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1. Introduction

A long tradition in the literature on monetary policy and oil prices has been to assume that

the relative price of oil is exogenous to the model being considered.1 One of the motivations

for this setup was the view that exogenous supply shocks, particularly due to OPEC, were

the fundamental driver of oil prices. Kilian (2009), however, has provided evidence that

demand shocks are also important in determining the price of oil, and that macroeconomic

aggregates may respond differently to these shocks even though they also cause the price of

oil to increase.

This raises an interesting question about whether or not monetary policy should respond

differently to a rise in the price of oil driven by demand rather than supply. One way to

answer this question is to solve for an optimal monetary policy and examine the impulse

response functions of interest rates and inflation variables to see if they differ in important

ways in response to supply and demand shocks. The approach taken in this paper is to

consider the optimal responses that come from a welfare maximizing policy done from the

timeless perspective with a non-distorted steady state.

For this type of optimal policy, Bodenstein, Erceg, and Guerrieri (2008) showed that when

wages and prices are sticky an exogenous supply shock brings about a rise in core inflation

and a decrease in nominal wage inflation. The supply shock reduces the marginal product of

labor so the real wage should fall, and higher core inflation helps bring about this adjustment.

Echoing the results provided in Aoki (2001), there is no explicit attempt to stabilize the price

of oil because it is a flexible price. As such, there is no distortion associated with changes

in that price and, therefore, no reason to stabilize the inflation rate of that price. As a

consequence, there is also no explicit attempt to stabilize CPI inflation.

In this paper, I show that there are fundamental differences in the optimal responses when

the increase in the price of oil is due to a productivity-driven demand shock instead of a

supply shock. While core inflation initially rises in response to an exogenous oil supply shock,

it falls in response to the demand shock. Even though the productivity shock drives up the

price of oil, on net it increases the marginal product of labor, the opposite of what occurs

with the supply shock. This calls for core inflation to decrease so as to help push the real

wage up.

1Examples of this approach include Leduc and Sill (2004), Dhawan and Jeske (2007), Blanchard and Gali
(2010), and the previous version of this paper, Plante (2009). Further examples of the exogenous price
assumption can be found in literature that explores how oil prices affect the macroeconomy, including, but
not limited to, Finn (2000), Rotemberg and Woodford (1996), and Kim and Loungani (1992). Some recent
work has begun to model endogenous oil prices, including Bodenstein, Erceg, and Guerrieri (2008), Nakov
and Pescatori (2010).
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Some important differences remain even in the simpler case when wages are flexible. While

core inflation is perfectly stabilized regardless of the shock, the nominal interest rate adjusts

quite differently. In response to the demand shock the rate rises, but it falls in response to

the exogenous supply shock.

The welfare implications of some alternative policy rules that stabilize core inflation, CPI

inflation, or nominal wage inflation are also examined. Policy rules that stabilize core or

nominal wage inflation produce relatively minor welfare losses in all of the cases considered,

so long as the response to inflation is not too weak. The costs of stabilizing CPI inflation,

however, depend upon the relative importance of supply and demand shocks. When pro-

ductivity shocks are the sole driver of oil prices, stabilizing CPI inflation performs relatively

well. When exogenous oil supply shocks drive the relative price of oil, however, this policy

produces high losses compared to stabilizing core inflation or nominal wage inflation.

The final contribution of this paper is to take the model’s predictions about monetary

policy to the data using a modified version of the VAR introduced in Kilian (2009). The

modified model can identify exogenous oil supply shocks, demand shocks driven by global

economic activity, and a demand shock driven by unexpectedly strong economic activity in

the United States. Data from the post-1986 era is used to estimate the model.

Impulse response functions from the VAR show minimal movements in core inflation in

response to both the exogenous supply shock and the shock to U.S. real GDP. An oil supply

shock causes a rise in core inflation of about 10 basis points in the first month. In response to

the demand shock, core inflation initially falls by a trivial amount. But, the initial responses

and the ones following that are not statistically different from 0 for either shock.

The federal funds rate adjusts differently in response to the two shocks. The month to

month changes are small, but the cumulative impacts show the federal funds rate falling in

response to the exogenous supply shock but increasing in response to the demand shock.

These results are similar to the findings in Kilian and Lewis (2011), which showed that

the federal funds rate had a tendency to fall in response to a supply shock and increase in

response to a demand shock driven by global economic activity.

Interestingly, the movement in the funds rate is qualitatively similar to the response the

theoretical model predicts should occur when the central bank stabilizes core inflation. This

finding suggests that monetary policy has effectively distinguished between different shocks

that affect the price of oil and successfully stabilized core inflation. While this may not be

the fully optimal policy in response to both shocks, the losses predicted by the theoretical

model under this policy are relatively small in nature.
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The rest of the paper is organized as follows. Section two outlines the model. Section

three presents the results about the optimal policy and the policy rules. Empirical results

are presented in section four. Section five concludes.

2. The Model

The model used is a New Keynesian model modified to incorporate firm and household

demand for oil, capital accumulation, and an exogenous oil supply. The following exposition

introduces those equations necessary for understanding the special features of the model or

the results presented in later sections. All other equations and derivations are relegated to

the technical appendix.

2.1. Production. There is a continuum of firms of measure 1 in the intermediate goods

sector, with firms being indexed by i. Each firm produces a specific good, denoted by yit,

which is sold at price pit. The final good, Yt, is produced using the intermediate goods under

the standard assumptions. The elasticity of substitution between the various intermediate

goods is given by θ, with θ > 1.

In this model the price of the final good, Pt, is also the price of the final, non-oil con-

sumption good and is therefore referred to as the core CPI. The equation for core inflation

is

Πt =
Pt
Pt−1

. (1)

The final good is the numeraire so all nominal variables are deflated by Pt and these are

referred to as real variables.

In the intermediate goods sector, each firm i uses capital, kit, an aggregated labor input,

hit, and oil, ofit to produce yit. The real prices of capital, labor, and oil are denoted as Rt,

Wt, and P o
t , respectively. Technology is CES and the functional form is

yit = A

[
a1 (zthit)

η−1
η + a2o

f η−1
η

it + a3k
η−1
η

it

] η
η−1

,

where η is the elasticity of substitution between the inputs, A a scaling parameter, and a1, a2,

and a3 are distribution parameters. The variable zt is a temporary productivity shock. The

first order conditions for the inputs come from solving the usual cost-minimization problem.

The real unit cost function for this technology is

φt =
1

A

[
aη1

(
Wt

zt

)1−η

+ aη2P
o 1−η
t + aη3R

1−η
t

] 1
1−η

. (2)
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The assumption that there is no factor specificity at the firm level implies that the unit cost

function is taken as given by firms in the intermediate goods sector.

Price setting follows Calvo (1983) in that only a set fraction of firms change their prices

each period, with the probability of a price remaining fixed given by ω. Firms that are able

to change their price do so by solving the standard profit maximization problem, given by

max
pit

Γit = Et

∞∑
j=0

ωj
βjλt+j
λt

[
(1 + τ p)

(
pit
Pt+j

)1−θ

Yt+j −
(
pit
Pt+j

)−θ
φt+jYt+j

]
, (3)

where β is the discount factor of the representative household and λt is equal to the marginal

utility of aggregate consumption. In line with Bodenstein, Erceg, and Guerrieri (2008), I

assume the existence of a subsidy, τ p, which removes the distortion due to monopolistic

competition in the steady state.

2.2. The Labor Input. Following Schmitt-Grohe and Uribe (2006) the labor input hit is

an aggregate of a continuum of labor types indexed by j. The labor types are imperfect

substitutes for each other with the elasticity of substitution given by θn > 1. Demand by

firm i for labor type j is denoted as hjit. The setup for producing hit from hjit is analogous

to the one used when producing Yt from yit. That is,

hit =

[∫ 1

0

h
j θn−1

θn
it dj

] θn
θn−1

.

The demand for labor type j by firm i is given by

hjit =

(
wjt
Wt

)−θn
hit,

where wjt =
w̃jt
Pt

is just the real wage of labor type j. The variable Wt is an aggregate real

wage index given by

Wt =

[∫ 1

0

wj 1−θn
t dj

] 1
1−θn

.

Since Wt is the real wage, nominal wage inflation is given by

Πw
t =

Wt

Wt−1
Πt. (4)

As with prices, only a set fraction of nominal wages change each period, with ωn being the

probability of a wage being fixed in the current period. A first order condition for the reset

wages comes directly from the agent’s optimization problem. As the job types are ex-ante

identical, all wages reset in the same period are equal in equilibrium. The optimal real wage
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choice is denoted as
w̃∗
t

Pt
= w∗t . Any real wage which is changed in period t is given by

wjt = w∗t ,

while wages that remain fixed are given by

wjt =
wjt−1
Πt

.

Note that the unchanged wages are deflated by core inflation because they are in real terms,

not nominal, and over time the real wage may rise or fall depending on what happens with

core inflation.

2.3. Aggregation. Aggregation is done linearly across firms and labor types. This in-

troduces two state variables, ∆t and ∆w
t , which measure price and real wage dispersion,

respectively. The equation for the price dispersion variable is

∆t =

∫ 1

0

(
pit
Pt

)−θ
di (5)

while the equation for real wage dispersion is

∆w
t =

∫ 1

0

(
wjt
Wt

)−θn
dj. (6)

These variables are important because price and wage dispersion bring about deadweight

losses through the inefficient use of the various goods and labor types. Optimal policy will,

therefore, focus on minimizing these distortions in order to reduce the welfare losses they

generate. This implies that there will be an emphasis on stabilizing core and/or nominal

wage inflation in response to shocks.

2.4. The Household. Utility from the final, non-oil consumption good, Ct, and from oil

products, Oh
t , is aggregated with a CES function(

C
ν−1
ν

t + κ2O
h ν−1

ν
t

) ν
ν−1

,

where ν is the elasticity of substitution between non-oil and oil consumption and κ2 is a

distribution parameter. Per period utility is given by
(
C

ν−1
ν

t + κ2O
h ν−1

ν
t

)( ν
ν−1)(1− 1

τ )

1 − 1
τ

− κ1
N

1+ 1
µ

t

1 + 1
µ

 ,
where τ is the intertemporal elasticity of substitution, µ is the wage elasticity of labor supply,

and Nt =
∫ 1

0
njtdj is aggregate labor supplied by the agent.
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For convenience, I re-write per period utility in terms of real aggregate consumption

expenditure, Xt = Ct + P o
t O

h
t . This can be done by setting up the indirect utility version of

the aggregator function.2 In this form per period utility is equal to(
Xt

PCPIt

)1− 1
τ

1 − 1
τ

− κ1
N

1+ 1
µ

t

1 + 1
µ

. (7)

The PCPI
t term is simply the CPI, P̃CPI

t , deflated by Pt. As the aggregator is CES the exact

equation for this term is

PCPI
t =

(
1 + κν2P

o1−ν
t

) 1
1−ν . (8)

CPI inflation is therefore

ΠCPI
t = Πt

[
1 + κν2P

o 1−ν
t

1 + κν2P
o 1−ν
t−1

] 1
1−ν

. (9)

As expected, CPI inflation consists of a core inflation component as well as a term that

represents, in a slightly complicated manner, changes in the relative price of oil. This is

clearer in the special case when the aggregator is Cobb-Douglas, in which case CPI inflation

is equal to

ΠCPI
t = Πt

(
P o
t

P o
t−1

)γo
,

where γo is the weight of oil products in the Cobb-Douglas aggregator.

In addition to a short-term nominal bond, I assume the existence of two other bonds:

a real bond indexed to the core CPI and a real bond indexed to the CPI. The first-order

conditions for these bonds provide the equations that link up the nominal interest rate with

the two real interest rates. These bonds are in net-zero supply and do not affect the results,

but their first-order conditions will be necessary to discuss the results in sections 3 and 4.

The agent’s budget constraint is

Xt +Bt +BCORE
t + PCPI

t BCPI
t + Ikt = (1 + τw)

∫ 1

0

wjtn
j
tdj +RtKt + Tt

+Γt +
It−1
Πt

Bt−1 +RCORE
t−1 BCORE

t−1

+PCPI
t RCPI

t−1 B
CPI
t−1 + P o

t O
s
t . (10)

As in Bodenstein, Erceg, and Guerrieri (2008), I assume the existence of a subsidy, 1 + τw,

which removes the distortion in the steady state due to monopolistic competition in labor

markets.

2This is done for expositional purposes only and has no impact on the results. Nor does the fact that the
non-oil consumption good is the numeraire.
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In the budget constraint Bt is real holdings of the nominal bond, It−1 is the nominal

return on that bond, Ikt is aggregate investment spending on capital goods, Γt is aggregated

real profits, T is lump sum transfers, and It−1 is the nominal return on the bond. Holdings

of the bond indexed to core inflation are denoted as BCORE
t and its real return denoted as

RCORE
t . The bond indexed to the CPI is denoted as BCPI

t and its real return is denoted as

RCPI
t . Note that since the numeraire is the non-oil consumption good, there is a PCPI

t term

multiplying holdings of the CPI-indexed bond.3

The law of motion for capital is given by

Kt+1 −Kt = Ikt − δkKt. (11)

2.5. Interest Rates on Bonds in the Model. The fact that the relative price of the

two consumption goods is not necessarily equal to 1 implies there are two ways to index

bonds to inflation in the model, and hence two different real interest rates. One is linked

to core inflation and the other linked to CPI inflation. This is different from the basic New

Keynesian model, where there is simply one real interest rate linked to the price of the final

good.

In the standard New Keynesian model with log preferences (τ = 1), the log-linearized first

order conditions for consumption, Ct, the nominal bond, and a real bond indexed to Pt are

given by

−Ĉt = λ̂t,

Ît = λ̂t − Etλ̂t+1 + EtΠ̂t+1,

R̂CORE
t = λ̂t − Etλ̂t+1

where λt is the multiplier on the household’s budget constraint, equal to the marginal utility

of consumption. Variables in hats are log-deviations of variables from their steady state

values. The first order condition for the nominal bond and the real bond can be combined

to provide the usual (log-linearized) Fisher equation which says that deviations in the nom-

inal interest rate are equal to deviations in the real interest rate and expected inflation.

Deviations in the real interest rate are driven by the growth rate of consumption.

For the model used here, assuming log preferences for simplicity, the first order conditions

for aggregate consumption expenditure, the nominal bond, the bond indexed to the core

3The technical appendix describes how to go from the nominal budget constraint to the real budget constraint,
denominated in terms of the final good / non-oil consumption good.
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CPI, and the bond indexed to the CPI are, respectively,

X−1t = λt, (12)

λt = βEt
Itλt+1

Πt+1

, (13)

λt = βEtR
CORE
t λt+1, (14)

λt = βEt
ΠCPI
t+1

Πt+1

RCPI
t λt+1. (15)

The log-linearized versions of these equations are

−X̂t = λ̂t,

Ît = λ̂t − Etλ̂t+1 + EtΠ̂t+1,

R̂CORE
t = λ̂t − Etλ̂t+1,

R̂CPI
t = λ̂t − Etλ̂t+1 + Et

(
Π̂t+1 − Π̂CPI

t+1

)
.

As in the standard model, the first order condition for the nominal bond and the bond

linked to the core CPI can be combined again to give the usual log-linearized Fisher equation,

Ît = R̂CORE
t + EtΠ̂t+1. (16)

There is also a Fisher equation linking up the nominal interest rate and the real return on

the bond indexed to the CPI,

Ît = R̂CPI
t + EtΠ̂

CPI
t+1 . (17)

Equations (16) and (17) imply that the model is still Wicksellian in that stabilizing in-

flation requires the nominal interest rate to track the real rate. But, the particular real

interest rate that needs to be tracked depends upon the inflation rate being stabilized. If

core inflation is being stabilized then the nominal interest rate should track RCORE
t , whereas

if CPI inflation is being stabilized then the nominal interest rate should track RCPI
t .

One important difference between the model in this paper and the basic model is that it is

not the growth rate of consumption itself which drives RCORE
t but instead the growth rate in

aggregate consumption denominated in terms of the non-oil consumption good. The growth

rate of the aggregate consumption basket, denominated in terms of the CPI, is linked toRCPI
t .

This suggests that intuition about consumption smoothing and the behavior it implies for

the real interest rate should apply to RCPI
t but may not apply to RCORE

t . The importance

of this will become clearer in section 3.
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2.6. Oil Supply. The supply of oil is given by an exogenous process,

lnOs
t = (1 − ρo)O

s + ρoO
s
t−1 + εot , (18)

where εot is a mean zero, i.i.d. shock with a standard deviation of σo. The assumption of an

exogenous supply of oil follows Bodenstein, Erceg, and Guerrieri (2008). Unlike that model,

there is just a temporary shock to the supply instead of a temporary and a (near) permanent

component.

The relative price of oil is determined endogenously by the market clearing condition,

Of
t +Oh

t = Os
t . (19)

2.7. Monetary Policy. Monetary policy is given by the Ramsey optimal solution or by a

simple Taylor-type rule. The Ramsey problem maximizes the expected sum of discounted

utility subject to all of the equilibrium equations in the model, such as the agent’s first order

conditions, the resource constraint, and the law of motions for the exogenous processes. The

optimal policy is done under full commitment from the timeless perspective. This problem

produces its own set of first order conditions which, along with the original equilibrium

conditions, provide a set of non-linear equations that can then be solved using standard

techniques.

For cases where the Ramsey solution is not used, monetary policy follows a simple Taylor

type rule of the form

ln(
It
I

) = απ ln(
Πt

Π
) (20)

where the parameters I, and Π are the steady state values of the nominal interest rate and

core inflation, respectively. Rules that replace Πt with Πw
t or ΠCPI

t are also considered.

As shown in the previous version of this paper, there was an inverse relationship between

the volatility of the variable in the rule and the calibration of απ. This continues to hold

in the model used here. Consequently, these policy rules can be considered as alternative

policies that focus on stabilizing the particular inflation variable in the rule.

2.8. Calculation of the Welfare Losses and Solution Method. Welfare losses are

calculated as the amount of aggregate real consumption required to produce the same welfare

in a model with sub-optimal policy as the Ramsey optimal policy. To make this clearer, define

per period utility under the Ramsey optimal solution as U(
Xr
t

PCPIt
, N r

t ) and in a non-optimal

solution as U(
Xn
t

PCPIt
, Nn

t ). Then the conditional welfare losses, λc, are implicitly given by

Et

∞∑
t=0

βt
{
U

[
Xn
t

PCPI
t

, Nn
t

]}
= Et

∞∑
t=0

βt
{
U

[
(1 − λc)

Xr
t

PCPI
t

, N r
t

]}
.
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As shown in Schmitt-Grohe and Uribe (2006) it is possible to derive an equation for λc. In

order to be able to distinguish the welfare implications of different policies it is necessary to

solve a second order approximation of the model. I use the method of Schmitt-Grohe and

Uribe (2004) and the code written by the authors in conjunction with that paper to solve

the model. Further details can be found in that paper.

2.9. Calibration. The model is calibrated to an initial steady state using a calibration that

follows Bodenstein, Erceg, and Guerrieri (2008) in most regards. Table 1 shows the values

for the model’s parameters. The elasticity of substitution between intermediate goods, θ,

and the elasticity of substitution between various labor types, θn, are both set to 6. Both the

probability of a price and a wage being fixed in any given period, ω and ωn, are set to .75. Log

preferences are used so τ is set to 1. The steady state inflation rate is the Ramsey optimal

steady state inflation rate. As this paper abstracts from money demand the the optimal

steady state gross inflation rate is 1. Real GDP is calibrated to unity and steady state real

aggregate consumption expenditure, investment spending, household demand for oil, and

firm demand for oil are set as percentage shares of GDP. Household and firm demand for

oil products are set to 5 percent of GDP and 2 percent of GDP, respectively. These roughly

match the averages found in NIPA data for energy usage by firms and households from 1987

to 2008.

The one significant departure in the calibration is the elasticity of substitution parameters,

ν and η. In Bodenstein, Erceg, and Guerrieri (2008) these are set to 1. Here, the elasticity

of substitution between Ct and Oh
t , ν, is set to .25. This makes Ct and Oh

t Edgeworth

compliments and ensures that the price elasticity of demand for oil products is fairly low.

The elasticity of substitution in production, η, is calibrated to set the compensated price

elasticity of demand for oil. Empirical studies tend to find fairly small sizes, in absolute

terms, for both this elasticity and other closely related elasticities. I calibrate the value of

η to .25 which sets the own price elasticity of oil to about −.25. The motivation for these

choices comes from the calibration of the shock processes.

The law of motion for the technology shock is

ln zt = ρz ln zt−1 + εzt , (21)

where εzt is an i.i.d white noise shocks with standard deviation σz. The parameters for the

oil supply process also need to be calibrated. The parameters ρz and ρo are set to .80. The

standard deviations of the shocks are set so that volatility of real GDP and the relative
11



price of oil in the model match that found in U.S. data from 1987 to the present.4 For the

model with sticky wages and prices, this led to a calibration of σo to .003545 and σz to .0175.

Without low price elasticities of demand these volatilities would have to unrealistically large

to generate sufficient volatility in the price of oil.

3. Theoretical Results

This section presents results for the optimal policy and the policy rules for the cases where

only prices are sticky and where both wages and prices are sticky. Comparing the results

from the two provides strong intuition about what drives the optimal policy in a very general

manner. It also gives a broader set of theoretical results to take to the data.

3.1. Optimal Policy with Flexible Wages. It is well known that when sticky prices are

the only distortion that there is no tradeoff between stabilizing inflation and the output gap.

It has also been shown that a policy that fully stabilizes inflation makes the equilibrium

nominal interest rate change one-for-one with changes in the real interest rate.5

These results also hold in the model used here. As discussed in Bodenstein, Erceg, and

Guerrieri (2008), and presented in a more general form in Aoki (2001), the inclusion of the

oil sector does not add any distortions to this model since the price of that good is flexible.

Since this price is flexible there is no reason to stabilize its inflation rate. This holds true

regardless if supply or demand shocks are driving the price of oil. The analysis, however, is

complicated by the fact that there are multiple inflation rates that could be stabilized and

multiple real interest rates in the model.

Since wages are flexible, the relevant inflation variable to be stabilized is core inflation.

This is because deviations in core inflation from its target level generate price dispersion,

which will lead to welfare losses. As policy is done from the timeless perspective, core

inflation is stabilized perfectly in response to all shocks.

Given that the optimal policy stabilizes core inflation, from equation (16) we can see that

the relevant real interest rate that needs to be tracked is RCORE
t , not RCPI

t . In equilibrium,

therefore, the log-deviations of the nominal interest rate will be given by

Ît = R̂CORE
t .

4The model is simulated and the simulated data is then logged and HP filtered. A different method would
lead to different calibrations for the volatilities but changing the volatilities does not impact the qualitative
features of the impulse response functions.
5See Woodford (2003) and the numerous references therein for more discussion on this feature of the model.
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The interesting question is whether or not RCORE
t responds differently to supply and

demand shocks. Figure 1, which plots the responses of the nominal interest rate and the two

real interest rates to a negative oil supply shock and a positive productivity shock, shows

that this is indeed the case. The top panel shows the deviations of It, the middle panel

RCORE
t , and the bottom panel RCPI

t . The shocks are one-standard deviation in size. The

responses have been annualized.

In response to a negative supply shock, the nominal interest rate is initially lowered and

remains below average for around two years. But, in response to the productivity shock the

rate is increased and remains above average for almost two years.

The movement in the nominal rate is being driven by the response of RCORE
t . To see what

drives RCORE
t more explicitly, note that the first order conditions for aggregate consumption

is given by

λt =
1

Xt

,

where Xt = Ct+P
oOh

t . This variable measures aggregate consumption expenditure, in terms

of the non-oil good. In response to a negative oil supply shock, Xt initially rises and then

falls overtime. This occurs because oil is demanded inelastically by the household, so that

spending by households, denominated in terms of the non-oil consumption good, rises.6 As

such, the multiplier falls initially and then rises over time, bringing about the behavior of

RCORE seen in figure 1.

This may seem at odds with the usual intuition that the agent would want to smooth

consumption over time in response to a shock like the supply shock. Such smoothing should

cause the real interest rate to increase. But, the key point to remember is that the interest

rate linked to the overall consumption basket is given by RCPI
t , not RCORE

t . As shown in

figure 1, RCPI
t rises in response to both shocks, as expected.

3.2. Policy Rules with Flexible Wages. Given that stabilizing core inflation is the opti-

mal policy, how costly would it be to pursue a different policy, say of stabilizing CPI inflation,

and would the results differ significantly if one shock or the other was more important in

driving oil prices?

To answer these questions, the welfare losses for the three simple policy rules introduced

earlier are calculated. This is done for three cases: one where both shocks hit the econ-

omy, one where only oil supply shocks hit the economy (σz set to 0), and one where only

productivity shocks hit the economy (σo set to 0).

6This does not imply that utility is higher for the household, since utility is given by Xt

PCPI
t

.
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Figure 2 plots the losses as a function of απ. The top panel shows the case with both

shocks, the middle panel the case with only supply shocks, and the bottom panel the case

with only the productivity shock.

Under all three cases, the rules that stabilize core inflation or nominal wage inflation

produce essentially zero welfare losses, so long as απ is away from the lower bound of 1.7

The rule that stabilizes CPI inflation, however, only performs well when productivity

shocks are the sole shock to hit the economy. Why is this so? Theoretically speaking,

stabilizing CPI inflation always produces welfare losses in this model since this policy forces

the core CPI to adjust in response to movements in the relative price of oil. How large these

losses are, though, depends upon how big the movements in the relative price of oil are.

When productivity shocks are the sole shock in the model, these price movements are

minute because firms use a fairly small amount of oil. Given this, the costs of stabilizing

CPI inflation are small. The cost of stabilizing CPI inflation, however, would rise if the

productivity shocks were more volatile, or if the firms used more oil to produce goods and

services.

3.3. Optimal Policy with Sticky Wages. As shown in Bodenstein, Erceg, and Guerrieri

(2008), sticky wages introduce a tradeoff between stabilizing inflation and the output gap in

this model. This tradeoff exists because a shock which affects the marginal product of labor

requires the real wage to adjust. When wages are flexible, it is costless to have nominal

wages adjust to ensure the real wage is at its optimal level. With sticky wages, however,

nominal wage movements generate their own welfare losses. These losses can be mitigated,

partially, through movements in core inflation. For example, any shock which requires the

real wage to fall optimally brings about a rise in core inflation.

Figure 3 shows the importance of this for the case of an oil supply shock. The black line

is for the case with flexible wages while the dashed line is for the case with sticky wages.

When wages are flexible, there is a sharp drop in wage inflation in the initial period of the

shock and no movement in core inflation. As predicted, with sticky wages core inflation rises

and there is a more muted response in nominal wage inflation.

An important finding in this paper is that the response to the productivity-driven demand

shock is not the same as the response to the supply shock. This can be seen in figure 4, where

the top panel plots the response of core inflation to the two shocks while the bottom panel

7In a previous version of this paper, Plante (2009), I showed that the volatility of the inflation variable
(around its target value) in the rule is inversely related to the value of απ, with the volatility becoming
essentially zero for larger values of απ. This holds in this model, as well, and explains why values of απ
closer to 1 cause larger welfare losses.

14



plots nominal wage inflation. Core inflation immediately rises in response to the supply

shock, while in response to the demand shock it falls. Similarly, the immediate impact of

wage inflation to the supply shock is down, but for the demand shock it is up.

The difference is because of the opposite impact the two shocks have on the marginal

product of labor, which determines the optimal response of the real wage and core inflation.

An exogenous supply shock reduces the marginal product of labor. This calls for a fall in

the real wage and higher core inflation. While the productivity shock raises the price of oil,

its net effect on the marginal product of labor is positive. This makes it optimal for the real

wage to increase in response to the demand shock and then eventually decline over time. In

order to accomplish this, the optimal policy calls for core inflation to decrease at first, and

then eventually rise for some length of time.

3.4. Policy Rules with Sticky Wages. Given that the optimal policy allows for non-zero

core inflation when wages are sticky, does this significantly change which policy rules perform

well? To answer this, I re-calculate the welfare losses generated by the three policy rules and

plot the losses as a function of απ in figure 5.

A visual inspection shows that the qualitative results are exactly the same as in figure

2. When supply shocks drive the price of oil, a rule that stabilizes CPI inflation performs

poorly. When these shocks are shut down and the demand shock drives oil prices, this rule

performs just as well as the other rules.

The reason for this finding, however, is slightly more nuanced than the previous case.

Under flexible wages, stabilizing CPI inflation performs poorly because it generates price

dispersion. Under sticky wages, the optimal policy itself generates some price dispersion, so

this explanation may not hold.

Indeed, it turns out that what drives the results is the impact that stabilizing CPI inflation

has on the real wage, not on price dispersion. More specifically, when oil supply shocks affect

the relative price of oil, stabilizing CPI inflation pushes the real wage in the wrong direction.

One way to see this is to re-examine the equation for CPI inflation under the Cobb-Douglas

assumption,

ΠCPI
t = Πt

(
P o
t

P o
t−1

)γo
.

Under the extreme case where CPI inflation is perfectly stabilized at its steady state level,

any rise in the relative price of oil forces the core CPI to adjust down. The catch is that

pushing the core CPI downwards pushes the real wage up, which is the wrong direction in

response to an exogenous oil supply shock. Nominal wages compensate for this by adjusting

more than they would under the optimal policy, leading to unnecessary welfare losses. The
15



stickier wages are relative to prices, the worse this policy will fare when supply shocks are

the main driver of oil prices.

Pushing the real wage up, however, is the correct choice when productivity shocks are the

sole driver of oil prices. In that case, rising oil prices require rising real wages. Consequently,

if productivity shocks drive the price of oil then a policy rule which stabilizes CPI inflation

performs just as well as the other two rules.

3.5. Sensitivity Analysis. In this section I conduct a sensitivity analysis by considering

two special cases of the model. In the first, household demand for oil products is shut down

so as to highlight the role that firm demand has on the optimal policy. This is followed by a

scenario where firm demand for oil is shut down so as to shed light on the role of household

demand on the optimal policy. All results are for the model with sticky wages and sticky

prices, and for brevity’s sake the impulse response functions are omitted.8

3.5.1. No Household Demand. Compared to the baseline model, the optimal policy results

are qualitatively similar when household demand for oil is abstracted from. As before, the

effect of both shocks on the marginal product of labor is in the opposite direction. The

oil supply shock drives up the relative price of oil, essentially reducing the demand for

labor by firms. The productivity shock, on the other hand, increases the demand for labor.

Consequently, in response to the supply shock core inflation rises and wage inflation falls

while a demand shock causes the opposite to occur.

3.5.2. No Firm Demand. The results for the productivity shock are the same with or without

firm demand for oil, as it increases the marginal product of labor. Therefore core inflation

falls and wage inflation rises.

An oil supply shock now impacts the marginal product of labor entirely through the

decisions of the household, and these are driven by whether or not oil and the non-oil

consumption good are complements or substitutes. It can be shown that the two goods are

Edgeworth complements when τ > σc and substitutes when τ < σc. The baseline calibration

therefore leads them to be complements, as τ is equal to 1 and σc equal to 0.25.

For the baseline calibration, an oil supply shock leads to the opposite responses in core

inflation and wage inflation compared to the model with both household and firm demand.

The supply shock forces consumption of the oil good to fall. Since the two goods are com-

plements, non-oil consumption must also fall. In equilibrium, this implies a fall in the

production of the final good and, consequently, a fall in the equilibrium quantity of labor.

8The impulse response functions are available upon request. Results for the model with flexible wages or for
other experiments are also available upon request.
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The optimal way to do this is to push up the real wage, which can be accomplished through

a drop in core inflation. In an alternative calibration where τ is 1 and σc is 1.25, so that

the two consumptions goods are substitutes, the results are the opposite with core inflation

rising and nominal wage inflation falling.

4. Empirical Results

The theoretical model makes predictions about the responses of several policy relevant

variables, including the nominal interest rate and the rate of inflation. To summarize, when

wages are flexible core inflation is stabilized at its target value and the nominal interest rate

falls in response to an exogenous supply shock but rises in response to a demand shock.

With sticky wages, core inflation rises in response to an exogenous supply shock but falls in

response to the productivity shock.

An interesting question to ask is to what extent these predictions might be found in the

data. This has been considered, indirectly, in two recent and important papers. Kilian

(2009) introduced an empirical model that allows one to identify an exogenous oil supply

shock, a global demand shock (essentially a demand shock for all commodities driven by

global economic activity), and an oil specific-demand shock. An extension of this model,

which incorporated the federal funds rate as a fourth variable, was used in Kilian and Lewis

(2011). There are many interesting findings in both publications but here I focus on those

results specifically related to the federal funds rate and the rate of inflation.

The findings of these papers was that the federal funds rate responds differently depending

upon the underlying shock driving the price of oil. The federal funds rate has a tendency to

fall when a supply shock hits, while a demand shock driven by global economic activity or

by some oil specific-demand shock causes the federal funds rate to rise. It was also shown

that the CPI was more affected by the demand shocks, because they appeared to have more

persistent affects on the price of oil than the supply shocks.

Several interesting questions, however, remain unaddressed. First, there are no results for

how core inflation responds to the different shocks. This is important because, in theory, it

is the behavior of core inflation that is relevant for discussing optimal policy. Second, the

empirical results do not, by themselves, provide an explanation for the different responses

seen in the federal funds rate. The theoretical model might provide a coherent story about

the empirical results. Finally, there is a question about whether or not the Federal Reserve

responds differently if the demand shock originates from unexpectedly strong economic ac-

tivity in the U.S. as opposed to a globally driven demand shock.
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To address these issues, I modify the empirical model first developed in Kilian (2009),

and later used in Kilian and Lewis (2011). In what follows, the main points of the original

VAR are summarized, followed by a discussion of the modifications made to the model and

the reasons for the modifications. The impulse response functions from this model are then

examined and discussed in light of the results from the theoretical model.

4.1. The Original Model. The VAR used in Kilian (2009) is written in the following form,

A0zt = α +
24∑
i=1

Aizt−i + εt. (22)

The data is monthly, from 1973:1 to 2007:12, and given by zt = (∆prodt, reat, rpot)
′ where

∆prodt is the monthly percentage change in world oil production, reat is a measure of

global economic activity constructed by Kilian, and rpot is the refiner’s acquisition cost of

oil deflated by the CPI. The data for world oil production comes from the Department of

Energy and measures production in thousands of barrels per day. In Kilian and Lewis (2011)

this model was extended by adding the federal funds rate (differenced) as a fourth variable

in the system.

The three structural shocks in the vector εt are defined, in order, as

ε
oil supply shock
t ,

ε
aggregate demand shock
t ,

ε
oil specific-demand shock
t .

A Cholesky decomposition is used to back out the structural shocks using the residuals.

The variables are ordered as listed in zt. This implies that world oil production responds to

both demand shocks with a one-month lag, and that world economic activity responds to oil

specific-demand shocks with a lag.

The assumption that the oil supply responds with a lag is grounded in the fact that

changing production levels in the oil industry is very difficult to do within a one month

window. Kilian (2009) argues that the assumption that economic activity responds with a

lag to the oil-specific demand shock is justified due the sluggish response of economic activity

seen in the data to changes in oil prices, in general. Note that this ordering also implies that

oil prices can respond in one months time to the other shocks, a quite reasonable assumption.

4.2. The Modified Model. Any attempt to match up the predictions of the theoretical

model with the data needs to take into account that the global demand shock in the original

empirical model does not directly map into the demand shock in theoretical model. Taking

this into account is important for at least three reasons. First, a demand shock originating
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in the United States need not always be associated with a demand shock driven by global

economic activity. Second, it would be a strong assumption to claim a priori that the

Federal Reserve responds equivalently to those two demand shocks. Finally, any demand

shock originating in the U.S. which, for whatever reason, is orthogonal to the global demand

shock would, in the original empirical model, get shuffled into the oil-specific demand shock.

My solution is to modify the model in several ways which should allow for a better match

between the empirical model and the theoretical model.

Let zt = (∆prodt, reat,∆lrgdpt,∆rpot,∆FFt, π
core
t )′, where ∆prodt is the monthly per-

centage change in world oil production, reat is Kilian’s measure of global economic activity,

∆lrgdpt is the log of Stock and Watson’s monthly real GDP for the U.S., first differenced,

∆rpot is the log of the refiner acquisition cost of oil deflated by the core CPI, first differenced,

∆FFt is the monthly change in the effective Federal Funds rate, and πcoret is the inflation

rate of the CPI excluding energy prices.9

The model is estimated with monthly data spanning from 1987:1 to 2008:6. This sample

is chosen for two reasons. First, there was a change in US monetary policy in the early

1980s. Second, there were also important changes in the oil market in the mid-1980s, with

one example being the collapse of OPEC. Starting in 1987 avoids having to deal with the

potential problems that might occur if there are significant breaks in the data generating

process due to one or both of those issues. Data from the recent crisis is excluded given the

atypical monetary policy that has been in place since then.

The form of the VAR is given by

A0zt = α +
5∑
i=1

Aizt−i + εt. (23)

Only 5 lags are included instead of the original 24. This is done for two reasons. First, the

sample is smaller while the number of variables included larger, so there are fewer degrees

of freedom available. Second, the LR test and the AIC test picked an optimal lag length

of 5 lags while the Schwartz criterion chose 1 lag as optimal. In the interest of capturing

a richer set of dynamics, 5 lags were chosen. Data from the end of 1986 is used in the

estimation process so useable observations run from 1987:1 to 2008:6, leading to a total of

258 observations.

9The model was also estimated using Stock and Watson’s measure of monthly real GDI, logged and first
differenced, instead of real GDP. The responses were similar in both cases. As an additional check the
model was also estimated using the monthly GDP series from Macroeconomic Advisers, available starting in
1992:04. The error bands were wider in this case due to the smaller sample, but qualitatively the responses
of core inflation and the federal funds rate remained similar.
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With the changes in zt, the structural shocks are now defined as

ε
oil supply shock
t ,

ε
global demand shock
t ,

ε
U.S. specific-demand shock
t ,

ε
oil specific-demand shock
t ,

εfed funds shock
t ,

εshock to core inflation
t .

A Cholesky decomposition, where the variables are ordered in the same way as they are

found in zt, is used to identify the structural shocks.

The justification for the ordering of the first two variables follows from the arguments

given in Kilian (2009). Ordering U.S. real GDP after global economic activity is done for

two reasons. First, this allows economic activity in the U.S. to endogenously respond to

shocks that affect the world economy, which by definition should include the U.S. It also

ensures that the structural shock to U.S. real GDP is due to unexpectedly higher activity

originating in the U.S., and not simply a spill over from world economic activity. Second, this

ordering ensures that a demand shock due to U.S. economic activity does not get shuffled

into the oil specific-demand shock.

With oil prices ordered after the economic activity variables, the shock to the price of

oil can again be interpreted as an oil specific-demand shock, as in Kilian (2009). The one

difference is that U.S. specific-demand shocks are specifically parceled out of this. The two

other shocks in the model are unimportant for the results of this paper and not discussed

further. The results presented are insensitive to the ordering of the federal funds rate or core

inflation.

4.3. Results. The impulse response functions for the oil supply shock and U.S. demand

shock are shown in figures 6 - 9.10 The responses are plotted over a 24 month period. In

all of the graphs the solid line is the point estimate, the dashed lines the one-standard error

bands, and the dots are the two-standard error bands. A response is defined as marginally

significant if 0 is outside of the one-standard error band and significant if 0 is outside of the

two-standard error band.

Figure 6 shows the responses due to a one-standard deviation shock to the supply of oil.

The unexpected decrease in the supply of oil causes several months of rising oil prices. Core

inflation initially rises, on an annualized basis, by about 10 basis points. This movement,

10Results for the other shocks are available upon request.
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however, is just marginally significant and all other other movements after it are not statisti-

cally different from 0. While the federal funds rate declines, this movement is only significant

starting about 5 months after the shock.

Some of the responses are choppy and the month to month movements can mask the

longer run implications of the responses. Figure 7, therefore, plots the cumulative responses

of the variables to the supply shock. From this viewpoint, there is a marginally significant

reduction in economic activity in the U.S. due to higher oil prices, similar to the findings

in Kilian (2009). The cumulative impact on core inflation is essentially 0. In figure 6, the

federal funds rate declined over a number of months. The cumulative effect of these declines

is a reduction in the rate that is marginally significant after 5 months, and very close to

being significant over the course of two years.

Figure 8 plots the responses to a positive shock to U.S. real GDP growth. Unexpectedly

strong growth in the U.S. brings about several rounds of increases in the real price of oil,

which are marginally significant in the first two months. While the point estimate of core

inflation shows some variation, none of the movements are statistically significant at any

horizon. The response of the federal funds rate to this shock is very different from the

exogenous oil supply shock. Instead of falling, there are a series of small increases over time,

some of which are statistically significant.

As with the supply shock, looking at the cumulative responses gives a better view of what

happens over time. Two results are statistically significant: the increases in the federal

funds rate and the higher growth in real GDP. The cumulative impact on the price of oil

is upwards, and this is marginally significant. The response of core inflation, while positive

according to the point estimate, is not statistically different from 0 at any point in time.

Quantitatively, the impulse response functions for core inflation are similar but there

are very different responses in the federal funds rate. Can the theoretical model provide

a reasonable story for these results? In the case of the demand shock, the answer is very

much yes. In response to the demand shock, the federal funds rate rises over time while

core inflation shows no statistically significant movements. This is exactly what the model

predicts should happen when monetary policy stabilizes core inflation in response to this

type of shock.11

Analyzing the supply shock is slightly more difficult. There is an initial rise in core

inflation, although this is barely significant. This is the response that would be optimal

if one believes wages need to be adjusted downwards through higher core inflation. But,

11The responses in figure 1 are from the model with flexible wages. The responses from the model with sticky
wages are qualitatively quite similar when core inflation is stabilized. The nominal rate rises in response to
the demand shock but is lowered in response to the supply shock.
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all movements in core inflation after the initial rise are not significantly different from 0.

Furthermore, the federal funds rate is, cumulatively, lower over the first two years. The

story behind these responses would be generally consistent with what the theoretical model

says monetary policy should do to stabilize core inflation.

Taken together then, after 1986 the Federal Reserve seems to have placed a strong emphasis

on stabilizing core inflation in response to both oil supply shocks and a demand shock that

is driven by unexpectedly strong economic activity in the U.S. Movements in the federal

funds rate show that the Federal Reserve has responded differently in response to the two

different shocks. This is despite the fact that both drive up the price of oil, and therefore

might naively be lumped together as an oil price shock.

There is one final issue regarding the empirical results worth addressing. Given the large

degree of wage and price stickiness often found at an aggregate level, stabilizing core inflation

in response to these two shocks is technically sub-optimal. Is this something to be concerned

about? The results from figure 5 show that this policy is fairly innocuous in welfare terms.

Even with sticky wages and prices, a policy rule that stabilized core inflation would produce

trivial losses for values of απ that have been found in the literature for U.S. monetary policy

after 1986.

5. Conclusions

This paper has examined optimal monetary policy in a New Keynesian model where the

relative price of oil is driven by both an exogenous supply shock and a productivity-driven

demand shock. When wages are flexible, the optimal policy keeps core inflation on target

regardless of which shock drives oil prices. The nominal interest rate falls in response to the

supply shock and rises in response to the demand shock.

When there is a tradeoff between stabilizing inflation and output, there are important

qualitative differences in the response of core inflation. This variable initially rises in response

to the supply shock but falls in response to the demand shock. This occurs because the supply

shock reduces the marginal product of labor while the productivity shock, while raising the

price of oil, on net raises the marginal product of labor. The optimal policy, since it uses

variations in core inflation to affect the real wage, consequently generates higher inflation in

response to the supply shock but lower inflation in response to the demand shock.

These predictions are taken to the data using a VAR that that can identify exogenous oil

supply shocks and a demand shock driven by unexpectedly strong economic activity in the

U.S. The impulse response functions show that the federal funds rate responds quite different

in response to the two different shocks. The federal funds rate is lowered in response to the
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supply shock while in response to the demand shock it is increased. In response to both

shocks core inflation responds minimally. There is some statistical evidence that it rises by

a small amount over the first month or two when there is an oil supply shock. But there

is no statistically significant movement in core inflation in response to the demand shock.

The behavior of the federal funds rate and core inflation is close to what the theoretical

model predicts should happen if the Federal Reserve is attempting to stabilize core inflation

in response to the two shocks.

The findings of this paper provide further evidence of the importance of distinguishing

between the source of the shock that affects the price of oil. With this in mind, one obvious

shortcoming of the present paper is that the model is essentially a closed economy model. As

such, it is useful for thinking about a certain sub-set of the shocks that could jointly affect

the U.S. economy and the price of oil. Clearly a useful avenue for future research would

be to construct a multi-country model where the implications of global demand shocks and

demand shocks originating in other foreign countries on U.S. monetary policy could be

explored. Given the size of this undertaking, though, this is left for future research.
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Figure 1. Optimal responses of nominal and real interest rates (flexible wages)
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Figure 2. Welfare losses for different rules under flexible wages: Both shocks
active (top), supply shock active (middle), productivity shock active (bottom).
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Figure 3. Optimal responses to a supply shock under flexible and sticky
wages: core inflation (top), wage inflation (bottom)
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Figure 4. Optimal responses of core inflation and wage inflation under sticky
wages: oil supply shock (top), productivity shock (bottom)

28



Figure 5. Welfare losses for different rules under sticky wages: Both shocks
active (top), supply shock active (middle), productivity shock active (bottom).
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Figure 6. Responses to oil supply shock, error bands in dashed black (1 s.e.)
and dots (2 s.e)
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Figure 7. Cumulative responses to negative oil supply shock, error bands in
dashed black (1 s.e.) and dots (2 s.e)
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Figure 8. Responses to US real GDP growth rate shock, error bands in
dashed black (1 s.e.) and dots (2 s.e)
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Figure 9. Cumulative responses to US real GDP growth rate shock, error
bands in dashed black (1 s.e.) and dots (2 s.e)
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Table 1. Baseline Calibration

Parameter Description Value
β Discount Factor .993
δk Capital Deprecation Rate .01785
ω Degree of Price Stickiness .75
ωn Degree of Wage Stickiness .75
Π Steady State Inflation 1
Y g Steady State Real GDP 1
X Aggregate Consumption to GDP Ratio .80
Oh Household Oil to GDP Ratio .05
Of Firm Oil to GDP Ratio .02
Ik Investment Spending to GDP Ratio .20
θ Elasticity of Substitution (Intermediate Goods) 6
θn Elasticity of Substitution (Labor Types) 6
µ Wage Elasticity of Labor Supply 1
ν Elasticity of Substitution between C and Oh .25
η Elasticity of Substitution in Production .25
τ Intertemporal Elasticity of Substitution 1
ρo AR(1) Coefficient of Supply Shock .80
ρz AR(1) Coefficient of Productivity Shock .80
σo Standard Deviation of Supply Shock .003545
σz Standard Deviation of Productivity Shock .0175
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