive for many economic applications. If we are willing to assume that either ut is

normally distributed or the covariates are deterministic, then a number of powerful results

become available. The relevant lemmas for the deterministic case are presented in Section D of

2Monte Carlo findings for the OCMT procedure with J set equal to 1 are available upon request.
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the online theory Supplement. Alternatively signal/pseudo-signal regressors can be assumed

to be exponentially mixing. In this general case, some weak results can still be obtained.

These are described in Section B of the online theory Supplement.

5 A Monte Carlo Study

In this section we compare the small sample properties of our proposed estimator to three

versions of the penalised regressions and a boosting procedure, across five different sets of

Monte Carlo (MC) designs. The designs differ both in terms of the correlation patterns of

the covariates and the way net effects coeffi cients, θi, and the partial effects, βi, are related to

one another. (See (3) and (16)). We also investigate the robustness of the OCMT method by

considering non-Gaussian errors and serially correlated non-Gaussian covariates, and provide

comparisons with the baseline results obtained using Gaussian observations. The designs are

described next (Section 5.1), followed by a description of individual variable selection methods

(Section 5.2), summary statistics for MC results (Section 5.3), and the MC findings (Section

5.4).

5.1 Data-generating process (DGP)

In line with our theoretical set up, we distinguish between the net effects of the signal variables,

namely θi for i = 1, 2, ..., k (which we refer to as signal θ), from those of noise variables, namely

noise θ’s, defined as θi for i = k + 1, k + 2, ..., n. Initially, we consider four sets of designs

depending on the choices of θi associated with signal and noise variables:

Noise θ’s
Signal θ’s All noise θ’s are zero At least one noise θ is nonzero
All signal θ’s are nonzero Design set I Design set II
Some signal θ’s are zero Design set III Design set IV

In the first set of experiments (set I), βi 6= 0 if and only if θi 6= 0 and the pseudo-true model

and the true model coincide. In the second set of experiments (set II), we allow for some noise

variables to have nonzero θ′s (i.e. we allow for inclusion of pseudo-signal variables amongst

the covariates). In this case, pseudo-signals will be picked up by the OCMT procedure due

to their non-zero correlation with the signal variables. In the third set of experiments (set

III), we allow for signal variables with zero net effects, namely variables where βi 6= 0 but

θi = 0. In the fourth set of experiments (set IV), we include signal variables with zero net

effect as well as pseudo-signals. Design sets I-IV assume the DGP is exactly sparse with a

fixed number of signal variables. To investigate the property of the OCMT procedure when
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the DGP is approximately sparse, we also consider experiments where k changes with n (set

V).

In the case of all five designs, we consider several options in generating the covariates.

We allow the covariates to be serially correlated and consider different degrees of correlations

across them. As noted earlier, we also consider experiments with Gaussian and non-Gaussian

draws.

5.1.1 Designs with zero correlations between signal and noise variables (design
set I)

In the first set of experiments, there are no pseudo-signal variables and all signal variables

have θi 6= 0. yt is generated as:

yt = β1x1t + β2x2t + β3x3t + β4x4t + ςut, (40)

Gaussian: ut ∼ IIDN (0, 1) ,

non-Gaussian: ut =
[
χ2
t (2)− 2

]
/2,

where χ2
t (2) are independent draws from a χ2-distribution with 2 degrees of freedom, for

t = 1, 2, ..., T . We set β1 = β2 = β3 = β4 = 1 and consider the following alternatives ways of

generating the vector of variables xnt = (x1t, x2t, ..., xnt)
′:

DGP-I(a) Temporally uncorrelated and weakly collinear regressors:

signal variables: xit = (εit + νgt) /
√

1 + ν2, for i = 1, 2, 3, 4, (41)

noise variables: x5t = ε5t, xit = (εi−1,t + εit) /
√

2, for i > 5, (42)

where gt and εit are independent draws either from N(0, 1) or from [χ2
t (2)− 2] /2, for

t = 1, 2, ..., T, and i = 1, 2, ..., n. We set ν = 1, which implies 50% pair-wise correlation

among the signal variables.

DGP-I(b) Temporally correlated and weakly collinear regressors: Regressors are generated
according to (41)-(42) with εit = ρiεi,t−1 +

√
1− ρ2

i eit, eit ∼ IIDN (0, 1) or

IID [χ2
t (2)− 2] /2, and (as before) gt ∼ IIDN (0, 1) or IID [χ2

t (2)− 2] /2, and ν = 1. We

set ρi = 0.5 for all i.

DGP-I(c) Strongly collinear noise variables due to a persistent unobserved common factor:

signal variables: xit = (εit + gt) /
√

2, for i = 1, 2, 3, 4,

noise variables: x5t = (ε5t + bift) /
√

3, xit =
[
(εi−1,t + εit) /

√
2 + bift

]
/
√

3, for i > 5,
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bi ∼ IIDN (1, 1), and ft = 0.95ft−1 +
√

1− 0.952vt, where vt, gt, and εit are independent

draws from N (0, 1) or [χ2
t (2)− 2] /2.

DGP-I(d) Low or high pair-wise correlation of signal variables: Regressors are generated
according to (41)-(42) where gt and εit are independent draws from N (0, 1) or [χ2

t (2)− 2] /2

(as in DGP-I(a)), but we set ν =
√
ω/ (1− ω), for ω = 0.2 (low pair-wise correlation) and

0.8 (high pair-wise correlation). This ensures that average correlation among the signal

variables is ω.

DGP-I(a) is our baseline experiment, which does not feature any pseudo-signals, and the

pure noise variables are only weakly collinear. DGP-I(b) departs from the baseline by intro-

ducing temporal correlation among variables. As a result, we expect the performance of all

methods to deteriorate in DGP-I(b), since a larger T is required to detect spurious collinear-

ity between the signal and noise variables. DGP-I(c) is used to demonstrate that strong

collinearity (and high temporal correlation) of pure noise variables does not affect the baseline

performance much. In contrast with DGP-I(b), spurious collinearity between the signal and

noise variables is not a problem when signal variables are not temporally correlated (this prob-

lem occurs only when both signal and noise variables are temporally correlated). DGP-I(d)

considers low (20%) and high (80%) pair-wise correlation of signal variables to demonstrate

the main trade-offs between the OCMT method and penalised regressions. We expect that an

increase in collinearity of signal variables improves the performance of the OCMT method. In

contrast, we expect the penalised regressions to suffer from an increase in collinearity of signal

variables simply because the marginal contribution of signal variables to overall fit diminishes

with higher collinearity of signals.

5.1.2 Designs with non-zero correlations between signal and noise variables (de-
sign set II)

In the second set of experiments, we allow for pseudo-signal variables (k∗ > 0). The DGP is

given by (40) and xnt is generated as:

DGP-II(a) Two pseudo-signal variables:

signal variables: xit = (εit + gt) /
√

2, for i = 1, 2, 3, 4,

noise variables: (pseudo-signal) x5t = ε5t + κx1t, x6t = ε6t + κx2t, and

(pure noise) xit = (εi−1,t + εit) /
√

2, for i > 6,

where, as before, gt, and εit are independent draws from N (0, 1) or [χ2
t (2)− 2] /2. We set

κ = 1.33 (to achieve 80% correlation between the signal and the pseudo-signal variables).
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DGP-II(b) All noise variables collinear with signals: xnt ∼ IID (0,Σx) with the elements

of Σx given by 0.5|i−j|, 1 ≤ i, j ≤ n. We generate xnt with Gaussian and non-Gaussian

innovations. In particular, xnt = Σ1/2
x εt, where εt = (ε1t, ε2t, ..., εnT )′, and εit are generated

as independent draws from N (0, 1) or [χ2
t (2)− 2] /2.

When pseudo-signal variables are present (k∗ > 0), the OCMT procedure is expected to

pick up the pseudo-signals in DGP-II(a) with high probability, but β̃n remains consistent in

the sense that
∥∥∥β̃n − βn∥∥∥ →p 0, see Theorem 5. However, β̃n will be asymptotically less

effi cient than the estimates of the true model due to presence of pseudo-signals. DGP-II(b)

corresponds to the interesting case, where θi 6= 0 for all i = 1, 2, ..., n.

5.1.3 Designs with zero net signal effects (design set III)

In the third set of experiments, we consider designs that allow for some signal variables to

have zero θ. yt is generated by (40), xnt is generated as in DGP-I(a), and the slope coeffi cients

for the signal variables in (40) are selected so that θ4 = 0 (the net effect of the fourth signal

variable):

DGP-III One of the signal variables has zero net effect: We set β1 = β2 = β3 = 1 and

β4 = −1.5 This implies θi 6= 0 for i = 1, 2, 3 and θi = 0 for i ≥ 4.

We note that it cannot be the case that all four signal variables have zero net effects. The

presence of zero net signal effects in DGP-III violates Assumption 2(b), and we use DGP-III

to illustrate the effectiveness of OCMT procedure, where the fourth variable will be picked up

with high probability in the second stage.

5.1.4 Designs with zero net signal effects and pseudo-signal variables (design set
IV)

In the fourth set of experiments, we allow for signal variables with zero θ as well as the

pseudo-signals variables with non-zero θ’s.

DGP-IV(a) We generate xnt in the same way as in DGP-II(a) which features two
pseudo-signal variables. We generate slope coeffi cients βi as in DGP-III to ensure θi 6= 0 for

i = 1, 2, 3 and θi = 0 for i = 4.

DGP-IV(b) We generate xnt in the same way as in DGP-II(b), where all noise variables
are collinear with signals. We set β1 = −0.875 and β2 = β3 = β4 = 1. This implies θi = 0 for

i = 1 and θi > 0 for all i > 1.
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5.1.5 Designs with k = n signal variables (design set V)

In the fifth set of experiments, we consider k = n signal variables. This design is inspired by

the literature on approximately sparse models (Belloni, Chernozhukov, and Hansen (2014b)).

DGP-V βi = 1/i2, xnt are generated as in design DGP-II(b).

All autoregressive processes are generated with zero starting values and 100 burn-in peri-

ods. In all DGPs, we set ς in (40) so that R2 = 30%, 50% or 70%. We consider n = 100, 200

and 300, T = 100, 300 and 500, and carry out RMC = 2000 replications for each experiment.

5.2 Description of individual methods

We consider the OCMT, Lasso, Hard thresholding, Sica and boosting methods described

in detail below. With the exception of the OCMT procedure all other methods use the

set of standardised regressors {x̃it}, defined by x̃it = (xit − x̄i) /sxi, for i = 1, 2, ..., n, t =

1, 2, ..., T , where x̄i = T−1
∑T

t=1 xit and s
2
xi = T−1

∑T
t=1 (xit − x̄i)2. OCMT does not require

any standardisation and we use the original (non-standardised) data, but include an intercept

in the regressions. It is worth noting the OCMT procedure is unaffected by scaling of the

regressors, but the same is not true of penalised regression techniques.

5.2.1 OCMT method

The OCMT method is implemented as outlined in Section 4.6. We use critical value function,

cp (n) , defined by (7) with f (n) = nδ and consider two choices for δ = 1 and 1.25, and three

choices for p = 0.1, 0.05, and 0.01, which gives six critical values in total. The choice of p did

not matter much and in what follows we only report the results for p = 0.01 but provide a

full set of results for all combinations of p and δ in an online Monte Carlo Supplement.

5.2.2 Penalised regression methods

Penalised regressions are implemented solving the following optimization problem,3

min
β
Q (β) , Q (β) = (2T )−1

T∑
t=1

(
ỹt −

n∑
i=1

βix̃it

)2

+ ‖Pλ (βn)‖1 ,

3We used the same Matlab codes for the Lasso, Hard thresholding and Sica penalised regression methods
as in Zheng, Fan, and Lv (2014). We are grateful to these authors for providing us with their codes.
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where ỹt = yt − T−1
∑T

t=1 yt and Pλ (βn) = [pλ (|β1|) , pλ (|β2|) , ..., pλ (|βn|)]′. Depending on
the choice of the penalty function, we have:

Lasso: pλ (β) = λβ

Sica: pλ (β, a) = λ (a+ 1) β/ (a+ β) , with a small shape parameter a = 10−4

Hard thresholding: pλ (β) =
1

2

{
λ2 − (λ− β)2

+

}
, β ≥ 0.

These penalty functions are popular in the literature, see, e.g., Tibshirani (1996), Lv

and Fan (2009), and Zheng, Fan, and Lv (2014). We consider the same set of possible

values for the penalization parameter λ as in Zheng, Fan, and Lv (2014), namely λ ∈ Λ ≡
{λmin, λmin + λε,λmin + 2λε, ..., λmax}, where

λmax = max
i=1,2,...,n

∣∣T−1x̃′iỹ
∣∣ , λmin = ελmax, ỹ = (ỹ1, ỹ2, ..., ỹT )′

ε =

{
0.001, for n ≤ T
0.01, for n > T

,

and λε = (λmax − λmin) / (K − 1), with K = 50. Following the literature, we select λ using

10-fold cross-validation. That is, we divide the available sample into 10 sub-samples of equal

length. One at a time, one sub-sample is used for validation and the remaining 9 for training.

This gives us 10 different selected values of λ, which we then average, and this average is

denoted as λ̂a. We then choose λ = arg minλ∈Λ

∣∣∣λ− λ̂a∣∣∣.
5.2.3 Boosting

We consider the boosting algorithm proposed by Buhlmann (2006). This algorithm can be

described as follows

Algorithm 1 1. (initialization). Let x̃nt = (x̃1t, x̃2t, ..., x̃nt)
′, X̃n = (x̃1, x̃2, ..., x̃n) and

e = (e1, e2, ..., eT )′. Define the least squares base procedure:

ĝX̃,e(x̃nt) = δ̂ŝx̃ŝt, ŝ = arg min
1≤i≤n

(
e− δ̂ix̃i

)′ (
e− δ̂ix̃i

)
, δ̂i =

e′x̃i
x̃′ix̃i

,

2. Given data X̃n and ỹ = (ỹ1, ỹ2, ..., ỹT )′,apply the base procedure to obtain ĝ(1)

X̃,ỹ
(x̃nt). Set

F̂ (1)(x̃nt) = vĝ
(1)

X̃,ỹ
(x̃nt), for some v > 0, Set ŝ(1) = ŝ and m = 1.

3. Compute the residual vector e = ỹ−F̂ (m)(X̃n), with F̂ (m)(X̃n) = (F̂ (m)(x̃n1), F̂ (m)(x̃n2), ..., F̂ (m)(x̃nT ))′,

and fit the base procedure to these residuals to obtain the fit values ĝ(m+1)

X̃,e
(x̃nt) and ŝ(m).

Update

F̂ (m+1)(x̃nt) = F̂ (m)(x̃nt) + vĝ
(m+1)
X,e (x̃nt).
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4. Increase the iteration index m by one and repeat step 3 until the stopping iteration M

is achieved. The stopping iteration is given by

M = arg min
1≤m≤mmax

AICC(m),

for some predetermined large mmax, where

AICC(m) = ln(σ̂2) +
1 + tr (Bm) /T

1− (tr (Bm) + 2) /T

σ̂2 =
1

T
(y − Bmỹ)′ (y − Bmỹ)

Bm = I −
(
I − vH(ŝm)

) (
I − vH(ŝm−1)

)
...
(
I − vH(ŝ1)

)
H(j) =

x̃jx̃
′
j

x̃′jx̃j
.

We set mmax = 500 and consider two values for the tuning parameter: v = 0.1 and 1. The

former is suggested in Buhlmann (2006).

5.3 Summary statistics for MC results

We evaluate the small sample performance of individual methods, using a number of criteria.

In particular, we report the following summary statistics:

1. The true positive rate (TPR) defined by (10), and the false positive rate (FPR) define

by (11).

2. The out-of-sample root mean square forecast error relative to that of the benchmark true

model estimated by least squares using the only the signal variables, which we denote

by rRMSFE.

3. The root mean square error of β̃ relative to the true benchmark model, denoted by

rRMSEβ̃.

4. The probability (frequency) of selecting at least all the k signal variables, denoted by

π̂k, and the the probability of at least selecting all the signal and pseudo-true signals (if

any), denoted by π̂k+k∗.

5. The probability of selecting the true model, denoted by π̂, and the probability of selecting

pseudo-true model with all pseudo-signals, denoted by π̂∗.

6. The following summary statistics are also reported on frequency distribution of the

number of selected covariates, κ̂:
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(a) κ̂, the average number of selected covariates, denoted by κ̂;

(b) κ̂5, the 5th quantile of the distribution of κ̂;

(c) κ̂95, the 95th quantile of the distribution of κ̂;

(d) κ̂max, the largest number of selected covariates.

rRMSFE is computed based on 100 out-of-sample forecasts. In the case of the OCMT

method, we also report r = J − 1, the number of iterations of OCMT method before conver-

gence.

Remark 18 In the case of the approximately sparse DGP-V, TPR and FPR are computed as-
suming the first 11 covariates (that have coeffi cients 1, 1/2, 1/22, ..., 1/112) are signal variables

and the remaining covariates having coeffi cients βi = 1/i2, for i > 11 as noise variables.4

5.4 MC findings

We present the MC findings in two parts. First, we consider the relative performance of the

OCMT method compared to the penalised regression and boosting techniques, and also report

some statistics on the relative computational times involved across the different methods.

These comparisons are carried out in the case DGPs with Gaussian covariates and Gaussian

errors. Next, we investigate the robustness of the OCMT procedure to non-Gaussian errors and

serially correlated covariates. Penalised regressions are not computed for these experiments

due to their high computational burden.

5.4.1 Comparison of OCMT method with penalised regression and boosting
methods

Consider first the designs with zero correlations between signal and noise variables (design

I). Table 1 reports the findings for n ∈ {100, 300}, averaged across R2 ∈ {0.3, 0.5, 0.7} and
T ∈ {100, 300, 500} to economize on space. The full set of results for different values of R2

and T are available in an online Monte Carlo Supplement. Table 1 reports the results for

the OCMT method with δ = 1 and p = 0.01 and compares them with those obtained using

penalised regressions and boosting techniques.5 The findings for DGP-I(a),(b) and (c) in

Table 1 are very similar and can be summarized as follows. OCMT has the best TPR/FPR

trade-off, the lowest average relative root mean square forecast error (< 1.004) and the highest

average probability of selecting the true model (0.89-0.92). The average probability of selecting

4In choosing the threshold i = 11, we were guided by the fact that |βi| /
√
V ar (ςut), which is a good

measure of the strength of the signal, exceeds 0.01 only for i ≤ 11 when R2 = 70%.
5Findings for other choices of δ and p are very similar and are reported in the online Monte Carlo supple-

ment.
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the true model is very low for other methods. In particular, the Lasso tends to select more

regressors (about 8-12, on average), and the average probability of selecting the correct model

is only 0.05-0.12. In contrast, Sica and Hard thresholding tend to under-select, but have higher

probability of selecting the correct model (0.20-0.37) than Lasso, although these probabilities

are still much lower than those achieved by OCMT for these experiments. In the case of

boosting methods, we show findings only for v = 0.1, a choice recommended by Buhlmann

(2006). The boosting tend to over-select even more heavily than Lasso and, as a result, its

probability of selecting the true model is very small, often near zero. This seems to be a

general feature of boosting. It holds across all of the experiments that we consider and is not

much affected if we use a larger value of v. In the online Monte Carlo Supplement, we provide

further results for boosting using v = 1.

Decreasing the collinearity among the covariates from ω = 0.5 in the case of DGP-I(a)

to ω = 0.2 in the case of DGP-I(d) has opposite effects on the performance of the OCMT

and penalised regressions. Decreasing ω reduces the magnitude of θi and therefore lowers the

power of selecting the signals with the OCMT method. The average probability of selecting

the correct model with OCMT drops to 0.79-0.82 in DGP-I(d) from 0.91-0.92 in DGP-I(a).

For the penalised regressions, on the other hand, we see slight improvements with a fall in

the collinearity of the signal variables. One possible explanation for this is that the marginal

contribution of signals to the overall fit of the model has increased, which resulted in a better

performance of the penalised regression methods. We observe an increase in π̂ which ranges

between 0.02 and 0.63, depending on the choice of the penalty function. The findings for

design DGP-I(d) with a high (ω = 0.8) pair-wise collinearity of signals (reported in the online

Monte Carlo Supplement) show a substantial improvement in OCMT and a deterioration in

the penalised regression methods, as to be expected.

We turn next to the experiments with non-zero correlations between signal and noise

variables (design II). The concepts of true and pseudo-true models (selected by OCMT) do not

coincide in these experiments, but the OCMT estimator of βn, namely β̃n = (β̃1, β̃2, ..., β̃n)′,

with β̃i defined by (9), is still consistent (see Theorem 5 and Remark 16). Table 2 reports

findings for DGP-II(a) featuring 2 pseudo-signals and DGP-II(b) featuring all noise variables

correlated with signals. The OCMT procedure continues to perform well in these designs, and

the true and false positive rate trade-off seems to be the best among the methods considered.

Similarly to DGP-I, Lasso and boosting continue to over-select and the Hard and Sica methods

under-select the true number of signals.

We now consider the findings for the experiments with zero net effects (design III). For

these experiments, the signals with zero net effect will not be picked up in the first stage of

OCMT method (even asymptotically). Nevertheless, such signals do get picked up with a high

probability at the second or higher stages of the OCMT procedure. This feature is clearly
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seen from the findings presented in Table 3, where the average probability of selecting the

correct model using the OCMT method continues to be much higher than those obtained for

the penalised methods. It is also worth noting that the average number of iterations needed

for OCMT to converge (r = J − 1) only increases marginally to slightly above 1. OCMT

continues to have the best performance on average in terms of RMSFE and rRMSE of β̃n.

We turn next to experiments with zero net effects as well as pseudo-signals (design IV)

summarized in Table 4. As expected, the probability of selecting the correct model, π̂, dropped

to 0 in the case of OCMT method, due to the presence of pseudo-signals. Similarly to Table

2, the probability of selecting the pseudo-true model π̂∗ remain high and the OCMT method

continue to have the best forecasting performance and TPR/FPR trade-off.

Finally, we consider the experiments with an unbounded number of signals (design V).

There are k = n signals in these experiments, but only a few of the signals are strong. For

these experiments we compute TPR and FPR statistic assuming that the first 11 covariates

with coeffi cients βi = 1/i2, for i = 1, 2, ..., 11 are the ‘true’signals. We also report the root

mean square forecast error and RMSE of β̃n relative to the benchmark model which feature

the first 11 covariates only. Findings reported in Table 5 show that OCMT continues to

achieve the best forecasting performance and the lowest RMSE.

Overall, the small sample evidence suggests that the OCMT method outperforms the

penalised regressions that have become the de facto benchmark in the literature, at least in

the case of the experiments considered in this paper. Another important advantage of the

OCMT procedure is that it is easy to implement and very fast to compute. Table 6 shows

relative computational times in the case of DGP-II(b), which features the type of covariance

regressor matrix commonly employed in the literature.6 The OCMT method is about 102 to

104 times faster than penalised regression methods, and about 50 times faster compared to

boosting.

5.4.2 Robustness of OCMT method to non-Gaussianity and serial correlation

Findings presented so far correspond to experiments with Gaussian (G) innovations and, with

the exception of DGP-I(b), serially uncorrelated (SU) covariates (we refer to these experi-

ments as G-SU). We now consider additional experiments to investigate the robustness of

OCMT method to non-Gaussianity and highly serially correlated covariates. In particular, we

consider three additional sets of experiments: non-Gaussian innovations with serially uncor-

related covariates (NG-SU), Gaussian innovations with serially correlated covariates (G-SC),

and non-Gaussian innovations with serially correlated covariates (NG-SC). Serially correlated

6Computational times are similar across the individual DGPs.
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covariates in the case of G-SC and NG-SC experiments are generated using

εit = 0.9εi,t−1 +
√

1− 0.92eit, (43)

where eit are generated as independent draws from N (0, 1) or [χ2
t (2)− 2] /2. We set the

autoregressive coeffi cient in (43) to a relatively high value of 0.9, since the moderately low

value of 0.5 in DGP-I(b) did not have any substantial impact on the findings. As before,

we report findings for n ∈ {100, 300}, and average individual summary statistics across R2 ∈
{0.3, 0.5, 0.7} and T ∈ {100, 300, 500}. To economize on space further, we only report findings
for rRMSFE and rRMSE of β̃n in the body of the paper, see Tables 7 and 8, respectively. The

full set of results is reported in the online MC Supplement.

The results for the forecasting performance are reported in Table 7. The ones with

Gaussian innovations are reported under columns labeled "G-SU" and "G-SC", and those

with non-Gaussian innovations under columns labelled "NG-SU" and "NG-SC". According

to these results, comparing "G-SU" with "NG-SU" and "G-SC" with "NG-SC", the effects of

allowing for non-Gaussian innovations seem to be rather marginal. The deterioration in the

relative forecasting performance is very small for both reported sets of critical values, p = 0.01

and δ = 1 or 1.25. In contrast, comparing "G-SU" with "G-SC" and "NG-SU" with NG-SC",

the deterioration in performance due to serial correlation of covariates is much larger (up to

35%, depending on the design). This is because longer time series observations are needed to

detect spurious correlation when the covariates are highly serially correlated (in the present set

of experiments set to 0.90). Findings for rRMSE of β̃n in Table 8 are qualitatively similar, but

show much larger deterioration in relative performance in the case of the serially correlated

covariates.

6 Conclusion

Model specification and selection are recurring and fundamental topics in econometric analy-

sis. Both problems have become considerably more diffi cult for large-dimensional datasets

where the set of possible specifications rise exponentially with the number of available co-

variates. In the context of linear regression models, penalised regression has become the de

facto benchmark method of choice. However, issues such as the choice of penalty function

and tuning parameters remains contentious.

In this paper, we provide an alternative approach based on multiple testing that is compu-

tationally simple, fast, and effective for sparse regression functions. Extensive theoretical and

Monte Carlo results highlight these properties and provide support for adding this method

to the toolbox of the applied researcher. In particular, we find that, for moderate values of

the R2 of the true model, with the net effects for the signal variables above some minimum
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threshold, our proposed method outperforms existing penalised regression methods, whilst at

the same time being computationally much faster by some orders of magnitude.

There are a number of avenues for future research. A distinctive characteristic of the

method is the consideration of regressors individually rather than within a multiple regression

setting. In this sense, there are other alternatives that could be considered such as versions

of boosting. A formal extension of the method to serially correlated covariates along the lines

considered in Section 4.7 would also be welcome. A further possibility is to extend the idea

of considering regressors individually to other testing frameworks, such as tests of forecasting

ability. Finally, it is also important that the performance of the OCMT approach is evaluated

in empirical contexts. It is hoped that the theoretical results and the Monte Carlo evidence

presented in this paper provide a sound basis for such further developments and applications.
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Table 1: Monte Carlo findings for experiments with zero correlation between
signal and noise variables (design set I)

Summary statistics are averaged across T and R2

n TPR FPR rRMSFE rRMSEβ̃ π̂k π̂ κ̂ κ̂5 κ̂95 κ̂max r

DGP-I(a): Temporally uncorrelated and weakly collinear regressors
OCMT 100 0.9769 0.0003 1.002 1.084 0.95 0.92 3.9 3.7 4.0 5.9 0.012

300 0.9681 0.0001 1.003 1.129 0.93 0.91 3.9 3.7 4.0 5.6 0.012
Lasso 100 0.9723 0.0541 1.021 1.513 0.91 0.09 9.1 3.9 17.9 35.7 -

300 0.9669 0.0282 1.029 1.715 0.89 0.06 12.2 3.9 27.4 59.4 -
Sica 100 0.6818 0.0016 1.050 5.692 0.40 0.36 2.9 1.8 4.3 10.7 -

300 0.6440 0.0005 1.059 6.551 0.36 0.33 2.7 1.8 4.2 11.3 -
Hard 100 0.6805 0.0050 1.054 5.511 0.34 0.23 3.2 2.0 5.7 15.0 -

300 0.6221 0.0011 1.065 6.695 0.27 0.21 2.8 1.8 4.9 12.0 -
Boosting 100 0.9850 0.3360 1.062 3.726 0.94 0.00 36.2 27.3 45.4 54.3 -

300 0.9813 0.2750 1.115 6.691 0.93 0.00 85.3 77.6 93.1 101.6 -
DGP-I(b): Temporally correlated and weakly collinear regressors

OCMT 100 0.9768 0.0003 1.002 1.087 0.94 0.92 3.9 3.7 4.0 5.9 0.010
300 0.9663 0.0001 1.004 1.140 0.93 0.89 3.9 3.6 4.1 6.0 0.013

Lasso 100 0.9710 0.0557 1.021 1.501 0.90 0.08 9.2 3.9 18.3 36.6 -
300 0.9675 0.0296 1.028 1.705 0.89 0.05 12.6 4.1 27.6 60.2 -

Sica 100 0.6731 0.0017 1.055 6.019 0.39 0.35 2.9 1.8 4.3 11.0 -
300 0.6363 0.0006 1.065 6.728 0.35 0.32 2.7 1.7 4.0 11.7 -

Hard 100 0.6727 0.0054 1.058 5.682 0.33 0.23 3.2 2.0 5.9 14.9 -
300 0.6141 0.0012 1.070 6.846 0.26 0.20 2.8 1.8 4.9 12.0 -

Boosting 100 0.9835 0.3224 1.064 3.629 0.94 0.00 34.9 25.7 44.3 53.8 -
300 0.9807 0.2581 1.118 6.419 0.93 0.00 80.3 72.4 88.3 97.8 -
DGP-I(c): Strongly collinear and persistent noise variables

OCMT 100 0.9761 0.0002 1.002 1.159 0.94 0.93 3.9 3.7 4.0 8.4 0.007
300 0.9682 0.0001 1.003 1.297 0.93 0.91 3.9 3.7 4.0 18.6 0.009

Lasso 100 0.9737 0.0415 1.018 1.453 0.91 0.12 7.9 3.9 15.1 37.8 -
300 0.9711 0.0211 1.024 1.598 0.90 0.08 10.1 3.9 21.9 51.1 -

Sica 100 0.6895 0.0016 1.049 5.843 0.41 0.37 2.9 1.8 4.2 11.4 -
300 0.6546 0.0005 1.057 6.454 0.37 0.34 2.8 1.8 4.1 12.4 -

Hard 100 0.7103 0.0051 1.048 5.134 0.38 0.26 3.3 2.1 5.9 15.4 -
300 0.6515 0.0012 1.060 6.078 0.30 0.24 3.0 1.9 5.3 12.2 -

Boosting 100 0.9869 0.3277 1.059 5.258 0.95 0.00 35.4 25.9 43.9 51.4 -
300 0.9835 0.2125 1.091 6.949 0.94 0.00 66.8 58.1 75.4 86.9 -
DGP-I(d): ω = 0.2

OCMT 100 0.9183 0.0003 1.015 1.711 0.84 0.82 3.7 3.3 4.0 5.8 0.020
300 0.8984 0.0001 1.020 1.968 0.81 0.79 3.6 3.1 3.9 5.9 0.024

Lasso 100 0.9848 0.0791 1.029 2.576 0.95 0.03 11.5 4.9 21.5 40.6 -
300 0.9799 0.0404 1.041 3.170 0.94 0.02 15.9 5.3 32.6 60.8 -

Sica 100 0.8770 0.0021 1.030 3.420 0.70 0.63 3.7 2.9 4.7 11.1 -
300 0.8512 0.0008 1.038 3.912 0.65 0.60 3.6 2.8 5.0 11.1 -

Hard 100 0.8794 0.0033 1.032 3.459 0.70 0.60 3.8 2.9 5.3 11.9 -
300 0.8399 0.0009 1.043 4.365 0.63 0.56 3.6 2.8 5.0 11.0 -

Boosting 100 0.9951 0.3399 1.065 5.391 0.98 0.00 36.6 28.0 45.7 55.6 -
300 0.9914 0.2699 1.119 9.648 0.97 0.00 83.8 76.2 91.6 100.6 -

Notes: There are k = 4 signal variables (i = 1, 2, 3, 4) and k∗ = 0 pseudo-signal variables. TPR (FPR) is the true (false) positive

rate, rRMSFE is the root mean square forecast error relative to the true benchmark model, rRMSEβ̃ is the root mean square

error of β̃ relative to the true benchmark model, π̂k is the probability that signal variables i = 1, 2, ..., k are among the selected

variables, π̂ is the probability of selecting the true model (featuring the first k covariates), κ̂ is the average number of selected

covariates, κ̂5 and κ̂95, respectively, are the 5th and the 95th quantiles of the distribution of the number of selected covariates,

and κ̂max is the largest number of selected covariates. This table reports OCMT for p = 0.01 and δ = 1 and Boosting for v = 0.1.

See Section 5 for details.
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Table 2: Monte Carlo findings for experiments with non-zero correlations between
signal and pseudo-signal variables (design set II)

Summary statistics are averaged across T and R2

n TPR FPR rRMSFE rRMSEβ̃ π̂k π̂ π̂k+k∗ π̂∗ κ̂ κ̂5 κ̂95 κ̂max r

DGP-II(a): Two pseudo-signal variables
OCMT 100 0.9768 0.0194 1.006 1.862 0.95 0.01 0.87 0.85 5.8 5.2 6.0 7.7 0.010

300 0.9667 0.0061 1.007 1.842 0.93 0.02 0.85 0.83 5.7 5.1 6.0 7.6 0.014
Lasso 100 0.9650 0.0577 1.022 1.807 0.88 0.06 0.05 0.00 9.4 3.9 18.6 37.8 -

300 0.9604 0.0293 1.029 1.947 0.87 0.05 0.04 0.00 12.5 4.1 27.6 58.6 -
Sica 100 0.6685 0.0020 1.052 6.129 0.38 0.35 0.00 0.00 2.9 1.8 4.3 11.9 -

300 0.6303 0.0006 1.061 6.979 0.34 0.32 0.00 0.00 2.7 1.8 4.0 10.0 -
Hard 100 0.6650 0.0057 1.055 6.320 0.31 0.22 0.00 0.00 3.2 2.0 5.8 14.3 -

300 0.6077 0.0012 1.067 7.421 0.25 0.20 0.00 0.00 2.8 1.8 4.8 10.9 -
Boosting 100 0.9788 0.3377 1.062 3.984 0.92 0.00 0.14 0.00 36.3 27.5 45.7 56.0 -

300 0.9743 0.2760 1.116 6.860 0.91 0.00 0.12 0.00 85.6 77.7 93.7 101.8 -
DGP-II(b): All noise variables collinear with signals

OCMT 100 0.9514 0.0059 1.007 1.349 0.88 0.39 - - 4.4 3.6 5.2 7.1 0.013
300 0.9376 0.0017 1.009 1.417 0.86 0.41 - - 4.3 3.6 5.2 6.9 0.016

Lasso 100 0.9737 0.0644 1.025 1.843 0.91 0.05 - - 10.1 4.0 19.7 40.3 -
300 0.9679 0.0334 1.034 2.148 0.90 0.03 - - 13.8 4.6 29.8 61.6 -

Sica 100 0.7402 0.0016 1.041 5.408 0.47 0.43 - - 3.1 2.2 4.4 11.1 -
300 0.7054 0.0006 1.049 6.249 0.42 0.39 - - 3.0 2.0 4.3 12.0 -

Hard 100 0.7207 0.0038 1.047 5.849 0.39 0.30 - - 3.2 2.1 5.3 13.6 -
300 0.6656 0.0009 1.059 7.175 0.32 0.27 - - 2.9 2.0 4.8 10.6 -

Boosting 100 0.9884 0.3695 1.068 4.618 0.96 0.00 - - 39.4 29.4 49.2 57.4 -
300 0.9833 0.2715 1.114 7.153 0.94 0.00 - - 84.3 76.7 92.1 101.8 -

Notes: There are k = 4 signal variables (i = 1, 2, 3, 4), and k∗ = 2 pseudo-signal variables (i = 5, 6) in the case of DGPII(a),

whereas all noise variables are collinear with signals in the case of DGPII(b). See notes to Table 1 for a brief summary of the

reported statistics. This table reports OCMT for p = 0.01 and δ = 1 and Boosting for v = 0.1. See Section 5 for details.

Table 3: Monte Carlo findings for experiments with zero net signal effects (design
set III)

Summary statistics are averaged across T and R2

n TPR FPR rRMSFE rRMSEβ̃ π̂k π̂ κ̂ κ̂5 κ̂95 κ̂max r

OCMT 100 0.9184 0.0003 1.017 2.020 0.86 0.84 3.7 3.2 4.0 5.8 0.920
300 0.9015 0.0001 1.022 2.290 0.84 0.81 3.6 3.2 4.1 5.9 0.902

Lasso 100 0.9600 0.1367 1.056 5.663 0.89 0.00 17.0 7.6 29.3 46.4 -
300 0.9394 0.0679 1.080 7.857 0.84 0.00 23.9 9.3 43.9 80.9 -

Sica 100 0.9069 0.0024 1.026 3.010 0.81 0.73 3.9 3.1 4.9 12.6 -
300 0.8737 0.0010 1.039 3.824 0.77 0.70 3.8 2.9 5.2 12.7 -

Hard 100 0.8587 0.0045 1.045 5.140 0.71 0.57 3.9 2.7 5.7 15.6 -
300 0.7975 0.0012 1.065 7.185 0.62 0.54 3.5 2.4 5.2 10.7 -

Boosting 100 0.9938 0.3606 1.078 5.164 0.98 0.00 38.6 30.2 47.1 55.0 -
300 0.9821 0.2559 1.135 8.621 0.94 0.00 79.7 72.3 87.3 95.8 -

Notes: There are 4 signal variables (i = 1, 2, 3, 4) of which the last one has zero net effect (θ4 = 0). See notes to Table 1 for a

brief summary of the reported statistics. This table reports OCMT for p = 0.01 and δ = 1 and Boosting for v = 0.1. See Section

5 for details.
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Table 4: Monte Carlo findings for experiments with zero net signal effects and
pseudo-signals (design set IV)

Summary statistics are averaged across T and R2

n TPR FPR rRMSFE rRMSEβ̃ π̂k π̂ π̂k+k∗ π̂∗ κ̂ κ̂5 κ̂95 κ̂max r

DGP-IV(a): Two pseudo-signal variables
OCMT 100 0.9198 0.0174 1.020 2.649 0.86 0.03 0.74 0.72 5.3 4.6 5.9 7.9 0.919

300 0.9034 0.0055 1.024 2.904 0.84 0.03 0.71 0.69 5.2 4.3 5.9 7.3 0.903
Lasso 100 0.9544 0.1393 1.056 6.106 0.88 0.00 0.09 0.00 17.2 7.8 29.1 47.7 -

300 0.9324 0.0689 1.081 8.301 0.83 0.00 0.06 0.00 24.1 9.6 44.2 75.3 -
Sica 100 0.8925 0.0029 1.028 3.807 0.77 0.70 0.00 0.00 3.9 3.1 4.9 10.7 -

300 0.8600 0.0011 1.041 4.636 0.73 0.67 0.00 0.00 3.8 3.0 5.0 11.9 -
Hard 100 0.8282 0.0060 1.050 9.708 0.62 0.50 0.00 0.00 3.9 2.8 5.8 14.3 -

300 0.7682 0.0016 1.071 11.540 0.54 0.46 0.00 0.00 3.6 2.4 5.4 11.7 -
Boosting 100 0.9894 0.3623 1.078 5.706 0.96 0.00 0.17 0.00 38.7 30.1 47.2 54.9 -

300 0.9772 0.2571 1.135 9.164 0.93 0.00 0.13 0.00 80.0 72.4 87.8 96.0 -
DGP-IV(b): All noise variables collinear with signals

OCMT 100 0.8921 0.0076 1.016 2.325 0.72 0.16 - - 4.3 3.4 5.2 6.8 0.730
300 0.8729 0.0022 1.020 2.558 0.68 0.17 - - 4.2 3.3 5.1 6.6 0.697

Lasso 100 0.9287 0.0982 1.042 4.237 0.79 0.01 - - 13.1 5.0 24.7 44.1 -
300 0.9046 0.0481 1.057 5.451 0.71 0.00 - - 17.9 5.3 36.4 72.2 -

Sica 100 0.7829 0.0019 1.037 6.120 0.63 0.57 - - 3.3 2.1 4.7 12.0 -
300 0.7424 0.0007 1.047 6.762 0.57 0.53 - - 3.2 1.9 4.7 12.4 -

Hard 100 0.7309 0.0038 1.051 7.299 0.54 0.41 - - 3.3 1.9 5.4 13.1 -
300 0.6646 0.0009 1.064 9.051 0.45 0.37 - - 2.9 1.8 5.0 10.4 -

Boosting 100 0.9857 0.3826 1.075 5.335 0.95 0.00 - - 40.7 31.0 49.9 57.6 -
300 0.9697 0.2637 1.123 8.150 0.90 0.00 - - 81.9 74.3 89.8 98.6 -

Notes: There are k = 4 signal variables (i = 1, 2, 3, 4), and k∗ = 2 pseudo-signal variables (i = 5, 6) in the case of DGPIV(a),

whereas all noise variables are collinear with signals in the case of DGPIV(b). See notes to Table 1 for a brief summary of the

reported statistics. This table reports OCMT for p = 0.01 and δ = 1 and Boosting for v = 0.1. See Section 5 for details.
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Table 5: Monte Carlo findings for experiments with k=n signal variables (design
set V)

Summary statistics are averaged across T and R2

n TPR FPR rRMSFE rRMSEβ̃ π̂11 κ̂ κ̂5 κ̂95 κ̂max r

OCMT 100 0.2820 0.0003 0.986 0.433 0.00 3.1 2.2 4.1 6.2 0.018
300 0.2691 0.0001 0.986 0.443 0.00 3.0 2.1 4.1 5.8 0.019

Lasso 100 0.3450 0.0522 1.001 0.570 0.00 8.4 2.7 18.2 38.3 -
300 0.3121 0.0265 1.008 0.647 0.00 11.1 2.7 26.4 58.8 -

Sica 100 0.1294 0.0011 1.010 1.264 0.00 1.5 1.0 3.0 11.1 -
300 0.1216 0.0004 1.014 1.351 0.00 1.5 1.0 2.8 10.6 -

Hard 100 0.1231 0.0012 1.012 1.374 0.00 1.5 1.0 2.8 10.6 -
300 0.1117 0.0003 1.015 1.433 0.00 1.3 1.0 2.4 9.4 -

Boosting 100 0.5751 0.3696 1.045 1.683 0.00 39.2 29.1 49.1 58.3 -
300 0.5119 0.2731 1.089 2.620 0.00 84.6 76.8 92.4 101.1 -

Notes: Slope coeffi cients in DGPV are set to βi = 1/i2, for i = 1, 2, ..., n. TPR is computed assuming that covariates i = 1, 2, ..., 11

are the signal variables , FPR is computed assuming covariates i > 11 are the noise variables, rRMSFE is an out-of-sample root

mean square forecast error relative to the benchmark model featuring the first 11 covariates, rRMSEβ̃ is the root mean square error

of β̃ relative to the benchmark model featuring the first 11 covariates, and π̂11 is the probability that covariates i = 1, 2, ..., 11 are

among the selected covariates. κ̂, κ̂5, κ̂95 and κ̂max are, respectively, the average, 5th quantile, 95th quantile and the maximum

of the number of selected covariates. This table reports OCMT for p = 0.01 and δ = 1 and Boosting for v = 0.1. See Section 5

for details.

Table 6: Computational times relative to OCMT method

Experiments: DGPII(b), T = 100, R2 = 50%
N = 100 N = 200 N = 300

OCMT (benchmark) 1 1 1
Lasso 292 280 226
Hard 713 522 400
Sica 10349 8540 6047

Boosting (v = 0.1) 55 66 54

Notes: This table reports computational times relative to OCMT for p = 0.01 and δ = 1. Boosting is implemented using v = 0.1.

See Section 5 for details.
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Table 7: Robustness of OCMT to Non-Gaussianity and Serial Correlation
(rRMSFE findings)

Summary statistics are averaged across T and R2

G-SU: Gaussian innovations with serially uncorrelated covariates
NG-SU: non-Gaussian innovations with serially uncorrelated covariates
G-SC: Gaussian innovations with serially correlated covariates
NG-SC: non-Gaussian innovations with serially correlated covariates

MC findings for rRMSFE
p = 0.01, δ = 1 p = 0.01, δ = 1.25

n G-SU NG-SU G-SC NG-SC G-SU NG-SU G-SC NG-SC
DGP-I(a) 100 1.002 1.004 1.005 1.007 1.002 1.005 1.004 1.006

300 1.003 1.006 1.01 1.011 1.004 1.007 1.007 1.008
DGP-I(b) 100 1.002 1.004 1.005 1.007 1.003 1.004 1.004 1.006

300 1.004 1.006 1.009 1.011 1.004 1.006 1.007 1.009
DGP-I(c) 100 1.002 1.003 1.008 1.011 1.002 1.004 1.005 1.008

300 1.003 1.005 1.025 1.038 1.004 1.006 1.017 1.026
DGP-I(d, ω = 0.2) 100 1.015 1.017 1.038 1.041 1.019 1.021 1.037 1.040

300 1.020 1.022 1.081 1.082 1.026 1.028 1.065 1.066
DGP-I(d, ω = 0.8) 100 1.001 1.002 1.002 1.002 1.001 1.002 1.001 1.001

300 1.001 1.004 1.003 1.003 1.001 1.003 1.001 1.002
DGP-II(a) 100 1.006 1.009 1.015 1.016 1.007 1.009 1.013 1.014

300 1.007 1.010 1.018 1.021 1.008 1.010 1.015 1.018
DGP-II(b) 100 1.007 1.008 1.093 1.095 1.008 1.009 1.078 1.080

300 1.009 1.012 1.334 1.348 1.011 1.013 1.243 1.232
DGP-III 100 1.017 1.018 1.091 1.093 1.021 1.023 1.084 1.086

300 1.022 1.025 1.197 1.205 1.028 1.031 1.152 1.155
DGP-IV(a) 100 1.020 1.023 1.097 1.098 1.024 1.027 1.092 1.091

300 1.024 1.029 1.212 1.213 1.030 1.034 1.168 1.165
DGP-IV(b) 100 1.016 1.018 1.12 1.118 1.019 1.021 1.105 1.104

300 1.020 1.024 1.386 1.377 1.024 1.027 1.257 1.255
DGP-V 100 0.986 0.986 1.023 1.022 0.986 0.986 1.008 1.008

300 0.986 0.989 1.239 1.245 0.987 0.988 1.136 1.141

Notes: In the case of DGP-I(b) in G-SU or NG-SU set of experiments, covariates are serially correlated but the extent of serial

correlation is low (ρi = 0.5). The correlation coeffi cients ρi are set equal to 0.9 in G-SC and NG-SC sets of experiments. See

notes to Tables 1-5.
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Table 8: Robustness of OCMT to Non-Gaussianity and Serial Correlation
(rRMSEβ̂ findings)

Summary statistics are averaged across T and R2

G-SU: Gaussian innovations with serially uncorrelated covariates
NG-SU: non-Gaussian innovations with serially uncorrelated covariates
G-SC: Gaussian innovations with serially correlated covariates
NG-SC: non-Gaussian innovations with serially correlated covariates

MC findings for rRMSEβ̃
p = 0.01, δ = 1 p = 0.01, δ = 1.25

n G-SU NG-SU G-SC NG-SC G-SU NG-SU G-SC NG-SC
DGP-I(a) 100 1.084 1.159 1.212 1.224 1.071 1.141 1.122 1.128

300 1.129 1.252 1.425 1.446 1.115 1.210 1.216 1.234
DGP-I(b) 100 1.087 1.125 1.206 1.218 1.070 1.104 1.119 1.130

300 1.140 1.215 1.383 1.421 1.111 1.171 1.189 1.225
DGP-I(c) 100 1.159 1.315 5.883 10.888 1.090 1.221 3.389 5.111

300 1.297 1.543 26.26 34.221 1.141 1.332 42.05 24.531
DGP-I(d, ω = 0.2) 100 1.711 1.813 2.883 2.892 1.863 1.945 2.533 2.574

300 1.968 2.096 6.487 7.251 2.186 2.259 4.586 4.774
DGP-I(d, ω = 0.8) 100 1.012 1.023 1.033 1.019 0.999 1.005 1.004 1.002

300 1.014 1.040 1.035 1.035 0.993 1.007 1.007 0.996
DGP-II(a) 100 1.862 1.904 2.124 2.099 1.838 1.859 1.997 1.989

300 1.842 1.956 2.257 2.404 1.811 1.893 2.027 2.096
DGP-II(b) 100 1.349 1.428 4.57 4.477 1.365 1.424 3.779 3.643

300 1.417 1.544 25.23 25.999 1.449 1.525 21.12 13.537
DGP-III 100 2.020 2.141 4.951 4.776 2.318 2.435 4.532 4.370

300 2.290 2.492 12.56 15.919 2.793 2.890 8.425 8.776
DGP-IV(a) 100 2.649 2.782 5.866 5.735 2.888 3.025 5.337 5.253

300 2.904 3.031 14.66 13.765 3.362 3.363 10.2 10.039
DGP-IV(b) 100 2.325 2.351 6.224 6.238 2.556 2.546 5.551 5.535

300 2.558 2.637 35.5 35.771 2.876 2.847 16.96 17.192
DGP-V 100 0.433 0.478 1.241 1.213 0.420 0.454 1.008 0.989

300 0.443 0.504 7.048 7.637 0.428 0.468 3.698 3.804

Notes: See notes to Table 7.
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A Appendix

A.1 Proof of theorems

A.1.1 Proof of Theorem 5

We note that ∪i=0,...,k+k∗−1;j=0,...,n−k−k∗Ai,j = C, where

C =

{[
k+k∗∑
i=1

̂I (βi 6= 0) < k + k∗

]}
.

Then,

E
(∥∥∥β̃n−βn∥∥∥) = E

(∥∥∥β̃n−βn∥∥∥∣∣∣ C)Pr (C) +

n−k−k∗∑
j=0

E
(∥∥∥β̃n−βn∥∥∥∣∣∣Ak+k∗,j

)
Pr (Ak+k∗,j)

= An,T +Bn,T .

Consider first An,T , and note that by (A.102) of Lemma 19 to the regression of yt on the k̂

selected regressors, for some finite positive constant C0, we have

E
(∥∥∥β̃n−βn∥∥∥∣∣∣ C) ≤ C0

(
l4max

T
+ lmax

)
,

where lmax denotes an upper bound to k̂ = dim
(
β̃n

)
. Also, by (A.87), for some finite positive

constants C1 and C2,

Pr (C) ≤ exp
(
−C1T

C2
)
.

Therefore,

An,T ≤ C0

(
l4max

T
+ lmax

)
exp

(
−C1T

C2
)
.

Consider now Bn,T , and note that under k̂ < lmax, it can be written as

Bn,T =
n−k−k∗∑
j=0

E
(∥∥∥β̃n−βn∥∥∥∣∣∣Ak+k∗,j

)
Pr (Ak+k∗,j)

=

lmax−k−k∗∑
j=0

E
(∥∥∥β̃n−βn∥∥∥∣∣∣Ak+k∗,j

)
Pr (Ak+k∗,j)

+ E
(∥∥∥β̃n−βn∥∥∥∣∣∣ ∪n−k−k∗j=lmax−k−k∗+1 Ak+k∗,j

)
Pr
(
∪n−k−k∗j=lmax−k−k∗+1Ak+k∗,j

)
.

Using (A.92) of Lemma 17, it follows that for some C0 > 0.

Pr
(
∪n−k−k∗j=lmax−k−k∗+1Ak+k∗,j

)
≤ Pr

(
k̂ > lmax − k − k∗ + 1

)
≤ C0

p n

f (n) (lmax − k − k∗ + 1)
.
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and, noting that Pr
(
k̂ − k − k∗ = j

)
≤ Pr

(
k̂ − k − k∗ > j − 1

)
, it also follows that

Pr (Ak+k∗,j) ≤
C0np

j f (n)
. (A.1)

Further, by (A.101) of Lemma 19,

E
(∥∥∥β̃n−βn∥∥∥∣∣∣Ak+k∗,j

)
= C0

(
j4

T

)
,

and

E
(∥∥∥β̃n−βn∥∥∥∣∣∣ ∪n−k−k∗j=lmax−k−k∗+1 Ak+k∗,j

)
= C0

(
l4max

T

)
.

Combining the above results gives

Bn,T = O

[(
l4max

T

)
n

p

f (n)

]
.

Hence

E
(∥∥∥β̃n−βn∥∥∥) = O

[(
l4max

T
+ lmax

)
exp

(
−C1T

C2
)]

+O

[(
l4max

T

)
pn

f (n)

]
,

which completes the proof.

A.1.2 Proof of Theorem 6

Note that regardless of the number of selected regressors, denoted as k̂, 0 ≤ k̂ ≤ n, the

orthogonal projection theorem can be used to show that the following upper bound applies

‖ũ‖2 ≤ ‖y‖2 ,

where y = (y1, y2, ..., yT )′. In particular, this is a direct implication of the fact that

min
βi,i=1,...,K

T∑
i=1

yt − k̂∑
i=1

βixit

2

≤
T∑
i=1

y2
t ,

for any k̂. We also note that if for two random variables x, y > 0 defined on a probability

space, Ω,

sup
ω∈Ω

[y(ω)− x(ω)] ≥ 0,

then E(x) ≤ E(y). The above results imply that E ‖ũ‖2 ≤ E ‖y‖2. Also, by Assumptions 1

and 4, E (y2
t ) is bounded, and so we have E ‖y‖

2 = O (T ), and therefore E ‖ũ‖2 = O (T ).

Now let A0 be the set of pseudo-true models as defined in Section 4.3 and let Ac0 be its
complement. Then

1

T
E ‖ũ‖2 = P (A0)

1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]

1

T
E
(
‖ũ‖2

∣∣Ac0) .
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Noting that E
(
‖ũ‖2

∣∣Ac0) ≤ E ‖y‖2 = O (T ), we have

1

T
E ‖ũ‖2 ≤ P (A0)

1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]

E ‖y‖2

T
(A.2)

≤ P (A0)
1

T
E
(
‖ũ‖2

∣∣A0

)
+ [1− P (A0)]C0,

where C0 is a finite constant that does not depend on n and/or T . Now using (32), we note

that

P (A0) ≥ 1− n p

f (n)
− exp

(
−C1T

C2
)
,

for some finite positive constants C1 and C2, and (assuming k + k∗ does not increase with n)

1

T
E
(
‖ũ‖2

∣∣A0

)
= σ2 +O

(
1

T

)
,

in (A.2), we obtain

E

(
1

T

T∑
i=1

ũ2
t

)
→ σ2 so long as 1− n p

f (n)
− exp

(
−C1T

C2
)
→ 1. (A.3)

Finally, if n/f (n) = o (1/T ), it immediately follows that

E

(
1

T

T∑
i=1

ũ2
t

)
− σ2 = O

(
1

T

)
, (A.4)

which establishes the desired result.

A.2 Lemmas

Lemma 1 Let 0 < κ ≤ 1, δ > 0, 0 < p < 1, and consider the critical value function

cp(n) = Φ−1

(
1− p

2f(n)

)
,

where Φ−1 (.) is the inverse function of the cumulative standard normal distribution and

f (n) = nδ. Then:

(i) cp(n) = O
(

[ln (n)]1/2
)
,

(ii) exp
[
−κc2

p (n) /2
]

= 	
(
n−δκ

)
, and

(iii) if δ > 1/κ, then n exp
[
−κc2

p (n) /2
]
→ 0 as n→∞.
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Proof. Using Lemma 3 of Bailey, Pesaran, and Smith (2015),

cp (n) ≤
√

2 [ln f (n)− ln p],

and therefore for f(n) = nδ, with δ > 0, we have

c2
p(n) ≤ 2 [δ ln(n)− ln(p)] = O [ln(n)] ,

which establishes result (i). Further, by Proposition 24 of Dominici (2003) we have that

lim
n→∞

cp(n)/LW

 1

2π
[(

1− p
2f(n)

)
− 1
]2


1/2

= 1,

where LW denotes the LambertW function which satisfies limn→∞ LW (n)/ {ln(n)− ln [ln(n)]} =

1 as n→∞. We note that limn→∞ ln(n)/ {ln(n)− ln [ln(n)]} = 1 as n→∞. So

lim
n→∞

LW

{
1

2π[(1− p
2f(n))−1]

2

}1/2

{
2 ln

(√
2f(n)√
πp

)}1/2
= 1.

Hence, for any 0 < κ ≤ 1,

lim
n→∞

exp
[
−κc2

p(n)/2
]

exp

−κ
{[

2 ln
(√

2f(n)√
πp

)]1/2}2
2

 = lim
n→∞

exp
[
−κc2

p(n)/2
]

[f (n)]−κ πκp2κ2−κ
= 1 as n→∞,

and substituting nδ for f (n) yields ,

lim
n→∞

exp
[
−κc2

p (n) /2
]

n−δκ
→ 2κ

πκp2κ . (A.5)

It follows from (A.5) that exp
[
−κc2

p (n) /2
]

= 	
(
n−δκ

)
, as required. This completes the

proof of result (ii). Finally, it readily follows from (ii) that n exp
[
−κc2

p (n) /2
]

= 	
(
n1−δκ)

and therefore n exp
[
−κc2

p (n) /2
]
→ 0 when δ > 1/κ, as desired. This completes the proof of

the last result.

Lemma 2 Let XiT , for i = 1, 2, ..., lT , YT and ZT be random variables. Then, for some

finite positive constants C0, C1 and C2, and any constants πi, for i = 1, 2, ..., lT , satisfying

0 < πi < 1 and
∑lT

i=1 πi = 1, we have

Pr

(
lT∑
i=1

|XiT | > C0

)
≤

lT∑
i=1

Pr (|XiT | > πiC0) , (A.6)
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Pr (|XT | × |YT | > C0) ≤ Pr (|XT | > C0/C1) + Pr (|YT | > C1) , (A.7)

and

Pr (|XT | × |YT | × |ZT | > C0) ≤ Pr (|XT | > C0/ (C1C2)) + Pr (|YT | > C1) + (A.8)

Pr (|ZT | > C2) .

Proof. Without loss of generality we consider the case lT = 2. Consider the two random

variables X1T and X2T . Then, for some finite positive constants C0 and C1, we have

Pr (|X1T |+ |X2T | > C0) ≤ Pr ({|X1T | > (1− π)C0} ∪ {|X2T | > πC0})
≤ Pr (|X1T | > (1− π)C0) + Pr (|X2T | > πC0) ,

proving the first result of the lemma. Also

Pr (|XT | × |YT | > C0) = Pr (|XT | × |YT | > C0 |{|YT | > C1}) Pr (|YT | > C1) +

Pr (|XT | × |YT | > C0 |{|YT | ≤ C1}) Pr (|YT | ≤ C1) ,

and since

Pr (|XT | × |YT | > C0 |{|YT | > C1}) ≤ Pr (|XT | > C0/C1) ,

and

0 ≤ Pr (|XT | × |YT | > C0 |{|YT | ≤ C1}) ≤ 1,

then

Pr (|XT | × |YT | > C0) ≤ Pr (|XT | > C0/C1) + Pr (|YT | > C1) ,

proving the second result of the lemma. The third result follows by a repeated application of

the second result.

Lemma 3 Consider the scalar random variable XT , and the constants B and C. Then, if

|B| ≥ C > 0,

Pr (|X +B| ≤ C) ≤ Pr (|X| > |B| − C) . (A.9)

Proof. We note that the event we are concerned with is of the form A = {|X +B| ≤ C}.
Consider two cases: (i) B > 0. Then, A can occur only if X < 0 and |X| > B−C = |B| −C.
(ii) B < 0. Then, A can occur only if X > 0 and X = |X| > |B| − C. It therefore follows
that the event {|X| > |B| − C} implies A proving (A.9).

Lemma 4 Consider the scalar random variable, ωT , and the deterministic sequence, αT > 0,

such that αT → 0 as T →∞. Then there exists T0 > 0 such that for all T > T0 we have

Pr

(∣∣∣∣ 1
√
ωT
− 1

∣∣∣∣ > αT

)
≤ Pr (|ωT − 1| > αT ) . (A.10)
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Proof. We first note that for αT < 1/2∣∣∣∣ 1
√
ωT
− 1

∣∣∣∣ < |ωT − 1| for any ωT ∈ [1− αT , 1 + αT ] .

Also, since aT → 0 then there must exist a T0 > 0 such that aT < 1/2, for all T > T0, and hence

if event A : |ωT − 1| ≤ aT is satisfied, then it must be the case that event B :
∣∣∣ 1√

ωT
− 1
∣∣∣ ≤ aT

is also satisfied for all T > T0. Further, since A ⇒ B, then Bc ⇒ Ac, where Ac denotes the

complement of A. Therefore,
∣∣∣ 1√

ωT
− 1
∣∣∣ > aT implies |ωT − 1| > aT , for all T > T0, and we

have Pr
(∣∣∣ 1√

ωT
− 1
∣∣∣ > αT

)
≤ Pr (|ωT − 1| > αT ), as required.

Lemma 5 Let AT = (aij,T ) be a symmetric lT × lT matrix with eigenvalues µ1 ≤ µ2 ≤ ... ≤
µlT . Let µi = 	 (lT ), i = lT −M + 1, ..., lT , for some finite M , and sup1≤i≤lT−M µi < C0 <∞,
for some finite positive C0. Then,

‖AT‖F = 	 (lT ) . (A.11)

If, in addition, inf1≤i<lT µi > C1 > 0, for some finite positive C1, then∥∥A−1
T

∥∥
F

= 	
(√

lT

)
. (A.12)

Proof. We have

‖AT‖2
F = Tr (ATA′T ) = Tr

(
A2
T

)
=

lT∑
i=1

µ2
i ,

where µi, for i = 1, 2, ..., lT , are the eigenvalues of AT . But by assumption µi = 	 (lT ), for

i = lT −M+1, ..., lT , and sup1≤i≤lT−M µi < C0 <∞, then
∑lT

i=1 µ
2
i = M 	 (l2T )+O(lT −M) =

	 (l2T ), and since M is fixed then (A.11) follows. Note that A−1
T is also symmetric, and using

similar arguments as above, we have

∥∥A−1
T

∥∥2

F
= Tr

(
A−2
T

)
=

lT∑
i=1

µ−2
i ,

but all eigenvalues of AT are bounded away from zero under the assumptions of the lemma,

which implies µ−2
i = 	 (1) and therefore

∥∥A−1
T

∥∥
F

= 	
(√

lT
)
, which establishes (A.12).

Lemma 6 Let z be a random variable and suppose there exists finite positive constants C0,

C1 and s > 0 such that

Pr (|z| > α) ≤ C0 exp (−C1α
s) , for all α > 0. (A.13)

Then for any finite p > 0 and p/s finite, there exists C2 > 0 such that

E |z|p ≤ C2. (A.14)
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Proof. We have that
E |z|p =

∫ ∞
0

αpdPr (|z| ≤ α) .

Using integration by parts, we get∫ ∞
0

αpdPr (|z| ≤ α) = p

∫ ∞
0

αp−1 Pr (|z| > α) dα.

But, using (A.13), and a change of variables, implies

E |z|p ≤ pC0

∫ ∞
0

αp−1 exp (−C1α
s) dα =

pC0

s

∫ ∞
0

u
p−s
s exp (−C1u) du = C0C

−p/s
1

(p
s

)
Γ
(p
s

)
,

where Γ (·) is a gamma function. But for a finite positive p/s, Γ (p/s) is bounded and (A.14)

follows.

Lemma 7 Let AT = (aij,T ) be an lT × lT matrix and ÂT = (âij,T ) be an estimator of AT .

Suppose that AT is invertible and there exists a finite positive C0, such that

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
(
−C0Tb

2
T

)
, (A.15)

for all bT > 0. Then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤ l2T exp

(
−C0

Tb2
T

l2T

)
, (A.16)

and

Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥
F
> bT

)
≤ l2T exp

(
−C0Tb

2
T

l2T
∥∥A−1

T

∥∥2

F

(∥∥A−1
T

∥∥
F

+ bT
)2

)

+ l2T exp

(
−C0

T∥∥A−1
T

∥∥2

F
l2T

)
. (A.17)

Proof. First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2

F
> b2

T

)
= Pr

([
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2
T

])
,

and using the probability bound result, (A.6), and setting πi = 1/lT , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2

T b2
T

)
=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1

T bT
)

≤ l2T sup
ij=1,2,...,lT

[
Pr
(
|âij,T − aij,T | > l−1

T bT
)]
.
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Hence by (A.15) we obtain (A.16). To establish (A.17) define the sets

AT =
{∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
≤ 1
}
and BT =

{∥∥∥Â−1

T −A−1
T

∥∥∥
F
> bT

}
and note that by (2.15) of Berk (1974) if AT holds we have

∥∥∥Â−1

T −A−1
T

∥∥∥
F
≤

∥∥A−1
T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

. (A.18)

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1
T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
)) . (A.19)

Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)
.

(A.20)

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1

T

∥∥−1

F

)
,

and by (A.16) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0

T∥∥A−1
T

∥∥2

F
l2T

)
.

Using the above result and (A.19) in (A.20), we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))Pr (AT )

+ Pr
(
BT |ACT

)
l2T exp

(
−C0

T∥∥A−1
T

∥∥2

F
l2T

)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥
F
> bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))

+ l2T exp

(
−C0

T∥∥A−1
T

∥∥2

F
l2T

)
.

Result (A.17) now follows if we apply (A.16) to the first term on the RHS of the above.
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Lemma 8 Let AT = (aij,T ) be a lT × lT matrix and ÂT = (âij,T ) be an estimator of AT . Let∥∥A−1
T

∥∥
F
> 0 and suppose that for some s > 0, any bT > 0 and some finite positive constant

C0,

sup
i,j

Pr (|âij,T − aij,T | > bT ) ≤ exp
[
−C0 (TbT )s/(s+2)

]
.

Then

Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥
F
> bT

)
≤ l2T exp

(
−C0 (TbT )s/(s+2)

l
s/(s+2)
T

∥∥A−1
T

∥∥s/(s+2)

F

(∥∥A−1
T

∥∥
F

+ bT
)s/(s+2)

)
(A.21)

+ l2T exp

(
−C0

T s/(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Proof:
First note that since bT > 0, then

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
= Pr

(∥∥∥ÂT −AT

∥∥∥2

F
> b2

T

)
= Pr

[
lT∑
j=1

lT∑
i=1

(âij,T − aij,T )2 > b2
T

]
,

and using the probability bound result, (A.6), and setting πi = 1/l2T , we have

Pr
(∥∥∥ÂT −AT

∥∥∥
F
> bT

)
≤

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T |2 > l−2

T b2
T

)
(A.22)

=

lT∑
j=1

lT∑
i=1

Pr
(
|âij,T − aij,T | > l−1

T bT
)

≤ l2T sup
ij

[
Pr
(
|âij,T − aij,T | > l−1

T bT
)]

= l2T exp

(
−C0T

s/(s+1) b
s/(s+2)
T

l
s/(s+2)
t

)
.

To establish (A.21) define the sets

AT =
{∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
≤ 1
}
and BT =

{∥∥∥Â−1

T −A−1
T

∥∥∥ > bT

}
and note that by (2.15) of Berk (1974) if AT holds we have∥∥∥Â−1

T −A−1
T

∥∥∥ ≤
∥∥A−1

T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

.

Hence

Pr (BT |AT ) ≤ Pr

 ∥∥A−1
T

∥∥2

F

∥∥∥ÂT −AT

∥∥∥
F

1−
∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F

> bT


= Pr

[∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
)] .
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Note also that

Pr (BT ) = Pr
(
{BT ∩ AT} ∪

{
BT ∩ ACT

})
= Pr (BT |AT ) Pr (AT ) + Pr

(
BT |ACT

)
Pr
(
ACT
)

Furthermore

Pr
(
ACT
)

= Pr
(∥∥A−1

T

∥∥
F

∥∥∥ÂT −AT

∥∥∥
F
> 1
)

= Pr
(∥∥∥ÂT −AT

∥∥∥
F
>
∥∥A−1

T

∥∥−1

F

)
,

and by (A.22) we have

Pr
(
ACT
)
≤ l2T exp

(
−C0T

s/(s+1) b
s/(s+2)
T

l
s/(s+2)
t

)
= exp

(
−C0

T s/(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Using the above result, we now have

Pr (BT ) ≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))Pr (AT )

+ Pr
(
BT |ACT

)
exp

(
−C0

T s/(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Furthermore, since Pr (AT ) ≤ 1 and Pr
(
BT |ACT

)
≤ 1 then

Pr (BT ) = Pr
(∥∥∥Â−1

T −A−1
T

∥∥∥ > bT

)
≤ Pr

(∥∥∥ÂT −AT

∥∥∥
F
>

bT∥∥A−1
T

∥∥
F

(∥∥A−1
T

∥∥
F

+ bT
))

+ exp

(
−C0

T s/(s+2)∥∥A−1
T

∥∥s/(s+2)

F
l
s/(s+2)
T

)
.

Result (A.21) now follows if we apply (A.22) to the first term on the RHS of the above.

Lemma 9 Let zt be a martingale difference sequence with respect to the filtration F zt−1 =

σ
(
{zs}t−1

s=1

)
, and suppose that there exist finite positive constants C0 and C1, and s > 0

such that supt Pr (|zt| > α) ≤ C0 exp (−C1α
s), for all α > 0. Let σ2

zt = E(z2
t

∣∣F zt−1 ) and

σ2
z = 1

T

∑T
t=1 σ

2
zt. Suppose that ζT = 	(T λ), for some 0 < λ ≤ (s+ 1)/(s+ 2). Then, for any

π in the range 0 < π < 1, we have

Pr

(∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2Tσ2
z

]
. (A.23)

If λ > (s+ 1)/(s+ 2), then for some finite positive constant C3,

Pr

(∣∣∣∣∣
T∑
t=1

zt

∣∣∣∣∣ > ζT

)
≤ exp

[
−C3ζ

s/(s+1)
T

]
. (A.24)
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Proof. We proceed to prove (A.23) first and then prove (A.24). Decompose zt as zt = wt+vt,

where wt = ztI(|zt| ≤ DT ) and vt = ztI(|zt| > DT ), and note that

Pr

(∣∣∣∣∣
T∑
t=1

[zt − E(zt)]

∣∣∣∣∣ > ζT

)
≤Pr

(∣∣∣∣∣
T∑
t=1

[wt − E(wt)]

∣∣∣∣∣ > (1− π) ζT

)

+ Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
, (A.25)

for any 0 < π < 1.7 Further, it is easily verified that wt − E (wt) is a martingale difference

process, and since |wt| ≤ DT then by setting b = Tσ2
z and a = (1− π) ζT in Proposition 2.1

of Freedman (1975), for the first term on the RHS of (A.25) we obtain

Pr

(∣∣∣∣∣
T∑
t=1

[wt − E (wt)]

∣∣∣∣∣ > (1− π) ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2 [Tσ2
z + (1− π)DT ζT ]

]
.

Consider now the second term on the RHS of (A.25) and first note that

Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
≤ Pr

[
T∑
t=1

|vt − E(vt)| > πζT

]
, (A.26)

and by Markov’s inequality,

Pr

(
T∑
t=1

|[vt − E(vt)]| > πζT

)
≤
(

1

πζT

) T∑
t=1

E |vt − E(vt)|

≤
(

2

πζT

) T∑
t=1

E |vt| . (A.27)

But by Holder’s inequality, for any finite p, q ≥ 1 such that p−1 + q−1 = 1 we have

E |vt| = E (|ztI [|zt| > DT ]|)
≤ (E |zt|p)1/p {E [|I (|zt| > DT )|q]}1/q

= (E |zt|p)1/p {E [I (|zt| > DT )]}1/q

= (E |zt|p)1/p
[Pr (|zt| > DT )]1/q . (A.28)

Also, for any finite p ≥ 1 there exists a finite positive constant C2 such that E |zt|p ≤ C2 <∞,
by Lemma 6. Further, by assumption

sup
t

Pr (|zt| > DT ) ≤ C0 exp (−C1D
s
T ) .

7Let AT =
∑T
t=1 [zt − E(zt)] = B1,T + B2,T , where B1,T =

∑T
t=1 [wt − E(wt)] and B2,T =∑T

t=1 [vt − E(vt)]. We have |AT | ≤ |B1,T |+ |B2,T | and, therefore, Pr (|AT | > ζT ) ≤ Pr (|B1,T |+ |B2,T | > ζT ).
Equation (A.25) now readily follows using the same steps as in the proof of (A.6).
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Using this upper bound in (A.28) together with the upper bound on E |zt|p, we have

sup
t
E |vt| ≤ C

1/p
2 C

1/q
0 [exp (−C1D

s
T )]1/q .

Therefore, using (A.26)-(A.27),

Pr

(∣∣∣∣∣
T∑
t=1

[vt − E(vt)]

∣∣∣∣∣ > πζT

)
≤ (2/π)C

1/p
2 C

1/q
0 ζ−1

T T [exp (−C1D
s
T )]1/q .

We need to determine DT such that

(2/π)C
1/p
2 C

1/q
0 ζ−1

T T [exp (−C1D
s
T )]1/q ≤ exp

[
− (1− π)2 ζ2

T

2 [Tσ2
z + (1− π)DT ζT ]

]
. (A.29)

Taking logs, we have

ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ ln

(
ζ−1
T T

)
−
(
C1

q

)
Ds
T ≤

− (1− π)2 ζ2
T

2 [Tσ2
z + (1− π)DT ζT ]

,

or

C1q
−1Ds

T ≥ ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ ln

(
ζ−1
T T

)
+

(1− π)2 ζ2
T

2 [Tσ2
z + (1− π)DT ζT ]

.

Post-multiplying by 2 [Tσ2
z + (1− π)DT ζT ] > 0 we have(

2σ2
zC1q

−1
)
TDs

T +
(
2C1q

−1
)

(1− π)Ds+1
T ζT − 2 (1− π)DT ζT ln

(
ζ−1
T T

)
−

2 (1− π)DT ζT ln
[
(2/π)C

1/p
2 C

1/q
0

]
≥ 2σ2

zT ln
[
(2/π)C

1/p
2 C

1/q
0

]
+ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T . (A.30)

The above expression can now be simplified for values of T →∞, by dropping the constants
and terms that are asymptotically dominated by other terms on the same side of the inequal-

ity.8 Since ζT = 	
(
T λ
)
, for some 0 < λ ≤ (s+ 1)/(s+ 2), and considering values of DT such

that DT = 	
(
Tψ
)
, for some ψ > 0, implies that the third and fourth term on the LHS of

(A.30), which have the orders 	
[
ln(T )T λ+ψ

]
and 	

(
T λ+ψ

)
, respectively, are dominated by

the second term on the LHS of (A.30) which is of order 	
(
T λ+ψ+sψ

)
. Further the first term

on the RHS of (A.30) is dominated by the second term. Note that for ζT = 	
(
T λ
)
, we have

T ln
(
ζ−1
T T

)
= 	 [T ln(T )], whilst the order of the first term on the RHS of (A.30) is 	 (T ).

Result (A.29) follows if we show that there exists DT such that(
C1q

−1
) [

2σ2
zTD

s
T + 2 (1− π)Ds+1

T ζT
]
≥ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T . (A.31)

8A term A is said to be asymptotically dominant compared to a term B if both tend to infinity and
A/B →∞.
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Set (
C1q

−1
)
Ds+1
T =

1

2
(1− π) ζT , or DT =

(
1

2
C−1

1 q (1− π) ζT

)1/(s+1)

and note that (A.31) can be written as

2σ2
z

(
C1q

−1
)
T

(
1

2
C−1

1 q (1− π) ζT

)s/(s+1)

+ (1− π)2 ζ2
T ≥ 2σ2

zT ln
(
ζ−1
T T

)
+ (1− π)2 ζ2

T .

Hence, the required condition is met if

lim
T→∞

[(
C1q

−1
)(1

2
C−1

1 q (1− π) ζT

)s/(s+1)

− ln
(
ζ−1
T T

)]
≥ 0.

This condition is clearly satisfied noting that for values of ζT = 	
(
T λ
)
, q > 0, C1 > 0 and

0 < π < 1

(
C1q

−1
)(1

2
C−1

1 q (1− π) ζT

)s/(s+1)

− ln
(
ζ−1
T T

)
= 	

(
T

λs
1+s

)
−	 [ln (T )] ,

since s > 0 and λ > 0, the first term on the RHS, which is positive, dominates the second term.

Finally, we require that DT ζT = o(T ), since then the denominator of the fraction inside the

exponential on the RHS of (A.29) is dominated by T which takes us back to the Exponential

inequality with bounded random variables and proves (A.23). Consider

T−1DT ζT =

(
1

2
C−1

1 q (1− π)

)1/(s+1)

T−1ζ
2+s
1+s

T ,

and since ζT = 	(T λ) then DT ζT = o(T ), as long as λ < (s+ 1)/(s+ 2), as required.

If λ > (s+ 1)/(s+ 2), it follows that DT ζT dominates T in the denominator of the fraction

inside the exponential on the RHS of (A.29). So the bound takes the form exp
[
−(1−π)ζ2T
C4DT ζT

]
, for

some finite positive constant C4. Noting that DT = 	
(
ζ

1/(s+1)
T

)
, gives a bound of the form

exp
[
−C3ζ

s/(s+1)
T

]
proving (A.24).

Remark 19 We conclude that for all random variables that satisfy a probability exponential

tail with any positive rate, removing the bound in the Exponential inequality has no effect on

the relevant rate at least for the case under consideration.

Lemma 10 Let xt and ut be sequences of random variables and suppose that there exist

C0, C1 > 0, and s > 0 such that supt Pr (|xt| > α) ≤ C0 exp (−C1α
s) and supt Pr (|ut| > α) ≤

C0 exp (−C1α
s), for all α > 0. Let F (1)

t−1 = σ
(
{us}t−1

s=1 , {xs}
t−1
s=1

)
and F (2)

t = σ
(
{us}t−1

s=1 , {xs}
t
s=1

)
.

Then, assume either that (i) E
(
ut|F (2)

t

)
= 0 or (ii) E

(
xtut − µt|F (1)

t−1

)
= 0, where µt =
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E(xtut). Let ζT = 	
(
T λ
)
, for some λ such that 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Then, for any

π in the range 0 < π < 1 we have

Pr

(∣∣∣∣∣
T∑
t=1

(xtut − µt)
∣∣∣∣∣ > ζT

)
≤ exp

[
−(1− π)2ζ2

T

2Tσ2
(T )

]
, (A.32)

where σ2
(T ) = 1

T

∑T
t=1 σ

2
t and σ

2
t = E

[
(xtut − µt)2 |F (1)

t−1

]
. If λ > (s/2 + 1)/(s/2 + 2), then for

some finite positive constant C2,

Pr

(∣∣∣∣∣
T∑
t=1

(xtut − µt)
∣∣∣∣∣ > ζT

)
≤ exp

[
−C2ζ

s/(s+2)
T

]
. (A.33)

Proof. Let F̃t−1 = σ
(
{xsus}t−1

s=1

)
and note that under (i)

E(xtut|F̃t−1) = E
[
E
(
ut|F (2)

t

)
xt|F̃t−1

]
= 0.

Therefore, xtut is a martingale difference process. Under (ii) we simply note that xtut − µt
is a martingale difference process by assumption. Next, for any α > 0 we have (using (A.7)

with C0 set equal to α and C1 set equal to
√
α)

Pr [|xtut| > α] ≤ Pr
[
|xt| > α1/2

]
+ Pr

[
|ut|2 > α1/2

]
. (A.34)

But, under the assumptions of the Lemma,

sup
t

Pr
[
|xt| > α1/2

]
≤ C0e

−C1αs/2 ,

and

sup
t

Pr
[
|ut| > α1/2

]
≤ C0e

−C1αs/2 .

Hence

sup
t

Pr [|xtut| > α] ≤ 2C0e
−C1αs/2 .

Therefore, the process xtut satisfies the conditions of Lemma 9 and the results of the Lemma

apply.

Lemma 11 Let x = (x1, x2, ..., xT )′ and q·t = (q1,t, q2,t, ..., qlT ,t)
′ be sequences of random

variables and suppose that there exist finite positive constants C0 and C1, and s > 0 such that

supt Pr (|xt| > α) ≤ C0 exp (−C1α
s) and supi,t Pr (|qi,t| > α) ≤ C0 exp (−C1α

s), for all a > 0.

Consider the linear projection

xt =

lT∑
j=1

βjqjt + ux,t, (A.35)

and assume that only a finite number of slope coeffi cients β′s are nonzero and bounded, and

the remaining β’s are zero. Then, there exist finite positive constants C2 and C3, such that

sup
t

Pr (|ux,t| > α) ≤ C2 exp (−C3α
s) .
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Proof. We assume without any loss of generality that the |βi| < C0 for i = 1, 2, ...,M , M is

a finite positive integer and βi = 0 for i = M + 1,M + 2, ..., lT . Note that for some 0 < π < 1,

sup
t

Pr (|ux,t| > α) ≤ sup
t

Pr

(∣∣∣∣∣xt −
M∑
j=1

βjqjt

∣∣∣∣∣ > α

)

≤ sup
t

Pr (|xt| > (1− π)α) + sup
t

Pr

(∣∣∣∣∣
M∑
j=1

βjqjt

∣∣∣∣∣ > πα

)

≤ sup
t

Pr (|xt| > (1− π)α) + sup
t

M∑
j=1

Pr
(
|βjqjt| >

πα

M

)
,

and since |βj| > 0, then

sup
t

Pr (|ux,t| > α) ≤ sup
t

Pr (|xt| > (1− π)α) +M sup
j,t

Pr

(
|qjt| >

πα

M |βj|

)
.

But supj,t Pr
(
|qjt| > πα

M |βj |

)
≤ supj,t Pr

(
|qjt| > πα

Mβmax

)
≤ C0 exp

[
−C1

(
πα

Mβmax

)s]
, and, for

fixed M , the probability bound condition is clearly met.

Lemma 12 Let xit, i = 1, 2, ..., n, t = 1, ..., T , and ηt be martingale difference processes that

satisfy exponential tail probability bounds of the form (13) and (14), with tail exponents sx and

sη, where s = min(sx, sη) > 0. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset

of xt = (x1t, x2t, ..., xnt)
′. Let Σqq = T−1

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T be both invertible,

where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Suppose that

Assumption 5 holds for all the pairs xit and q·t, and ηt and q·t, and denote the corresponding

projection residuals defined by (15) as uxi,t = xit−γ ′qxi,Tq·t and uη,t = ηt−γ ′qη,Tq·t, respectively.
Let ûxi = (ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi, xi = (xi1, xi2, ..., xiT )′, ûη = (ûη,1, ûη,2, ..., ûη,T )′ =

Mqη, η = (η1, η2, ..., ηT )′, Mq = IT −Q (Q′Q)−1 Q, Ft = Fηt ∪Fxt , µxiη,t = E (uxi,tuη,t |Ft−1 ),

ω2
xiη,1,T

= 1
T

∑T
t=1E

[
(xitηt − E (xitηt |Ft−1 ))2], and ω2

xiη,T
= 1

T

∑T
t=1 E

[
(uxi,tuη,t − µxiη,t)

2].
Let ζT = 	(T λ). Then, for any π in the range 0 < π < 1, we have,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,1,T

]
, (A.36)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2). Further, if λ > (s/2 + 1)/(s/2 + 2), we have,

Pr

(∣∣∣∣∣
T∑
t=1

xitηt − E (xitηt |Ft−1 )

∣∣∣∣∣ > ζT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
, (A.37)

for some finite positive constant C0. If it is further assumed that lT = 	
(
T d
)
, such that

0 ≤ d < 1/3, then, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
xiη,T

]
+ exp

[
−C1T

C2
]
. (A.38)
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for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2) we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤ C0 exp

[
−C3ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.39)

for some finite positive constants C0, C1, C2 and C3.

Proof. Note that all the results in the proofs below hold both for sequences and for triangular
arrays of random variables. If q·t contains xit, all results follow trivially, so, without loss of

generality, we assume that, if this is the case, the relevant column of Q is removed. (A.36)

and (A.37) follow immediately given our assumptions and Lemma 10. We proceed to prove

the rest of the Lemma. Let uxi = (uxi,1, uxi,2, ..., uxi,T )′ and uη = (uη,1, uη,2, ..., uη,T )′. We first

note that

T∑
t=1

(ûxi,tûη,t − µxiη,t) = û′xiûη −
T∑
t=1

µxiη,t = u′xiMquη−
T∑
t=1

µxiη,t

=
T∑
t=1

(uxi,tuη,t − µxiη,t)−
(
T−1u′xiQ

)
Σ̂−1
qq (Q′uη) , (A.40)

where Σ̂qq = T−1 (Q′Q). The second term of the above expression can now be decomposed as(
T−1u′xiQ

)
Σ̂−1
qq (Q′uη) =

(
T−1u′xiQ

) (
Σ̂−1
qq −Σ−1

qq

)
(Q′uη) +

(
T−1u′xiQ

)
Σ−1
qq (Q′uη) .

(A.41)

By (A.6) and for any 0 < π1, π2, π3 < 1 such that
∑3

i=1πi = 1, we have

Pr

(∣∣∣∣∣
T∑
t=1

(ûxi,tûη,t − µxiη,t)
∣∣∣∣∣ > ζT

)
≤Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∣∣∣(T−1u′xiQ
) (

Σ̂−1
qq −Σ−1

qq

)
(Q′uη)

∣∣∣ > π2ζT

)
+ Pr

(∣∣(T−1u′xiQ
)

Σ−1
qq (Q′uη)

∣∣ > π3ζT
)
.

Also applying (A.7) to the last two terms of the above we obtain

Pr
(∣∣∣(T−1u′xiQ

) (
Σ̂−1
qq −Σ−1

qq

)
(Q′uη)

∣∣∣ > π2ζT

)
≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F

∥∥T−1u′xiQ
∥∥
F
‖Q′uη‖F > π2ζT

)
≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(
T−1

∥∥u′xiQ∥∥F ‖Q′uη‖F > π2δT
)

≤ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(∥∥u′xiQ∥∥F > (π2δTT )1/2
)

+ Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
,
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where δT > 0 is a deterministic sequence. In what follows, we set δT = 	 (ζαT ), for some α > 0.

Similarly

Pr
(∣∣(T−1u′xiQ

)
Σ−1
qq (Q′uη)

∣∣ > π3ζT
)

≤ Pr
(∥∥Σ−1

qq

∥∥
F

∥∥T−1u′xiQ
∥∥
F
‖Q′uη‖F > π3ζT

)
≤ Pr

(∥∥u′xiQ∥∥F ‖Q′uη‖F > π3ζTT∥∥Σ−1
qq

∥∥
F

)

≤ Pr

(∥∥u′xiQ∥∥F > π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
+ Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
.

Overall

Pr

(∣∣∣∣∣
T∑
t=1

(ûx,tûη,t − µxη,t)
∣∣∣∣∣ > ζT

)

≤ Pr

(∣∣∣∣∣
T∑
t=1

(ux,tuη,t − µxη,t)
∣∣∣∣∣ > π1ζT

)
+ Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥
F
>
ζT
δT

)
+ Pr

(
‖Q′uη‖F > (π2δTT )1/2

)
+ Pr

(
‖u′xQ‖F > (π2δTT )1/2

)
,

+ Pr

(
‖u′xQ‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
+ Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
. (A.42)

First, since ux,tuη,t−µxη,t is a martingale difference process with respect to σ
(
{ηs}t−1

s=1 , {xs}
t−1
s=1 , {qs}

t−1
s=1

)
,

by Lemma 10, we have, for any π in the range 0 < π < 1,

Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
≤ exp

[
−(1− π)2ζ2

T

2Tω2
xη,T

]
, (A.43)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

(∣∣∣∣∣
T∑
t=1

(uxi,tuη,t − µxiη,t)
∣∣∣∣∣ > π1ζT

)
≤ exp

[
−C0ζ

s/(s+1)
T

]
, (A.44)

if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0. We now show that the last

five terms on the RHS of (A.42) are of order exp
[
−C1T

C2
]
, for some finite positive constants

C1 and C2. We will make use of Lemma 10 since by assumption {qituη,t} and {qituxi,t} are
martingale difference sequences. We note that some of the bounds of the last five terms exceed,

in order, T 1/2. Since we do not know the value of s, we need to consider the possibility that

either (A.32) or (A.33) of Lemma 10, apply. We start with (A.32). Then, for some finite

positive constant C0, we have9

sup
i

Pr
(
‖q′iuη‖ > (π2δTT )1/2

)
≤ exp (−C0δT ) . (A.45)

9The required probability bound on uxt follows from the probability bound assumptions on xt and on qit,
for i = 1, 2, ..., lT , even if lT →∞. See also Lemma 11.
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Also, using ‖Q′uη‖2
F =

∑lT
j=1

(∑T
t=1 qjtut

)2

and (A.6),

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
= Pr

(
‖Q′uη‖2

F > π2δTT
)

≤
lT∑
j=1

Pr

( T∑
t=1

qjtuη,t

)2

>
π2δTT

lT


=

lT∑
j=1

Pr

[∣∣∣∣∣
T∑
t=1

qjtuη,t

∣∣∣∣∣ >
(
π2δTT

lT

)1/2
]
,

which upon using (A.45) yields (for some finite positive constant C0)

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp

(
−C0δT

lT

)
, Pr

(
‖Q′ux‖ > (π2δTT )1/2

)
≤ lT exp

(
−C0δT

lT

)
.

(A.46)

Similarly,

Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζT∥∥Σ−1
qq

∥∥
F
lT

)
, (A.47)

Pr

(
‖Q′ux‖ >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζT∥∥Σ−1
qq

∥∥
F
lT

)
.

Turning to the second term of (A.42), since for all i and j, {qitqjt − E(qitqjt)} is a martingale
difference process and qit satisfy the required probability bound then

sup
ij

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > π2ζT
δT

)
≤ exp(

−C0Tζ
2
T

δ2
T

). (A.48)

Therefore, by Lemma 7, for some finite positive constant C0, we have

Pr

(∥∥∥Σ̂−1
qq −Σ−1

qq

∥∥∥ > ζT
δT

)
≤ l2T exp

 −C0Tζ
2
T

δ2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)2

+ (A.49)

l2T exp

(
−C0T∥∥Σ−1
qq

∥∥2

F
l2T

)
.

Further by Lemma 5,
∥∥Σ−1

qq

∥∥
F

= 	
(
l
1/2
T

)
, and

Tζ2
T

δ2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)2 =
Tζ2

T

δ−2
T ζ2

T δ
2
T l

2
T

∥∥Σ−1
qq

∥∥2

F

(
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
)2

=
T

l2T
∥∥Σ−1

qq

∥∥2

F

(
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
)2
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Consider now the different terms in the above expression and let

P11 =
δT
lT
, P12 =

ζT∥∥Σ−1
qq

∥∥
F
lT
,

P13 =
T

l2T
∥∥Σ−1

qq

∥∥2

F

[
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
]2 , and P14 =

T∥∥Σ−1
qq

∥∥2

F
l2T
.

Under δT = 	 (ζαT ), lT = 	(T d), and ζT = 	(T λ), we have

P11 =
δT
lT

= 	
(
Tα−d

)
, (A.50)

P12 =
ζT∥∥Σ−1
qq

∥∥
F
lT

= 	
(
T λ−3d/2

)
, (A.51)

P13 =
T

l2T
∥∥Σ−1

qq

∥∥2

F

[
δT ζ

−1
T

∥∥Σ−1
qq

∥∥
F

+ 1
]2 =	

(
Tmax{1−3d−(2α−2λ+d),1−3d−(α−λ+d/2),1−3d})

=	
(
Tmax{1+2λ−4d−2α,1+λ−7d/2−α,1−3d}) , (A.52)

and

P14 =
T∥∥Σ−1

qq

∥∥2

F
l2T

= 	
(
T 1−3d

)
. (A.53)

Suppose that d < 1/3, and by (A.51) note that λ ≥ 3d/2. Then, setting α = 1/3, ensures that

all the above four terms tend to infinity polynomially with T . Therefore, it also follows that

they can be represented as terms of order exp
[
−C1T

C2
]
, for some finite positive constants

C1 and C2, and (A.38) follows. The same analysis can be repeated under (A.33). In this case,

(A.46), (A.47), (A.48) and (A.49) are replaced by

Pr
(
‖Q′uη‖F > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)
]
,

Pr
(
‖Q′ux‖ > (π2δTT )1/2

)
≤ lT exp

(
−C0δ

s/2(s+2)
T T s/2(s+2)

l
s/2(s+2)
T

)
= lT exp

[
−C0

(
δTT

lT

)s/2(s+2)
]
,

(A.54)

Pr

(
‖Q′uη‖F >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζ

s/2(s+2)
T T s/2(s+2)∥∥Σ−1

qq

∥∥s/2(s+2)

F
l
s/2(s+2)
T

)
= lT exp

−C0

(
ζTT∥∥Σ−1
qq

∥∥
F
lT

)s/2(s+2)
 ,

Pr

(
‖Q′ux‖ >

π
1/2
3 ζ

1/2
T T 1/2∥∥Σ−1
qq

∥∥1/2

F

)
≤ lT exp

(
−C0ζ

s/2(s+2)
T T s/2(s+2)∥∥Σ−1

qq

∥∥s/2(s+2)

F
l
s/2(s+2)
T

)
= lT exp

−C0

(
ζTT∥∥Σ−1
qq

∥∥
F
lT

)s/2(s+2)
 ,

(A.55)
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sup
ij

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

[qitqjt − E(qitqjt)]

∣∣∣∣∣ > π2ζT
δT

)
≤ exp

[
−C0T

s/(s+2)ζ
s/(s+2)
T

δ
s/(s+2)
T

]
, (A.56)

and, using Lemma 8,

Pr

(∥∥∥(Σ̂−1
qq −Σ−1

qq

)∥∥∥ > π2ζT
δT

)
≤ l2T exp

 −C0T
s/(s+2)ζ

s/(s+2)
T

δ
s/(s+2)
T l

s/(s+2)
T

∥∥Σ−1
qq

∥∥s/(s+2)

F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)s/(s+2)

+

l2T exp

[
−C0T

s/(s+2)∥∥Σ−1
qq

∥∥s/(s+2)

F
l
s/(s+2)
T

]
=

l2T exp

−C0

 TζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

)
s/(s+2)

+

l2T exp

−C0

(
T∥∥Σ−1

qq

∥∥
F
lT

)s/(s+2)
 . (A.57)

respectively. Once again, we need to derive conditions that imply that P21 = δTT
lT
, P22 =

ζTT

‖Σ−1qq ‖
F
lT
, P23 = TζT

δT lT‖Σ−1qq ‖
F
(‖Σ−1qq ‖

F
+δ−1T ζT )

and P24 = T

‖Σ−1qq ‖
F
lT
are terms that tend to infinity

polynomially with T . If that is the case then, as before, the relevant terms are of order

exp
[
−C1T

C2
]
, for some finite positive constants C1 and C2, and (A.39) follows, completing

the proof of the Lemma. P22 dominates P23 so we focus on P21, P23 and P24. We have

δTT

lT
= 	

(
T 1+α−d/2) ,

T ζT

δT lT
∥∥Σ−1

qq

∥∥
F

(∥∥Σ−1
qq

∥∥
F

+ δ−1
T ζT

) = 	
[
Tmax(1+λ−α−2d,1−3d/2)

]
,

and
T∥∥Σ−1

qq

∥∥
F
lT

= 	
(
T 1−3d/2

)
It immediately follows that under the conditions set when using (A.32), which were that

α = 1/3, d < 1/3 and λ > 3d/2, and as long as s > 0, P21 to P24 tend to infinity polynomially

with T , proving the Lemma.

Remark 20 It is important to highlight one particular feature of the above proof. In (A.46),
qitux,t needs to be a martingale difference process. Note that if qit is a martingale difference

process distributed independently of ux,t, then qitux,t is also a martingale difference process

irrespective of the nature of ux,t. This implies that one may not need to impose a martingale

difference assumption on ux,t if xit is a noise variable. Unfortunately, a leading case for which

this Lemma is used is one where qit = 1. It is then clear that one needs to impose a martingale
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difference assumption on ux,t, to deal with covariates that cannot be represented as martingale

difference processes. Of course, we go on to relax this assumption in Section 4.7, where we

allow noise variables to be mixing processes.

Lemma 13 Let xit, i = 1, 2, ..., n, be martingale difference processes that satisfy exponential

tail probability bounds of the form (13), with positive tail exponent s. Let q·t = (q1,t, q2,t, ..., qlT ,t)
′

contain a constant and a subset of xnt = (x1t, x2t, ..., xnt)
′. Suppose that Assumption 5 holds

for all the pairs xit and q·t, and denote the corresponding projection residuals defined by (15)

as uxit = xit − γ ′qxi,Tq·t. Let Σqq = T−1
∑T

t=1E (q·tq
′
·t) and Σ̂qq = Q′Q/T be both invert-

ible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Let ûxi =

(ûxi,1, ûxi,2, ..., ûxi,T )′ = Mqxi·, where xi· = (xi1, xi2, ..., xiT )′ and Mq = IT − Q (Q′Q)−1 Q.

Moreover, suppose that E
(
u2
xi,t
− σ2

xit
|Ft−1

)
= 0, where Ft = Fxt and σ2

xit
= E(u2

xi,t
). Let

ζT = 	(T λ). Then, if 0 < λ ≤ (s/2 + 1)/(s/2 + 2), for any π in the range 0 < π < 1, and

some finite positive constant C0, we have,

Pr

[∣∣∣∣∣
T∑
t=1

(
x2
it − σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
i,1,T

]
. (A.58)

Otherwise, if λ > (s/2 + 1)/(s/2 + 2), for some finite positive constant C0, we have

Pr

[∣∣∣∣∣
T∑
t=1

(
x2
it − σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
. (A.59)

If it is further assumed that lT = 	
(
T d
)
, such that 0 ≤ d < 1/3, then, if 3d/2 < λ ≤

(s/2 + 1)/(s/2 + 2),

Pr

[∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
− (1− π)2 ζ2

T

2Tω2
i,T

]
+ exp

[
−C1T

C2
]
, (A.60)

for some finite positive constants C0, C1 and C2, and, if λ > (s/2 + 1)/(s/2 + 2),

Pr

[∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ C0 exp

[
−C3ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.61)

for some finite positive constants C0, C1, C2 and C3, where ω2
i,1,T = 1

T

∑T
t=1E

[(
x2
it − σ2

xit

)2
]

and ω2
i,T = 1

T

∑T
t=1 E

[(
u2
xi,t
− σ2

xit

)2
]
.

Proof. If q·t contains xit, all results follow trivially, so, without loss of generality, we assume
that, if this is the case, the relevant column ofQ is removed. (A.58) and (A.59) follow similarly

to (A.36) and (A.37). For (A.60) and (A.61), we first note that∣∣∣∣∣
T∑
t=1

(
û2
xi,t
− σ2

xit

)∣∣∣∣∣ ≤
∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣+
∣∣∣(T−1u′xiQ

) (
T−1Q′Q

)−1
(Q′uxi)

∣∣∣ .
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Since
{
u2
xi,t
− σ2

xit

}
is a martingale difference process and for α > 0 and s > 0

sup
t

Pr
(∣∣u2

xi,t

∣∣ > α2
)

= sup
t

Pr (|uxi,t| > α) ≤ C0 exp (−C1α
s) ,

by Lemma 11, then the conditions of Lemma 9 are met and we have

Pr

[∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
− (1− π)2 ζ2

T

2Tω2
i,T

]
. (A.62)

if 0 < λ ≤ (s/2 + 1)/(s/2 + 2) and

Pr

[∣∣∣∣∣
T∑
t=1

(
u2
xi,t
− σ2

xit

)∣∣∣∣∣ > ζT

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
, (A.63)

if λ > (s/2 + 1)/(s/2 + 2). Then, using the same line of reasoning as in the proof of Lemma

12 we establish the desired result.

Lemma 14 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 1-4, with s = min(sx, su) > 0. Let

q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xt = (x1t, x2t, ..., xnt)

′. Assume that

Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·)

and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover, suppose that Assumption 5 holds for

all the pairs xt and q·t, and yt and (q′·t, xt)
′, where xt is a generic element of {x1t, x2t, ..., xnt}

that does not belong to q·t, and denote the corresponding projection residuals defined by (15)

as ux,t = xt − γ ′qx,Tq·t and et = yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, and Mq =

IT −Q(Q′Q)−1Q′, and let aT = 	
(
T λ−1

)
. Then, for any π in the range 0 < π < 1, and as

long as lT = 	
(
T d
)
, such that 0 ≤ d < 1/3, we have, that, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣T−1x′Mqx

σ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

2ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.64)

and

Pr

∣∣∣∣∣∣
(

σ2
x,(T )

T−1x′Mqx

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

2ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.65)

where

σ2
x,(T ) =

1

T

T∑
t=1

E
(
u2
x,t

)
, ω2

x,(T ) =
1

T

T∑
t=1

E
[(
u2
x,t − σ2

xt

)2
]
. (A.66)

If λ > (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣T−1x′Mqx

σ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−C0 (TaT )s/(s+2)

]
+ exp

[
−C1T

C2
]
, (A.67)
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and

Pr

∣∣∣∣∣∣
(

σ2
x,(T )

T−1x′Mqx

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp
[
−C0 (TaT )s/(s+2)

]
+ exp

[
−C1T

C2
]
. (A.68)

Also, if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣T−1e′e

σ2
u,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−σ4

u,(T ) (1− π)2 Ta2
T

2ω2
u,(T )

]
+ exp

[
−C0T

C1
]
, (A.69)

and

Pr

∣∣∣∣∣∣
(
σ2
u,(T )

e′e/T

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp

[
−σ4

u,(T ) (1− π)2 Ta2
T

2ω2
u,T

]
+ exp

[
−C0T

C1
]
, (A.70)

where e = (e1, e2, ..., eT )′

σ2
u,(T ) =

1

T

T∑
t=1

σ2
t , and ω

2
u,T =

1

T

T∑
t=1

E
[(
u2
t − σ2

t

)2
]
. (A.71)

If λ > (s/2 + 1)/(s/2 + 2),

Pr

(∣∣∣∣∣T−1e′e

σ2
u,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−C0 (TaT )s/(s+2)

]
+ exp

[
−C1T

C2
]
, (A.72)

and

Pr

∣∣∣∣∣∣
(
σ2
u,(T )

e′e/T

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp
[
−C0 (TaT )s/(s+2)

]
+ exp

[
−C1T

C2
]
, (A.73)

Proof. First note that

x′Mqx

T
− σ2

x,(T ) = T−1

T∑
t=1

(
û2
x,t − σ2

xt

)
,

where ûx,t, for t = 1, 2, ..., T ,. is the t-th element of ûx = Mqx. Now applying Lemma 13 to∑T
t=1

(
û2
x,t − σ2

xt

)
with ζT = TaT we have

Pr

(∣∣∣∣∣
T∑
t=1

(
û2
x,t − σ2

xt

)∣∣∣∣∣ > ζT

)
≤ exp

[
− (1− π)2 ζ2

T

2ω2
x,(T )T

]
+ exp

[
−C0T

C1
]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

(∣∣∣∣∣
T∑
t=1

(
û2
x,t − σ2

xt

)∣∣∣∣∣ > ζT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
,
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if λ > (s/2 + 1)/(s/2 + 2), where ω2
x,(T ) is defined by (A.66). Also

Pr

[∣∣∣∣∣T−1
∑T

t=1

(
û2
x,t − σ2

xt

)
σ2
x,(T )

∣∣∣∣∣ > ζT
Tσ2

x,(T )

]
≤ exp

[
− (1− π)2 ζ2

T

2ω2
x,(T )T

]
+ exp

[
−C0T

C1
]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

[∣∣∣∣∣T−1
∑T

t=1

(
û2
x,t − σ2

xt

)
σ2
x,(T )

∣∣∣∣∣ > ζT
Tσ2

x,(T )

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
,

if λ > (s/2 + 1)/(s/2 + 2). Therefore, setting aT = ζT/Tσ
2
x,(T ) = 	

(
T λ−1

)
, we have

Pr

(∣∣∣∣∣x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

2ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.74)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

(∣∣∣∣∣x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
≤ exp

[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.75)

if λ > (s/2+1)/(s/2+2), as required. Now setting ωT = x′Mqx

Tσ2
x,(T )

, and using Lemma 4, we have

Pr


∣∣∣∣∣∣∣∣

1√
x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣∣∣∣ > aT

 ≤ Pr

(∣∣∣∣∣x′Mqx

Tσ2
x,(T )

− 1

∣∣∣∣∣ > aT

)
,

and hence

Pr

∣∣∣∣∣∣
(

σ2
u,(T )

T−1x′Mqx

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.76)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

∣∣∣∣∣∣
(

σ2
u,(T )

T−1x′Mqx

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp
[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.77)

if λ > (s/2 + 1)/(s/2 + 2). Furthermore

Pr

∣∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)1/2

− 1

∣∣∣∣∣∣ > aT

 = Pr


∣∣∣∣(T−1x′Mqx

σ2
x,(T )

)
− 1

∣∣∣∣(
T−1x′Mqx

σ2
x,(T )

)1/2

+ 1

> aT

 ,
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and using Lemma 2 for some finite positive constant C, we have

Pr

∣∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ Pr

[∣∣∣∣∣
(

x′Mqx

Tσ2
x,(T )

)
− 1

∣∣∣∣∣ > aT
C

]
+ Pr

 1(
x′Mqx

Tσ2
x,(T )

)1/2

+ 1

> C


= Pr

[∣∣∣∣∣
(

x′Mqx

Tσ2
x,(T )

)
− 1

∣∣∣∣∣ > aT
C

]
+ Pr

(x′Mqx

Tσ2
x,(T )

)1/2

+ 1 < C−1

 .
Let C = 1, and note that for this choice of C

Pr

(T−1x′Mqx

σ2
x,(T )

)1/2

+ 1 < C−1

 = Pr

(T−1x′Mqx

σ2
x,(T )

)1/2

< 0

 = 0.

Hence

Pr

∣∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ Pr

[∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)
− 1

∣∣∣∣∣ > aT

]
,

and using (A.74),

Pr

∣∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp

[
−σ4

x,(T ) (1− π)2 Ta2
T

2ω2
x,(T )

]
+ exp

[
−C0T

C1
]
, (A.78)

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

∣∣∣∣∣∣
(
T−1x′Mqx

σ2
x,(T )

)1/2

− 1

∣∣∣∣∣∣ > aT

 ≤ exp
[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
, (A.79)

if λ > (s/2 + 1)/(s/2 + 2). Consider now e′e =
∑T

t=1 e
2
t and note that∣∣∣∣∣

T∑
t=1

(
e2
t − σ2

t

)∣∣∣∣∣ ≤
∣∣∣∣∣
T∑
t=1

(
u2
t − σ2

t

)∣∣∣∣∣+
∣∣∣(T−1u′W

) (
T−1W′W

)−1
(W′u)

∣∣∣ ,
where W = (Q,x). As before, applying Lemma 13 to

∑T
t=1 (e2

t − σ2
t ), and following similar

lines of reasoning we have

Pr

[∣∣∣∣∣
T∑
t=1

(
e2
t − σ2

t

)∣∣∣∣∣ > ζT

]
≤ exp

[
− (1− π)2 ζ2

T

2ω2
u,(T )T

]
+ exp

[
−C0T

C1
]
,

if 3d/2 < λ ≤ (s/2 + 1)/(s/2 + 2), and

Pr

[∣∣∣∣∣
T∑
t=1

(
e2
t − σ2

t

)∣∣∣∣∣ > ζT

]
≤ exp

[
−C0ζ

s/(s+2)
T

]
+ exp

[
−C1T

C2
]
,

if λ > (s/2 + 1)/(s/2 + 2), which yield (A.69) and (A.72). Result (A.70) also follows along

similar lines as used above to prove (A.65).
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Lemma 15 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 1-4. Let q·t = (q1,t, q2,t, ..., qlT ,t)

′ contain

a constant and a subset of xt = (x1t, x2t, ..., xnt)
′, and lT = o(T 1/3). Assume that Σqq =

1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both invertible, where Q = (q1·, q2·, ..., qlT ·) and

qi· = (qi1, qi2, .., qiT )′, for i = 1, 2, ..., lT . Suppose that Assumption 5 holds for the pair yt
and (q′·t, xt)

′, where xt is a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t,
and denote the corresponding projection residuals defined by (15) as et = yt − γ ′yqx,T (q′·t, xt)

′.

Define x = (x1, x2, ..., xT )′, e = (e1, e2, ..., eT )′, and Mq = IT −Q(Q′Q)−1Q′. Moreover, let

E (e′e/T ) = σ2
e,(T ) and E (x′Mqx/T ) = σ2

x,(T ). Then

Pr


∣∣∣∣∣∣∣∣

aT√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 ≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
(A.80)

+ exp
[
−C0T

C1
]

for any random variable aT , some finite positive constants C0 and C1, and some bounded

sequence dT > 0, where cp(n) is defined in (7). Similarly,

Pr

[∣∣∣∣∣ aT√
(e′e/T )

∣∣∣∣∣ > cp(n)

]
≤ Pr

(∣∣∣∣ aTσe,(T )

∣∣∣∣ > cp(n)

1 + dT

)
(A.81)

+ exp
[
−C0T

C1
]
.

Proof. We prove (A.80). (A.81) follows similarly. Define

gT =

(
σ2
e,(T )

T−1e′e

)1/2

− 1, hT =

(
σ2
x,(T )

T−1x′Mqx

)1/2

− 1.

Using results in Lemma 2, note that for any dT > 0 bounded in T ,

Pr


∣∣∣∣∣∣∣∣

aT√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n) |θ = 0

 ≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+

Pr (|(1 + gT ) (1 + hT )| > 1 + dT ) .

Since (1 + gT ) (1 + hT ) > 0, then

Pr (|(1 + gT ) (1 + hT )| > 1 + dT ) = Pr [(1 + gT ) (1 + hT ) > 1 + dT ]

= Pr (gThT + gT + hT ) > dT ) .
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Using (A.65), (A.68), (A.70) and (A.73),

Pr [|hT | > dT ] ≤ exp
[
−C0T

C1
]
, Pr [|hT | > c] ≤ exp

[
−C0T

C1
]
,

Pr [|gT | > dT ] ≤ exp
[
−C0T

C1
]
, Pr [|gT | > dT/c] ≤ exp

[
−C0T

C1
]
,

for some finite positive constants C0 and C1. Using the above results, for some finite positive

constants C0 and C1, we have,

Pr


∣∣∣∣∣∣∣∣

aT√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n) |θ = 0

 ≤ Pr

(∣∣∣∣ aT
σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+

exp
[
−C0T

C1
]
,

which establishes the desired the result.

Lemma 16 Let yt, for t = 1, 2, ..., T , be given by the data generating process (1) and suppose

that ut and xnt = (x1t, x2t, ..., xnt)
′ satisfy Assumptions 1-4, with s = min(sx, su) > 0. Let

q·t = (q1,t, q2,t, ..., qlT ,t)
′ contain a constant and a subset of xnt, and let ηt = x′b,tβb + ut,

where xb,t is kb × 1 dimensional vector of signal variables that do not belong to q·t, with the

associated coeffi cients, βb. Assume that Σqq = 1
T

∑T
t=1 E (q·tq

′
·t) and Σ̂qq = Q′Q/T are both

invertible, where Q = (q1·, q2·, ..., qlT ·) and qi· = (qi1, qi2, ..., qiT )′, for i = 1, 2, ..., lT . Moreover,

let lT = o(T 1/3) and suppose that Assumption 5 holds for all the pairs xit and q·t, and yt and

(q′·t, xt)
′, where xt is a generic element of {x1t, x2t, ..., xnt} that does not belong to q·t, and

denote the corresponding projection residuals defined by (15) as ux,t = xt − γ ′qx,Tq·t and et =

yt − γ ′yqx,T (q′·t, xt)
′. Define x = (x1, x2, ..., xT )′, y = (y1, y2, ..., yT )′, e = (e1, e2, ..., eT )′, Mq =

IT − Q(Q′Q)−1Q′, and θ = E (T−1x′MqXb)βb, where Xb is T ×kb matrix of observations
on xb,t. Finally, cp(n) is given by (7) and (8), for any positive finite δ and 0 < p < 1, and

there exists κ > 0 such that n = O (T κ). Then, for any π in the range 0 < π < 1, dT > 0 and

bounded in T , and for some finite positive constants C0 and C1,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n)

2 (1 + dT )2 ω2
xe,T

]
(A.82)

+ exp
[
−C0T

C1
]
,

where

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) , (A.83)

σ2
e,(T ) = E

(
T−1e′e

)
, σ2

x,(T ) = E
(
T−1x′Mqx

)
, (A.84)

68



and

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] . (A.85)

Under σ2
t = σ2 and/or E

(
u2
x,t

)
= σ2

xt = σ2
x, for all t = 1, 2, ..., T ,

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p(n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
. (A.86)

In the case where θ 6= 0, for dT > 0 and bounded in T , and for some C2, C3 > 0, we have

Pr [|tx| > cp(n) |θ 6= 0] > 1− exp
(
−C2T

C3
)
. (A.87)

Proof. The DGP, given by (17), can be written as

y = aτ T + Xβ + u = aτ T + Xaβa + Xbβb + u

where Xa is a subset of Q. Let Qx = (Q,x), Mq = IT − Q(Q′Q)−1Q′, Mqx = IT −
Qx(Q

′
xQx)

−1Q′x. Then, MqXa = 0, and let MqXb = (xbq,1,xbq,2, ...,xbq,T )′. Then,

tx =
T−1/2x′Mqy√

(e′e/T )
(

x′Mqx

T

) =
T−1/2x′MqXbβb√
(e′e/T )

(
x′Mqx

T

) +
T−1/2x′Mqu√

(e′e/T )
(

x′Mqx

T

) . (A.88)

Let θ = E (T−1x′MqXb)βb, η = Xbβb + u, η = (η1, η2, ..., ηT )′ , and write (A.88) as

tx =

√
Tθ√

(e′e/T )
(

x′Mqx

T

) +
T 1/2

(
x′Mqη

T
− θ
)

√
(e′e/T )

(
x′Mqx

T

) . (A.89)

First, consider the case where θ = 0 and note that in this case

tx =
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

.

Now by Lemma 15, we have

Pr [|tx| > cp(n) |θ = 0] = Pr


∣∣∣∣∣∣∣
T 1/2

(
x′Mqx

T

)−1/2
x′Mqη

T√
(e′e/T )

∣∣∣∣∣∣∣ > cp(n) |θ = 0


≤Pr

(∣∣∣∣T−1/2x′Mqη

σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+ exp

(
−C0T

C1
)
.
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where σ2
e,(T ) and σ

2
x,(T ) are defined by (A.84). Hence, noting that, by Remark 2, cp(n) = o(TC0),

for all C0 > 0, under Assumption 4, and by Lemma 12, we have

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 σ2

e,(T )σ
2
x,(T )c

2
p (n)

2 (1 + dT )2 ω2
xe,T

]
+ exp

(
−C0T

C1
)
,

where

ω2
xe,T =

1

T

T∑
t=1

E
[
(ux,tηt)

2] =
1

T

T∑
t=1

E
[
u2
x,t

(
x′b,tβb + ut

)2
]
,

and ux,t, being the error in the regression of xt on Q, is defined by (15). Since by assumption

ut are distributed independently of ux,t and xb,t, then

ω2
xe,T =

1

T

T∑
t=1

E
[
u2
x,t

(
x′bq,tβb

)2
]

+
1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
,

where x′bq,tβb is the t-th element ofMqXbβb. Furthermore, E
[
u2
x,t

(
x′bq,tβb

)2
]

= E
(
u2
x,t

)
E
(
x′bq,tβb

)2
=

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb, noting that under θ = 0, ux,t and xb,t are independently distrib-

uted. Hence

ω2
xe,T =

1

T

T∑
t=1

E
(
u2
x,t

)
β′bE

(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2
xt

)
E
(
u2
t

)
. (A.90)

Similarly

σ2
e,(T ) = E

(
T−1e′e

)
= E

(
T−1η′Mqxη

)
= E

[
T−1 (Xbβb + u)′Mqx (Xbβb + u)

]
= β′bE

(
T−1X′bMqxXb

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
,

and since under θ = 0, x being a pure noise variable will be distributed independently of Xb,

then E (T−1X′bMqxXb) = E (T−1X′bMqXb), and we have

σ2
e,(T ) = β′bE

(
T−1X′bMqXb

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
=

1

T

T∑
t=1

β′bE
(
xbq,tx

′
bq,t

)
βb +

1

T

T∑
t=1

E
(
u2
t

)
. (A.91)

Using (A.90) and (A.91), it is now easily seen that if either E
(
u2
x,t

)
= σ2

ux or E (u2
t ) = σ2, for

all t, then we have ω2
xe,T = σ2

e,(T )σ
2
x,(T ), and hence

Pr [|tx| > cp(n) |θ = 0] ≤ exp

[
− (1− π)2 c2

p (n)

2 (1 + dT )2

]
+ exp

(
−C0T

C1
)
,
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giving a rate that does not depend on error variances. Next, we consider θ 6= 0. By (A.80) of

Lemma 15, for dT > 0 and bounded in T ,

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 ≤ Pr

(∣∣∣∣T−1/2x′Mqy

σe,(T )σx,(T )

∣∣∣∣ > cp(n)

1 + dT

)
+ exp

(
−C0T

C1
)
.

We then have

T−1/2x′Mqy

σe,(T )σx,(T )

=
T 1/2

(
x′MqXbβb

T
− θ
)

σe,(T )σx,(T )

+
T−1/2x′Mqu

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

=
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

.

Then

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ > cp(n)

1 + dT


= 1− Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp(n)

1 + dT

 .
Note that since cp(n) is given by (7) and (8), then by Remark 2, T 1/2|θ|

σe,(T )σx,(T )
− cp(n)

1+dT
> 0. Then

by Lemma 3,

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

+
T 1/2θ

σe,(T )σx,(T )

∣∣∣∣∣∣ ≤ cp(n)

1 + dT


≤ Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT

 .
But, setting ζT = T 1/2

[
T 1/2|θ|

σe,(T )σx,(T )
− cp(n)

1+dT

]
and noting this choice of ζT satisfies ζT = 	

(
T λ
)

with λ = 1, (A.39) of Lemma 12 applies regardless of s > 0, which gives us

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT


≤ C4 exp

{
−C5

[
T 1/2

(
T 1/2 |θ|

σe,(T )σx,(T )

− θcp(n)

1 + dT

)]s/(s+2)
}

+ exp
(
−C6T

C7
)
,
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for some C4, C5, C6 and C7 > 0. Hence, there must exist positive finite constants C2 and C3,

such that

Pr

∣∣∣∣∣∣
T 1/2

(
x′Mqη

T
− θ
)

σe,(T )σx,(T )

∣∣∣∣∣∣ > T 1/2 |θ|
σe,(T )σx,(T )

− cp(n)

1 + dT

 ≤ exp
(
−C2T

C3
)

for any s > 0. So overall

Pr


∣∣∣∣∣∣∣∣

T−1/2x′Mqy√
(e′e/T )

(
x′Mqx

T

)
∣∣∣∣∣∣∣∣ > cp(n)

 > 1− exp
(
−C2T

C3
)
.

Lemma 17 Consider the data generating process (1) with k signal variables {x1t, x2t, ..., xkt},
and assume that there are k∗ pseudo-signal variables {xk+1,txk+2,t, ..., xk+k∗,t} and n− k − k∗

noise variables {xk+k∗+1,t, xk+k∗+2,t, ..., xn,t}. Moreover, suppose that conditions of Lemma 16
hold. Then for 0 < κ < 1 and the constants C0, C1, C2, C3 > 0, we have

Pr
(
k̂ − k − k∗ > j

)
≤ k + k∗

j
O
[
exp

(
−C2T

C3
)]

+
n− k − k∗

j

{
exp

[
−
κc2

p(n)

2

]
+O

[
exp(−C0T

C1)
]}
,

(A.92)

for j = 1, ..., n− k − k∗, where k̂ is the number of variables selected by the OCMT procedure,
defined by

k̂ =
n∑
i=1

̂I (βi 6= 0),

and ̂I (βi 6= 0) is defined by (6).

Proof. We first note that by Markov’s inequality

Pr
(
k̂ − k − k∗ > j

)
≤
E
(
k̂ − k − k∗

)
j

. (A.93)

But

E
(
k̂
)

=
n∑
i=1

E
[
̂I (βi 6= 0)

]
=

k+k∗∑
i=1

E
[
̂I (βi 6= 0) |βi 6= 0

]
+

n∑
i=k+k∗+1

E
[
̂I (βi 6= 0) |βi = 0

]
=

k+k∗∑
i=1

Pr
(∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0

)
+

n∑
i=k+k∗+1

Pr
(∣∣∣tφ̂i∣∣∣ > cp(n)|θi = 0

)
.
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Now using (A.86) of Lemma 16, we have (for some 0 < κ < 1 and C0, C1 > 0)

sup
i>k+k∗

Pr
(∣∣∣tφ̂i∣∣∣ > cp(n)|θi = 0

)
≤ exp

[
−
κc2

p(n)

2

]
+ exp(−C0T

C1).

Also, we have, using (A.87) of Lemma 16,

1− Pr
(∣∣∣tφ̂i∣∣∣ > cp(n)|θi 6= 0

)
< exp(−C2T

C3),

and i = 1, 2, ..., k + k∗. Hence,

E
(
k̂
)
−k−k∗ = (k + k∗)O

[
exp

(
−C2T

C3
)]

+(n− k − k∗)
{

exp

[
−
κc2

p(n)

2

]
+ exp(−C0T

C1)

}
.

Using this result in (A.93) now establishes (A.92).

Lemma 18 Let Sa and Sb, respectively, be T × la,T and T × lb,T matrices of observations

on sa,it, and sb,it, for i = 1, 2, ..., lT , t = 1, 2, ..., T , and suppose that {sa,it, sb,it} are either
non-stochastic and bounded, or random with finite 8th order moments. Consider the sample

covariance matrix Σ̂ab = T−1S′aSb and denote its expectations by Σab = T−1E (S′aSb). Let

zij,t = sa,itsb,jt − E (sa,itsb,jt) ,

and suppose that

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
= O (T ) . (A.94)

Then,

E
∥∥∥Σ̂ab −Σab

∥∥∥2

F
= O

(
la,T lb,T
T

)
. (A.95)

If, in addition,

sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E(zij,tzij,t′zi′j′,szi′j′,s′)

]
= O

(
T 2
)
, (A.96)

then

E
∥∥∥Σ̂ab −Σab

∥∥∥4

F
= O

(
l2a,T l

2
b,T

T 2

)
. (A.97)

Proof. We first note that E(zij,tzij,t′) and E (zij,tzij,t′zi′j′,szi′j′,s′) exist since by assumption

{sa,it, sb,it} have finite 8th order moments. The (i, j) element of Σ̂ab −Σab is given by

aij,T = T−1

T∑
t=1

zij,t, (A.98)
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and hence

E
∥∥∥Σ̂ab −Σab

∥∥∥2

F
=

la,T∑
i=1

lb,T∑
j=1

E
(
a2
ij,T

)
= T−2

la,T∑
i=1

lb,T∑
j=1

T∑
t=1

T∑
t′=1

E (zij,tzij,t′)

≤ la,T lb,T
T 2

sup
i,j

[
T∑
t=1

T∑
t′=1

E(zij,tzij,t′)

]
,

and (A.95) follows from (A.94). Similarly,

∥∥∥Σ̂ab −Σab

∥∥∥4

F
=

 la,T∑
i=1

lb,T∑
j=1

a2
ij,T

2

=

la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

a2
ij,Ta

2
i′j′,T .

But using (A.98) we have

a2
ij,Ta

2
i′j′,T = T−4

(
T∑
t=1

T∑
t′=1

zij,tzij,t′

)(
T∑
s=1

T∑
s′=1

zi′j′,szi′j′,s′

)

= T−4

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

zij,tzij,t′zi′j′,szi′j′,s′ ,

and

E
∥∥∥Σ̂ab −Σab

∥∥∥4

F
= T−4

la,T∑
i=1

lb,T∑
j=1

la,T∑
i′=1

lb,T∑
j′=1

T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

≤
l2a,T l

2
b,T

T 4
sup
i,j,i′,j′

[
T∑
t=1

T∑
t′=1

T∑
s=1

T∑
s′=1

E (zij,tzij,t′zi′j′,szi′j′,s′)

]
.

Result (A.97) now follows from (A.96).

Remark 21 It is clear that conditions (A.94) and (A.96) are met under Assumption 4 that
requires zit to be a martingale difference process. But it is easily seen that condition (A.94)

also follows if we assume that sa,it and sb,jt are stationary processes with finite 8-th moments,

since the product of stationary processes is also a stationary process under a certain additional

cross-moment conditions (Wecker (1978)). The results of the lemma also follow readily if we

assume that sa,it and sb,jt′ are independently distributed for all i 6= j and all t and t′.

Lemma 19 Suppose that the data generating process (DGP) is given by

y
T×1

= X
T×k+1

· β
k+1×1

+ u
T×1
, (A.99)
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where X = (τ T ,Xk) includes a column of ones, τ T , and consider the regression model

y
T×1

= S
T×lT
· δ
lT×1

+ ε
T×1
. (A.100)

where u = (u1, u2, ..., uT )′ is independently distributed of X and S, E (u) = 0, E (uu′) = σ2I,

0 < σ2 < ∞, I is a T × T identity matrix, and elements of β are bounded. In addition, it is
assumed that the following conditions hold:

i. Let Σss = E (S′S/T ) with eigenvalues denoted by µ1 ≤ µ2 ≤ ... ≤ µlT . Let µi = O (lT ),

i = lT − M + 1, ..., lT , for some finite M , and sup1≤i≤lT−M µi < C0 < ∞, for some
C0 > 0. In addition, inf1≤i<lT µi > C1 > 0, for some C1 > 0.

ii. E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1), where Σ̂ss = S′S/T .

iii. Regressors in S = (sit) have finite 8-th moments and zij,t = sitsjt − E (sitsjt) satisfies

conditions (A.94) and (A.96) of Lemma 18. Moreover, z∗ij,t = sitxjt−E (sitxjt) satisfies

condition (A.94) of Lemma 18, and ‖Σsx‖F = ‖E (S′X/T )‖F = O (1).

Then, if S = (X,W) for some T × kw matrix W,

E
∥∥∥δ̂ − β0

∥∥∥ = O

(
l4T
T

)
, (A.101)

where δ̂ is the least square estimator of δ in the regression model (A.100) and β0 =
(
β′,0′kw

)′
.

Further, if some column vectors of X are not contained in S, then

E
∥∥∥δ̂ − β0

∥∥∥ = O (lT ) +O

(
l4T
T

)
. (A.102)

Proof. The least squares estimator of δ is

δ̂ = (S′S)
−1

S′y = (S′S)
−1

S′ (Xβ + u) .

In addition to Σ̂ss = S′S/T , Σss = E (S′S/T ) and Σsx = E (S′X/T ), define

Σ̂sx =
S′X

T
, δ∗ = Σ−1

ss Σsxβ,

and

δ = E
(
δ̂
)

= E
[
(S′S)

−1
S′Xβ

]
.

Note that

(S′S)
−1

S′X = ∆̂ss∆̂sx + ∆̂ssΣsx + Σ−1
ss ∆̂sx + Σ−1

ss Σsx,
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where

∆̂ss = Σ̂−1
ss −Σ−1

ss , ∆̂sx = Σ̂sx −Σsx.

Hence

δ̂−δ∗ = ∆̂ss∆̂sxβ + ∆̂ssΣsxβ + Σ−1
ss ∆̂sxβ + Σ̂

−1

ss

(
S′u

T

)
.

Using (2.15) of Berk (1974),

∥∥∥∆̂ss

∥∥∥
F
≤

‖Σ−1
ss ‖

2
F

∥∥∥Σ̂ss −Σss

∥∥∥
F

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

,

and using Cauchy-Schwarz inequality,

E
∥∥∥∆̂ss

∥∥∥
F
≤
∥∥Σ−1

ss

∥∥2

F

[
E

(∥∥∥Σ̂ss −Σss

∥∥∥2

F

)]1/2

·

E
 1(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)2




1/2

. (A.103)

We focus on the individual terms on the right side of (A.103) to establish an upper bound for

E
∥∥∥∆̂ss

∥∥∥
F
. The assumptions on eigenvalues of Σss in this lemma are the same as in Lemma 5

with the only exception that O (.) terms are used intstead of 	 (.). Using the same arguments

as in the proof of Lemma 5, it readily follows that

‖Σss‖F = O (lT ) ,

and ∥∥Σ−1
ss

∥∥
F

= O
(√

lT

)
. (A.104)

Moreover, note that (i, j)-th element of
(
Σ̂ss −Σss

)
, zijt = sitsjt − E (sitsjt), satisfies the

conditions of Lemma 18, which establishes

E

(∥∥∥Σ̂ss −Σss

∥∥∥2

F

)
= O

(
l2T
T

)
. (A.105)

Noting that E (a2) ≤
√
E (a4), Assumption (ii) of this lemma implies that the last term on

the right side of (A.103) is bounded, namely

E

 1(
1− ‖Σ−1

ss ‖F
∥∥∥Σ̂ss −Σss

∥∥∥
F

)2

 = O (1) , (A.106)
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Using (A.104), (A.105), and (A.106) in (A.103),

E
∥∥∥∆̂ss

∥∥∥
F

= O (lT )

√
O

(
l2T
T

)
O (1) = O

(
l2T√
T

)
. (A.107)

It is also possible to derive an upper bound for E
(∥∥∥∆̂ss

∥∥∥2

F

)
, using similar arguments. In

particular, we have ∥∥∥∆̂ss

∥∥∥2

F
≤

‖Σ−1
ss ‖

4
F

∥∥∥Σ̂ss −Σss

∥∥∥2

F(
1− ‖Σ−1

ss ‖F
∥∥∥Σ̂ss −Σss

∥∥∥
F

)2 ,

and using Cauchy-Schwarz inequality yields

E
∥∥∥∆̂ss

∥∥∥2

F
≤
∥∥Σ−1

ss

∥∥4

F

[
E

(∥∥∥Σ̂ss −Σss

∥∥∥4

F

)]1/2

·

E
 1(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)4




1/2

,

where ‖Σ−1
ss ‖

4
F = O (l2T ) by (A.104), E

(∥∥∥Σ̂ss −Σss

∥∥∥4

F

)
= O (l4T/T

2) by (A.97) of Lemma 18,

and E
[(

1− ‖Σ−1
ss ‖F

∥∥∥Σ̂ss −Σss

∥∥∥
F

)−4
]

= O (1) by Assumption ii of this lemma. Hence,

E
∥∥∥∆̂ss

∥∥∥2

F
= O

(
l2T
)√

O

(
l4T
T 2

)
O (1) = O

(
l4T
T

)
. (A.108)

Using Lemma 18 by setting Sa = S (la,T = lT ) and Sb = X (lb,T = k < ∞), we have, by
(A.95),

E

(∥∥∥Σ̂sx −Σsx

∥∥∥2

F

)
= O

(
lT
T

)
. (A.109)

We use the above results to derive an upper bound for

E
∥∥∥δ̂ − δ∗∥∥∥ ≤ E

[∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F

]
‖β‖

+ E
∥∥∥∆̂ss

∥∥∥
F
‖Σsx‖F ‖β‖

+
∥∥Σ−1

ss

∥∥
F
E
∥∥∥∆̂sx

∥∥∥
F
‖β‖

+ E

∥∥∥∥Σ̂−1
ss

(
S′u

T

)∥∥∥∥
F

. (A.110)

First, note that ‖β‖ = O (1), and (using Cauchy-Schwarz inequality)

E
[∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F

]
‖β‖ ≤

(
E
∥∥∥∆̂ss

∥∥∥2

F

)1/2(
E
∥∥∥∆̂sx

∥∥∥2

F

)1/2

‖β‖ .
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But E
∥∥∥∆̂ss

∥∥∥2

F
= O (l4T/T ) by (A.108), and E

∥∥∥∆̂sx

∥∥∥2

F
= O (lT/T ) by (A.109), and therefore

E
[∥∥∥∆̂ss

∥∥∥
F

∥∥∥∆̂sx

∥∥∥
F

]
‖β‖ =

[
O

(
l4T
T

)]1/2 [
O

(
lT
T

)]1/2

= O

(
l
5/2
T

T

)
. (A.111)

Next, note that E
∥∥∥∆̂ss

∥∥∥
F

= O
(
l2T/
√
T
)
by (A.108), ‖Σsx‖F = O (1) by Assumption iii of

this lemma (and ‖β‖ = O (1)), and we obtain

E
∥∥∥∆̂ss

∥∥∥
F
‖Σsx‖F ‖β‖ = O

(
l2T√
T

)
. (A.112)

Moreover, using (A.104), and noting that E
∥∥∥∆̂sx

∥∥∥
F

= O
(√

lT/T
)
by (A.109),10

∥∥Σ−1
ss

∥∥
F
E
∥∥∥∆̂sx

∥∥∥
F

= O
(√

lT

)
O

(√
lT√
T

)
= O

(
lT√
T

)
,

and hence ∥∥Σ−1
ss

∥∥
F
E
∥∥∥∆̂sx

∥∥∥
F
‖β‖ = O

(
lT√
T

)
. (A.113)

Finally, consider

E
∥∥∥(S′S)

−1
S′u
∥∥∥2

F
= E

{
Tr
[
(S′S)

−1
S′uu′S (S′S)

−1
]}

=
σ2

T
E

{
Tr

[(
S′S

T

)−1
]}

,

where E (uu′/T ) = σ2I, and we have also used the independence of S and u. Hence

E
∥∥∥(S′S)

−1
S′u
∥∥∥2

F
=
σ2

T
E
[
Tr
(
Σ̂−1
ss

)]
=
σ2

T
Tr
(
Σ−1
ss

)
+
σ2

T
E
[
Tr
(
Σ̂−1
ss −Σ−1

ss

)]
.

But Tr (Σ−1
ss ) = O (lT ), and using (A.107), we have

E
∣∣∣Tr (Σ̂−1

ss −Σ−1
ss

)∣∣∣ ≤ lTE
∥∥∥Σ̂−1

ss −Σ−1
ss

∥∥∥
F

= lTE
∥∥∥∆̂ss

∥∥∥
F

= O

(
l3T√
T

)
.

10E
∥∥∥∆̂sx

∥∥∥
F
≤
[
E

(∥∥∥∆̂sx

∥∥∥2
F

)]1/2
=
√
O (KT /T ) = O

(√
KT /T

)
.
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It follows,

E
∥∥∥(S′S)

−1
S′u
∥∥∥2

F
= O

(
lT
T

)
+O

(
l2T√
T

)
1

T

= O

(
lT
T

)
+O

(
l3T
T 3/2

)
. (A.114)

Overall, using (A.111), (A.112), (A.113), and (A.114) in (A.110),

E
∥∥∥δ̂ − δ∗∥∥∥ = O

(
l
5/2
T

T

)
+O

(
l2T√
T

)
+O

(
lT√
T

)
+O

(
lT
T

)
+O

(
l3T
T 3/2

)
.

Therefore

E ‖δ − δ∗‖ → 0 when l4T/T → 0,

regardless whether X is included in S or not. Consider now

E
∥∥∥δ̂ − β0

∥∥∥ = E ‖δ − δ∗ + δ∗ − β0‖
≤ E ‖δ − δ∗‖+ E ‖δ∗ − β0‖ .

But when S = (X,W), then

Σss =

(
Σxx Σxw

Σwx Σww

)
, Σsx =

(
Σxx

Σwx

)
and therefore Σ−1

ss Σss = IlT . This implies Σ−1
ss Σsx = (Ik,0k×kw) and δ∗ = Σ−1

ss Σsxβ = β0

when S = (X,W). Result (A.101) now readily follows. When at least one of the columns of

X does not belong to S, then δ∗ 6=β0. But

‖δ∗ − β0‖ ≤ ‖δ∗‖+ ‖β0‖ ,

where ‖β0‖ = O (1), since β0 contains finite (k) number of bounded nonzero elements, and

‖δ∗‖ =
∥∥Σ−1

ss Σsx

∥∥
F

≤
∥∥Σ−1

ss

∥∥
F
‖Σsx‖F .

‖Σ−1
ss ‖F = O

(√
lT
)
by (A.104), and ‖Σsx‖F = O (1) by Assumption iii of this lemma. Hence,

when at least one of the columns of X does not belong to S,

‖δ∗ − β0‖ = O (lT ) ,

which completes the proof of (A.102).
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Lemma 20 Let yt, for t = 1, 2, ..., T , be given by DGP (1) and define xi = (xi1, xi2, ..., xiT )′,

for i = 1, 2, ..., k, and Xk = (x1,x2, ...,xk). Moreover, let qi = (qi1, qi2, ...., qiT )′ , for i =

1, 2, ..., lT , Q = (q1,q2, ...,qlT )′, and assume Mq = IT − Q (Q′Q)−1 Q′ exists. It is also

assumed that the column vector τ T = (1, 1, ..., 1)′ belongs to Q, 0 ≤ a < k column vectors in

Xk belong to Q, and the remaining b = k − 1 > 0 columns of Xk that do not belong in Q are

collected in T × b matrix Xb. The slope coeffi cients that correspond to regressors in Xb are

collected in b× 1 vector βb. Define

θb,T= Ωb,Tβb,

where Ωb,T = E (T−1X′bMqXb). If Ωb,T is nonsingular, and βk = (β1, β2, ..., βk)
′ 6= 0, then at

least one element of the b× 1 vector θb,T is nonzero.

Proof. Since Ωb,T is nonsingular and βb 6= 0, it follows that θb,T 6= 0, as desired.
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