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1. Introduction

Stocks’ implied volatility surfaces exhibit a large degree of cross-sectional and time-series

variability, reflecting heterogeneous market’s expectations of forward looking (risk-neutral)

distributions. At any point in time the implied volatility surface of a stock for a given

maturity can assume many shapes. At three months maturity, 73% of stocks exhibit an

implied volatility smirk (i.e., implied volatility is monotonically decreasing with strikes),

while about 18% present a smile (i.e., implied volatility decreases and then increases with

strikes). In the remaining cases, the surface is either concave (i.e., an inverted smile that we

call frown), or increasing with strikes. Over more than 20 years of data, the percentage of

stocks that exhibit a smirk varies considerably from 41.3% to 87.7%. Substantial variation

also occurs through contracts’ maturities: Implied volatilities are on average decreasing with

options maturities; the percentage of stocks that exhibit a smirk increases to over 80% when

the implied surface is extracted from contracts that are approximately one year to maturity.

Once aggregate and industry variation is taken into account, a substantial amount of the

cross-sectional and time-series heterogeneity can be explained by firm level characteristics:

in particular, proxies for future investment opportunities such as the market to book ratio,

are statistically highly associated with the shape/slope of the implied volatility curve. High

market to book ratios are associated with more negatively sloped implied volatility curves

(i.e., more negative risk-neutral skewed distributions, as in Morellec and Zhdanov, 2019).

While the result is empirically very robust, it contrasts the general intuition that growth

option positively increase the skewness of the return distribution (see for example, Grul-

lon, Lyandres, and Zhdanov, 2012; Trigeorgis and Lambertides, 2014; Del Viva, Kasanen,

and Trigeorgis, 2017; Bali, Del Viva, Lambertides, and Trigeorgis, 2020; Panayiotis, Bali,

Kagkadis, and Lambertides, 2021).

While it is possible to explain that much variation in equity option prices in the context of

(reduced form) option pricing models that allow the underlying price to follow a non-gaussian

distribution, as for example by introducing jumps and stochastic volatility, such an effort

would require a substantial variation in parameters across firms and time (see for example,

Geske, Subrahmanyam, and Zhou, 2016; Bakshi, Cao, and Zhong, 2021), leaving unexplained

what originates such parameter variability. A viable alternative is to endogenously produce

variation in forward looking equity distributions in a model that structurally links asset

prices to firm’s policies. This approach is however also challenging. For example, the models

of Geske (1979) (i.e., the compound option model), and of Toft and Prucyk (1997), who

price an equity option on a firm that faces taxes and bankruptcy costs as in Leland (1994),
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can produce implied volatility surfaces that respond to changes in capital structure, but that

are also only downward sloping, and thus do not explain curves that resembles smiles or are

straight out upward sloping, or distribution that do not have a negative skewness. Notably,

from an empirical point of view, the link between option prices and measures of leverage has

also been debated: Toft and Prucyk (1997) and Geske, Subrahmanyam, and Zhou (2016)

show that accounting for the leverage effect reduces pricing errors relative to the traditional

model of Black and Scholes (1973); however, Figlewski and Wang (2000) show that the link

between leverage and option prices might not be very robust. In contrast, the statistical link

between the shape of the implied volatility curve and the market to book ratio is incredibly

strong, in the cross-section and in the time-series.

We show that a model that incorporates the effect of both investment and financing

decision on how securities are priced can produce option prices and implied distributions

that are, in many respects, in line with what we observe in the data. We follow the lead

of Hennessy and Whited (2005, 2007) and Zhang (2005), and adopt a model set up that is

very popular in dynamic corporate and investment based asset pricing studies. Our work

is thus related to recent contributions such as Morellec and Zhdanov (2019), for example,

who analyze the impact of product market competition on option prices. As many papers

that model production economies have pointed out (e.g., Kuehn and Schmid, 2014, for an

application to corporate bond prices), investment policies play an important role in shaping

the distribution of asset prices. Because of that, it is natural to ask whether such models

are consistent enough to also produce sensible option prices. We show here how they do so.

Optimal investment and financing policies respond to exogenous productivity shocks to

determine the forward looking distribution of stock prices. The firm can both expand or

reduce its capital stock at any point in time, subject to asymmetric capital adjustment costs

that make the investment process lumpy (see for example, Kogan, 2004b,a; Zhang, 2005;

Cooper, 2006, for early important contributions). Thus, the firm holds an infinite stream

of real “straddles”, which we generally refer to as the real option (as for example in the

real option models of Gu, Hackbarth, and Johnson, 2017; Aretz and Pope, 2018). At any

point in time, the value of the real option is higher when the firm is either very likely to

invest in the future, because of positive productivity prospects, or when it is very likely to

shed some capital, because of negative future economic conditions. To keep the parallel with

traditional option pricing jargon, the (present) value of the real option is large when either

the call or the put real options are in the money. However, those are also the cases where

the real option contains less optionality, and the real option behaves as asset in place (i.e.,

in the traditional option pricing jargon either the call delta is close to one or the put delta is
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close to minus one). The real option has instead more “optionality” when the firm is equally

likely to invest or disinvest (i.e., both options are at the money) in the future. But relatively

speaking that’s when the real “straddle” is worth the least.

In early work, van Zwet (1964) shows that the convexity of a function of a random vari-

able is related to the skewness of the distribution of the function of the random variable,

and that more convexity implies larger skewness. van Zwet (1964) and more recently Xu

(2007) are often cited in the growth option literature as a motivation for the idea that firms

with more growth options (a convex function of the underlying) have more positively skewed

distributions (see for example, Del Viva, Kasanen, and Trigeorgis, 2017; Bali, Del Viva, Lam-

bertides, and Trigeorgis, 2020; Panayiotis, Bali, Kagkadis, and Lambertides, 2021). However,

because firms hold both an option to invest and one to disinvest, the impact of real option on

the skewness of the equity distribution, and hence on the pricing of financial options on the

equity, is greater in the situations in which the real option has higher curvature/convexity.

This happens when future investment policy is more uncertain, when the firm is equally

likely to invest or disinvest, a situation which leads the real option to be relatively less valu-

able. Hence, the relation between the value of real option and the skewness of the equity

return distribution is negative, as opposed to positive as previously postulated.

Our model, therefore, combines the leverage effect, which induces negative skewness, to

the real option effect. Since the strength of these effects is state dependent, as it depends

on the equilibrium choices of production capital and level of indebtedness, the resulting

equilibrium option prices are also state-contingent and can generate any form of implied

volatility curves (upward sloping, downward sloping, u-shaped, or even inverted u-shape)

and of implied distributions (fat, long and short tails). Notably, there are many features

that are missing from the model and that might be important: our economy is characterized

by a homogeneous technology (i.e., all firms have the same production function), and thus

does not account for the fact that differences in forward looking distributions might arise

from adoption of new technologies as in Garleanu, Panaceas, and Yu (2012). Also, all firms

in the economy have access to a short-term zero-coupon bond, but recent literature, as for

example Chaderina, Weiss, and Zechner (2021) and Friewald, Nagler, and Wagner (2021),

suggests that heterogeneity in the maturity of debt contracts might have sizable asset pricing

implications.

We calibrate the model to match firm characteristics, implied volatilities, and moments

of the return distribution of the average option-able stock. Our simulated firms make invest-

ment and capital structure choices in line with those observed in the data. The risk-neutral

distribution instead displays negative skewness and a larger excess-kurtosis. This translates
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into implied volatility surfaces that are remarkably close to the data, in the shape and the

frequency with which they are observed. The average implied volatility surface is downward

sloping along the moneyness and along maturity levels. However the frequency of times that

the curve assumes another shape is in line with what we see in the data, and in more than

20% of the cases it is either u-shaped (i.e., the traditional smile) or upward sloping.

The ability of the model to endogenously produce different return distributions is not a

simple by product of the utility preferences that are underlying the stochastic discount factor

that prices securities. As many other investment based asset pricing studies, we exogenously

specify counter-cyclical risk premia. We employ the stochastic discount factor of Jones and

Tuzel (2013), which naturally create an aversion to (left) skewness. Although it greatly aides

the calibration of the model, the particular choice of the discount factor is not essential: we

can also obtain our basic qualitative results with a constant (across states and time) discount

rate.

We use the simulated economy to validate relationships between properties of option

prices (i.e., risk-neutral skewness and implied volatilities curves) and firm characteristics

that we observe in the data, focusing explicitly on the role of financial leverage and growth

options. Similarly to the data, we show that a substantial amount of cross-sectional and

time-series variation in the characteristics of option prices can be explained by the choices

the firm makes along the path of productivity shocks that it encounters. In particular, we

show that, after controlling for size, level of volatility, and leverage, the risk-neutral skewness

and the steepness of the slope of the implied volatility curve (in the simulated economy) are

more negative for firms with higher values of the real option and for higher market-to-book

ratios, which is often used as a proxy for the former.

2. Related literature

This paper is primarily related to the strand of literature that aims at explaining equity

option prices in the cross-section of stocks. Starting from the seminal work of Merton (1974),

there have been a few attempts at incorporating option pricing into a structural model of

the firm. Geske (1979) offers a first attempt by producing a double compound option that

allows one to price a call option on the equity of a levered firm. Toft and Prucyk (1997)

extends this approach to the Leland (1994) economy, thus allowing for taxes and bankruptcy

costs to determine the optimal leverage policy of the firm. Geske, Subrahmanyam, and Zhou

(2016) show that accounting for the leverage effect greatly reduces option pricing errors
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relative to the Black and Scholes (1973) model. Bai, Goldstein, and Yang (2019) show that

the leverage effect is essential to explain the spread between index and individual banks

equity options. Morellec and Zhdanov (2019) show risk-neutral skewness is related to the

competitive landscape that surround a firm. Following Hennessy and Whited (2005, 2007),

we introduce a fully dynamic model where shareholders endogenously choose production

capacity, financial leverage, and default. We show that these ingredients are essential to

reproduce the heterogeneity in option prices present in the data.

The leverage effect introduced by Merton (1974) has been considered in a number of ap-

plications that link volatility to stock prices/returns. Engle and Siriwardane (2017) propose

a structural GARCH model that embeds the leverage effect into equity volatility forecasting

models. Because we introduce a model where firms are exposed both to systematic and

idiosyncratic risk, our work is also related to studies such as Duan and Wei (2009), who

show the differential impact of the two sources of risk. Similar to Duan and Wei (2009), our

model also implies that large variation in the prices of individual equity options is produced

by realizations of aggregate risk. The leverage effect is a fundamental mechanism of modern

models of credit risk. Thus, because we share many model features and because we rely on

some of the same intuition our paper is also related to the rather large literature that studies

corporate credit risk: from Leland (1994) to more recent contributions such as Gomes and

Schmid (2021).

Our paper is also related to the very large literature that studies the impact of growth

option on asset prices. From the many contributions to the understanding of the role of

dynamic investment policies, among the most directly related to our paper are the works

of Berk, Green, and Naik (1999) who link the predictability of stock returns to firm char-

acteristics in a model with dynamic investments. Kogan (2004b), Kogan (2004a), Zhang

(2005), Cooper (2006), Ai and Kiku (2013), Kogan and Papanikolaou (2013), Kogan and

Papanikolaou (2014), and Gu, Hackbarth, and Johnson (2017) discuss the role of complete

and partial investment irreversibility in shaping the risk-return profile. Aretz and Pope

(2018) consider a model with both investment and disinvestment options use it to propose a

rational explanation of empirical regularities in the cross-section of stock returns. Trigeorgis

and Lambertides (2014) suggest an alternative measure of growth options to the book-to-

market ratio and relate it to future stock returns. Del Viva, Kasanen, and Trigeorgis (2017)

show that firms with more prevalent growth opportunities have more positive skewness in

the return distribution. Cao, Simin, and Zhao (2008) show that growth options are mainly

driven by idiosyncratic volatility. Lyandres and Zhdanov (2020) link miss-pricing to the

presence of growth options, Bali, Del Viva, Lambertides, and Trigeorgis (2020) explains sev-
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eral stock return anomalies by linking them to options to alter the asset composition that

are proxied by idiosyncratic skewness. Aguerrevere (2009) and Morellec and Zhdanov (2019)

study how product market competition affect the optimal exercise of growth options.

Finally, our paper is related to the growing literature that studies the informational

content of risk-neutral moments of the return distribution that can be obtained from option

prices. Bakshi, Kapadia, and Madan (2003) introduce a feasible way to compute risk-neutral

moments of the return distribution from option prices using a model-free approach. Bakshi,

Kapadia, and Madan (2003) shows that while there is a one to one mapping between the risk-

neutral distribution and the implied volatility surface, there is no unique mapping between

each of the moments and implied volatilities: volatility, skewness, and kurtosis all combine

to determine option prices. Dennis and Mayhew (2002) and Hansis, Schlag, and Vilkov

(2010) study the relationship between risk-neutral moments and firm characteristics and

find relatively contrasting results about the impact of the leverage effect.

A very large literature relates risk-neutral moments to realized and expected stock re-

turns, including, but limited to, Bali and Murray (2013), Conrad, Dittmar, and Chisels

(2013), Amaya, Christoffersen, Jacobs, and Vasquez (2015), Kadan and Tang (2019), Mar-

tin and Wagner (2019), Schneider, Wagner, and Zechner (2020), and Christoffersen, Fournier,

Jacobs, and Karoui (2021).

In summary, this paper follows an established literature that aims at measuring and

understanding the impact of corporate policies on asset prices (among many others, see

for example, Kuehn and Schmid, 2014, who use a similar model to analyze the pricing

of corporate debt.) Similar to Toft and Prucyk (1997), Geske, Subrahmanyam, and Zhou

(2016), and Morellec and Zhdanov (2019) we offer an alternative approach to option pricing

studies that rely on exogenous specifications of stochastic properties of equity prices. While

we do not believe that our approach could be as successful in delivering small pricing errors

for each security as this last class of models, our calibration is remarkably close in pricing

options on the average firm, and in producing, with a single set of parameters, a widespread

cross-section that is entirely produced by optimal investment and capital structure decisions.

That is also our main point of departure from studies such as Toft and Prucyk (1997), Geske,

Subrahmanyam, and Zhou (2016), and Morellec and Zhdanov (2019): our model is calibrated

to the data to obtain option prices and firm characteristics that are quantitatively close to

the observed economy.
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3. Data

We construct our sample of option-able stocks by combining CRSP and COMPUSTAT with

OptionMetrics. To increase the frequency of observations we obtain quarterly balance sheet

observations and match them to stock returns data using common filters (i.e., share code 10

and 11, no ADRs, total assets in excess of 10 million USD, etc.). We construct stock returns

and accounting ratios (leverage, profitability, market-to-book) using standard definitions as

in Fama and French (1992).

We then match the resulting sample with OpionMetrics. Because option data is recorded

daily but firms accounting information comes at quarterly frequency, we lined up the data

by averaging options data over the last three trading days of the last month of the earning

reporting quarter. For each firm and quarterly reporting date we extract option prices and

volatility surfaces that, at that point in time, have maturities closest to 90 days (one quarter),

180 days, and 360 days. Most of the empirical regularities do not change if we considered 30

days contract. Calibrating the model at monthly frequency is however incredibly challenging

and produces unreliable simulated economies (i.e., very small changes in some parameters

produce substantial changes in the properties of the simulated data). Hence we prefer to

calibrate the model at quarterly frequency and consider 90 days options as the baseline.

Having multiple maturities allows us to construct a term structure of option prices and

volatilities.

We retain two sets of data which are used for different purposes. Measures that refer

to the implied volatility surface (i.e., the implied volatility slopes and implied volatility

shapes) are computed using OptionMetrics Volatility Surface files. Instead of averaging

the volatility surface of call contracts with that of put contracts, for each firm date and

contract maturity, we merge the implied volatilities obtains from calls with strike prices

higher than the underlying, and from puts with strike prices below the underlying. In

other words, only out-of-the money call and put contracts are used. We now have only one

surface. For simplicity we refer to IV (k) as the implied volatility corresponding to moneyness

k: so that IV (1) is the ATM implied volatility, IV (0.8) is the OTM implied volatility,

and IV (1.2) is the ITM implied volatility. For each firm-quarter and option maturity we

retain implied volatilities for the range of moneyness (i.e., ratio of strike to underlying)

that goes from 0.8 to 1.2. We then construct three slope measures: the difference between

IV (1.2) and IV (0.8) (total slope), the difference between IV (0.8) and IV (1) (left slope), and

the difference between IV (1.2) and IV (1) (right slope). For each firm-quarter and option

maturity we also classify the shape of the implied volatility curve into four types: the curve
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is downward sloping as IV (0.8) > IV (1) > IV (1.2) (left smirk), the curve is upward sloping

as IV (0.8) < IV (1) < IV (1.2) (right smirk), the curve is u-shaped as IV (0.8) > IV (1) <

IV (1.2) (smile), and the curve is inverted u-shaped as IV (0.8) < IV (1) > IV (1.2) (frown).

We construct model-free implied skewness and kurtosis directly from OTM call and OTM

put option prices as in Bakshi, Kapadia, and Madan (2003). In particular we follow the

procedure described in Hansis, Schlag, and Vilkov (2010), whose code is available on Grigory

Vilkov’s page. We impose several filters to limit the impact of liquidity. In particular we

eliminate prices that violate arbitrage bounds, that have zero open interest, zero-bid quotes,

and have both bid and ask quotes unchanged for two consecutive days. For each stock we

select options that at a particular point in time have approximate maturity 90, 180, or 360

days, and have moneyness (strike divided by stock price) between 0.7 and 1.3. We interpolate

their implied volatilities in order to obtain a dense grid of prices relative to moneyness. We

then compute implied moments. On average, 8 option contracts enter the calculation of

risk-neutral moments.

Because we require firm-quarter observations to have valid measures of implied volatility

and implied moments, the liquidity filters applied towards constructing implied moments are

also implicitly applied to the implied volatility measures. The final sample is composed of

3,536 stocks and includes quarterly observations between the years 1996 and 2019.

4. Empirical evidence about the cross-section of equity

option prices

The option pricing literature has mainly focused on two different ways to organize option

prices for different maturities and moneyness: implied volatility surfaces and implied risk-

neutral moments. Mots of these efforts have been concentrated on index options, which offer

a great way to understand aggregate risk premia and investor attitudes towards risk.

We organize the data along the same lines but we focus on individual equity options. We

present in this section some empirical regularities that we deem important in thinking about

what an option pricing model should address.

4.1. Implied volatility surfaces

The average implied volatility surface is downward sloping along both moneyness and

maturity (see Figure 2), although less pronouncedly than the index option surface. At the
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Figure 1: Implied volatility surface

The figure plots the average implied volatility surface extracted from the data. The sample contains
all industrial firms with options trading on their equity between 1996 and 2019. Data is sampled
at quarterly frequency. A total of 3,536 firms are included.
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shortest maturity (that we consider) of 90 days, the average difference between IV (0.8)

(i.e., moneyness of 0.8) and IV (1) is 3.5%, while the average difference between IV (1) and

IV (1.2) is about 1.2%. Along maturities, the average difference between 90 and 360 days

varies between 5.3% for the moneyness of 0.8, to 4% for moneyness of 1.

Figure 2: Implied volatility surface – time series

The figure plots the time series of cross sectional averages, as well fifth and ninety-fifth percentiles,
of implied volatility surface extracted from the data. The sample contains all industrial firms with
options trading on their equity between 1996 and 2019. Data is sampled at quarterly frequency. A
total of 3,536 firms are included.
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There is a considerable amount of cross-sectional and time-series variability in implied

volatility surfaces. For example, the cross-sectional average ATM implied volatility varies

between 90% at the height of the internet bubble crash to 35% in the middle of 2005 (see

Panel A of Figure 2). At the same time, there is a fair amount of cross-sectional dispersion:

for example at the hight of the financial crisis, the 95th percentile of implied volatility is

higher than 120%, while the 5th is as low as 40%. Similarly, the left tail of the implied

volatility curve can be as high as 15% and as low as -5% (see Panel B of Figure 2). The

right tail varies even more from 10% to -10% (see Panel C). Similar variation can be seen

even across maturities (see Panel D), where the slope of the volatility surface hovers around
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4% but can be even negative (an upward sloping volatility term structure) for some stocks

at particular points in time.

Figure 3: Surface types – time series

The figure plots the time series of frequencies of different implied volatility surface types extracted
from the data. The sample contains all industrial firms with options trading on their equity between
1996 and 2019. Data is sampled at quarterly frequency. A total of 3,536 firms are included.
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Variation in implied volatilities through time and across stocks produces also a very rich

cross-section of different “shapes”. We categorize the shape of the implied volatility curve

into four types: left smirk (i.e., implied volatility decreasing with moneyness), smile, right

smirk (i.e., implied volatility rising with moneyness), and frown (i.e., inverted smile). We

plot the cross-sectional frequency of each surface type for 90 days options in Figure 3.

The most predominant surface type is a left smirk, which is observed on average 73%

of the times, with a large time-series variation between 40% and 95% (see Panel A). The

second most frequent surface is a smile (Panel B), which is observed on average in 18% of

the cases. Right smirks and frowns are less frequent on average; they however manifest in a

significant number of stocks during the years of the internet bubble (Panels C and D).
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4.2. Risk-neutral moments

We plot time-series of the cross-sectional averages, as well as the 5th and 95th percentiles,

of risk neutral skewness and kurtosis in Figure 4. At each maturity, the average risk neutral

skewness is negative, with a sharp decrease around the internet bubble. Risk-neutral kurtosis

is in excess of three and also increasing through the period. Large cross-sectional variation

is observed and appears to be increasing through time. This is not completely surprising

as the number of optionable stocks has increased substantially from a few hundred to more

than one thousand (after all filters are applied) during our sample period.

Despite the fact that the time-series of cross-sectional averages are highly correlated

across maturities some patterns emerge. Cross-sectional average and standard deviation of

both risk neutral skewness and kurtosis tend to decrease in absolute value with maturity,

which is consistent with implied volatility curves being flatter for longer maturities contracts.

Figure 4: Risk neutral moments – time series

The figure plots the time series of cross sectional averages, as well fifth and ninety-fifth percentiles,
of risk-neutral skewness and kurtosis extracted from the data. The sample contains all industrial
firms with options trading on their equity between 1996 and 2019. Data is sampled at quarterly
frequency. A total of 3,536 firms are included.
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4.3. Observable characteristics

Next we show how variability in implied volatilities and distribution relates to observable

firm characteristics. Table 1 reports results of panel regressions with different fixed effects

specifications of several features of options prices against observable firm characteristics.

Left hand side variables include the risk-neutral skewness, the slope (i.e., log difference of

IV(1.2) and IV(0.8)), and the left slope (i.e., the log difference of IV(0.8)-IV(1)) extracted

from 90 days to maturity options. We report results of similar regressions with a wider set

of regressors, a different measure of growth option proposed by Trigeorgis and Lambertides

(2014), and for 180 and 360 days maturities in the Appendix.

Table 1: Option prices and observable characteristics

The table shows regression results of several features of option prices against size, book leverage,
market to book ratio, equity return, and ATM IV. Left hand side variables include the risk-neutral
skewness, the slope (i.e., log difference of IV(1.2) and IV(0.8)), and the left slope (i.e., the log dif-
ference of IV(0.8)-IV(1)) of 90 day maturity options. We report parameter estimates and standard
errors clustered at the firm level. Regressions include combinations of time, industry, or firm fixed
effects. The sample contains all non-financial firms with options trading on their equity between
1996 and 2019. Data is sampled at quarterly frequency. A total of 3,536 firms are included.

RN-Skew Slope Left slope

IV 0.14 0.13 5.40 4.67 -5.45 -5.24
(32.40) (25.39) (36.60) (28.13) (-49.55) (-38.79)

Size -0.13 -0.11 -3.04 -1.81 1.95 0.64
(-20.86) (-6.97) (-16.95) (-5.09) (13.33) (2.23)

Leverage -0.01 -0.02 -0.17 -0.10 0.14 0.18
(-2.97) (-3.02) (-1.74) (-0.80) (1.76) (1.85)

Profitability 0.00 0.01 0.31 0.56 -0.40 -0.55
(0.81) (3.15) (3.30) (6.02) (-5.64) (-7.99)

M2B -0.07 -0.08 -1.51 -1.45 0.95 0.86
(-20.78) (-15.02) (-14.21) (-11.30) (11.30) (8.11)

Time FE X X X X X X
Industry FE X X X
Firm FE X X X

Adjusted-R2 0.42 0.50 0.45 0.55 0.50 0.59
FE R2 0.28 0.48 0.29 0.52 0.30 0.54

The table largely confirm the results reported in Table 3 of Morellec and Zhdanov (2019).

After controlling for different fixed effects, the slope of the implied volatility curve and the

risk-neutral skewness of the equity distribution are positively related to the level of volatility

and profitability, and negatively related to size (i.e., natural logarithm of total assets), book

leverage, and the market-to-book ratio. We are quick to note that most of the variation in
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the data is absorbed by fixed effects. Thus one could conjecture that it is the type of firm,

rather than variation in characteristics over time that drive changes in option prices (see

for example Figlewski and Wang, 2000). However, we note that covariates remain largely

economically (the point estimates do not change much) and statistically significant even

in the firm fixed effects regressions, thus suggesting that a relevant amount of variation in

the data is attributable to time-series variation in the regressors: smaller firms with high

volatility present more positively skewed risk-neutral distribution (less negatively slopped IV

curves). Firms with high leverage and high market-to-book ratios present more negatively

slopped implied volatility curves (more negative skewness).

Some of these relationships are not easily explainable in the context of a model such as

those of Toft and Prucyk (1997) and Geske, Subrahmanyam, and Zhou (2016), which can

describe very well the impact of leverage and the level of volatility, but not how size and

market-to-book values affect option prices.

Overall, implied volatility surfaces or at risk-neutral moments present a pretty consistent

picture of the cross-section of option prices: There is large time-series and cross-sectional

variation in standardized option prices. While it is entirely possible that such variation can

be explained by exogenously specifying the equity and volatility process as in Bakshi, Cao,

and Zhong (2021), we propose a structural approach based on the idea that optimal firm

decisions shape the physical and risk-neutral distributions of equity returns. The results

reported in Table 1 are consistent with this approach.

5. Basic intuition

We convey the main economic intuition by means of a stripped-down version of the quanti-

tative model that we present in Section 6. We start from the neoclassical model of Zhang

(2005) and make some simplifications.

As in Zhang (2005), the model has infinite horizon and is in discrete time. The firm’s

productivity shock, z, follows a log-AR(1) process with parameters ρ and σ. The cash flow

from operations is the result of applying the current productivity shock to a production

function where capital exhibits decreasing returns to scale and accrues some operating costs:

π(z, k) = ezkα − fk,
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where 0 < α < 1 and f ≥ 0. We model the operating cost as proportional to capital

to capture the effects of mechanisms that are present in the main model such as financial

leverage, and depreciation, which, contrary to a fix operating leverage, have an impact on the

investment/disinvestment choice (i.e., a fix cost would not affect the investment decision).

At time t = 1, the equity holder invests i = k′ − k (i.e., there is no depreciation), and

investment/disinvestment entails a quadratic asymmetric capital adjustment cost

h(i, k) =
1

2

(
θ11{i>0} + θ21{i<0}

)( i

k

)2

k.

The firm makes no other investment decisions after that but lives in perpetuity. We refer

to this one time ability to change the stock of productive capital as the real option (i.e.,

to distinguish it from the financial option on the equity), with the general understanding

it comprises the ability to both increase or decrease capital stock depending on economic

conditions (i.e., the realization of the productivity shock). Investment is financed either

with internal or external equity. There are no transaction costs when raising external equity

financing. We assume investors do not require any risk premia and therefore securities are

priced by a constant discount factor 0 < β < 1.

Because we are interested in pricing financial options written on the firm’s equity, we

assume the following timeline: at t = 0, European call (and put) options are written, with

strike price X , and maturity t = 1. The options are written after z0 has been observed and

k has been decided. At t = 1, the realization z1 comes from a log-normal distribution with

mean ρz0 and standard deviation σ, and that determines the choice of k′. Hence, the value

of equity at t = 1 is

S(z1) = max
k′

{π(z1, k)− i− h(i, k) + V (z1, k
′)}

where V (z1, k
′) is the continuation value under the assumption that investment in all future

periods is 0 (i.e., capital remains at level k′). 1 Therefore, one can think about the firm has

having some capital in place plus one real (investment/disinvestment) option.

1Given the distributional assumptions on the productivity shock,

V (z1, k
′) = E1




∞∑

j=1

βjπ(z1+j , k
′)


 = Φ(z1)(k

′)α −
β

1− β
fk′

where

Φ(z1) =

∞∑

j=1

βj
E1 [e

z1+j ] =

∞∑

j=1

βj exp
{
ρjz1

}
exp

{
σ2

2

1− ρ2j

1− ρ2

}
< ∞
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Denoting k∗(z1) the solution of the equity program contingent on z1, and the optimal

investment i∗(z1) = k∗(z1)− k, the equity value is

S(z1) = π(z1, k)− i∗(z1)− h(i∗(z1), k) + V (z1, k
∗(z1))

Hence, the price at t = 0 of a European call option with strike X maturing at t = 1 is

C0(X) = β

∫
max {S(z1)−X, 0}ϕ(z1)dz1,

where ϕ(·) is the standard normal density.

Aside from the adjustment to the capital stock at time 1, some other elements of the

model have implications for the pricing of options. In Figure 5 we present some comparative

statics of the impact of relevant model parameters on the distribution of equity returns and

the implied volatility surface, once we remove the investment decision. In this version of the

model the firm starts with an initial capital that cannot be changed.

In the top row, we vary the coefficient of autocorrelation of the productivity shock. The

case with ρ = 1 provides a good comparison case, as it essentially reduces to a Black and

Scholes economy: the equity return is equal to 3% (i.e., r− 0.5σ2, r = 5%), equity volatility

is equal to 20% (i.e., the volatility of the productivity shock), equity skewness is equal to 0,

and the implied volatility curve is flat and leveled at 20%. As the autocorrelation decreases

the continuation value of the firm becomes less valuable and less volatile (as a function of z1).

Because the drop in the second moment is much larger than the drop in the third moment, a

decrease in autocorrelation leads to an increase in skewness, thus shifting mass to the right.

As a consequence the implied volatility curve lowers and slightly steepens (positively) with

moneyness.

can be easily calculated. In the equity program, the optimal k′ is found solving the first order condition

α(k′)α−1Φ(z1)−
β

1− β
f = 1 +

(
θ11{k′>k} + θ21{k′<k}

)(k′

k
− 1

)

which can be found numerically using Newton’s method.
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Figure 5: Model with no investments

In the left column, the figure plots the log equity returns between 0 and 1 for different realizations
of the log productivity shock at time 1. For each case, we include the expected value, volatility,
and skewness in the figure’s legend. The right column displays the implied volatility of the call
option prices at time 1 for moneyness levels (i.e., ratio of strike to underlying price) between 0.8
and 1.2 . For each case, we include the slope of the implied volatility curve (i.e., IV calculated for a
moneyness of 1.2 minus the IV for a moneyness of 0.8), the risk-neutral skewness, and the market to
book ratio. We vary the autocorrelation of the productivity shock, ρ ∈ {1, 0.95, 0.9}, the curvature
of the production function, α ∈ {0.4, 0.5, 0.6}, and the leverage parameter, f = {0, 0.15, 0.25}. We
fix the rest of the parameters as follows: σ = 20%, k0 = 3.2, θ1 = 0, θ2 = 0, β = e−0.05.
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Figure 6: Model with investments

The figure plots the log investment and equity returns between 0 and 1 for different realizations
of the log productivity shock at time 1, as well as the implied volatility curve at time 0 derived
from options that matures at time 1. We compare the case with no investments to the solution of
the model with the investment/disinvestment option with and without capital adjustment costs.
We show results for a firm that will mostly invest at time 1 (i.e., k = 2), and for one that will
mostly disinvest (i.e., k = 6). In the legend of the central figure we also report the present value of
the real option, PVRO, which combines both the investment and the disinvestment options, and
is defined as the difference between the market-to-book ratio of the solution with investment and
the market-to-book ratio of the constrained model.When the firm faces adjustment costs we set
θ1 = 2 and θ2 = 10. We fix the rest of the parameters as follows: ρ = 0.9, x0 = 0, σ = 20%,
f = 0.25, β = e−0.05.
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Increasing the curvature of the productivity function lowers the equity volatility, but not

the skewness: the impact of α on the first and second moment of the equity distribution

is proportional. Increasing leverage (i.e., f) increases equity volatility and shifts the equity

distribution to the left. Similarly to Geske (1979), Toft and Prucyk (1997), and Morellec

and Zhdanov (2019) this creates a downward sloping implied volatility curve. Thus, for a

constant production technology and dynamic of productivity, leverage impacts the pricing

of financial options.
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Because adding the real option increases the convexity of the equity value, it also affects

its distribution. van Zwet (1964) shows that the convexity of a function of a random variable

is related to the skewness of the distribution of the function of the random variable, and that

more convexity implies larger skewness. van Zwet (1964) is often cited in the growth option

literature as a motivation for the idea that firms with more growth options (a convex function

of the underlying) have more positively skewed distributions (see for example, Del Viva,

Kasanen, and Trigeorgis, 2017; Bali, Del Viva, Lambertides, and Trigeorgis, 2020). We

detail how the skewness of the equity distribution is induced by a real option that consist of

a combination of an option to buy and an option to sell (i.e., a “real straddle”).

In Figure 6 we show how introducing the real option affects the skewness of equity

distribution and the related implied measures, in the general case where ρ < 1. Cognizant

that investments and disinvestments do not have symmetric effects, because the capital

adjustment cost function is asymmetric, we consider a firm that, given the current shock,

is investing for almost all future realization of the productivity shock (i.e., k = 2 top row)

and one that almost always disinvest (i.e., k = 6 bottom row). For each case, we compare

the case with constant capital, to the case with the real option with and without capital

adjustment costs.

We start by considering the base case scenario where the firm cannot change its capital

stock at time 1 (yellow line). Going directly to the implied volatility plots, we observe that

there is a size effect: The curve for the small firm is upward sloping, while the opposite is

true for the large firm. This is the result of modeling operating leverage as a proportional

cost, which produces the same effect of debt (without requiring further complications). The

intuition is as follow: the implied volatility (at any strike) represent the volatility of the log

equity price. Assume that the firm is liquidated at date 1, after the shock is realized. Then

future equity value is simply the value of the cash flow realized at that point in time: π1 =

ez1kα − fk. This function is always convex relative to z1. However, the convexity of ln(π1)

depends on how large k is (for a fixed α and f): it becomes concave for a sufficiently large k.

Adding back the continuation value, so that the firm is not liquidated at time 1, makes the

concavity of the value function even more parameter dependent. The convexity/concavity

of the log equity price function is what determines the slope of the implied volatility curve.

We can see this by comparing the yellow lines in the top and bottom right most panels

of Figure 6, where as the log equity curve becomes more concave/less convex the slope of

implied volatility curve becomes less positive/more negative. The leverage effect is a function

of size, which is largely in line with the empirical evidence presented in Table 1, and with

the existing literature.
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As mentioned above, whether it implies increasing or decreasing the capital stock, the real

option always adds (positive) skewness. Focus on the central panels of Figure 6. Consider

first the case without adjustment costs (blue line): for the small firm (top), relative to the

firm that does not invest, the ability to increase productive capital increases equity returns

in good states and decreases them during bad times. However the effect is more prominent

in good times, so that the net result is to shift the distribution to the right. Conversely,

for the large firm (bottom), the ability to downsize increases equity returns during bad

realization of the profitability shock, and decreases them in good times. The effect is much

more pronounced in negative states of nature: the result is again to push more mass to the

right. The resulting implied volatility curves exhibit an upward slope. Adding adjustment

costs reduces future investment and disinvestments and their contribution to the equity

value: since costs are asymmetric, downsizing produces a more pronounced effect. As they

constrain the optimal policy, adjustment costs also dampen the skewness in the equity value

function and thus produce a less skewed equity return distribution and a lower positively

slopped implied volatility curve. The larger the costs, the less skewed the distribution, the

lower the expected present value of the real option value. PVRO is the difference between

the equity value, at time 1, when the firm can adjust the capital ratio and the corresponding

value when it cannot, scaled by the current capital stock: in expected value terms, this is the

difference between the respective current equity values scaled by the current capital stock.

In other words, this is the component of the market-to-book ratio that captures only the

value of the real option, controlling away for how leveraged the firm is and how large its

current capital stock is.

As Table 1 shows, controlling for leverage, larger firms and firms with high market-to-

book ratios tend to have more negative skewed risk-neutral distributions. We have showed

above how the size effects works. We focus here on the negative relation between PVRO and

RN-skewness/slope of the IV curve. To illustrate how one could obtain such relation, we

compare firms of different initial productive capital, k0, and different future prospects, which

depends on the initial state x0 (as the profitability shock is mean-reverting). Because the

production function exhibits decreasing returns to scale, small firms, everything else equal,

will invest more in the future when economic conditions are good, while large firms will have

an incentive to reduce capital in place during bad times. Moreover, because productivity

shocks are persistent, firms that face negative productivity shocks at time 0, x0, face worse

future conditions than firms that are exposed to positive shocks at time 0.

The impact of these two effects on the relation between PVRO and the shape of the future

equity distribution depends on the magnitude of the adjustment costs parameters, which
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alter the future investment policy as shown in Figure 6. We provide here an example of how

a particular choice of parameters can produce the economic forces necessary to reproduce,

qualitatively at least, the relationships described in Table 1. We plot investments and implied

volatility curves in Panel A and B of Figure 7 for different levels of k0 and of x0.

Consider first Panel A. The small firm (top row) mostly invests, and it does so even when

future economic conditions are not positive. For example, consider the future scenarios that

stems from the current state x0 = 0: even when x1 < 0, as long as it is not too negative,

the optimal decision is to increase the capital stock. The large firm (bottom row) mostly

disinvests, and does so even when future shocks are positive. In contrast the intermediate

firm has a much more mixed optimal policy: it invests when the future shocks are positive

and disinvests when they are negative (we chose k0 in order to produce this precise split at

x1 = 0).

Both investment and disinvestment options are valuable. However, the extent to which

they contribute to the current value of the equity depends on their “moneyness”. We can

think of the small firm has currently having a deep in-the-money investment option and an

out-of-the-money disinvestment option, since it will mostly invest in period 1, regardless of

future economic conditions. Similarly, the large firm has an out of the money investment

option and an in-the-money disinvestment option, as it mostly disinvest. In both cases,

the value of the bundle is driven by the option that is probably going to be exercised. We

can instead think of the intermediate firm has having both an option to invest and one

to disinvest, that are almost exactly at-the-money, and thus on average produce a small

expected investment that does not move the value of the firm away from the value of the

constrained firm. Since, one can think about the real option as a combination of a call

(invest) and a put (disinvest), the value of the combination (i.e., a straddle) depends on

the absolute value of the future investment. We can see the value being very large when

either the average investment or the average disinvestment are very large in the top right

and bottom left plots, respectively. The current value of the real option is instead lower,

when the expected investment is small (central panel).

The real option affects the equity distribution not only through how much value it pro-

duces, but also by moving value across different states of nature. As Table 2 shows, the

present expected value of PVRO is not only higher when firms have more defined invest-

ment policies (current situations that lead them to either almost always invest or almost

always disinvest in the future), but it is also more volatile in the same situations. For ex-

ample, when the small firm currently has just observed a very good productivity shock (i.e.,

k0 = 2, x0 = 0.5), the expected value of PVRO is large at 0.76, but so is its volatility, at 0.3.
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Table 2: Distributional properties of PVRO

The table reports expected value, standard deviation, and skewness of PVRO, the present value
of the real option, defined as the difference between the equity value when the firm can adjust the
capital ratio and the corresponding value when it cannot, scaled by the current capital stock. We
vary the initial capital stock k0 ∈ {2, 3.2, 6}, and the productivity shock x0 ∈ {−0.5, 0, 0.5}. We fix
the rest of the parameters as follows: ρ = 0.9, σ = 20%, f = 0.25, θ1 = 2, θ2 = 10, β = e−0.05.

x0 = −0.5 x0 = 0.0 x0 = 0.5

Expected value
k0 = 2 0.07 0.28 0.76
k0 = 3.2 0.02 0.01 0.12
k0 = 6 0.17 0.10 0.03

Standard deviation
k0 = 2 0.06 0.15 0.30
k0 = 3.2 0.01 0.02 0.10
k0 = 6 0.04 0.03 0.02

Skewness
k0 = 2 1.62 1.10 0.92
k0 = 3.2 0.96 4.13 1.64
k0 = 6 0.02 0.23 0.82

The combine effect is to produce a positive skewness of 0.92. On the opposite end, when the

same small firm has just observed a negative shock, the expected value of PVRO is low and

so is the volatility, but the probabilistic reallocation of value from negative to positive states

of the world is larger, with a positive skewness of 1.62. Looking at the intermediate firm, we

see that the highest PVRO skewness corresponds to the case x0 = 0, when the investment

policy is split exactly in half: half the times it invest and half the times it disinvests. Thus,

for this particular choice of parameters and distribution of initial capital, there is a marked

negative correlation between the expected value of PVRO and its skewness. We learn that,

controlling for leverage and size, the real options add (positive) skewness to the distribution

of the equity value, but they do so more prominently when there is more curvature in the

real option function. To create a parallel to the Black-Scholes model, the real option can be

thought as a straddle, a combination of a call and a put. The curvature of the each of the

two functions (i.e., gamma) is highest when the options are exactly ATM.
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Figure 7: Investments and implied volatilities

The figure plots investments at time 1 and implied volatility curves at time 0 derived from options
that matures at time 1. We vary the initial capital stock k0 ∈ {2, 3.2, 6}, and the productivity
shock x0 ∈ {−0.5, 0, 0.5}. We fix the rest of the parameters as follows: ρ = 0.9, σ = 20%, f = 0.25,
θ1 = 2, θ2 = 10, β = e−0.05.
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Panel B: Implied volatilities at t = 0
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We now turn to Panel B of Figure 7. There are two economic forces affecting the shape

of the implied volatility curve: leverage and the real option. Leverage induces negative

skewness and a negative slope of the IV curve, the real option does the exact opposite.

However, the impact of the real option on skewness is inversely related to how “in-the-

money” that option is (the real option is a combination of a call and a put). Moreover, the

effect of leverage is decreasing with economic conditions: when prospects are good, leverage

induces less negative skewness. As the figure shows, combining those two effects together

leads to a situation where, for small and large firms, there is a negative relation between the

slope of the IV curve (or the risk-neutral skewness) and the PVRO. The same relation is

u-shaped for the intermediate firm.

While the qualitative impact of the two effects is unchanged by parameter choices (i.e.,

leverage always induces negative skewness and the real option always induces positive skew-

ness, especially when the option value is the most convex), the way they combine together

to create decreasing or increasing implied volatility curves is state (in the simple model that

is k0 and z0) and also parameter dependent. It is therefore reasonable to ask whether the

same net effect can be obtained in the contest of a model that is calibrated to match other

features of the data. We present an extended model, its calibration, and the relationship be-
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tween properties of the risk-neutral distribution and firm characteristics within the simulated

economy, in the next two sections.

6. Quantitative model

While the basic intuition developed in the previous section confirms the basic patterns in

the data, whether a model of endogenous real options can give a quantitative description of

the data is a question that can only be answered by calibrating a model that includes more

realistic features such as; heterogeneity, endogenous default, corporate taxes, real adjustment

costs, external equity financing frictions, debt adjustment costs, and considers countercyclical

risk premia. The model is therefore similar, in spirit, to that of Hennessy and Whited (2007)

in the description of the firm’s decisions, and to those of Berk, Green, and Naik (1999), Zhang

(2005) and Gomes and Schmid (2010) in the choice of a reasonably simple (exogenously

specified) pricing kernel.

6.1. The economy

Information is revealed and decisions are made at a set of discrete dates {0, 1, . . . , t, . . .}.

The time horizon is infinite. The economy is composed by a utility maximizing representative

agent and a fixed number of heterogenous firms (j = 1, . . . , J) that produce the same good.

Firms make dynamic investment and financing decisions and are allowed to default on their

obligations. Defaulted firms are restructured and then continue operations, so as to guarantee

a constant number of firms in the economy. The agent consumes the dividends paid by the

firms and saves by investing in the financial market. We do not close the economy and derive

the equilibrium, but instead choose an exogenously specified stochastic discount factor.

There are two sources of risk that capture variation in the firm’s productivity. The first,

zj , captures variations in productivity caused by firms’ specific events. Idiosyncratic shocks

are independent across firms, and have a common transition function Qz(zj , z
′
j). zj denotes

the current (or time–t) value of the variable, and z′j denotes the next period (or time–(t+1))

value.

The second source of risk, y, captures variations in productivity caused by macroeco-

nomics events. The aggregate risk is independent of the idiosyncratic shocks and has transi-

tion function Qy(y, y
′). Qz and Qy are stationary and monotonic Markov transition functions

that satisfy the Feller property. z and y have compact support. For convenience of expo-

sition, we define the state variable x = (y, z), whose transition function, Q(x, x′), is the
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product of Qy and Qz. As there is no risk of confusion, we drop the index j in the rest of

the section.

6.2. Firm policies

We assume that firm’s decisions are made to maximize shareholders’ value. An intuitive

description of the chronology of the firm’s decision problem is presented in Figure 8. At

t, the two shocks x = (y, z) are realized and the firm cash flow is determined based on

current capital stock, k, and total face value of debt, b. Immediately after that, the firm

simultaneously chooses the new set of capital, k′, and debt, b′ for the period ]t, t + 1]. This

decision determines P , the payout to shareholders, which can be positive (dividends and/or

share repurchases) or negative (an injection of equity capital by issuing new shares).

Figure 8: Model time line

This figure offers a description of the chronology of the firm’s recursive decision problem. At t, the
shocks x = (y, z) are realized, and the firm’s cash flow is determined based on the capital stock k

and the debt b, or a = (k, b). Immediately after t, the firm chooses the new set of capital and debt,
as the combination a′ = (k′, b′) that maximizes the value of the equity, given by the sum of the
current cash flow plus the continuation value.

t

(z, y)

t+ 1

(z′, y′)

t+ 2 t+ 3

firm chooses I = k′ − k(1− δ)
s.t. adj. cost h(I, k)

repays b and chooses b′

s.t. adj. cost q(b, b′)

option chain created

one-period
option expires

two-period
option expires

three-period
option expires

dividend/repurchases (P > 0) or
equity issuance (P < 0)

At t, the cash flow from operations (EBITDA) depends on the idiosyncratic and aggregate

shocks, and on the current level of asset in place, π = π(y, z, k) = ey+zkα − f , where α < 1

models decreasing returns to scale and f ≥ 0 is a operating cost parameter that summarizes

all operating expenses excluding interest on debt.

The capital stock of the firm might change over time. The asset depreciates both econom-

ically and for accounting purposes at a constant rate δ > 0. After observing the realization
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of the shocks at time t, the firm chooses the new capital stock k′, which will be in operation

during the period ]t, t + 1]. The firm can either increase or decrease the capital stock, and

the net investment equals to I = k′ − k(1 − δ). Similar to Abel and Eberly (1994) and

many others after them, we assume that the change in capital entails an asymmetric and

quadratic adjustment cost h(I, k) =
(
λ11{I>0} + λ21{I<0}

)
I2/δk, where 0 < λ1 < λ2 model

costly reversibility, and 1{·} is the indicator function. The economic interpretation of λi,

i = 1, 2, is straightforward: it is the per cent cost of a (dis)investment I = δk.

The debt level might also change over time. At any date, the firm can issue a one–period

zero–coupon unsecured debt. As is shown in Figure 8, at time t the firm chooses the face

value of the debt, b′, that will be repaid at t + 1. If the firm is solvent, the market value of

the debt, B(x, a′), depends on the current state x and on the choices of the face value and

the capital stock, a′ = (k′, b′), that are made after observing the shocks.

Changing the debt level entails a proportional adjustment cost, θ|b′ − b|, with θ ≥ 0.

Since the issuance decision is contemporaneous to repayment of the nominal value of old

debt b, the debt decision generates a net cash flow equal to B(x, a′)− b− θ|b′ − b|.

We assume a linear corporate tax function with rate τ . The tax code allows deduction

from the taxable income of the depreciation of assets in place, δk, and of interest expenses.

Modeling deduction of the interest at maturity of the bond would entail keeping track of

the value of the debt at issuance, therefore increasing the number of state variables. For

the sake of numerical tractability, we assume that the expected present value of the end-

of-period interest payment b′ − B(x, a′), which we denote H(x, a′), can be expensed when

the new debt is issued at time t. In case of linear corporate tax, and assuming knowledge

of the equilibrium conditional default probability, this is equivalent to the standard case of

deduction at t+ 1. The after–tax cash flow from operations plus the net proceeds from the

debt decision is

v = v(x, a, a′) = (1− τ)π + τδk + τH(x, a′) +B(x, a′)− b− θ|b′ − b|. (1)

The cash flow to equity is therefore equal to w = w(x, a, a′) = v − I − h(I, k) where, on

the right-hand side, the first term is the after–tax cash flow from operations and the other

terms are the net proceeds from (dis)investment. If the cash flow to equity is positive, the

firm pays dividends and/or repurchases shares from the current shareholders; if the cash flow
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to equity is negative the firm issues new shares. In the latter case, the company incurs a

proportional issuance cost ζ ≥ 0, as only w is the actual inflow to the corporation

P = P (x, a, a′) = w · (1 + ζ1{w<0}). (2)

6.3. The value of corporate securities

Following Berk, Green, and Naik (1999), Zhang (2005), and Gomes and Schmid (2010),

we exogenously define a pricing kernel that depends on the aggregate source of risk, y.

The associated one–period stochastic discount factor M(x, x′) defines the risk-adjustment

corresponding to a transition from the current state y to state y′. We assume that M is a

continuous function of both arguments.

The firm can issue two types of securities, debt and equity, whose equilibrium prices are

determined under rational expectations in a competitive market. The cum–dividend price

of equity, S(x, a), is the sum of current payout, P , and the present value of the expected

future optimal distributions, which is equal to the next period price S(x′, a′). Since this sum

can be negative, a limited liability provision is also included (i.e., default on a value basis),

in which case the firm’s equity is worthless:

S(x, a) = max
{
0,max

a′
{P (x, a, a′) + Ex [M(x, x′)S(x′, a′)]}

}
. (3)

The value function, S, is the solution of functional equation (3). We define ω = ω(x, a) as

in indicator function that captures the event of default. Note that, if ω = 0, the optimal

investment and financing decision is ϕ(x, a) = a∗, where a∗ = (k∗, b∗) is the optimal choice

of the second argument in the max in (3). The optimal policy is therefore summarized by

(ω, ϕ).

As for the debt contract, the end-of-period payoff to debt holders, u(x′, a′), depends on

the current policy, a′ = (k′, b′), the new realization of the shocks x′, and on whether the firm

is in default:

u(x′, a′) = b′(1− ω(x′, a′)) + [π′ + τδk′ + k′(1− δ)] (1− η)ω(x′, a′). (4)

In case of default, similarly to Hennessy and Whited (2007), the bondholders receive the

sum of the cash flow from operations, the depreciated book value of the asset, and the tax
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shield from depreciation, all net of a proportional bankruptcy cost, η. Hence, at issuance

the debt value is

B(x, a′) = Ex [M(x, x′)u(x′, a′)] . (5)

One final item that needs to be evaluated is the expected present value of the interest

payment, H(x, a′), which enters the determination of the after tax cash flow in (1):

H(x, a′) = [b′ − B(x, a′)]Ex [M(x, x′)(1− ω(x′, a′))] . (6)

Because the interest is deductible only if the firm is not in default, the expectation term is

the conditional price of a default contingent claim.

6.4. Option prices

We derive the option prices from the stock price, under the assumption that distribution

to equity holders do not happen in the form of a cash dividend but are either a share

repurchase or an equity issuance (when negative).2

Denote with n(x, a) the number of outstanding shares before the current payout decision

is made. The stock price of one share is

s(x, a) =
S(x, a)

n(x, a)
.

Define S ′(x, a) = S(x, a)− P (x, a, a′) the equity value after the payout, where a′ = ϕ(x, a)

is the optimal policy from (3).

After a payout, the firm changes the number of shares for next period to n′(x, a). In

particular, if P (x, a, a′) > 0, some shares are repurchased; if P (x, a, a′) < 0 new share are

issued. The new number of shares is

n′(x, a) =
S ′(x, a)

s(x, a)
=

S ′(x, a)

S(x, a)
n(x, a). (7)

While n and n′ are integer numbers in real life, we assume here that n, n′ ∈ R.

2It is possible to solve the model and compute prices even when the firm pays an exogenous dividend. In
that case, we are also able to price an American option.
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The evolution of the number of shares is given by the application of the current optimal

policy, a′ = ϕ(x, a), and the state transition from x to x′, so that at the new state (x′, a′)

following from (x, a),

n(x′, a′) = n′(x, ϕ(x, a)), (8)

with n′(x, a) from (7).

We assume options are on a single share of equity. For definiteness, we consider a Euro-

pean call option with strike κ, with payoff at maturity max{s(x, a) − κ, 0}, which is based

on the convention that the dividend has been paid before the option expires, and therefore

the payoff is based on the ex dividend price.

Because the shares number is endogenous (i.e., it depends on the payout policy), option

pricing by straightforward backward induction is numerically intractable. The drawback

introduced by path dependency is due to the fact that the option price at the current state,

and the stock price s(x, a), is

c(x, a; κ) = Ex [M(x, x′)max{s(x′, a′)− κ, 0}] ,

in which a′ = ϕ(x, a). To determine s(x′, a′), the underlying asset of the option in state

(x′, a′), from S(x′, a′) we need n(x′, a′). However, as one can see from equation (8), c(x′, a′; κ)

also depends on n(x, a).

We avoid the issue of path dependency by observing that

c(x, a; κ) = Ex

[
M(x, x′)max

{
S(x′, a′)

n(x′, a′)
− κ, 0

}]

=
1

n(x′, a′)
Ex [M(x, x′)max {S(x′, a′)− κ n(x′, a′), 0}] .

From the expression above, defining the sum of prices of all options with strike k written on

the firm’s stock, C(x, a; κ n(x′, a′)) = c(x, a; κ)n(x′, a′), we can write

C(x, a; κ n(x′, a′)) = Ex [M(x, x′)max{S(x′, a′)− κ n(x′, a′), 0)}] ,

which shows that we use backward induction to price total equity options on a predetermined

set of strike prices K = {K1, . . . , KN}, such that for each K ∈ K we solve

C(x, a;K) = Ex [M(x, x′)max{S(x′, a′)−K, 0}] ,
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working backward from the option maturity to the current period. Given these prices, we can

determine the current price of a European call option with strike price κ, by interpolating

Ĉ(x, a; κ n′(x, a)) on the grid K, and then

ĉ(x, a; κ) =
1

n′(x, a)
Ĉ(x, a; κ n′(x, a)).

Using (7), the previous equation becomes

ĉ(x, a; κ) =
1

n(x, a)

Sex(x, a)

S ′(x, a)
Ĉ

(
x, a; κ n(x, a)

S ′(x, a)

Sex(x, a)

)
. (9)

Given the current equity value, S(x, a), our goal is to calculate the price of options on

equity value at t = 0 with maturity T and moneyness m ∈ {m1, m2, . . . , mN}. Where the

strikes are K = {S(x, a)mi, i = 1, . . . , N}. Because the current number of shares is arbitrary,

we choose n(x, a) = S(x, a), which is equivalent to assuming that the current (ex dividend)

stock price is $1. Then our goal is met by solving the pricing problem

ĉ(x, a;m) =
1

S ′(x, a)
Ĉ (x, a;m S ′(x, a)) ,

where ĉ(x, a;m) is the price of an European call option on a stock with current price $1 and

strike m.

6.5. Stochastic discount factor

We assume that the idiosyncratic shock z and the aggregate shock, y, follow auto-

regressive processes of first order, z′ = (1−ρz)z+ρzz+σzε
′
z and y′ = (1−ρy)y+ρyy+σyε

′
y,

respectively. In the above equations, for i = y, z, |ρi| < 1 and εi are i.i.d. and obtained from

a truncated standard normal distribution, so that the actual support is compact around the

unconditional average. We assume that εz are uncorrelated across firms and time and are

also uncorrelated with the aggregate shock, εy. The parameters ρz, σz, and z are the same

for all the firms in the economy, z and y denote the long term mean of idiosyncratic risk and

of macroeconomic risk, respectively, (1 − ρi) is the speed of mean reversion, and σi is the

conditional standard deviation. With this specification, the transition function Q satisfies

all the assumptions required for the existence of the value function.

Finally, we adopt the stochastic discount factor proposed by Jones and Tuzel (2013):

M(y, y′) = βe−g(y)ε′
y
− 1

2
g(y)2σ2

y ,
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with β ∈ (0, 1), and where the state-dependent coefficient of risk-aversion is g(y) = exp(γ1+

γ2y), with γ1 > 0 and γ2 < 1. With this choice, the coupon is equal to the state-independent

real risk-free rate, r = 1/β − 1.

Following the literature, the aggregate risk parameters are taken from Cooley and Prescott

(1995) and converted to quarterly frequency. We obtain a value for the persistence of the

systematic risk (ρx) and the aggregate volatility (σx) of 0.979 and 0.0072, respectively. The

personal discount factor (β) is set to 0.9851, and the SDF parameters (γ1 and γ2) to 3.22

and -15.3, respectively. These parameters produce an annualized average real interest rate

of 6.1%.

6.6. Calibration

We fix the five parameters that that describe the aggregate source of risk and the SDF,

equity and debt floatation costs, and the depreciation rate (as for example, Warusawitharana

and Whited, 2016). We calibrate the remaining parameters by minimizing the sum of square

deviations of a set of quantities that are observable in the data and in the simulated economy.

Important objectives of the calibration exercise are that the model captures the outcomes

of the decisions that firms make and that affect the relationship between the asset and the

equity volatility. The model should therefore match the average (book and market) leverage

ratio and the average investment as the real economy. As the relevant sources of total risk

match up with the economy, firms should exhibit similar market to book ratios, and similar

equity distributions in the physical measure (i.e., average, standard deviation, skewness and

kurtosis of equity returns). We also calibrate the model to fit the average ATM 90 days

implied volatility, as well the frequency of each implied volatility surface (i.e., left smirk,

smile, right smirk, frown).

We report parameter values and quantities used for calibration in Panel A of Table 3.

The firm-specific productivity shock is less persistent (0.91 versus 0.98) and more volatile

(0.19 versus 0.01) than the aggregate shock. The estimated marginal corporate tax rate,

τ , is 0.120, close to the estimates produced by Graham (1996a) and Graham (1996b) (i.e.,

average of approximately 13% for our sample). The estimate for the production function

parameter α is 0.56. There are large bounds around figures reported in the literature, which

are largely affected by the frequency at which models are calibrated and what type of fixed

costs (proportional or not) are considered. Our value is close to the 0.3 figure used in

Zhang (2005) and Gomes (2001). We estimate the operating cost to 4.32 (unit of capital),

which translates to an annualized value of approximately 35% of the average capital. The

calibrated value of the bankruptcy cost parameter, η, is 0.284, which is in the range of the
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Table 3: Model calibration

This table presents the calibration results of the firm model. In Panel A, we report the list of model
parameters. In Panel B, we compare the quantities that are weighted to calibrate the model. In
the left column (Data) we report the value of the moment conditions computed from the observed
empirical sample, while in the right column (Model) we report the moment conditions computed
from the simulated sample. Data is from various sources and spans the period between January
1996 throughout December 2019.

Panel A: Parameters

Aggregate
Systematic Productivity Autocorrelation ρx 0.970
Systematic Productivity Volatility σx 0.013
Discount Factor β 0.985
Constant Price of Risk Parameter g0 3.220
Time-varying Price of Risk Parameter g1 -15.300

Firm Specific
Depreciation δ 0.050
Equity Issuance Cost ζ 0.018
Debt Adjustment Cost θ 0.009

Idiosyncratic Productivity Autocorrelation ρy 0.918
Idiosyncratic Productivity Volatility σy 0.197
Production Function α 0.560
Fix Cost f 4.327
Cost of Expansion λ1 0.272
Cost of Contraction λ2 0.820
Corporate Taxes τ 0.120
Bankruptcy Cost η 0.284
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firm’s average default costs estimated by Glover (2016). There is not a direct benchmark for

the two capital adjustment costs.

Panel B: Calibrated quantities

Option Prices (90 days to maturity): Data Simulation

Implied Volatility OTM 0.648 0.647
Implied Volatility ATM 0.609 0.603
Implied Volatility ITM 0.585 0.589
Percentage Left Smirk 0.703 0.723
Percentage Smile 0.193 0.239
Percentage Right Smirk 0.044 0.001
Percentage Frown 0.062 0.037

Stock Return:
Average 0.025 0.037
Standard Deviation 0.345 0.363
Skewness 0.649 0.540
Kurtosis 4.167 4.135

Firm characteristics:
Market-to-Book 2.570 2.022
Leverage 0.504 0.479
Investments 0.043 0.053

In Panel B of Table 3, we compare the simulated economy to the real data along the

dimensions used to calibrate the mode. The investment and financing choices of the average

simulated firm reflects well those of real firms (investment and leverage are really close).

Valuations are also appropriately close, as well the physical distribution of percentage equity

returns. Average option prices are also relatively well matched as is the frequency of implied

volatility shapes: the average implied volatility curve at 90 days ATM is close the the

equivalent in the data. Moreover, the model can create enough heterogeneity in the IV

curve shapes that it matches very closed what observed in the data: about 70% of the time

the curve is downward sloping with smiles, and about 20% of the time it is “smiling”. Thus,

similarly to Geske (1979) and Toft and Prucyk (1997) who both incorporate leverage, the

model can generate average downward sloping curves across moneyness levels. Differently

from those other models, our set up can also create other IV surfaces.
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7. Comparison of simulated and observed option prices

While it is remarkable that the model can do match the 90 days IV curve and the frequencies

of various IV shapes, it is also true that we used those quantities as part of the calibration

exercise. In this section, we present comparisons of the simulated economy with the real one

along other dimensions.

7.1. Term structure of implied volatilities

We start by comparing the average IV surfaces across all maturities considered (90, 180,

and 360 days). Please remember that the model is only calibrated to fit the 90 days curve.

Figure 9 juxtaposes the curves extracted from the data (left panel) to those extracted from

the simulation. To obtain each curve, we first average across time, then across firms, and

eventually across simulations.

Figure 9: Average implied volatility surface comparison
The figure plots the average implied volatility surface extracted from the data (left panel) and from
the simulation (right panel). The sample contains all industrial firms with options trading on their
equity between 1996 and 2019. Data is sampled at quarterly frequency. A total of 3,536 firms are
included.
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Interestingly, the model can also generate a downward sloping surface across maturities

without exogenously imposing a term-structure of volatility. Productivity shocks that affect

the firm’s value at short horizon tend to revert towards long run values, and as that happens
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the relationship between asset and equity volatility flattens. The total effect is to decrease

prices for options at longer maturities, and henceforth producing a decreasing volatility

surface. As Figure 9 shows, the model is able to replicate this feature of the data quite well.

7.2. Risk-neutral moments across different maturities

As Panel B of Table 3 shows, the moments of the physical distribution of stock returns

match quite well with the corresponding quantities in the data. Table 4 confirms that the

implied higher moments of the risk-neutral distribution match as well. While skewness is

relatively flat across maturities (i.e., slowly decreasing in the data and moderately increasing

in the model), the model can replicate the downward sloping feature of implied kurtosis, al-

most perfectly. As one might expect, there is more heterogeneity in the data, as evidence but

larger standard deviations. Nonetheless the ranges of the variables compare quite favorably.

Table 4: Model free risk-neutral moments

The table compares summary statistics for model free risk-neutral skewness and kurtosis ex-
tracted from the data (left side) and from the simulated economy (right side). The sam-
ple contains all industrial firms with options trading on their equity between 1996 and
2019. Data is sampled at quarterly frequency. A total of 3,536 firms are included.

Data Model

90 days maturity
Aver. S.Dev 5th perc 95th perc Aver. St.Dev 5th perc 95th perc

Skewness -0.51 0.38 -1.15 0.01 -0.45 0.15 -0.73 -0.31
Kurtosis 3.76 1.28 2.66 5.84 3.79 0.46 2.76 4.35

180 days maturity
Aver. S.Dev 5th perc 95th perc Aver. St.Dev 5th perc 95th perc

Skewness -0.42 0.35 -1.01 0.08 -0.48 0.19 -0.71 -0.27
Kurtosis 3.32 0.93 2.28 4.83 3.44 0.59 1.94 3.94

360 days maturity
Aver. S.Dev 5th perc 95th perc Aver. St.Dev 5th perc 95th perc

Skewness -0.41 0.39 -1.03 0.20 -0.50 0.28 -0.73 0.03
Kurtosis 3.10 0.96 1.94 4.75 3.11 0.74 1.44 3.84

7.3. Cross-sectional regressions

As the firm parameters are determined by the calibration exercised, variability in the

simulated economy in terms of implied volatility shapes is dictated by the optimal choices

made by the firm relative to the realizations of the exogenous variables and the current
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state of capital and debt. Ultimately those choices determine the equity value relative to

the capital in place and optimal amount of leverage. We estimate here the same linearized

relationships that we presented in Section 4.3.

Table 5: Option prices and firm characteristics

The table presents regression results in the simulated economy, that mirrors those in the data
presented in Table 1. Left hand side variables include the risk-neutral skewness, the slope (i.e., log
difference of IV(1.2) and IV(0.8)), and the left slope (i.e., the log difference of IV(0.8)-IV(1)) of 90
day maturity options. Dependent variables include the ATM IV, the natural logarithm of assets
(Size), book leverage, profitability, the market to book ratio, and the ratio of the present value of
the real option to assets (PVRO2A). PVRO is constructed by decomposing the equity into the value
derived from keeping current capital level constant and the value derived from making adjustments,
by either investing or disinvesting. Since fixed effects are not very meaningful in simulated data,
reported coefficient are obtained from a simulated Fama-MacBeth regression, where slopes obtained
from cross-sectional regressions (all firms observations in one period in one simulated economy) are
averaged first through time and then through simulated economies. Standard errors are obtained
from considering deviations around the mean across simulated economies.

RN-Skew Slope Left slope

IV 0.41 0.41 -0.17 -0.24 -2.22 -2.09
(115.15) (119.50) (-9.09) (-13.69) (-85.53) (-85.82)

Size 0.01 0.00 -0.83 -0.92 -0.37 -0.32
(34.73) (5.35) (-71.93) (-73.73) (-32.72) (-29.45)

Book Leverage -0.03 -0.03 -0.20 -0.47 0.66 0.99
(-42.51) (-116.96) (-17.44) (-55.80) (63.51) (70.30)

Profitability 0.07 0.05 2.29 1.93 -4.04 -4.15
(16.30) (16.01) (20.47) (25.27) (-119.62) (-158.29)

M2B -0.07 -3.33 3.47
(-12.22) (-33.40) (77.62)

PVRO2A -0.05 -2.00 2.33
(-10.91) (-59.89) (62.26)

The results reported in Table 5 largely mirror those reported in Table 1. In the simulated

economy, the skewness of the risk-neutral distribution and the slope of the IV curve are

negatively related to leverage, as in Toft and Prucyk (1997), and to the value of the real

option, whether that is proxied by the market to book ratio, or measured exactly by the

present value of the real option, which we obtain in the model by separating the contribution

to the equity value of assets in place and of future investments and disinvestments.

8. Conclusions

Traditional option pricing models often requires very strong assumptions about investor

preferences and the dynamic of equity prices. We show that equity options can be priced in
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a production economy where we do not make strong exogenous assumptions about equity

and volatility. In our set up the relation between risk and value arises endogenously through

a dynamic sequence of optimal decisions that maximize the value of the firm. We derive

option prices that match many properties of those observed in the cross-section of US equities

starting from a different set of assumptions that specify the functional forms of corporate

trade-offs.

Our approach is not a better option pricing model, but rather an attempt to provide a

link between fundamentals and derivative pricing. We think that such link is important as

it relates the primitives of the most successful finance models (i.e., those that price financial

derivatives) to a large body of well understood economic mechanisms that describe the

decision-making process within a typical firm.

Ultimately, we hope to provide an explanation for why option prices contain forward

looking information about stock prices and corporate policies, despite being classically de-

rived in models where such links should be uninformative unless one assumes some form of

market segmentation.
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A. Appendix tables and figures

Table A1: Option prices and observable characteristics

The table shows regression results of several features of option prices against size, book leverage,
market to book ratio, profitability return, and ATM IV, the growth option variable of (GO), the
six months cumulative return, and operating leverage (defined as ...). The left hand side variable
is the risk-neutral skewness of 90 day maturity options (Panel A), 180 day maturity options (Panel
B), and 360 day maturity options (Panel c). We report parameter estimates and standard errors
clustered at the firm level. Regressions include time and firm fixed effects. The sample contains all
non-financial firms with options trading on their equity between 1996 and 2019. Data is sampled
at quarterly frequency. A total of 3,536 firms are included.

Panel A: RN-Skew 90 day maturity

(1) (2) (3) (4) (5)

IV 0.13 0.13 0.13 0.13 0.13
(25.39) (25.49) (25.22) (20.11) (25.02)

Size -0.11 -0.07 -0.11 -0.12 -0.11
(-6.97) (-4.77) (-7.33) (-6.52) (-6.94)

Leverage -0.02 -0.02 -0.02 -0.02 -0.02
(-3.02) (-3.07) (-3.12) (-2.74) (-2.99)

Profitability 0.01 -0.04 -0.01 0.01 0.01
(3.15) (-6.95) (-2.42) (3.59) (3.15)

M2B -0.08 -0.07 -0.08 -0.08
(-15.02) (-13.78) (-12.30) (-15.16)

GO -0.05 -0.03
(-11.42) (-7.26)

Return6 -0.04
(-18.80)

Operating Leverage 0.00
(0.28)

Adjusted-R2 0.50 0.50 0.50 0.51 0.50
FE R2 0.48 0.48 0.48 0.48 0.48
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Panel B: RN-Skew 180 day maturity

(1) (2) (3) (4) (5)

IV 0.16 0.16 0.16 0.16 0.16
(32.72) (32.80) (32.64) (28.22) (31.98)

Size -0.11 -0.08 -0.11 -0.11 -0.11
(-7.92) (-5.80) (-8.19) (-7.10) (-7.86)

Leverage -0.01 -0.01 -0.01 -0.01 -0.01
(-2.52) (-2.54) (-2.59) (-2.48) (-2.45)

Profitability 0.01 -0.03 -0.01 0.01 0.01
(2.74) (-4.84) (-1.21) (2.85) (2.83)

M2B -0.06 -0.05 -0.06 -0.06
(-12.49) (-11.68) (-10.57) (-12.71)

GO -0.04 -0.02
(-8.61) (-5.12)

Return6 -0.02
(-10.76)

Operating Leverage 0.00
(0.34)

Adjusted-R2 0.61 0.61 0.61 0.62 0.61
FE R2 0.57 0.57 0.57 0.58 0.57
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Panel C: RN-Skew 360 day maturity

(1) (2) (3) (4) (5)

IV 0.29 0.29 0.28 0.29 0.28
(32.61) (32.93) (32.92) (30.40) (32.30)

Size -0.08 -0.05 -0.08 -0.09 -0.08
(-3.49) (-2.51) (-3.61) (-3.47) (-3.45)

Leverage -0.01 -0.01 -0.01 -0.01 -0.02
(-1.62) (-1.40) (-1.55) (-1.49) (-1.81)

Profitability 0.01 -0.02 -0.01 0.01 0.01
(2.18) (-3.09) (-0.67) (1.95) (2.29)

M2B -0.05 -0.04 -0.05 -0.05
(-7.42) (-6.50) (-6.60) (-7.56)

GO -0.04 -0.02
(-5.89) (-3.60)

Return6 -0.02
(-5.63)

Operating Leverage 0.00
(0.29)

Adjusted-R2 0.73 0.73 0.73 0.74 0.72
FE R2 0.65 0.65 0.65 0.66 0.65
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