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This online supplement describes implementation of the Pooled Mean Group (PMG) estimator and

its bias-corrected versions.

S-1 PMG estimator and its bias-corrected versions

Consider the same illustrative panel ARDL model as in the paper, namely the model given by

equations (1)-(2). PMG estimator of the long-run coeffi cient β, as originally proposed by Pesaran,

Shin and Smith (1999), is computed by solving the following equations iteratively:

β̂PMG = −
(

n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,ixi

)−1 n∑
i=1

φ̂
2

i

σ̂2i
x′iHx,i

(
∆yi − φ̂iyi,−1

)
, (S.1)

φ̂i =
(
ξ̂
′
iHx,iξ̂i

)−1
ξ̂
′
iHx,i∆yi, i = 1, 2, ..., n, (S.2)

and

σ̂2i = T−1
(

∆yi − φ̂iξ̂i
)′

Hx,i

(
∆yi − φ̂iξ̂i

)
, i = 1, 2, ..., n, (S.3)

where ξ̂i = yi,−1 − xiβ̂PMG, xi = (xi,1, xi,2, ..., xi,T )′, ∆yi = yi − yi,−1, yi = (yi,1, yi,2, ..., yi,T )′,

yi,−1 = (yi,0, yi,1, ..., yi,T−1)
′,Hx,i = IT−∆xi (∆x′i∆xi)

−1 ∆x′i,∆xi = xi−xi,−1, and xi,−1= (xi,0, xi,1, ..., xi,T−1)
′.

To solve (S.1)-(S.3) iteratively, we set β̂PMG,(0) to the pooled Engle-Granger estimator, and

given the initial estimate β̂PMG,(0), we compute ξ̂i,(0) = yi,−1 − xiβ̂PMG,(0), φ̂i,(0) and σ̂
2
i,(0), for

i = 1, 2, ..., n using (S.2)-(S.3). Next we compute β̂PMG,(1) using (S.1) and given values φ̂i,(0) and
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σ̂2i,(0). Then we iterate - for a given value of β̂PMG,(`) we compute ξ̂i,(`), φ̂i,(`) and σ̂
2
i,(`); and for

given values of φ̂i,(`) and σ̂
2
i,(`) we compute β̂PMG,(`+1). If convergence is not achieved, we increase

` by one and repeat. We define convergence by
∣∣∣β̂PMG,(`+1) − β̂PMG,(`)

∣∣∣ < 10−4.10

Inference is conducted using equation (17) of Pesaran, Shin and Smith (1999). In particular,

T
√
n
(
β̂PMG − β0

)
∼ N (0,ΩPMG) ,

where

ΩPMG =

(
1

n

n∑
i=1

φi,0
σ2i,0

rxi,xi

)−1
, and rxi,xi = plimT→∞T

−2x′iHx,ixi.

Standard error of β̂PMG, denoted as se
(
β̂PMG

)
, is estimated as

ŝe
(
β̂PMG

)
= T−1n−1/2Ω̂PMG,

where

Ω̂PMG =

(
1

n

n∑
i=1

φ̂i,0

σ̂2i,0
r̂xi,xi

)−1
and r̂xi,xi = T−2x′iHx,ixi. (S.4)

S-1.1 Simulation-based bias-corrected PMG

Similarly to the simulation-based bias-corrected PB estimator, we consider the following bias-

corrected PMG estimator

β̃PMG = β̂PMG − b̂PMG, (S.5)

where b̂PMG an estimate of the bias of PMG estimator obtained by the following stochastic simu-

lation algorithm, which resembles the algorithm in Subsection 2.2.1.

1. Compute β̂PMG. Given PMG estimate β̂PMG, estimate the remaining unknown coeffi cients

of (1)-(2) by least squares, and compute residuals ûy,it, ûx,it.

2. For each r = 1, 2, ..., R, generate new draws for û(r)y,it = a
(r)
y,itûy,it, and û

(r)
x,it = a

(r)
x,itûx,it, where

a
(r)
y,it,a

(r)
x,it are randomly drawn from Rademacher distribution (Davidson and Flachaire, 2008)

namely

a
(r)
h,it =

{
−1, with probability 1/2

1, with probability 1/2
,

for h = y, x. Given the estimated parameters of (1)-(2) from Step 1, and initial values yi1, xi1
generate simulated data y(r)it , x

(r)
it for t = 2, 3, ..., T and i = 1, 2, ..., n. Using the generated

data compute β̂
(r)

PMG.

10 If convergence does not occur within the first 500 iterations, we stop and report potential divergence. This event
did not happen in any of the simulations in this paper. Convergence of the PMG procedure above is typically fast.
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3. Compute b̂PMG =
[
R−1

∑R
r=1 β̂

(r)

PMG − β̂PMG

]
.

The above procedure can be iterated by using the bias-corrected estimate β̃PMG in Step 1,

although this is not considered in this paper.

We conduct inference by using the 1−α confidence interval C1−α
(
β̃PMG

)
= β̃PMG±k̂ŝe

(
β̂PMG

)
=

β̃PMG±T−1n−1/2k̂Ω̂PMG, where k̂ is computed by stochastic simulation. In particular, k̂ is the 1−α
percent quantile of

{∣∣∣t(r)PMG

∣∣∣}R
r=1
, where t(r)PMG = β̃

(r)
PMG/ŝe

(
β̂
(r)

PMG

)
= T−1n−1/2β̃

(r)
PMG/Ω̂

(r)
PMG,

β̃
(r)
PMG = β̂

(r)

PMG− b̂PMG is the bias-corrected PMG estimate of β in the r-th draw of the simulated

data in the algorithm above, and Ω̂
(r)
PMG is computed as in (S.4), but using the simulated data.

S-1.2 Jackknife and combined bias-corrected PMG estimators

We consider similar jackknife bias correction for PMG estimator as for the PB estimator in Section

2.2. In particular,

β̃jk−PMG = β̃jk−PMG (κ) = β̂PMG − κ
(
β̂PMG,a + β̂PMG,b

2
− β̂PMG

)
,

where β̂PMG is the full sample PMG estimator, β̂PMG,aand β̂PMG,b are the first and the second

half sub-sample PMG estimators, and κ is suitably chosen weighting parameter. Under our setup

with I(1) variables, we need to correct β̂PMG for its O
(
T−2

)
bias, which gives κ = 1/3.

We also consider a combined, simulation-based adaptive jackknife bias correction where κ = κ̂NT

is data-dependent and computed by stochastic simulation. Specifically, we consider

κ̂PMG =
b̂PMG

b̂PMG,a,b − b̂PMG

, (S.6)

where b̂PMG = R−1
∑R

r=1 β̂
(r)

PMG−β̂, and b̂PMG,a,b =
(
b̂PMG,a + b̂PMG,b

)
/2, b̂PMG,a = R−1

∑R
r=1 β̂

(r)

PMG,a−

β̂PMG,a, b̂PMG,b = R−1
∑R

r=1 β̂
(r)

PMG,b − β̂PMG,b.

We conduct inference by using the 1 − α confidence interval C1−α
(
β̃jk−PMG

)
= β̃jk−PMG ±

k̂jkŝe
(
β̂PMG

)
= β̃jk−PMG ± k̂jkT−1n−1/2Ω̂PMG, where k̂jk = k̂jk (κ) is computed by stochastic

simulation. In particular, k̂jk is the 1− α percent quantile of
{∣∣∣t(r)jk−PMG

∣∣∣}R
r=1
, where t(r)jk−PMG =

β̃
(r)
jk−PMG/ŝe

(
β̂
(r)

PMG

)
= T−1n−1/2β̃

(r)
jk−PMG/Ω̂

(r)
PMG, β̃

(r)
jk−PMG is the jackknife bias-corrected PMG

estimate of β using the r-th draw of the simulated data generated using the same algorithm as in

Subsection S-1.1, and Ω̂
(r)
PMG is computed as in (S.4), but using the simulated data.
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