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ABSTRACT:  This paper investigates the forecasting accuracy of the trimmed mean inflation 
rate of the Personal Consumption Expenditure (PCE) deflator.  Earlier works have examined the 
forecasting ability of limited-influence estimators (trimmed means and the weighted median) of 
the Consumer Price Index but none have compared the weighted median and trimmed mean of 
the PCE.  Also addressed is the systematic bias that appears due to the differences in the means 
of inflation measures over the sample.  This paper supports earlier results that limited-influence 
estimators provide better forecasts of future inflation than does the popular measure of core 
inflation, PCE inflation minus food and energy; therefore, these limited-influence estimators are 
core inflation. 
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Introduction 

Over the past decade researchers have more closely examined the measurement and 

concept of core inflation, with the focus shifting from the consumer price index (CPI) to the 

Personal Consumption Expenditure deflator (PCE) since it is the Federal Reserve’s preferred 

price index.1  The PCE minus food and energy is often used to measure underlying or core 

inflation, while the weighted median or trimmed mean inflation rate have been largely ignored. 

Previous work by Smith (2004) focuses on CPI and PCE inflation, finding that the 

weighted median of each forecasts future inflation better than their respective minus food and 

energy inflation rates.  The analysis did not include a trimmed mean for the PCE since the 

research on the optimal trimming of the PCE was then unavailable.  Rich and Steindel (2005) 

recently examine the CPI and PCE but ignore the trimmed mean.2 

This paper tests which simple measure can best predict future PCE inflation or which 

measure is core inflation.  This definition is consistent with most notions of core inflation,3 for 

which limited-influence estimators perform best.  The use of prices excluding food and energy to 

track core inflation implies that supply shocks only come from the food and energy sectors.  

However, supply shocks can and do arise from other sectors (Ball and Mankiw, 1995) and when 

they do, they are often excluded on an ad hoc basis.  For example, in 1998 the tobacco litigation 

settlement pushed up inflation minus food and energy but the Fed (1999) did not want to react to 

this increase so it noted how inflation less food and energy would have been lower excluding 

tobacco prices.  The trimmed mean and weighed median omit unusually large price changes 

regardless of their origin. 

                                                 
1 The PCE has been used in the Federal Reserve’s inflation outlook since 2000.  The PCE may be a more desirable 
since it uses chain-type weights instead of fixed weights and  is more comprehensive than the CPI (Dolmas, 2005). 
2 The trimmed mean and weighted median are limited-influence estimators, which omit very high or low values. 
3 See Eckstein (1981), Bryan and Cecchetti (1994), Bryan, Cecchetti and Wiggins (1997), Quah and Vahey (1995) 
and the Bank of International Settlements (1999). 
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The paper expands the set of candidate measures for core inflation to include the PCE 

trimmed mean, which the Dallas Fed began to compute in 2005 (Dolmas, 2005).  Specifically, I 

conduct in-sample and out-of-sample forecasts comparing four candidate measures: PCE 

inflation, PCE minus food and energy inflation (PCEX), PCE weighted median inflation 

(PCEMED) and PCE trimmed mean inflation (PCETM) using several different models of 

inflation dynamics.  In addition, the paper addresses the issue of bias in the sample.4  Bias or the 

differences in the means must be corrected since it can affect the forecasting ability of the 

candidate measures when the variables have unit roots and are co-integrated. 

The paper finds that the trimmed mean forecasts future inflation well.  Together with 

Smith (2004), this provides evidence that adjusting for the bias yield better measures of core 

inflation.  One issue beyond this paper’s scope is using real-time instead of revised PCE data.  

While this would be more relevant, it is difficult to implement for several reasons.  First, the 

PCEX is only available since 1996.  Second, to compute a real-time weighted median or trimmed 

mean PCE inflation requires historical real-time component level data, which are unavailable. 

The rest of this paper is organized as follows.  Section 1 examines the in-sample 

prediction and Section 2 investigates the out-of-sample forecasts.  Finally, Section 3 concludes. 

2. In-Sample Prediction 

Using data from the Federal Reserve Bank of Dallas, I calculate the 1-month and 12-

month PCE and PCEX annualized inflation rates as percentage changes.5  Using the same 

underlying component level data, I compute the weighted median and trimmed mean PCE 

                                                 
4 Bias is the difference between the mean of the dependent inflation variable and the means of the independent 
inflation variables.   
5 See http://dallasfed.org/data/pce/index.html.  Detailed component level data are available upon request from the 
FRB Dallas.  Data vintage is April 2006.  See Dolmas (2005) for more details on the calculation of the weights. 
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inflation rates.  Each component’s weight every month is the average of the actual share of 

nominal expenditures in the current month and the hypothetical share assuming that the 

quantities from period t+1 were purchased at the prices given in period t.   

The components are ordered from the smallest inflation rate to the largest.  Then, the 

weighted median is calculated by finding the smallest MN  such that 

1

1

2
MN i

i
w


           (1) 

and then the weighted median is 

MNmedian   

w is the weight; i indicates the component; and N = number of components = 186.   

Using Dolmas’ (2005) optimal trim of 19.4% in the lower tail and 25.4% in the upper 

tail,6  I calculate the trimmed mean PCE inflation rate for k = 1 and 12:   
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     (Dolmas, 2005). 

Many studies often compute 12-month trimmed mean by compounding the monthly 

trimmed means.  A more accurate method is to compute the year-over-year trimmed mean from 

the component level data by calculating the year-over-year component inflation rates and then 

finding the trimmed mean or weighted median.  This paper produces the year-over-year trimmed 

means from the component level data and does not compound the monthly trimmed means to 

obtain the annual trimmed mean.  Since Smith (2004) finds that the results are consistent using 

                                                 
6 Dolmas (2005) calculates the optimal trim under a variety of methods.  I use the trimming based on the “three 
equally likely” scenario, which is an average of the three trimming procedures he uses. 
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either approach, I use the more accurate year-over-year trimmed mean.  The dependent variable 

in the analysis is a k-period ahead inflation rate.7 

There are some differences among the candidate measures.  In Figure 1, the difference in 

the means of the candidate measures is noticeable, as discussed below.  There are also large 

differences in the variances of the measures.  It makes sense that the variance of the limited-

influence estimators (trimmed mean: 1.16 and weighted median: 1.15) would be smaller than 

that of PCE inflation (4.02) but it is surprising that the PCEX inflation rate’s variance (3.53) is 

large and close to that of the PCE inflation rate.  Given the popular notion that the PCEX 

removes supply shocks, it does not appear to remove much of the variation.8 

For each inflation series, I assume a unit root and co-integrating relationship between the 

dependent variable (k-period-ahead inflation) and the independent variables (year-over-year or 

monthly inflation rates).  The co-integrating relationship has a co-integrating vector of 1.  A unit 

root structure is consistent with the high degree of persistence in the data over the sample.9 

The sample begins in 1982 to examine forecasts over a single monetary policy regime.  

Different monetary policy regimes may affect which candidate measure is core inflation (Smith, 

2005).  Over the sample period (January 1982 –April 2005) the means of the candidate measures 

are not equal to the mean of the dependent variable.10  This bias needs to be corrected otherwise 

the candidate measure with its mean closest to the 12-month ahead inflation rate may have an 

advantage in forecasting because of the unit root and co-integrating relationships.11 
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is k-month ahead PCE inflation (k =12 for the in-sample and k = 12, 18 and 24 for forecasts). 

8 Swings in the PCEX inflation rate in 2001 largely owe to September 11 effects.  Omitting the September and 
October 2001 reading, the variance falls to 3.11, which exceeds those of the trimmed mean and weighted median. 
9 See Freeman (1998), Stock and Watson (1999), Smith (2004) and Rich and Steindel (2005) for more details. 
10 Equating the means of the independent variables to the dependent variable’s mean corrects the bias (Smith, 2004).  
11 The unit root and co-integration imply that the coefficients sum to one, obviating the need for a constant to absorb 
the difference in means. 
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In-sample results indicate that the trimmed mean is a better predictor of future inflation 

than the generally used PCEX inflation rate.    The simplest model is 

12, , 12 12 ,t t t t tx              (3) 

where x is PCE, PCEX, PCEMED or PCETM.  When PCE is the explanatory variable this model 

is a random walk.  Examining the simplest models where 12-month ahead PCE inflation rate 

( 12,t t  ) is predicted by the previous 12-month ( , 12t tx  )inflation rates among the price indexes 

considered shows that the traditional core inflation measure, PCEX, is not a good forecaster 

(largest sum of squared residuals (SSR)).  This accords with Smith’s (2004) conclusion that 

removing food and energy does not yield a good forecast of future inflation.  Table 1 reports the 

results for the non-bias adjusted and the bias-adjusted models and shows that the trimmed mean 

inflation rate may have more information for predicting future inflation.12 

The results using two candidate inflation measures as independent variables illustrate that 

the trimmed mean is important to prediction.  The regression is 

12, , 12 , 12 12(1 ) ,t t t t t t tx                  (4) 

where x is PCEX, PCEMED or PCETM and   is PCE inflation.  A combination of PCE 

inflation with either PCETM or PCEMED inflation has the smallest SSR.  The coefficient on the 

PCETM is .66 (.22) in the non-bias-adjusted regression and .85 (.21) in the bias-adjusted, which 

are not significantly different from one.  For the median, the coefficient is .72 (.16).  For the 

bias-adjusted results other runs indicate that the PCEX and PCEMED make a small contribution 

to prediction that should be explored further in models with more sophisticated dynamics. 

Using bias-adjusted data, I test the predictive power of two more models, comparing the 

forecasting accuracy of the four candidate measures in a distributed lag and exponential decay 
                                                 
12 The SSR for models using PCEX inflation are much larger than for the other explanatory variables.  In the first 
two years of the sample PCEX inflation rates are much higher than overall inflation rates, which yield large errors. 
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models.  In these models, monthly inflation rates are the independent variables and the 12-

month-ahead PCE inflation rate (  ) is the dependent variable.  The distributed lag regression is 

12, , 1 , 1 12(1 (1)) ( ) ,t t t t t t tx L Lx                (5) 

and the exponential decay model is  

2
12, , 1 1, 2 2, 3 12... ,t t t t t t t t tx x x                    (6) 

where x is the monthly PCE, PCEX, PCEMED or PCETM inflation rate.13  The results in Table 2 

indicate that the trimmed mean is the best predictor (smallest Akaike Information Criterion 

(AIC) or Schwarz Criterion (SIC)) of future inflation and the PCEX inflation rate is the worst. 

In addition, the exponential decay model predicts future inflation better than the 

distributed lag model.14  Since the exponential decay model is better, I test if two variable 

exponential decay regressions outperforms prediction based only on the PCETM inflation rate.  

The results suggest that the trimmed mean combined with lagged PCE inflation may better 

predict inflation but to verify these results out-of-sample forecasts are needed. 

3. Out-of-Sample Forecasting 

The out-of-sample forecasts provide more information on whether the trimmed mean is 

useful for policy makers.  These out-of-sample forecasts also address the issue of whether the 

bias in these inflation measures is predictable.15 

I forecast over 12, 18 and 24 month horizons.  I forecast the k-month ahead inflation rate 

(k = 12, 18 and 24) with 1-step ahead recursive forecasts from 1990:1 to the end of sample.  Both 

the bias measure and the parameters are updated monthly in the recursive forecasts.  I forecast 

                                                 
13 The distributed lag regression has a lag polynomial of order 23.  The exponential decay model has an infinite lag 
structure.  In practice, I use 24 lags of the monthly inflation rates and constrain the coefficients to sum to one. 
14 I also estimated two variable distributed lag models.  In these models, there are 46 estimated coefficients.  The 
AIC and SIC for these models are much larger.  Results are available from the author upon request. 
15 If the bias is unpredictable, then adjusting the data should not improve the forecasts as it does. 
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using equations 3, 4, 5 and 6, assuming that inflation has a unit root and that the inflation 

measures are co-integrated.  Equation 3 is similar to a random walk forecast and is a random 

walk forecast when PCE inflation is the explanatory variable and equation 4 combines two 

variables.16  Equations 5 and 6 are the respective distributed lag and exponential decay models.    

The out-of-sample forecast results are consistent with the in-sample results.  In Table 3, 

either the PCETM or PCEMED inflation rate is the best forecaster at all horizons.  In the models, 

the PCETM or PCEMED inflation rate has a smaller RMSE (root mean square error) than the 

PCE inflation rate or more interestingly, PCEX inflation rate.  However, to be truly relevant for 

forecasting future inflation, the forecasts using the limited-influence estimator (PCETM or 

PCEMED) must be significantly different from the other models.  To test if the RMSEs are 

statistically different I use the modified Diebold-Mariano forecast comparison test suggested by 

Harvey, Leybourne and Newbold (1997).  The modified Diebold-Mariano test statistic is 

1/ 2
*
1 1

1 1/ 2

1 2( 1) ( 1) /

ˆ[ ( )]

T h h h T
S S

T

d
S

V d

       
 



      (7) 

where d is the mean difference of the prediction errors and ˆ( )V d  is the estimated variance.  

Since the models are not nested, I use the modified Diebold-Mariano test statistic, estimated with 

Newey-West corrected standard errors allowing for heteroskedastic autocorrelated errors.   

I compare the forecast errors from each model with those of the best model.17  The results 

indicate that using the PCETM or PCEMED inflation rate to forecast is significantly better than 

using the PCEX inflation rate to forecast.  For most of the models there is no statistical 

                                                 
16 A random walk model is a good benchmark forecast model.  See Atkeson and Ohanian (2001). 
17 The explanatory variables are the previous 12-month inflation rates for all three horizons in the basic models, and 
are the previous 1-month annualized inflation rates in the distributed lag and exponential decay models. 
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difference of the forecast errors from the models using the PCETM or PCEMED.  In addition, 

the modified Diebold-Mariano test suggests that using a single variable is as good as using a 

combination of two variables to forecast future inflation.  Finally, I compare the best forecast 

(single variable) from each of the three models.  These results suggest that the type of model 

used to forecast inflation is less important.  Each one of these models smoothes inflation in some 

manner and provides a good forecast.  Future research might more extensively examine inflation 

dynamics when forecasting.   These out-of-sample results confirm that using the PCEX inflation 

rate as core inflation is not motivated by the fact that the PCEX inflation rate provides good 

forecasts of future inflation or good information about future movements of inflation. 

Figure 2 shows the better forecasting accuracy of the PCETM inflation rate.  Although, 

the forecasted PCETM inflation rate does not perfectly track the 12-month ahead inflation rate, 

the two series do appear to move toward each other over a 1 to 2 year time horizon. 

4. Conclusions 

This paper expands the literature on core inflation and confirms that limited-influence 

estimators provide information about movements in future inflation and are good measures of 

core inflation.  Smith (2004) finds for the CPI that the weighted median is core inflation; this 

paper finds that a limited-influence estimator such as the trimmed mean or weighted median is a 

good measure of core inflation for the PCE.  Additionally, both papers demonstrate that the bias 

arising from differences in means needs to be taken into account when forecasting. 

Rich and Steindel (2005) find that the limited-influence estimators are not consistently 

better predictors of inflation.  However, their samples span a few monetary policy regimes and 

they find parameter instability suggesting their results are sensitive to monetary policy regimes, 

which Smith (2005) finds can affect which price measure is the best forecaster of future inflation. 
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Table 1: Comparison of basic models (in-sample) 
Dependent variable: 12,t t   

Explanatory variables: , 12t tx   

 Non-bias adjusted Bias adjusted 
 SSR SSR 
Models   
PCE 196.02 192.46 
PCEX 1137.60 1027.49 
PCEMED 242.35 156.55 
PCETM 176.09 153.55 
   
PCE and PCEX 180.37 179.93 
PCE and PCEMED 181.44 150.33 
PCE and PCETM 168.71 152.39 
   
PCEX and PCETM  142.07 
PCEX and PCEMED  152.96 
PCEMED and PCETM  151.89 
Bold indicates best model. 

 
 

Table 2: Comparison of in-sample models 
Dependent variable: 12,t t   

Explanatory variables: monthly inflation rates 
 Bias adjusted
 AIC SIC 
Models   
Distributed lag   
PCE 2.48 2.78 
PCEX 2.54 2.84 
PCEMED 2.36 2.66 
PCETM 2.22 2.52 
   
Exponential decay   
PCE 2.49 2.50 
PCEX 2.64 2.66 
PCEMED 2.25 2.26 
PCETM 2.11 2.13 
   
PCE and PCEX 2.46 2.50 
PCE and PCEMED 2.22 2.26 
PCE and PCETM 1.91 1.95 
PCEX and PCETM 2.13 2.16 
PCEX and PCEMED 2.24 2.28 
PCEMED and PCETM 2.10 2.14 
Bold indicates best model.   
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Table 3: Comparison of out-of-sample forecasts 
Dependent variable: ,  12, 18 and 24t k t k    

 Bias adjusted 
 12-month 18-month 24-month 

 RMSE 

RMSE(j)/ 
RMSE 
(best 

model)  RMSE 

RMSE(j)/ 
RMSE 
(best 

model)  RMSE 

RMSE(j)/ 
RMSE 
(best 

model)  

Basic          
PCE 0.797 1.171 * 0.815 1.241 ** 0.859 1.307 ** 
PCEX 1.669 2.450 ** 1.681 2.560 ** 1.718 2.613 ** 
PCEMED 0.719 1.055  0.677 1.031  0.658   
PCETM 0.681   0.657   0.668 1.016  
PCE and PCEX 0.849 1.243 ** 0.882 1.333 ** 0.932 1.421 ** 
PCE and PCEMED 0.696 1.019  0.669 1.011  0.656   
PCE and PCETM 0.683   0.662   0.661 1.008  

 

Note: PCETM vs. PCE 
and PCETM are not 
significantly different.  

Note: PCETM vs. PCE 
and PCETM are not 
significantly different.  

Note: PCEMED vs. 
PCE and PCEMED are 
not significantly 
different.  

Distributed lag          
PCE 0.840 1.287 ** 0.862 1.390 ** 0.921 1.456 ** 
PCEX 0.795 1.218  0.805 1.297 * 0.849 1.343 ** 
PCEMED 0.726 1.112 ** 0.661 1.065  0.644 1.018  
PCETM 0.653   0.620   0.633   
          
Exponential decay          
PCE 0.854 1.115 * 0.781 1.237 ** 0.823 1.294 ** 
PCEX 0.888 1.159 ** 0.793 1.256 ** 0.817 1.284 * 
PCEMED 0.817 1.067 ** 0.661 1.047  0.636   
PCETM 0.766   0.631   0.639 1.003  
PCE and PCEX 0.754 1.168        
PCE and PCEMED 0.708 1.098 **       
PCE and PCETM 0.645         
PCEX and PCETM 0.683 1.059        
PCEX and 
PCEMED 0.748 1.160 **       
PCEMED and 
PCETM 0.711 1.103        

 

Note: PCETM vs. PCE and 
PCETM are not significantly 
different.       

Single variable (best models)         
Basic 0.681 1.043  0.657 1.059  0.658 1.039  
Distributed lag 0.653   0.620   0.633   
Exponential decay 0.766 1.173  0.631 1.018  0.636 1.006  

Bolded results indicate the best model.  Modified Diebold-Mariano results are presented comparing the best model (bold) to 
the others.  * indicates significance at the 10% level and ** indicates significance at the 5% level. 
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Means over full sample (1982:01-2005:04) 
PCE 12-month ahead mean:  2.74 
PCE 1-month mean:  2.76 
PCEX 1-month mean:  2.86 
PCEMED 1-month mean: 3.21 
PCTM 1-month mean:  2.79 
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