
 

 

Working Paper 2305 Online Appendix    May 2023 
Research Department 
https://doi.org/10.24149/wp2305app 

Working papers from the Federal Reserve Bank of Dallas are preliminary drafts circulated for professional comment. 
The views in this paper are those of the authors and do not necessarily reflect the views of the Federal Reserve Bank 
of Dallas or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. 

Online Appendix to The Returns to 
Government R&D: Evidence from 

U.S. Appropriations Shocks 
 

Andrew J. Fieldhouse and Karel Mertens 
 
 

https://doi.org/10.24149/wp2305app


The Returns to Government R&D: Evidence

from U.S. Appropriations Shocks

Andrew J. Fieldhouse Karel Mertens

ONLINE APPENDIX

Contents

A Data Sources and Definitions 1

B Narrative Identification: Additional Background 3

C Impulse Responses: Robustness and Additional Results 7

C.1 Robustness: Role of the Narrative Identification Step . . . . . . . . . . . . . 7

C.2 Robustness: Role of the Orthogonalization . . . . . . . . . . . . . . . . . . . 8

C.3 Robustness: Additional Control Variables . . . . . . . . . . . . . . . . . . . . 8

C.4 Robustness: Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 11

C.5 Impact of a Defense R&D Shock on Other Productivity/Innovation Indicators 13

C.6 Responses of Private Labor and non-R&D Capital Inputs . . . . . . . . . . . 14

C.7 A Closer Look at the Public Infrastructure Response to a Nondefense Shock 15

D Estimation of Production Function Elasticity: Additional Results 18

D.1 SP-IV as a Regression in Impulse Response Space . . . . . . . . . . . . . . . 18

D.2 Simultaneous Confidence Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 18

D.3 Wald Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

D.4 Specification with Constant Elasticities . . . . . . . . . . . . . . . . . . . . . 21

A Data Sources and Definitions

Main data sources:

• F-TFP: FRB San Francisco Total Factor Productivity, see also Fernald (2012)

• BEA-NIPA: U.S. Bureau of Economic Analysis National Income and Product Accounts

• BEA-FA: U.S. Bureau of Economic Analysis Fixed Assets Accounts Tables

• NSCES: National Center for Science and Engineering Statistics,

– National Patterns of R&D Resources
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– Survey of Federal Funds for Research and Development, pre-1999 data from the

NSCES/NSF archives

All additions and subtractions involving quantities in chained dollars are based on the

Divisia index approximation to chained aggregates, see Whelan (2002). All real quantities

are expressed in 2012 dollars using implicit deflators.

Capital stock variables: Quarterly real capital stocks are valued at real cost and con-

structed using the perpetual inventory method using quarterly NIPA data on real investment

and initial capital stocks (year-end 1946) from the BEA-FA tables. Depreciation rates are

quarterly interpolations of annual depreciation rates in the BEA-FA tables.

• Government R&D Capital: Chained sum of (i) federal nondefense R&D capital

stock, (ii) federal defense R&D capital stock, and (iii) state & local R&D capital stock.

R&D capital includes the BEA-NIPA categories ‘research and development’ and ‘soft-

ware development’. Investment series are lines 22, 30, and 38 in BEA-NIPA Table

3.9.3 (converted to 2012 dollars using Table 3.9.5). Depreciation rates are lines 35, 52,

and 72 in BEA-FA Table 7.4 (converted to 2012 dollars using Table 7.3) divided by

prior year capital stocks in the same lines of BEA-FA Table 7.2 (converted to 2012 dol-

lars using Table 7.1). Government Nondefense R&D Capital and Government

Defense R&D Capital are constructed analogously using the relevant subcategories.

• Public Infrastructure Capital: Chained sum of structures and equipment capital

stocks for (i) federal nondefense and (ii) state & local governments. Investment series

are lines 28, 29, 36, and 37 in BEA-NIPA Table 3.9.3 (converted to 2012 dollars using

Table 3.9.5). Depreciation rates are lines 39, 40, 56, and 57 in BEA-FA Table 7.4

(converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in the

same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Defense Capital: Chained sum of defense structures and defense equipment capital

stocks. Investment series are lines 20 and 21 in BEA-NIPA Table 3.9.3 (converted to

2012 dollars using Table 3.9.5). Depreciation rates are lines 23 and 30 in BEA-FA Table

7.4 (converted to 2012 dollars using Table 7.3) divided by prior year capital stocks in

the same lines of BEA-FA Table 7.2 (converted to 2012 dollars using Table 7.1).

• Business Sector R&D Capital: Aggregate of BEA-NIPA categories ‘research and

development’ and ‘software development’ for the business sector based on the weights

and growth rates in F-TFP (‘wgt_r_and_d’,‘dk_r_and_d’,‘wgt_software’, and

‘dk_software’), cumulated and converted to 2012 dollars using BEA-FA Table 7.1.

• Total R&D Capital: Chained sum of the components of government R&D capital

and business-sector R&D capital.

• Total Public Capital: Chained sum of the components of government R&D capital,

public infrastructure capital and defense capital.
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Other variables:

• Variables from F-TFP: Business Sector TFP: utilization-adjusted total factor pro-

ductivity (F-TFP: ‘dtfp_util’); Capacity utilization: (F-TFP: ‘dutil’); Labor

Productivity: (F-TFP: ‘dLP’); Log-level variables are obtained as cumulative sums

of the annualized growth rates in the F-TFP dataset after dividing by 400.

• Potential Output: CBO estimate of potential real GDP. From 1949Q1 onward,

‘GDPPOT’ from FRED. Observations before 1949Q1 are from the replication files of

Ramey and Zubairy (2018).

• Stock market returns: Average of the cumulative sums of the equally weighted re-

turns for manufacturing (‘R_EW_Manuf’), high tech (‘R_EW_HiTec’), and health indus-

tries (‘R_EW_Hlkth’) from the Kenneth French Data Library (5 Industries Portfolios).

• Military News: ‘news’ in replication files of Ramey and Zubairy (2018) converted

to 2012 dollars by the implicit GDP deflator, divided by potential output.

• Patent Innovation Index: Quarterly version of the patent innovation index of Kogan

et al. (2017), from the replication files of Cascaldi-Garcia and Vukotić (2022).

• New PhDs in STEM: Total number of doctoral recipients in science and engineering.

Quarterly interpolation of annual data. Data for 1947-1957 is from the Historical

Statistics of the U.S. (Colonial Times to 1970), series H766-787. Data from 1958

onward is from the NCSES Survey of Earned Doctorates.

• Researchers: Total researchers (full-time equivalents), from the OECD Main Science

and Technology Indicators. Pre-2000 data is obtained from the replication files of

Bloom et al. (2020). Quarterly interpolation of annual data.

• Technology Books: Books published in the field of technology, constructed Alex-

opoulos (2011) and obtained from the replication files of Kogan et al. (2017).

B Narrative Identification: Additional Background

Figure B.1 depicts the narrative R&D appropriations changes separately for each agency,

before aggregation to nondefense versus defense R&D policy changes, as depicted in Figure

5 of the main text. The top four panels of Figure B.1 depict the R&D appropriations

shocks for nondefense expenditures, with NASA in panel (a), NIH in panel (b), NSF in

panel (c), and the nondefense functions of DoE in panel (d). The bottom two panels depict

the R&D appropriations shocks for defense expenditures, with DoD in panel (e) and the

nuclear security functions of DoE in panel (f). Appropriations shocks classified as exogenous

are again depicted in blue and those classified as endogenous (or too small to classify) are

depicted in red; and all R&D appropriations policy events are again measured in real dollars
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Figure B.1: Changes in R&D Appropriations by Federal Agency

(a) NASA (b) National Institutes of Health

(c) National Science Foundation (d) Department of Energy: Nondefense

(e) Department of Defense (f) Department of Energy: Defense

Notes: See Fieldhouse and Mertens (2023). Sample: 1947Q1–2019Q4.

per capita. The remainder of this section provides a brief overview of postwar federal R&D
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policy in relation to our narrative R&D appropriations shocks depicted in Figure B.1.

Unlike defense R&D, the federal government was barely investing anything in nondefense

research coming out of World War II, but that quickly changed during the Cold War.

Vannevar Bush, the Director of the Office of Scientific Research and Development during

the war, had urged President Roosevelt to build on the successes of wartime research and

expand the federal government’s role in supporting health and basic research for peaceful

purposes, a case spelled out in his famous report “Science–The Endless Frontier” (Bush

1945). The effort to create a new government agency to promote research eventually led to

the creation of the NSF in 1950, spurred on in part by the Soviet Union’s first atomic test in

1949 and growing concerns over scientific and technological competition with the USSR; real

appropriations for NSF-funded research surged in the late 1950s and early 1960s, as seen in

panel (c). President Eisenhower was also determined to re-purpose wartime nuclear fusion

breakthroughs to peaceful civilian uses—“Atoms for Peace” that could advance domestic

energy production and serve as a tool for strengthening alliances and promoting democracy

abroad; appropriations for nondefense energy research also jumped in the late 1950s and

early 1960s, as seen in panel (d). But as seen in panel (a), the Sputnik crisis, ensuing

creation of NASA, and JFK’s moon mission ushered in a new era, and federal nondefense

R&D spending per capita abruptly rose by an order of magnitude over FY1956-66.

This rapid growth in real appropriations for nondefense R&D activities quickly reversed

course in the late 1960s and early 1970s. Congress lost interest in appropriating funds for

NASA after the moon landing in 1969, as also seen in panel (a). And the increasingly

inflationary environment of this era resulted in budgetary restraint—including for R&D

activities—for most agencies, as seen in every panel of Figure B.1. But as is common,

emergencies and policy priorities of the day led to exceptions to the rule. Cancer research

was a major policy priority of President Nixon, who declared a “war on cancer” in 1971

and successfully pushed for increased NIH research funding, seen in panel (b). And the

1973-74 Organization of Petroleum Exporting Countries oil embargo led to the creation of

the Energy Research and Development Administration (ERDA) in 1974 and then the DoE

(which absorbed ERDA and several other agencies in 1977), accompanied by significant

increases in renewable and alternative energy research funding, as seen in panel (d); the

expansion in nondefense energy research was motivated by a mix of concerns about energy

inflation and national security. But during the Reagan administration, priorities for R&D

funding saw a pendulum swing away from civilian energy and other nondefense agencies

and toward defense R&D activities, as exemplified by panels (d) and (e). That said, after

initially being dismissive of the HIV/AIDS epidemic, President Reagan eventually prioritized

HIV/AIDS research and related NIH funding during his second term, as seen in panel (b).

The “Peace dividend” from the end of the Cold War led to a trend increase in nondefense

R&D spending during the presidencies of George H.W. Bush and Bill Clinton, with the one

notable exception of budget austerity and deficit reduction early in the Clinton adminis-
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tration. For the first time in decades, NASA found a White House advocate in President

George H.W. Bush, who announced an ambitious Space Exploration Initiative on the 20th

anniversary of the Apollo 11 moon landing and viewed the International Space Station as a

constructive, cooperative path forward with the Soviet Union as it careened toward dissolu-

tion; the corresponding increases in NASA appropriations in the late 1980s and early 1990s

are clearly seen in panel (a). The Clinton administration championed the human genome

project, both as a matter of science policy and realm of international competition, and

again turbo-charged NIH research funding with the 21st Century Research Fund initiative,

which had both an idealist and international competitiveness bent. Increased NIH funding

maintained some momentum early in the presidency of George W. Bush, particularly fol-

lowing the Anthrax terrorist attacks of 2001, and panel (b) shows substantial increases in

NIH appropriations throughout the late 1990s and early 2000s. The NSF also saw sustained

increases in appropriations for research, similarly motivated, during this period.

But increased homeland security spending following the 9/11 attacks, the invasions of

Afghanistan and Iraq, and multiple tax cuts led to budgetary pressures largely borne out

by nondefense discretionary spending, including R&D appropriations. Funding cuts ensued

for the NIH, and to a lesser extent NASA, later in the 2000s, as seen in panels (b) and

(a). The 2007-08 oil price shock, however, fueled increased funding for nondefense energy

research as the economy slid into the Great Recession, as seen in panel (d). Nondefense

R&D spending saw a broader brief resurgence early in the Obama administration as ARRA

increased funding for DoE, NIH, and NSF research as part of the fiscal stimulus response to

the Great Recession, as seen in panels (b), (c), and (d). But before long, partisan backlash

to swollen budget deficits and policy priorities of the Obama administration—epitomized by

the debt ceiling crisis, Budget Control Act of 2011, and subsequent sequestration spending

cuts—squeezed R&D appropriations in the early 2010s, as seen in all panels of Figure B.1.

Following a large increase in defense research during WWII, there have been three major

waves of sustained increases in defense R&D appropriations during this postwar sample, as

clearly seen in panel (e) and to a lesser extent in panel (f). Real funding per capita roughly

quadrupled throughout the 1950s and 1960s, spurred on by the Korean War (1950-1953)

and Sputnik’s launch (1957). The Sputnik “crisis” and related fears of technological gaps

with the Soviet Union—particularly an intercontinental ballistic “missile gap”—led to the

creation of the Advanced Research Projects Agency (now DARPA) and NASA, both estab-

lished in 1958. Defense R&D spending per capita roughly doubled in the 1980s, spurred

on by the Soviet invasion of Afghanistan, President Reagan’s election, and Reagan’s subse-

quent military buildup and Strategic Defense Initiative—the predecessor to today’s Missile

Defense Agency (MDA). And defense R&D spending per capita increased roughly 50 per-

cent during the George W. Bush administration, which revived fixation with developing

and deploying missile defense systems; the administration withdrew the U.S. from the Anti-

ballistic Missile (ABM) Treaty and turned the Ballistic Missile Defense Organization into
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the MDA in 2002, turbocharging its R&D budget. The 9/11 terrorist attacks and invasions

of Afghanistan and Iraq also led to huge increases in appropriations for DoD, including R&D

budgets, as the Global War on Terror and new realities of asymmetric warfare considerably

changed R&D objectives (e.g., development of military drones). Lastly, there was a more

minor, short-lived increase in federal defense R&D following the inauguration of President

Trump, who promised a “great rebuilding of America’s armed forces” and withdrew from

the Intermediate-Range Nuclear Forces (INF) Treaty. Political preferences and election out-

comes are partly responsible for this policy variation; these four waves of increased defense

R&D conspicuously started during Republican administrations (Eisenhower, Reagan, G.W.

Bush, and Trump).

Geopolitical shifts can also decrease the desirability or legality of defense R&D activi-

ties. Demobilization from the Korean War was accompanied with cutbacks in funding for

defense R&D appropriations in the mid-1950s (before the Sputnik crisis), as seen in panel

(e). And just as withdrawing from arms controls treaties opens the door to increase de-

fense R&D, nonproliferation treaties have often been followed by modest reductions in (now

disallowed) R&D activities for the development and testing of nuclear weapons. As panel

(f) underscores, R&D appropriations for DoE’s nuclear security functions fell shortly after

the ratification of the Partial Test Ban Treaty in 1963, Nuclear Non-Proliferation Treaty in

1968, Strategic Arms Limitation Talks Agreement and ABM Treaty in 1972, INF Treaty in

1988, Strategic Arms Reduction Treaty (START I) in 1991, START II in 1996, and New

START in 2010.1 In addition to nonproliferation treaties of that era, the Soviet Union’s

exit from Afghanistan (1988-89) and collapse and dissolution of the Soviet Union (1988-91)

contributed to a substantial decline in defense R&D and defense spending more broadly in

the 1990s, as seen in panels (e) and (f). Defense R&D again fell substantially throughout

the Obama administration, in part because of New START and pivot away from missile

defense initiatives, but also because of budget cuts from the Budget Control Act of 2011

and the subsequent sequestration spending cuts, as seen in panel (e).

C Impulse Responses: Robustness and Additional Results

C.1 Robustness: Role of the Narrative Identification Step

This section discusses the role of the narrative classification of the changes in federal R&D

appropriations as ‘exogenous’ or ‘endogenous’ for the impulse response estimates. Figure

C.1 replicates the baseline impulse responses of TFP to nondefense and defense shocks from

Figure 6 in the main text. The figure also shows estimates for the same specifications, but

using all changes in R&D appropriations rather than just those identified as ‘exogenous’ in

the narrative analysis. In this case, the zit variables in (2) contain all changes in appropria-

1Defense research did increase following the ratification of the Strategic Offensive Reductions Treaty in 2003, presum-
ably in part because the U.S. withdrew from the ABM Treaty.
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Figure C.1: Role of Narrative Classification

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations, see (1). ‘Exogenous Changes Only’ uses the orthogonalized narratively
identified measures as in the baseline specification described in the main text. ‘All Changes’ uses orthog-
onalized measures based on all changes in appropriations. Lazarus et al. (2018) HAR bands are for 95
percent confidence levels. Impulses are scaled to imply a 1 percent peak increase in the total government
R&D capital. Sample: 1948Q1–2021Q4.

tions shown in Figure 5, after orthogonalizing defense to nondefense appropriations and vice

versa, as in (1). Both the point estimates and confidence intervals for the TFP responses to

both the defense and nondefense R&D shocks are very similar when additionally using the

endogenous and smaller, unclassified changes in appropriations in the regressions.

C.2 Robustness: Role of the Orthogonalization

This section discusses the role of mutually orthogonalizing the narrative measures of ex-

ogenous changes in defense and nondefense R&D appropriations for the impulse response

estimates, as in equation (1) in the main text. Figure C.2 replicates the baseline impulse

responses of TFP to nondefense and defense shocks from Figure 6 in the main text. The

figure also shows estimates for the same specifications, but using all the raw changes in R&D

appropriations ∆aexo,it /Ki
t−4, i = D,ND as the zit in the local projections in (2) rather the

residuals in (1). As the figure shows, the point estimates and confidence intervals for the

TFP responses to both the defense and nondefense R&D shocks are very similar.

C.3 Robustness: Additional Control Variables

Figure 6 in the main text shows that including lags of the baseline set of controls xt reduces

the variance of the impulse response estimates to a nondefense R&D shock, but has otherwise
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Figure C.2: Role of Orthogonalization of the Narrative Measures

a. Nondefense R&D Shock

Business-Sector TFP

b. Defense R&D Shock

Business-Sector TFP

Notes: Estimates based on (2) using the measures of changes in federal nondefense (left panel) and defense
(right panel) R&D appropriations. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses are scaled to imply a 1 percent peak increase in the total government R&D capital. Sample:
1948Q1–2021Q4.

no major qualitative effects on the point estimates. This suggests that the controls do

not capture any important simultaneous influences on both the narrative measures and

future TFP that would threaten the causal interpretation of the estimates in the simpler

specification. Here, we consider a number of additions to the baseline set of controls to gain

further confidence in the causal interpretation of the positive TFP response to nondefense

R&D shocks. Panel (a) of Figure C.3 plots the impulse responses of business-sector TFP

to nondefense R&D shocks for these various additions. For reference, the figure repeats the

baseline estimates and the associated 95 percent confidence bands from Figure 6 in the main

text. Rows [2]-[11] in Table C.1 report the impulse response coefficients at horizons of 5,

10, and 15 years with HAR confidence bands in parentheses.

As mentioned in the main text, the baseline controls include capacity utilization to

capture possible business cycle influences. The first two expanded control sets each add

an alternative cyclical indicator: The headline unemployment rate or the output gap (the

percentage difference between real GDP and CBO potential output). Neither one has much

effect on the estimated TFP response to a nondefense R&D shock, and the TFP response

remains highly statistically significant at longer horizons (see rows [2]-[3] in Table C.1).

Replacing the utilization rate with either of these alternative cyclical indicators, or adding

them both at the same time, similarly has no major effect on the estimates (these results

are not reported).

It is possible is that R&D appropriations, despite accounting for only a small share of
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Figure C.3: TFP Impact of Nondefense R&D Shock, Robustness

(a) Additional Control Variables (b) Model Specification

Notes: Estimates based on (2) using the narrative measure of federal nondefense R&D appropriations.
Lazarus et al. (2018) 95 percent HAR confidence bands are for the baseline impulse responses. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4 (specifica-
tion with patent-based innovation index, 1949Q1–2010Q4).

the federal budget, are predictable by other tax and spending policies that may have inde-

pendent long-run effects on productivity. For instance, Antolin-Diaz and Surico (2022) find

that government spending shocks raise long-run TFP, Cloyne et al. (2022) find that tem-

porary tax cuts have long-run effects on TFP, and Croce et al. (2019) find that the public

debt-to-GDP ratio significantly influences the cost of capital for R&D-intensive firms and

productivity growth. The baseline controls include lags of cumulative nondefense appropria-

tions, government R&D capital, and the Ramey and Zubairy (2018) military spending news

variable. As these variables may not be sufficient to capture all relevant information about

fiscal policy, the next three expanded control sets add information about fiscal policy. In

turn, we add log cumulative appropriations for defense R&D, the log of the public infrastruc-

ture capital stock, and a set of broader fiscal policy indicators. The latter includes the log

of total real government consumption expenditures, the ratio of government debt to GDP

(based on the Market Value of U.S. Government Debt constructed by the Federal Reserve

Bank of Dallas), and the measures of average federal personal and corporate income tax

rates from Mertens and Ravn (2013). The addition of defense appropriations has no major

impact on the estimates, and the TFP response remains highly statistically significant (row

[4] in Table C.1). Adding public infrastructure capital induces a more front-loaded TFP re-

sponse that is somewhat more muted at longer horizons. The TFP response remains highly

statistically significantly at longer horizons (see row [5] in Table C.1). Controlling for lags

of a broader set of fiscal policy indicators also leads to somewhat smaller TFP responses at

longer horizons, but they nevertheless remain highly significant (see row [6] in Table C.1).
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The baseline controls include cumulative real stock returns in R&D-intensive industries

to capture any broad advance information about future technological developments. Next,

we add a broader set of financial indicators. Financial conditions could matter for several

reasons, for instance, by determining the relative attractiveness of long-horizon investments

in R&D, by summarizing additional forward-looking economic information with an influence

on both productivity and government R&D, or more generally by capturing additional types

of disturbances with potential effects on long-run productivity. We add the 3-month and

10-year Treasury rates, the log real S&P500 index, and the spread between BAA- and AAA-

rated corporate bonds to the controls (obtained from FRED and Shiller (2015)). As can

be seen from panel (a) in Figure C.3, these additional financial controls attenuate the TFP

response somewhat at horizons beyond eight years. The TFP response at longer horizons

remains highly statistically significant (see row [7] in Table C.1).

The next four specifications each in turn rotate in a number of additional variables that

conceivably could contain important independent information about future productivity:

Non-R&D capital in the business-sector, the Fernald (2012) measure of labor quality, the

patent-based innovation index of Cascaldi-Garcia and Vukotić (2022), and the relative price

of R&D from the NIPA data. Including non-R&D capital leads to somewhat smaller es-

timates of the TFP response in the longer run, while including the relative price of R&D

leads to estimates that are considerably larger. The addition of the indices for labor quality

or innovation do not have any major impact on the estimates. As rows [8]-[11] in Table

C.1 show, the estimates of the TFP response at longer horizons remain highly statistically

significant in each case.

C.4 Robustness: Model Specification

This section reports impulse response estimates of TFP to a nondefense R&D shock under

several additional alterations to the baseline specification in (2). Panel (b) in Figure C.3

plots the impulse responses along with the baseline estimates and their 95 percent confidence

bands from Figure 6 in the main text. Rows [12]-[15] in Table C.1 report the coefficient

estimates for the various alterations at horizons of 5, 10, and 15 years with HAR confidence

bands in parentheses.

The baseline specification uses p = 4 lags of all control variables. The first two robustness

checks consider shortening or lengthening the number of lags to p = 2 and p = 6, respectively.

As Panel (b) in Figure C.3 shows, reducing lag length from four to two quarters leads to

somewhat smaller TFP responses at horizon beyond 10 years; the long-run TFP responses

remain statistically significant at the 5 or 10 percent levels (see row [12] of Table C.1).

Increasing the lag length from four to six quarters makes the TFP response somewhat more

volatile, but the response at the end of the forecast horizon is very similar to the baseline

specification, and also remains highly significant (see row [13] of Table C.1).
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Table C.1: TFP Impact of Nondefense R&D Shock, Robustness

% Impact After

5 years 10 years 15 years

[1] Baseline 0.05
(−0.05,0.15)

0.18∗∗∗
(0.09,0.27)

0.24∗∗∗
(0.13,0.35)

[2] + Unemployment Rate 0.04
(−0.06,0.13)

0.20∗∗∗
(0.08,0.32)

0.28∗∗∗
(0.13,0.44)

[3] + Output Gap 0.06
(−0.06,0.17)

0.20∗∗∗
(0.09,0.30)

0.27∗∗∗
(0.13,0.42)

[4] + Defense R&D Appropriations 0.06
(−0.12,0.25)

0.22∗∗∗
(0.06,0.37)

0.18∗∗
(0.00,0.36)

[5] + Public Infrastructure Capital 0.09∗
(−0.01,0.18)

0.15∗∗∗
(0.06,0.25)

0.14∗∗∗
(0.06,0.22)

[6] + Other Fiscal Variables 0.06
(−0.08,0.20)

0.07
(−0.04,0.18)

0.18∗∗∗
(0.06,0.30)

[7] + Financial Variables 0.04
(−0.05,0.13)

0.11∗∗
(0.02,0.20)

0.18∗∗∗
(0.09,0.27)

[8] + Non R&D Capital 0.04
(−0.05,0.14)

0.08∗∗
(0.01,0.14)

0.16∗∗∗
(0.07,0.24)

[9] + Labor Quality 0.03
(−0.07,0.13)

0.16∗∗∗
(0.08,0.24)

0.24∗∗∗
(0.12,0.37)

[10] + Patent-Based Innovation Index 0.01
(−0.11,0.12)

0.18∗∗∗
(0.06,0.30)

0.28∗∗∗
(0.14,0.42)

[11] + Relative Price of R&D −0.00
(−0.14,0.14)

0.24∗∗∗
(0.09,0.39)

0.42∗∗∗
(0.16,0.68)

[12] Two Lags of Controls 0.07∗∗
(0.00,0.14)

0.16∗∗
(0.03,0.28)

0.16∗
(−0.01,0.34)

[13] Six Lags of Controls 0.19
(−0.06,0.45)

0.43∗∗∗
(0.21,0.66)

0.25∗∗
(0.06,0.44)

[14] Excluding Space 0.10
(−0.21,0.40)

0.19∗
(−0.02,0.39)

0.24∗∗
(0.02,0.47)

[15] Including Lags of Narrative Shock 0.07
(−0.04,0.19)

0.22∗∗∗
(0.12,0.32)

0.24∗∗∗
(0.16,0.32)

[16] Balanced Sample 0.04
(−0.07,0.15)

0.17∗∗∗
(0.08,0.25)

0.22∗∗∗
(0.12,0.32)

Notes: Estimates are based on (2) using the narrative measure of federal nondefense R&D appropriations.
Numbers in parentheses are 95 percent HAR confidence bands based on Lazarus et al. (2018). Stars ∗, ∗∗
and ∗ ∗ ∗ denote statistical significance at 10, 5, and 1 percent significance levels, respectively. Impulses
scaled to imply a 1 percent peak increase in government RD capital. Sample: 1948Q1–2021Q4 (specification
with patent-based innovation index: 1949Q1–2010Q4).

As discussed in the main text, the rapid expansion of government R&D expenditures

during the early stages of the space race is important for the precision of the estimates of

the production function elasticities and rates of return reported in Tables 1 and 2. Our

next robustness check analogously verifies the role of the early NASA R&D appropriations

for the estimated TFP response to a nondefense R&D shock. We remove the influence

of the early expansion during the space race by orthogonalizing the narrative measure of

exogenous nondefense R&D shocks not only to the defense R&D measure, but also to all

appropriations for NASA over the 1958–1963 period. Figure C.3b shows that the gradual rise

in TFP following a nondefense R&D shock is robust to excluding the space race episode.

Row [14] of Table C.1 shows that the long-run TFP response also remains significant at
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conventional levels, even though the confidence become notably wider.

The baseline set of controls includes four lags of the (log) of cumulative nondefense

R&D appropriations, but not lags of the (orthogonalized) narrative R&D measures them-

selves. Figure C.3b shows that additionally including these lags has very little effect on the

estimated TFP response and the associated confidence bands (see row [15] in Table C.1).

Finally, the inference formulas for SP-IV developed in Lewis and Mertens (2023) require

a balanced sample. The impulse response in Section 3 are instead estimated iteratively,

i.e. using the largest possible estimation sample for each horizon h. Figure C.3b provides

the estimated TFP response in the balanced sample, which leads to only relatively minor

differences with the baseline estimates. As seen in row [16] of Table C.1, the estimates

remain also highly statistically significant in the balanced sample.

C.5 Impact of a Defense R&D Shock on Other Productivity/Innovation

Indicators

Figure C.4: Impact of a Defense R&D Shock on Other Productivity/Innovation Indicators

(a) Labor Productivity (b) CBO Potential Output (c) Patent Innovation Index

(d) STEM Ph.D. Recipients (e) Researchers (f) Technology Books

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in defense R&D ap-
propriations, see (1). Lazarus et al. (2018) HAR bands are for 90 and 95 percent confidence levels. Impulses
scaled to imply a 1 percent peak increase in government R&D capital. Sample: (a),(b),(d):1948Q1–2021Q4;
(c):1949Q1–2010Q4; (e):1951Q1–2019Q4; (f):1956Q1–1997Q4. See Appendix A for variable definitions.

Figure 7 in the main text reports the impact of a nondefense R&D shock on various
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productivity measures and innovation indicators. Figure C.4 reports the impact of a defense

R&D shock on the same variables. Whereas a positive nondefense R&D shock consistently

leads to increases in all productivity and innovation indicators, the same is not the case

for defense R&D shocks. Figure C.4 shows a hump-shaped transitory decline in labor

productivity and no statistically or economically significant impact on potential output.

There also are transitory declines in the patent innovation index and the number of Ph.D.

recipients in STEM fields. The number of R&D researchers increases in the short run, but

declines in the longer run. There is no meaningful change in the number of technology

publications, except perhaps at longer horizons.

C.6 Responses of Private Labor and non-R&D Capital Inputs

Figure C.5 shows estimates of the responses of other private factor inputs following positive

shocks to nondefense (panel a) and defense (panel b) R&D appropriations. The measures

of private factor inputs are from Fernald (2012). The estimates are obtained from local

projections as in (2) in the main text, with the same baseline controls and four lags of each

outcome variable added as additional controls. As in Figures 6 and 7 in the main text, the

impulse responses are scaled to imply a one percent peak increase in the total government

R&D capital stock. The first row in Figure C.5 depicts responses of labor input adjusted

for labor quality (cumulative sum of ‘dhours’ + ‘dLQ’ in F-TFP, see Appendix A). The

second row shows the responses of the business-sector non-R&D capital stock, which consists

of all types of capital excluding R&D and software (nonresidential equipment and structures,

residential business structures, and non-R&D intellectual property).

The first row in Figure C.5 shows that a nondefense R&D shock leads to little change in

(quality-adjusted) labor input in the business sector at most horizons. Towards the end of

the 15-year forecast horizon, there is a decline in labor input that is marginally statistically

significant at one or two horizons. The response of labor input to a defense R&D shock is

somewhat volatile and imprecisely estimated, with none of estimates statistically significant

from zero at the 5 percent level.

The second row in Figure C.5 shows that, with a long delay, a nondefense shock leads to

a gradual and persistent increase in the business-sector non-R&D capital stock that is highly

statistically significant at horizons between 6 to 14 years. The peak increase in non-R&D

capital is roughly 0.2 percent and occurs after about 13 years. The response of non-R&D

capital to a defense R&D shocks shows some evidence of a transitory decline in the short

run, but is overall imprecisely estimated.

The final row in Figure C.5 shows the response of real GDP. A nondefense shock does

not lead to any economically or statistically significant change in real GDP in the short run.

In the longer run, real GDP increases by around 0.2 to 0.35 percent. The timing and mag-

nitude of the GDP response is overall similar to that of business-sector labor productivity
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or potential output, see Figure 7 in the main text.

C.7 A Closer Look at the Public Infrastructure Response to a Nondefense

Shock

Figure 9 in the main text shows that an increase in appropriations for nondefense R&D

leads to a rise in public infrastructure, and specifically in nondefense structures. In this

section, we present further decompositions similar to those in Figure 9 to better understand

the nature of the rise in public infrastructure after a nondefense R&D shock.

The first additional decomposition considers the response of various components of total

nondefense public capital by type and level of government. Figure C.6 shows that the

increase in public infrastructure after a nondefense shock is primarily driven by a rise in

structures funded by state and local governments (up to 1.19 dollars), although there is also

an increase in federal infrastructure spending on structures (up to 28 cents). Note that the

total increase does not exactly add up to the 1.58 dollar increase in Figure 9 because of

slight differences in the regression specifications (the lagged outcome variables yt−j on the

right hand side in (2) are different). The main text therefore reports the contribution of

state and local government structures as a percentage (1.19/(1.21 + 0.28) ≈ 0.8).

Figure C.7 provides a further breakdown of the state and local government infrastructure

response into various categories based on additional detail in the BEA Fixed Assets Accounts

(Table 7.1), with quarterly values obtained by interpolation of the annual source data. The

responses in this case are scaled to match the 1.21 peak increase in Figure C.6. As the

figure shows, the largest increase occurs in educational structures. There are also meaningful

increases in highways and streets as well as in power, water, and sewer systems. The change

in all remaining types of state and local government infrastructure (‘Other Infrastructure’)

are individually relatively small.

Figure C.8 provides a breakdown of the response of investment in structures by state

and local (S&L) governments according to the means of financing: Debt, federal transfers or

current surpluses (revenues less other spending). Note that, unlike in the previous figures,

the decomposition pertains to the flow (real gross investment in structures) rather than the

stock (the capitalized real cost value of structures). The decomposition is based on the

budget constraint identity aggregated across state and local governments using data from

the BEA (NIPA Table 3.3). The impulses are scaled to imply a unit peak increase in S&L

gross investment in structures.

Figure C.8 shows that, consistent with the response of the corresponding capital stock,

a nondefense R&D shock leads to a gradual rise in state and local investment in nondefense

structures. Investment peaks after about seven years, subsequently returns to prior levels,

and towards the end of the forecast horizons even dips slightly below the level predicted

in the absence of the nondefense R&D shock. Figure C.8 also shows that the investment
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Figure C.5: Labor and non-R&D Capital Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

b. Defense R&D Shock

Quality-Adjusted Labor

Non-R&D Capital

Real GDP

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). ‘Baseline’ includes additional lagged
controls described in the main text. Lazarus et al. (2018) HAR bands are for 95 percent confidence levels.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4.
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Figure C.6: Nondefense Public Capital

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in fed-
eral nondefense R&D capital. Sample: 1949Q1–
2021Q4.

Figure C.7: S&L Structures by Function

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a peak increase in in state and
local structures of 1.21 dollars, to match Figure
C.6. Sample: 1949Q1–2021Q4.

Figure C.8: Financing of S&L Investment in
Structures

Notes: Estimates based on (2) using the orthog-
onalized narrative measure of changes in federal
nondefense R&D appropriations, see (1). Impulses
are scaled to imply a unit peak increase in S&L
gross investment in structures. Sample: 1949Q1–
2021Q4.

boom is not financed by an increase in federal transfers to state and local governments. The

latter initially fall, and only revert to prior levels well after the peak in investment. For the

first couple of years, the rise in investment is accounted for by an increase in borrowing by

state and local governments. Between horizons of 4 to 10 years, the investment boom is

implicitly financed by a surplus in revenues relative to other state and local spending. The

17



main takeaway from Figure C.8 is that the rise in state and local investment in nondefense

structures does not appear to be driven by increases in federal grants to state and local

governments, for instance to increase spending on highways.

D Estimation of Production Function Elasticity: Additional Results

This section presents additional results for the estimation of the production function elas-

ticity of government R&D capital ϕ in Section 4 in the main text.

D.1 SP-IV as a Regression in Impulse Response Space

Figure D.1 provides the main intuition behind the SP-IV estimation of ϕ in (7) based on

the response to the orthogonalized narrative measure of nondefense R&D appropriations,

zND
t , using the specification in (2). The solid lines in the left panel show the response of

t̃fpt to a one standard deviation innovation in zND
t for three different values of η, and the

right panel shows the estimated response of kt, the government R&D capital stock. The

figure shows the response for the endpoints of Ramey’s (2021) plausible range, η = 0.065

and η = 0.12. To make the dependence on η visually clearer, the figure also shows the

response for a much higher value η = 0.39, which is the estimate in Aschauer (1989). The

SP-IV estimate of ϕ in each case is simply the OLS coefficient ϕ̂ in a regression (without

intercept) of the impulse response coefficients of t̃fpt in the left panel on those of kt in the

right panel. The dashed lines in the left panel show the resulting fitted values—ϕ̂ times the

impulse response of kt—that minimize the sum of squared residuals for each value of η. The

SP-IV regression framework thus estimates the structural parameter as the value of ϕ that

best fits the relationship between t̃fpt and kt along the impulse response trajectories. The

functional form in (7) imposes very specific assumptions on the lags between R&D spending

and the TFP effects. As Figure D.1 shows, the dynamics of the fitted TFP responses align

well with those of the actual TFP responses, such that the timing assumptions implied

by the structural equation appear to align well with the responses estimated in the local

projections.

SP-IV can make use of more than one set of impulse response coefficients for identi-

fication, e.g. to both defense and nondefense shocks, in which case the different impulse

responses are weighted by the inverse covariance matrix of the identifying innovations. The

SP-IV estimator also applies to structural equations with multiple endogenous regressors,

as in specification (9) in the main text, in which case it reduces to multiple regression in

the impulse response space.

D.2 Simultaneous Confidence Sets

For the specifications with two endogenous regressors, such as (9) or (11) in the main text,

the confidence intervals reported in Tables 1 and 2 are subvector confidence sets obtained
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Figure D.1: Illustration of the SP-IV Estimator

Response of t̃fpt
Response of kt

Notes: Solid lines show impulse response estimates (at one-year intervals) to a one standard deviation
innovation in the orthogonalized narrative measure of changes in nondefense R&D appropriations using
the baseline specification in (2) in a balanced sample. The SP-IV estimator ϕ̂ results from regressing the

impulse response coefficients of t̂fpt in the left panel on the impulse response coefficients of kt in the right
panel without intercept, see Lewis and Mertens (2023). The dashed lines in the left panel show the fitted

responses obtained by multiplying ϕ̂ by the response of kt in the right panel.

using the projection method, see for example Andrews et al. (2019). As an illustration, the

panels in Figure D.2 show the 68, 90, and 95 percent weak-instrument-robust confidence

sets for the full parameter vector [ϕND, ϕD] associated with the estimates reported in row

[6] of Table 1. The confidence intervals reported in Table 1 for ϕ̂ND (ϕ̂D) are the largest and

smallest values of ϕ̂ND (ϕ̂ND) across all values of ϕD (ϕ̂ND) that belong to the 95 percent

simultaneous confidence set. The simultaneous confidence sets are based on inverting the

KLM statistic of Kleibergen (2005). The latter is based on the score of the continuously up-

dated Anderson-Rubin statistic (or equivalently, the S-statistic of Stock and Wright (2000)

for GMM) as a function of ϕND and ϕD, see Lewis and Mertens (2023). The minimum of

the Anderson-Rubin objective does not correspond to the SP-IV point estimate, such that

the latter does not generally lie at the ‘center’ (or is even within) of the confidence sets. An

alternative estimator of (ϕND, ϕD) is the minimand of the continuously-updated Anderson-

Rubin objective function, which by construction lies at the ‘center’ of the confidence sets.

This continuously-updated estimator (CUE) is marked by the blue dots in Figure D.2. As

can be seen from the figure, the CUE estimators of ϕND are all very close to the SP-IV

estimates, whereas those for ϕD are marginally larger.

Figure D.3 shows the simultaneous confidence sets for the three remaining specifications

in Table 1 that include nondefense and defense capital separately (rows [7]-[9]). For brevity,

the figure reports only the confidence sets for the specifications that assume the interme-
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Figure D.2: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Intermediate η = 0.08 (b) Low η = 0.065 (c) High η = 0.12

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
row [6] of Table 1.

Figure D.3: Simultaneous Weak-Instrument Robust Confidence Sets

(a) Using Both Shocks (b) Excluding Space (c) All Appropriations

Notes: Confidence sets based on inverting the KLM statistic of Kleibergen (2005) for the specification in
rows [7]-[9] of Table 1 for η = 0.08.

diate value of the infrastructure elasticity, η = 0.08. As can be seen from the figures, the

CUE estimate is usually close to the SP-IV estimate, and always nearly identical for the

nondefense elasticity. The simultaneous confidence sets are also all very similar across the

specifications. The exception is the specification with the narrative measure that excludes

the large appropriations for the space race, see panel (b) in Figure D.3. For that specifica-

tion, the confidence sets have highly irregular shapes, and most values of either parameter

cannot be ruled at conventional levels of confidence.

D.3 Wald Inference

In the main text, inference for the SP-IV estimates is based on the weak-instrument robust

methods for GMM described in Kleibergen (2005). Lewis and Mertens (2023) show that

the SP-IV estimator is equivalent to a restricted 2SLS estimator in a system of equations,
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Table D.1: SP-IV Elasticity Estimates with Wald Inference

Public R&D Intermediate η Low η High η

Measure Instruments ϕND ϕ/ϕD ϕ/ϕND ϕ/ϕND

[1] Total Exo ND 0.12∗∗∗
(0.08,0.16)

0.12∗∗∗
(0.08,0.17)

0.11∗∗∗
(0.07,0.15)

[2] Total Exo ND, No Space 0.14∗∗∗
(0.05,0.23)

0.14∗∗∗
(0.05,0.24)

0.13∗∗∗
(0.04,0.22)

[3] Total All ND 0.11∗∗∗
(0.07,0.16)

0.12∗∗∗
(0.08,0.16)

0.10∗∗∗
(0.06,0.14)

[4] Total Exo D −0.30
(−0.86,0.25)

[5] Total All D −0.29
(−0.83,0.26)

[6] ND/D Exo ND 0.11∗∗∗
(0.07,0.16)

−0.01
(−0.33,0.30)

0.12∗∗∗
(0.07,0.16)

0.10∗∗∗
(0.06,0.15)

[7] ND/D Exo ND/D 0.10∗∗∗
(0.06,0.14)

−0.06
(−0.34,0.23)

0.10∗∗∗
(0.06,0.14)

0.09∗∗∗
(0.05,0.13)

[8] ND/D Exo ND, No Space 0.14∗∗
(0.03,0.24)

0.20
(−0.71,1.10)

0.14∗∗
(0.04,0.25)

0.13∗∗
(0.02,0.23)

[9] ND/D All ND 0.11∗∗∗
(0.07,0.15)

−0.02
(−0.33,0.29)

0.11∗∗∗
(0.07,0.15)

0.10∗∗∗
(0.06,0.14)

Notes: See notes to Table 1 in the main text. The only difference is that the confidence intervals are based
on the Wald formulas derived under the assumption of strong identification, see Lewis and Mertens (2023).

where the number of equations is equal to the number of impulse response horizons used

for identification. Under strong identification and otherwise standard assumptions, this

formulation of the SP-IV estimator leads to conventional Wald inference formulas. It is

well known that—when identification is weak—Wald inference can suffer from large size

distortions in small samples, and the simulations in Lewis and Mertens (2023) show that

this is also the case for the SP-IV estimator. Table D.1 shows the same point estimates

as Table 1 in the main text, but reports confidence intervals based on the conventional

Wald formulas. Qualitatively, the only specification for which there are large differences in

the inference results is the one in row [8], i.e. the specification with the narrative measure

that excludes the large appropriations for the space race. The Wald-based inference points

to estimates that are highly statistically significant, whereas the weak-instrument-robust

inference result leads to the conclusion that the instrument is uninformative.

D.4 Specification with Constant Elasticities

In specification (9) in the main text, the production function elasticities of defense and

nondefense R&D capital scale with their nominal shares in total government R&D capital.

The following specification instead imposes constant elasticities:

∆t̃fpt = ϕND

(
s̄ND∆kND

t

)
+ ϕD(1− s̄ND)∆kD

t +∆wt(D.1)
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Table D.2: Government R&D Production Function Elasticities
Alternative Specification

Public R&D Intermediate η = 0.08 Low η = 0.065 High η = 0.12

Measure Instruments ϕ̂/ϕ̂ND ϕ̂/ϕ̂D ϕ̂/ϕ̂ND ϕ̂/ϕ̂ND

[1] ND/D Exo ND 0.07∗∗
(0.02,0.13)

0.16
(−0.43,0.47)

0.07∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

[2] ND/D Exo ND/D 0.08∗∗
(0.01,0.13)

−0.04
(−0.33,0.37)

0.09∗∗
(0.01,0.13)

0.08∗∗
(0.00,0.12)

[3] ND/D Exo ND, No Space 0.16
(−2.00†,0.11)

−0.23
(−0.98,2.00†)

0.16
(−2.00†,0.11)

0.15
(−2.00†,0.10)

[4] ND/D All ND 0.07∗∗∗
(0.02,0.13)

0.13
(−0.41,0.43)

0.07∗∗∗
(0.02,0.13)

0.06∗∗
(0.01,0.12)

Notes: Rows [1]-[4] show SP-IV estimates of ϕND (nondefense) and ϕD (defense) in (D.1). All specifi-
cations include the baseline set of lagged controls described in Section 3. Numbers in parentheses are
weak-instrument robust confidence intervals at the 5 percent significance level based on inverting the KLM
statistic of Kleibergen (2005). Test inversion is limited to a grid with endpoints −2 and 2, † denotes intervals
constrained at these endpoints. Subvector inference is based on the projection method. ∗, ∗∗ and ∗∗∗ denote
statistical significance at 10, 5 and 1 percent levels respectively. ‘Exo ND/D’ denotes the orthogonalized
narrative measure of exogenous changes in nondefense/defense R&D appropriations. ‘All ND/D’ denotes
the orthogonalized series of all changes in nondefense/defense R&D appropriations, ignoring our narrative
classification. ‘No Space’ indicates that the instrument is also orthogonalized to all changes in space appro-
priations between 1958 and 1963.

We multiply the regressors by the average shares, s̄ND and 1 − s̄ND, over the estimation

sample, such that the estimates are on a comparable scale to those reported in Table 1 in the

main text. The estimation results based on (D.1) are reported in Table D.2. The estimates

can be multiplied by s̄ND ≈ 0.5 to obtain the elasticities with respect to ∆kND
t and ∆kD

t .

The main difference with the results in the main text is that the point estimates for ϕND

are smaller. The only exception is in row [3], but this is also the specification for which the

estimates are very imprecise. Ignoring the results in row [3], the point estimates of ϕND are

around 0.07, as compared to 0.12 under the specification discussed in the main text. The

estimates of ϕND are relatively precisely estimated (except in row [8]), and they are highly

statistically significant. Just as in the main text, the estimates of ϕD vary considerably

across the specifications. They are always imprecise and never statistically distinguishable

from zero.

The difference in the estimates of ϕND between the specification in equation (9) and the

one in (D.1) is not too surprising, given that the share of nondefense R&D varies considerably

over the estimation sample. Given that the stock of nondefense R&D capital is small in the

beginning of the sample, the log differences ∆kND
t are very large early on, which leads to

lower overall estimates of ϕND. Weighting by the shares as in the baseline specification (9)

in the main text attenuates the influence of these early observations, and should therefore

lead to more accurate estimates for the whole sample.

Even if one would prefer the lower estimates in Table D.2, they do not change the overall
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conclusion that the rate of return on nondefense government R&D is very high. Dividing

the estimates in rows [1],[2] and [4] of Table D.2 by 0.06 (the average ratio of government

R&D capital to GDP), the implied rates of returns range from 100 to 150 percent.

Finally, note that the point estimates of ϕND in row [3] of Table D.2 lie outside of the

reported weak-instrument-robust confidence intervals. As explained in Appendix D.2, this

is possible with the inference methods based on Kleibergen (2005).
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