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1 Introduction

Individual economies in the global economy are interlinked through many different channels in a

complex way. These include sharing scarce resources (such as oil and other commodities), political

and technological developments, cross-border trade in financial assets as well as trade in goods and

services, labor and capital movement across countries. Even after allowing for such effects, there

might still be residual interdependences due to unobserved interactions and spillover effects not

taken properly into account by using the common channels of interactions. Taking account of these

channels of interactions pose a major challenge to modelling the global economy and conducting

policy simulations and scenario analysis.

The Global VAR (GVAR) approach, originally proposed in Pesaran et al. (2004), provides

a relatively simple yet effective way of modelling complex high-dimensional systems such as the

global economy. Although GVAR is not the first large global macroeconomic model of the world

economy, its methodological contributions lay in dealing with the curse of dimensionality (i.e. the

proliferation of parameters as the dimension of the model grows) in a theoretically coherent and

statistically consistent manner. Other existing large models are often incomplete and do not present

a closed system, which is required for scenario analysis, see Granger and Jeon (2007) for a recent

overview of global models.

The GVAR approach was originally developed in the aftermath of the 1997 Asian financial crisis

to quantify the effects of macroeconomic developments on the losses of major financial institutions.

It was clear then that all major banks are highly exposed to systemic risk from adverse global

or regional shocks, but quantifying these effects required a coherent global macroeconomic model.

The GVAR approach provides a useful and practical way of building such a model, and, although

developed originally as a tool for credit risk analysis, it soon became apparent that it has numerous

other applications. This paper surveys the GVAR approach, focusing on theoretical foundations of

the approach as well as its empirical applications.

The GVAR approach can be briefly summarized as a two-step approach. In the first step, small

scale country-specific models are estimated conditional on the rest of the world. These models

feature domestic variables and (weighted) cross section averages of foreign variables, which are also

commonly referred to as ‘star variables’and are treated as weakly exogenous (or long-run forcing).
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In the second step, individual country VARX∗ models are stacked and solved simultaneously as one

large global VAR model. The solution can be used for shock scenario analysis and forecasting as is

usually done with standard low-dimensional VAR models.

The simplicity and usefulness of this approach has proven to be quite attractive and there are nu-

merous applications of the GVAR approach. Individual units need not necessarily be countries, but

could be regions, industries, goods categories, banks, municipalities, or sectors of a given economy,

just to mention a few notable examples. Mixed cross section GVAR models, for instance linking

country data with firm-level data, have also been considered in the literature. The GVAR approach

is conceptually simple, although it requires some programming skills since it handles large data sets,

and it is not yet incorporated in any of the mainstream econometric software packages. Fortunately,

an open source toolbox developed by Smith and Galesi (2014) together with a global macroeco-

nomic dataset can be obtained from the web at: https://sites.google.com/site/gvarmodelling/. This

toolbox has greatly facilitated empirical research using the GVAR methodology.

We start our survey with methodological considerations, starting with large linear dynamic

systems. We suppose that the large set of variables under consideration are all endogenously

determined in a factor augmented high-dimensional VAR model. This model allows for a very

general pattern of interlinkages among variables, but, as it is well known, cannot be estimated

consistently due to the curse of dimensionality when the cross section dimension (N) is large.

GVAR is one of the three common solutions to the curse of dimensionality, alongside popular factor-

based modelling approaches and Bayesian VARs. We introduce the GVAR approach as originally

proposed by Pesaran et al. (2004) and then review conditions (on the underlying unobserved high-

dimensional VAR data generating process) that justify the individual equations estimated in the

GVAR approach when N and T (the time dimension) are large, and of the same order of magnitude.

Next, we survey the impulse response analysis, forecasting, analysis of long-run and specification

tests in the GVAR approach. Last but not least, we review empirical GVAR applications. We

separate forecasting from non-forecasting applications, and we divide the latter group of empirical

papers into global applications (featuring countries) and the remaining sectoral/other applications,

where cross section units represent sectors, industries or regions within a given economy.

The remainder of the paper is organized as follows. Section 2 introduces high-dimensional factor-
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augmented VAR model and outlines the curse of dimensionality in modelling large linear dynamic

systems. Section 3 presents the GVAR solution to this problem. Section 4 reviews methodological

foundations for the individual equations estimated in the GVAR approach. Section 5 reviews

impulse response analysis with GVARs, Section 6 discusses forecasting with GVARs, Section 7

considers analysis of long-run, and Section 8 discusses specification tests for the individual equations

estimated in the GVAR approach. Section 9 surveys the empirical applications of the approach

and Section 10 presents some concluding remarks.

A brief word on notations: ‖A‖1 ≡ max
1≤j≤n

∑n
i=1 |aij | and ‖A‖∞ ≡ max

1≤i≤n

∑n
j=1 |aij | denote

the maximum absolute column and row sum matrix norms of A ∈ Mn×n, respectively, where

Mn×n is the space of real-valued n × n matrices. ‖A‖ =
√
% (A′A) is the spectral norm of A,

% (A) = |λmax (A)| is the spectral radius of A, and λmax (A) is the largest eigenvalue of A.1

Matrices are represented by bold upper case letters and vectors are represented by bold lower case

letters. All vectors are column vectors. Most variables, vectors and matrices below depend on N ,

but we do not show this dependence explicitly.

2 Large scale VAR reduced form representation of data

Consider a panel of N cross section units, each featuring ki variables observed during the time

periods t = 1, 2, ..., T . Let xit denote a ki × 1 vector of variables specific to cross-section unit i in

time period t, and let xt = (x′1t,x
′
1t, ...,x

′
Nt)
′ denote a k × 1 vector of all variables in the panel,

where k =
∑N

i=1 ki. Suppose that xt is generated according to the following factor augmented

VAR(p) model,

Θ (L, p) xt = Γf (L, sf ) ft + Γω (L, sω)ωt + ut, (1)

where L is the time lag operator, Θ (L, p) = Ik−
∑p

`=1Θ`L
` is a matrix lag polynomial in L, Θ` for

` = 1, 2, ..., p are k× k matrices of unknown coeffi cients, Γa (L) =
∑sa

`=1 Γa`L
`, for a = f, ω, Γa` for

` = 1, 2, ..., s and a = f, ω are k×ma matrices of factor loadings, ft is themf×1 vector of unobserved

common factors, ωt is the mω × 1 vector of observed common effects, and ut is a k × 1 vector of

reduced form errors with zero means, and the k×k covariance matrix, Σu = E (utu
′
t). We abstract

1Note that if x is a vector, then ‖x‖ =
√
% (x′x) =

√
x′x corresponds to the Euclidean length of vector x.

3



from deterministic terms for clarity of exposition, but such terms can be easily incorporated in

the analysis. GVAR allows for very general forms of interdependencies across individual variables

within a given unit and/or across units, since lags of all k variables enter individual equations, and

the reduced form errors are allowed to be cross-sectionaly dependent. GVAR can also be extended

to allow for time-varying parameters, non-linearities, or threshold effects. But such extensions are

not considered in this review.2

VAR models provide a rather general description of linear dynamic systems, but their number

of unknown parameters to be estimated grows at a quadratic rate in the dimension of the model, k.

We are interested in applications where the cross section dimension, N , as well as the time series

dimension, T , can be both relatively large, while ki, for i = 1, 2, ..., N , are uniformly small, so that

k = O (N). A prominent example arises in the case of global macroeconomic modelling, where

the number of cross section units is relatively large but the number of variables considered within

each cross section unit (such as real output, inflation, stock prices and interest rates) is small.

Understanding the transmission of shocks across economies (space) and time is a key question in

this example. Clearly in such settings unrestricted VAR models cannot be estimated due to the

proliferation of unknown parameters (often referred to as the curse of dimensionality). The main

problem is how to impose a plethora restrictions on the model (1) so that the parameters can be

consistently estimated as N,T
j→∞, while still allowing for a general pattern of interdependencies

between the individual variables.

There are three main approaches developed for modeling data-sets with a large number of

variables: models that utilize common factors (e.g. small-scale factor-augmented VARs), Bayesian

VARs and the global VARs. Factor models can be interpreted as data shrinkage procedures, where a

large set of variables is shrunk into a small set of factors.3 ,4 Estimated factors can be used together

with the vector of domestic variables to form a small scale model, as in factor-augmented VAR

2Extensions of the linear setting to allow for non-linearities could also be considered, but most of the GVAR papers
in the literature are confined to a linear framework. Few exceptions include Binder and Gross (2013) who develop a
Regime-Switching GVAR model and GVAR papers that consider time-varying weights.

3Dynamic factor models were introduced by Geweke (1977) and Sargent and Sims (1977), which have more recently
been generalized to allow for weak cross-sectional dependence by Forni and Lippi (2001), Forni et al. (2000) and
Forni et al. (2004).

4Stock and Watson (1999), Stock and Watson (2002), Giannone, Reichlin, and Sala (2005) conclude that only few,
perhaps two, factors explain much of the predictable variations, while Bai and Ng (2007) estimate four factors and
Stock and Watson (2005) estimate as many as seven factors.

4



models (Bernanke, Bovian, and Eliasz (2005) and Stock and Watson (2005)). Bayesian VARs, on

the other hand, explicitly shrink the parameter space by imposing tight priors on all or a sub-

set of parameters. Large scale Bayesian VARs have been explored, among others, by Giacomini

and White (2006), De Mol, Giannone, and Reichlin (2008), Carriero, Kapetanios, and Marcellino

(2009), and Banbura, Giannone, and Reichlin (2010). Last but not least, the GVAR approach

solves the dimensionality problem by decomposing the underlying large dimensional VARs into a

smaller number of conditional models, which are linked together via cross sectional averages. The

GVAR approach imposes an intuitive structure on cross-country interlinkages and no restrictions

are imposed on the dynamics of the individual country sub-models. In the case where the number

of lags is relatively large (compared to the time dimension of the panel) and/or the number of

country specific variables is moderately large, it is possible to combine the GVAR structure with

shrinkage estimation approaches in light of the usual bias-variance trade-offs. Bayesian estimation of

country-specific sub-models that feature in the GVAR approach have been considered, for instance

in Feldkircher et al. (2014).

3 The GVAR solution to the curse of dimensionality

The GVAR approach was originally proposed by Pesaran et al. (2004) (PSW) as a pragmatic

approach to building a coherent global model of the world economy. We follow the exposition of

PSW and introduce the GVAR approach initially without the inclusion of common variables.

At the core of the GVAR approach are small-scale country specific conditional models that can

be estimated separately. These individual country models explain the domestic variables of the

economy, collected in the ki × 1 vector xit, and country-specific cross-section averages of foreign

variables, collected in the k∗ × 1 vector

x∗it = W̃′
ixt, (2)

for i = 1, 2, ..., N , where W̃i is k×k∗ matrix of country-specific weights typically constructed using

data on bilateral foreign trade or capital flows.5 Both ki and k∗ are treated as small (typically 3 to

5 It is straightforward to accommodate different number of star variables across countries (k∗i instead of k
∗), if

desired.
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6). A larger number of domestic variables can be easily incorporated within the GVAR framework

as well by using shrinkage methods applied to the country-specific submodels. xit is modeled as a

VAR augmented by the vector of the ‘star’variables x∗it, and its lagged values,

xit =

pi∑
`=1

Φi`xi,t−` + Λi0x
∗
it +

qi∑
`=1

Λi`x
∗
i,t−` + εit, (3)

for i = 1, 2, ..., N , whereΦi`, for ` = 1, 2, ..., pi, Λi`, for ` = 0, 1, 2, ...qi, are ki×ki and ki×k∗ matrices

of unknown parameters, respectively, and εit are ki×1 error vectors. We continue to abstract from

the deterministic terms and observed common effects from the country-specific conditional VARX∗

models in (3).

Let zit = (x′it,x
∗′
it)
′ be ki + k∗ dimensional vector of domestic and country-specific foreign

variables included in the submodel of country i and re-write (3) as

Ai0zit =

p∑
`=1

Ai`zit−` + εit, (4)

where

Ai0 = (Iki ,−Λi0) , Ai` = (Φi`,Λi`) for ` = 1, 2, ..., p,

p = maxi (pi, qi) , and define Φi` = 0 for ` > pi, and similarly Λi` = 0 for ` > qi. Individual

country-models in (4) can be equivalently written in the form of error-correction representation,

∆xit = Λi0∆x∗it −Πizi,t−1 +

p∑
`=1

Hi`∆zi,t−1 + εit, (5)

where ∆ = 1− L is the usual first difference operator, and

Πi = Ai0 −
p∑
`=1

Ai`, and Hi` = − (Ai,`+1 + Ai,`+2 + ...+ Ai,`+p) .

Star variables x∗it are treated as weakly exogenous for the purpose of estimating (5). Econometric

theory for estimating VARX∗ (pi, qi) models with weakly exogenous I (1) regressors have been

developed by Harbo et al. (1998) and Pesaran et al. (2000). The assumption of weak exogeneity

can be easily tested as outlined in Section 7.1 of PSW, and typically is not rejected, when the
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economy under consideration is small relative to the rest of the world and the weights used in the

construction of the star variables are granular.

It is clear from (5) that country specific models allow for cointegration both within domestic

variables as well as between domestic and foreign (star) variables. In particular, assuming zit

is I (1), the rank of Πi, denoted as ri = rank (Πi) ≤ ki, specifies the number of cointegrating

relationships that exist among the domestic and country-specific foreign variables in zit; and Πi

can be decomposed as

Πi = αiβ
′
i,

where αi is ki × ri full column rank loading matrix and βi is the (ki + k∗) × ri full column rank

matrix of cointegrating vectors. It is well known that this decomposition is not unique and the

identification of long-run relationships requires theory-based restrictions (see Section 7).

Country models in (3) resemble the small open economy (SOE) macroeconomic models in the

literature, where domestic variables are modelled conditional on the rest of the world. The difference

between the SOE framework and the country-specific VARX∗ models is in the treatment of star

variables: SOE typically treats them as strictly exogenous, whereas in the GVAR approach they are

typically treated as weakly exogenous. This difference, although important, is however not where

the action comes in alleviating the curse of dimensionality.6 The main action comes from the data

shrinkage given by (2). Under what conditions it is valid to specify (3), where the rest-of-the-world

economies are aggregated as given by (2) and treated as weakly exogenous is reviewed in Section 4.

The estimation of country models in (3), which allows for cointegration within and across countries

(via the star variables), is the first step of the GVAR approach.

The second step of the GVAR approach consists of stacking estimated country models into one

large global VAR model. Using the (ki + k∗)×k dimensional ‘link’matricesWi =
(
E′i,W̃

′
i

)
, where

Ei is k × ki dimensional selection matrix that select xit, namely xit = E′ixt, and W̃′
i is the weight

matrix introduced in (2) to define country-specific foreign star variables, we have

zit =
(
x′it,x

∗′
it

)′
= Wixt. (6)

6Note that since ki and k∗ are considered small it is feasible to estimate VAR model (x′it,x
∗′
it)
′ treating domestic

and foreign star variables as endogenous.
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Using (6) in (4) we obtain

Ai0Wixt =

p∑
`=1

Ai`Wixt−` + εit, (7)

and stacking these models for i = 1, 2, ..., N , we obtain

G0xt =

p∑
`=1

G`xt−` + εt, (8)

where εt = (ε′1t, ε
′
2t, ..., ε

′
Nt)
′, and

G` =



A1,`W1

A2,`W2

...

AN,`WN


.

If matrix G0 is invertible, then by multiplying (8) by G−10 from the left we obtain the GVAR model

xt =

p∑
`=1

F`xt−` + G−10 εt, (9)

where F`= G−10 G` for ` = 1, 2, ..., p. PSW established that the overall number of cointegrating

relationships in the GVAR model (9) cannot exceed the total number of long-run relations
∑N

i=1 ri

that exist in country-specific models.

3.1 Rank of G0

The GVAR model (9) is derived under the assumption that the contemporaneous coeffi cient matrix,

G0, is full rank. To clarify the role of this assumption and to illustrate the consequences of possible

rank deficiency of G0, consider the following illustrative GVAR model,

xit = Λi0x
∗
it + εit, for i = 1, 2, ..., N , (10)

where we abstract from lags of (x′it,x
∗′
it)
′. Let Λ0 be the k × k block diagonal matrix defined by

Λ0 = diag (Λi0) , and let W̃′= (W̃1,W̃2, ....,W̃N ). Write (10) as

xt = Λ0W̃xt + εt,
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or

G0xt = εt, (11)

where G0 = IN −Λ0W̃. Suppose that G0 is rank deficient, namely rank (G0) = k −m, for some

m > 0. Then the solution of (11) exists only if εt lies in the range of G0, denoted as Col (G0).

Assuming this is the case, system (11) does not uniquely determine xt, and the set of all possible

solutions can be characterized as

xt = Γf̃t + G+
0 εt, (12)

where f̃t is any m × 1 arbitrary stochastic process, Γ is a k × m matrix which is a basis of the

null space of G0, namely G0Γ = 0, rank (Γ′Γ) = m, and G+
0 is the Moore-Penrose pseudo-inverse

of G0. To verify that (12) maps all possible solutions of (11), note that G+
0 εt is the particular

solution of (11) and Γ′f̃t is a general solution of the homogenous counterpart of (11), namely the

set of equations G0xt = 0. To prove the former, we have

G0G
+
0 εt = εt,

since εt lies in the range of G0 by assumption and G0G
+
0 is the orthogonal projector onto the

range of G0. To prove the latter, we note that Γ is a basis of the null space of G0 and therefore

G0Γf t = 0 for any m× 1 arbitrary stochastic process f̃t, and the set of solutions must be complete

since the dimension of Col (Γ) is m.

Let ft = f̃t − E
(

f̃t

∣∣∣ εt) = f̃t −D′εt. Then (12) can also be written as an approximate factor

model, namely

xt = Γf t + Rεt,

where ft is uncorrelated with εt by construction, and

R = ΓM′ + G+
0 .

Without any loss of generality, it is standard convention to use the normalization V ar (ft) = Im,

and to set the first non-zero element in each of the m column vectors of Γ to be positive. These

normalization conditions ensure that Γ is unique, in which case R is unique up to the rotation
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matrix, M. Note also that all of the findings above hold for any N .

Therefore, the full rank condition, rank(G0) = k, is necessary and suffi cient for xt, given by

(10), to be uniquely determined. If G0 was known and m > 0, then the GVAR model (10) would

need to be augmented by m equations that determine the m cross section averages Γ′xt in order

for xt to be uniquely determined. Note that in practice G0 is not known, since Λ0 is not known,

and needs to be estimated.

We provide further clarifications on the rank of G0 in Section 6, where we review conditions

under which the individual equations estimated in the GVAR approach can lead to a singular G0

or to the case when det (G0)→ 0 as N →∞.

3.2 Introducing common variables

When common variables are present in the country models (mω > 0), either as observed common

factors or as dominant variables as defined in Chudik and Pesaran (2013b), then the conditional

country models need to be augmented by ωt and its lag values in addition to the country-specific

vector of cross-section averages of the foreign variables, namely

xit =

pi∑
`=1

Φi`xi,t−` + Λi0x
∗
it +

qi∑
`=1

Λi`x
∗
i,t−` + Di0ωt +

si∑
`=1

Di`ωt−` + εit. (13)

Both types of variables (common variables ωt and cross section averages x∗it) can be treated as

weakly exogenous for the purpose of estimation. As noted above, the weak exogeneity assumption

is testable. Note that not all of the coeffi cients {Di`} associated with the common variables need

be significant and in the case when they are not significant, they could be excluded for the sake of

parsimony, if desired.7 The marginal model for the dominant variables can be estimated with or

without the feedback effects from xt. In the latter case, we have the following marginal model,

ωt =

pω∑
`=1

Φω`ωt−` + ηωt, (14)

7Chudik and Smith (2013) find that contemporaneous US variables are significant in individual non-US country
models in about a quarter of cases. Moreover, weak exogeneity of the US variables is not rejected by data.
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which can be equivalently written in the error-correction form as

∆ωt = −αωβ′ωωt−1 +
∑pω−1

j=1 Hωj∆ωt−j + ηωt, (15)

where αωβ′ω =
∑pω

`=1Φω`,Hωj = − (Φω,`+1 + Φω,`+2 + ...+ Φω,`+pω). In the case of I (1) variables,

representation (15) clearly allows for cointegration among the dominant variables. To allow for

feedback effects from the variables in the GVAR model back to the dominant variables via cross-

section averages, VAR model (14) can be augmented by lags of x∗ωt = W̃ωxt, where W̃ω is a k∗×k

dimensional weight matrix defining k∗ global cross section averages,

ωt =

pω∑
`=1

Φω`ωi,t−` +

qω∑
`=1

Λω`x
∗
i,t−` + ηωt. (16)

Assuming there is no cointegration among the common variables, ωt, and the cross-section averages,

x∗i,t−`, (16) can be written as

∆ωt = −αωβ′ωωt−1 +
∑pω−1

j=1 Hωj∆ωt−j +
∑qω−1

j=1 Bωj∆x∗ω,t−j + ηωt, (17)

where Bω` = − (Λω,`+1 + Λω,`+2 + ...+ Λω,`+p), and consistently estimated by least squares. Dif-

ferent lag orders for the dominant variables (pω) and cross section averages (qω) could be considered.

Note that contemporaneous values of star variables do not feature in (17). Similar equations to

(16) for dominant variables are estimated in Holly, Hashem Pesaran, and Yamagata (2011) and in

a stationary setting in Smith and Yamagata (2011).

Conditional models (13) and the marginal model (17) can be combined and solved as a complete

global VAR model in the usual way. Specifically, let yt = (ω′t,x
′
t)
′ be the (k +mω) × 1 vector of

all observable variables. Using (6) in (13) and stacking country-specific conditional models (13)

together with the model for common variables (16) yields

Gy,0yt =

p∑
`=1

Gy,`yt−` + εyt, (18)
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where εyt = (ε′t,η
′
ωt)
′,

Gy,0 =

 Imω 0mω×k

D0 G0

 , Gy,` =

 Φω` Λω`W̃ω

D` G`

 , for ` = 1, 2, ..., p,

D` = (D′1`,D
′
2`, ...,D

′
N`)
′ for ` = 0, 1, ..., p, p = maxi {pi, qi, si, pω, qω}, and we define Di` = 0 for

` > si, Φω` = 0 for ` > pω, and Λω` = 0 for ` > qω. Matrix Gy,0 is invertible if and only if G0 is

invertible. Assuming G−10 exists, the inverse of Gy,0 is

G−1y,0 =

 Imω 0mω×k

−G−10 D0 G−10

 ,
which is a block lower triangular matrix, showing the causal nature of the common (dominant)

variables, ωt. Multiplying both sides of (18) by G−1y,0 we now obtain the following GVAR model for

yt:

yt =

p∑
`=1

Fy,`yt−` + G−1y,0εyt, (19)

where Fy,` = G−1y,0Gy,`, for ` = 1, 2, ..., p.

4 Theoretical justification of the GVAR approach

GVAR approach as proposed by PSW builds on separate estimation of country-specific VARX∗

models based on the assumption that foreign variables are weakly exogenous. However, PSW did

not provide a theoretical justification and it was left to the future literature to derive conditions

under which the weak exogeneity assumptions underlying the GVAR approach are sustained. An

overview of the subsequent literature is now provided.

4.1 Approximating a global factor model

A first attempt at a theoretical justification of the GVAR approach was provided by Dées et al.

(2007) (DdPS), who derived (3) as an approximation to a global factor model. Their starting

point is the following canonical global factor model (abstracting again from deterministic terms
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and observed factors)

xit = Γift + ξit, for i = 1, 2, ..., N . (20)

For each i, Γi is a ki × m matrix of factor loadings, assumed to be uniformly bounded (‖Γi‖ <

K < ∞), and ξit is a ki × 1 vector of country-specific effects. Factors and the country effects are

assumed to satisfy

∆ft = Λf (L)ηft, ηft ∼ IID (0, Im) , (21)

∆ξit = Ξi (L) uit, uit ∼ IID (0, Iki) , for i = 1, 2, ..., N , (22)

where Λf (L) =
∑∞

`=0Λf`L
`, Ξi (L) =

∑∞
`=0Ξi`L

`, and the coeffi cient matrices Λf` and Ξi`, for

i = 1, 2, ..., N , are uniformly absolute summable, which ensures the existence of V ar (∆ft) and

V ar (∆ξit). In addition, [Ξi (L)]−1 is assumed to exist.

Under these assumptions, after first differencing (20) and using (22), DdPS obtain

[Ξi (L)]−1 (1− L) (xit − Γift) = uit.

Using the approximation

(1− L) [Ξi (L)]−1 ≈
pi∑
`=0

Φi`L
` = Φi (L, pi) ,

DdPS further obtain the following approximate VAR(pi) model with factors

Φi (L, pi) xit ≈ Φi (L, pi) Γift + uit, (23)

for i = 1, 2, ..., N , which is a special case of (1). Model (23) is more restrictive than (1) because

lags of other units do not feature in (23), and the errors, uit, are assumed to be cross sectionally

independently distributed.

Unobserved common factors in (23) can be estimated by linear combinations of cross section

averages of observable variables, xit. As before, let W̃i be the k × k∗ matrix of country-specific
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weights and assume that it satisfies the usual granularity conditions

∥∥∥W̃i

∥∥∥ < KN−
1
2 , for all i (24)∥∥∥W̃ij

∥∥∥∥∥∥W̃i

∥∥∥ < KN−
1
2 , for all i, j, (25)

where W̃ij are the blocks in the partitioned form of W̃i =
(
W̃′

i1,W̃
′
i2, ...,W̃

′
iN

)′
, and the constant

K <∞ does not depend on i, j or N . Taking cross section averages of xit given by (20) yields

x∗it = W̃′
ixt = Γ∗i ft + ξ∗it,

where ‖Γ∗i ‖ =
∥∥∥W̃′

iΓ
∥∥∥ ≤ ∥∥∥W̃′

i

∥∥∥ ‖Γ‖ < K, Γ = (Γ′1,Γ
′
2, ...,Γ

′
N )′, and ξ∗it satisfies

∆ξ∗it =
N∑
j=0

W̃′
ij∆ξit =

N∑
j=0

W̃′
ijΞi (L) uit.

Assuming that ∆ξit, i = 1, 2, ..., N , are covariance stationary and weakly cross sectionally depen-

dent, DdPS show that for each t, ∆ξ∗it
q.m.→ 0 as N → ∞, which implies ξ∗it

q.m.→ ξ∗i . It now follows

that under the additional condition that Γ∗i has a full column rank,

ft
q.m.→

(
Γ∗′i Γ∗i

)−1
Γ∗i (x∗it − ξ∗i )

as N →∞, which justifies using (1,x∗′it)
′ as proxies for the unobserved common factors. Thus, for

N suffi ciently large, DdPS obtain the following country-specific VAR models augmented with x∗it,

Φi (L, pi)
(
xit − δ̃i − Γ̃ix

∗
it

)
≈ uit, (26)

where δ̃i and Γ̃i are given in terms of ξ∗i and Γ∗i . (26) motivates the use of VARX
∗ conditional

country models in (3) as an approximation to a global factor model.

Note that the weights
{

W̃i

}N
i=1

used in the construction of cross sectional averages only need

to satisfy the granularity conditions (24) and (25), and for large N asymptotics one might as well

use equal weights, namely replace all cross sectional averages by simple averages. For the theory

14



to work, it is only needed that ∆ξ∗it
q.m.→ 0 at a suffi ciently fast rate as N → ∞. For example,

the weights could also be time-varying without any major consequences so long as the granularity

conditions are met in each period. In practice, where the number of countries (N) is moderate and

spill over effects could also be of importance, it is advisable to use trade weights that also capture

cultural and political interlinkages across countries.8 Trade weights can also be used to allow

for time variations in the weights used when constructing the star variables. This is particularly

important in cases where there are important shifts in the trade weights, as has occurred in the case

of China and its trading partners. Allowing for such time variations is also important in analyzing

the way shocks transmit across the globe. We review some of the empirical applications of the

GVAR that employ time-varying weights.

The analysis of DdPS has been further extended by Chudik and Pesaran (2011) and Chudik

and Pesaran (2013b) to allow for joint asymptotics (i.e. as N and T →∞, jointly), and weak cross

sectional dependence in the errors in the case of stationary variables. Further generalization of the

theoretical results to allow for unit root processes are not yet available.9

4.2 Approximating factor augmented stationary high dimensional VARs

Chudik and Pesaran (2011) (CP) consider the conditions on the unknown parameters of the VAR

model (1) that would deliver individual country models (3) when N is large. CP consider the

following factor augmented high dimensional VAR model (1),

(xt − Γf t) = Θ (xt−1 − Γf t−1) + ut, (27)

where xt is k × 1 vector of endogenous variables, Γ is a k × m matrix of factor loadings, and ft

is an m × 1 covariance stationary process of unobserved common factors. We consider one lag

(p = 1) for simplicity of exposition. CP assume that % (ΘΘ′) < 1− ε, where ε > 0 is an arbitrary

small constant that does not depend on N , and ut is weakly cross sectionally dependent such that

‖E (utu
′
t)‖ = ‖Σu‖ < K. The condition that the spectral radius of ΘΘ′ is below and bounded

8Data-dependent rules to construct weights
{

W̃i

}
are considered in Gross (2013).

9One exception is Chudik and Smith (2013) who consider the model Θ (L) (xt − Γf t) = Dξt, and allow for unit
roots in ft and ξt, while assuming the roots of Θ (L) = Ik −

∑p
`=0 Φ`L

` lie outside the unit circle.
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away from unity is a slightly stronger requirement than the usual stationarity requirement that

the eigenvalues of Θ are within the unit circle. The stronger condition is needed to ensure that

variances exist when N →∞, as can be seen from the following illustrative example.

Example 1 Consider the following simple VAR(1) model,

xt = Θxt−1 + ut.

Let

Θ
N×N

=



α 0 0 · · · 0

β α 0 · · · 0

0 β α 0

...
. . . . . .

0 0 β α


,

and suppose that ut ∼ IID (0, IN ). Hence, we have

x1t = αx1,t−1 + u1t

xit = βxi−1,t−1 + αxi,t−1 + uit, for i = 2, 3, ..., N .

This model is stationary for any given N ∈ N, if and only if |α| < 1. Nevertheless, the stationarity

condition |α| < 1 is not suffi cient to ensure that the variance of xNt is bounded in N and without

additional conditions V ar (xNt) can rise with N . To see this, note that

x1t = (1− αL)−1u1t,

x2t = (1− αL)−2βLu1t + (1− αL)−1u2t,

...

xNt =
N∑
j=1

(1− αL)−N−1+jβN−jLN−jujt.
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Let λ = β2/(1− α2), and note that

V ar(x1t) = 1/(1− α2),

V ar(x2t) =
1

1− α2 (λ+ 1) ,

...

V ar(xNt) =
1

1− α2
(
λN−1 + λN−2 + ...+ λ+ 1

)
.

The necessary and suffi cient condition for V ar(xNt) to be bounded in N is given by α2 + β2 < 1.

Therefore, the condition |α| < 1 is not suffi cient if N → ∞. The condition % (ΘΘ′) < 1 − ε for

arbitrarily small ε that does not change with N imply α2 + β2 < 1, and is therefore suffi cient (and

in this example it is also necessary) for V ar(xNt) to be bounded in N .

Similarly, as in DdPS, it is assumed in (27) that factors are included in the VAR model in an

additive way so that xt can be written as

xt = Γf t + ξt, (28)

where ξt = (Ik −ΘL)−1 ut, and the existence of the inverse of (Ik −ΘL) is ensured by the as-

sumption on % (ΘΘ′) above. One could also consider the alternative factor augmentation setup,

xt = Θxt−1 + Γf t + ut, (29)

where factors are added to the errors of the VAR model, instead of (27), where deviations of xt from

the factors are modelled as a VAR. But it is important to note that both specifications, (27) and

(29), yield similar asymptotic results. The only difference would be that the factor error structure

in (29) would result in distributed lag polynomials of infinite orders in large N representation

for cross-section averages and individual units. These lag polynomials would then need to be

appropriately truncated for the purpose of consistent estimation and inference, as in Berk (1974),

Said and Dickey (1984) and Chudik and Pesaran (2013a and 2013b).
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For any set of weights represented by the k × k∗ matrix W̃i we obtain (using (28))

x∗it = W̃′
ixt = Γ∗i ft + ξ∗it,

where Γ∗i = W̃′
iΓ and

ξ∗it = W̃′
i (Ik −ΘL)−1 ut.

CP show that if W̃i satisfies (24), then

∥∥E (ξ∗itξ∗′it)∥∥ =

∥∥∥∥∥
∞∑
`=0

W̃′
iΘ

`E
(
ut−`u

′
t−`
)
Θ`W̃i

∥∥∥∥∥
≤

∥∥∥W̃i

∥∥∥2 ‖Σu‖
∞∑
`=0

∥∥∥Θ`
∥∥∥2

= O
(
N−1

)
, (30)

where
∥∥∥W̃i

∥∥∥2 = O
(
N−1

)
by (24), ‖Σu‖ < K by the weak cross section dependence assumption,

and
∑∞

`=0

∥∥Θ`
∥∥2 < K by the assumption on spectral radius of % (ΘΘ′). (30) establishes that

ξ∗it
q.m.→ 0 (uniformly in i and t) as N,T

j→∞. It now follows that

x∗it − Γ∗i ft
q.m.→ 0, as N,T

j→∞, (31)

which confirms the well known result that only strong cross-section dependence can survive large

N aggregation with granular weights.10 Therefore the unobserved common factors can be approx-

imated by cross section averages x∗t in this dynamic setting, provided that Γ∗i has full column

rank.

Now it is easy to see what additional requirements are needed on the coeffi cient matrix Θ to

obtain country VARX∗ models in (3) when N is large. The model for the country specific variables,

xit, from the system (27) is given by

xit = Θiixit−1 +
∑

j=1,j 6=i
Θij (xj,t−1 − Γjft) + Γift −Θ′iΓift−1 + uit, (32)

10See for instance Granger (1987), Forni and Lippi (1997), Pesaran (2003), Zaffaroni (2004) and Pesaran (2006).
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where Θij are appropriate partitioned submatrices of

Θ =



Θ11 Θ12 · · · Θ1N

Θ21 Θ22 Θ2N

...
. . .

...

ΘN1 ΘN2 · · · ΘNN


.

Suppose now that

‖Θij‖ <
K

N
, for all i 6= j. (33)

This assumption implies that the matrix Θ−i = (Θi1,Θi2, ...,Θi,i−1, 0,Θi,i+1, ...,ΘiN )′ satisfies the

granularity condition (24), in particular ‖Θ−i‖2 < KN−1, and using (30) but with Θ−i instead of

W̃i, we obtain ∑
j=1,j 6=i

Θij (xj,t−1 − Γjft)
q.m.→ 0 as N →∞. (34)

Finally, substituting (31) and (34) in (32) we obtain the country specific VARX∗ (1, 1) model

xit −Θiixit−1 −Λi0x
∗
t −Λi1x

∗
t−1 − uit

q.m.→ 0 uniformly in i, and as N →∞, (35)

where

Λi0 = Γi
(
Γ∗′Γ∗

)−1
Γ∗, and Λi1 = Θ′iΓi

(
Γ∗′Γ∗

)−1
Γ∗.

Requirement (33) with the remaining assumptions in this subsection are thus suffi cient to obtain (3)

when N is large. In addition to the derivations of large N representations of the individual country

models, CP also show that the coeffi cient matrices Θii, Λi0 and Λi1 can be consistently estimated

under the joint asymptotics when N and T →∞, jointly, plus a number of further assumptions as

set out in CP.

It is also important to consider the consequences of relaxing the restrictions in (33). One

interesting case is when units have "neighbors" in the sense that there exists some country pairs

j 6= i for which ‖Θij‖ remains non-negligible as N → ∞. Another interesting departure from

the above assumptions is when ‖Σu‖ is not bounded in N , and there exists a dominant unit j

for which ‖Θij‖ is non-negligible for the other units, i ∈ Sj ⊆ {1, 2, ..., N}. These scenarios are
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investigated in Chudik and Pesaran (2011) and Chudik and Pesaran (2013b), and they lead to

different specifications of the country-specific models featuring additional variables and parameters

to be estimated. In such cases to improve estimation and inference one could combine the GVAR

approach with various penalized shrinkage methods such as Bayesian shrinkage, Lasso or other

related techniques where the estimation is subject to penalty, which becomes increasingly more

binding as the number of parameters is increased.11

5 Conducting Impulse Response Analysis with GVARs

We have seen that under plausible conditions country-specific models can be obtained as large N

approximations to global factor augmented models of different forms. Moreover, individual country-

specific models can be consistently estimated. In this section, we discuss impulse response analysis

and consistent estimation of generalized impulse responses.

For expositional convenience suppose that the DGP is given by (9) first. This model features

k =
∑N

i=1 ki country-specific errors collected in the vector εt = (ε′1t, ε
′
2t, ..., ε

′
Nt)
′, and there are

no common variables included in the model. Suppose also that there are k distinct structural

(orthogonal) shocks. Identification of structural shocks, defined by vt = P−1εt, requires finding

the k × 1 matrix of contemporaneous dependence, P, such that

Σ = E
(
εtε
′
t

)
= PP

′. (36)

Therefore, We have E (vtv
′
t) = Ik by construction and the vector of structural impulse response

functions is given by

gvj (h) = E (xt+h| vjt = 1, It−1)− E (xt+h| It−1) , (37)

=
RhG

−1
0 Pej√

e′jΣej
,

11See for instance Tibshirani (1996), Hastie et al. (2009) and De Mol et al. (2008) for a discussion of Lasso and
Ridge shrinkage methods. Feldkircher et al. (2014) implemented a number of Bayesian priors (the normal-conjugate
prior, a non-informative prior on the coeffi cients and the variance, the inverse Wishart prior, the Minnesota prior,
the single-unit prior, which accommodates potential cointegration relationships, and the stochastic search variable
selection prior) in estimating country-specific models in the GVAR.
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for j = 1, 2, ..., k, where It = {xt,xt−1, ...} is the information set consisting of all available informa-

tion at time t, and ej is a k× 1 selection vector that selects the variable j, and the k× k matrices,

Rh, are obtained recursively as

Rh =

p∑
`=1

F`Rh−` with R0 = Ik and R` = 0 for ` < 0.

Expectation operators in (37) are taken assuming that the GVAR model (9) is the DGP. Decom-

position (36) is not unique and identification of shocks requires k (k − 1) /2 restrictions, which is

of order O
(
k2
)
.12 Even for moderate values of k, motivating such a large number of restrictions is

problematic, especially given that the existing macroeconomic literature focuses mostly on distin-

guishing between different types of shocks (e.g. monetary policy shocks, fiscal shocks, technology

shocks, etc.), and does not provide a thorough guidance on how to identify country origins of shocks,

which is necessary to identify all the shocks in the GVAR model.

One possible approach to the identification of the shocks is orthogonalized IR analysis of Sims

(1980), who considered setting P to the Choleski factor of Σ. But as is well known the choice

of the Choleski factor is not unique and depends on the ordering of variables in the vector xt.

Such an ordering is clearly diffi cult to entertain in the global setting, but partial ordering could be

considered to identify a single shock or a subset of shocks. This is, for example, accomplished by

Dées et al. (2007) who identify the US monetary policy shock (by assuming that the US variables

come first, and two different orderings for the vector of the US variables are considered). Another

well-known possibility to identify shocks in reduced-form VARs include the work of Bernanke

(1986), Blanchard and Watson (1986) and Sims (1986) who considered a priori restrictions on the

contemporaneous covariance matrix of shocks; Blanchard and Quah (1989) and Clarida and Gali

(1994) who consider restrictions on the long-run impact of shocks to identify the impulse responses;

and the sign-restriction approach considered, among others, in Faust (1998), Canova and Pina

(1999), Canova and de Nicoló (2002), Uhlig (2005), Mountford and Uhlig (2009) and Inoue and

Kilian (2013). Identification of shocks in a GVAR is subject to the same issues as in standard

VARs, but is further complicated due to the cross-country interactions and the high dimensionality

of the model.
12This corrects the statement on p. 136 in Pesaran et al. (2004).
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In view of these diffi culties, Pesaran et al. (2004), Pesaran and Smith (2006), Dées et al. (2007)

and the subsequent literature adopted mainly the generalized IRF (GIRF) approach, advanced

in Koop et al. (1996), Pesaran and Shin (1998) and Pesaran and Smith (1998). The GIRF

approach does not aim at identification of shocks according to some canonical system or a priori

economic theory, but considers a counterfactual exercise where the historical correlations of shocks

are assumed as given. In the context of the GVAR model (9) the k× 1 vector of GIRFs is given by

gεj (h) = E
(
xt+h| εjt =

√
σjj , It−1

)
− E (xt+h| It−1) ,

=
RhG

−1
0 Σej√

e′jΣej
, (38)

for j = 1, 2, ..., k, h = 0, 1, 2, ..., where
√
σjj =

√
E
(
ε2jt

)
is the size of the shock, which is set

to one standard deviation (s.d.) of εjt. The GIRFs can also be obtained for (synthetic) ‘global’

or ‘regional’shocks, defined by εgm,t = m′εt, where the vector of weights, m, relates to a global

aggregate or a particular region. GIRF vector for the global shock, εgm,t, is

gm (h) = E
(
xt+h| εgm,t =

√
m′Σm, It−1

)
− E (xt+h| It−1) ,

=
RhG

−1
0 Σm√

m′Σm
. (39)

Now consider a GVAR model (19), which contains two types of shocks, k country shocks in

the vector εt, and mω common shocks in the vector ηωt. Country shocks in εt are uncorrelated

with the common shocks ηωt due to the conditional nature of country models, which condition on

contemporaneous and lagged values of the common variables, ωt. The zero correlation between

εt and ηωt needs to be taken into account in the derivation of impulse responses. The vector of

generalized impulse responses in the case of (19) is given by

gεyj (h) = E
(
xt+h| εyjt =

√
σjj , It−1

)
− E (xt+h| It−1) ,

=
RyhG

−1
y,0Σyeyj√

e′yjΣyeyj
,

for j = 1, 2, ..., k + mω and h = 0, 1, 2, ..., where eyj is (k +mω) × 1 selection vector that selects
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j-th element, Ryh for h = 0, 1, 2, ..., are (k +mω)× (k +mω) matrices obtained recursively as

Ryh =

p∑
`=1

Fy`Ry,h−` with Ry,0 = Ik+mω and Ry,` = 0 for ` < 0,

Σy = E
(
εytε

′
yt

)
=

 Σ 0

0 Σω

 ,
Σω = E (ηωtη

′
ωt), and as before Σ = E (εtε

′
t). Similarly, one can consider generalized impulse-

response functions of a composite shock εgym,t = m′yεyt, which could define a weighted average of

country shocks in εt, or a weighted average of common shocks in ηωt.
13

Closely related to the impulse-response analysis is the forecast-error variance decomposition,

which shows the relative contributions of the shocks to reducing the mean square error of forecasts

of individual endogenous variables at a given horizon h. In the case of orthogonalized shocks,

vt = P−1εt, and assuming for the simplicity of exposition that mω = 0, the contribution of the

j-th innovation vjt to the mean square error of the h-step ahead forecast of xit is:

SFEVD (xit, vjt, h) =

∑h
`=0

[
e′iF

hG−10 Pej
]2∑h

`=0 e′iF
hG−10 ΣG−1′0 Fh′ei

,

and since the shocks are orthogonal, it follows that
∑N

j=1 SFEVD (xit, vjt, h) = 1 for any i and h.

In the case of non-orthogonal shocks, the forecast-error variance decompositions need not sum to

unity. Analogously to the GIRFs, generalized forecast error variance decomposition of generalized

shocks can be obtained as

GFEVD (xit, εjt, h) =
σ−1jj

∑h
`=0

[
e′iF

hG−10 Σej
]2∑h

`=0 e′iF
hG−10 ΣG−1′0 Fh′ei

.

6 Forecasting with GVARs

Forecasting is another important application of the GVAR approach, which provides a viable al-

ternative to other methods developed for datasets with a large number of predictors. A difference

13Estimation and inference on impulse responses can be conducted by bootstrapping, see Dées et al. (2007) for
details.
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between GVAR and other data-rich forecasting methods is that GVAR utilize the structure of the

panel, which is assumed to consist of many cross-section units (e.g. countries) with each cross sec-

tion unit consisting of a small number of variables. Other data-rich methods, such as Lasso, Ridge,

or elastic net (see for instance Tibshirani (1996), De Mol et al. (2008) and Hastie et al. (2009)),

popular factor models (Geweke (1977), Sargent and Sims (1977), and other contributions)14, or Par-

tial Least Squares (Wold (1982)) typically do not utilize such structure. See Eklund and Kapetanios

(2008) and Groen and Kapetanios (2008) for recent surveys of data-rich forecasting methods.

As in the previous section, we shall assume that the DGP is given by GVAR model (9). Taking

conditional expectations of (9) for t = t0 + h conditional on the information set Ωt0 , we obtain

E (xt0+h|Ωt0) =

p∑
`=1

F`E (xt0+h−`|Ωt0) + G−10 E (εt0+h|Ωt0) , (40)

for any h = 0, 1, 2, .... In the case when the conditioning information set Ωt0 is given by all available

information up to the period t0, Ωt0 = It0 ≡ {xt0 ,xt0−1, ...} we have

E (εt0+h| It0) = 0 for h > 0, (41)

and standard forecasts E (xt0+h| It0) can be easily computed from (9) recursively using the esti-

mates of F` and G−10 , and noting that (41) holds and E (xt′ | It0) = xt′ for all t′ ≤ t0. Forecasts

from model (19) featuring observed common variables can be obtained in a similar way.

Generating conditional forecasts for non-standard conditioning information sets with unbal-

anced information on (future, present and past values of) variables in the panel is more challenging.

This situation could arise for instance in the case, where data for different variables are released at

different dates, or when unbalanced information sets is intentionally considered to answer specific

questions as in Bussière et al. (2012). Without loss of generality, and for expositional convenience,

suppose, for some date t′, that the first ka variables in the vector xt′ belong to Ωt0 and the last

kb = k − ka variables do not, and let us partition εt as εt = (ε′at, ε
′
bt)
′ and the covariance matrix

14See also Forni and Lippi (2001), Forni et al. (2000), Forni et al. (2004), Stock and Watson (1999), Stock and
Watson (2002), Giannone, Reichlin, and Sala (2005), Bai and Ng (2007) and Stock and Watson (2005).
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Σ = E (εtεt
′) as

Σ =

 Σaa Σab

Σba Σbb

 . (42)

Then it follows that E (εat′ |Ωt0) = εat′ , whereas E (εbt′ |Ωt0) = ΣbaΣ
−1
aa εat′ . Let Σ̂ be an estimate

of Σ, then an estimate of E (εt′ |Ωmt0) can be computed as

̂E (εt′ |Ωt0) =

 ε̂at′

Σ̂baΣ̂
−1
aa ε̂at′

 .
for any given t′ ≤ t0+h. The conditional forecasts E (xt0+h|Ωt0) can then be computed recursively

based on (40). One problem is that Σ and its four submatrices in (42) can have large dimensions

relative to the available time sample and therefore it is not guaranteed that Σ̂aa is invertible. Even

if it was, the inverse of the traditional estimate of variance-covariance matrices does not necessarily

have good small sample properties when the number of variables is large. For these reasons, it is

desirable to implement a covariance matrix with better small sample properties in the computation

of conditional forecasts. There are several estimators proposed in the literature for estimation of

high-dimensional covariance matrices, including Ledoit and Wolf (2004), Bickel and Levina (2008),

Fan et al. (2008), Friedman et al. (2008), the shrinkage estimator considered in Dées et al. (2014),

and the multiple testing approach by Bailey et al. (2014).

The implicit assumption in construction of the GVAR model (9) is invertibility of G0, which

ensures that the model is complete as discussed in Subsection 3.1. If G0 is not invertible, then the

system of country-specific equations is incomplete and it needs to be augmented with additional

equations. This possibility is considered in Chudik, Grossman, and Pesaran (2014) who consider

forecasting with GVARs in the case when N,T
j→∞, and the DGP is given by a factor-augmented

infinite-dimensional VAR model of CP outlined in Section 4.2. For simplicity of exposition assume

one variable per country (ki = 1) and one unobserved common factor (m = 1) generated as

ft = ρft−1 + ηft, (43)

in which |ρ| < 1 and the macro shock, ηft, is serially uncorrelated and distributed with zero
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mean and variance σ2η. Let the factor loadings be denoted by γ = (γ1, γ2, ..., γN )′, and consider a

granular weights vectorw = (w1, w2, ..., wN )′ that defines the cross section averages x∗it = x∗t = w′xt

(assumed to be identical across countries). Then (35) can be written as

xit = φiixi,t−1 + λi0x
∗
wt + λi1x

∗
w,t−1 + uit +Op

(
N−1/2

)
, for i ∈ {1, 2, ..., N} , (44)

where λi0 = γi/γ
∗, λi1 = −φiiγi/γ∗, and γ∗ = w′γ. Denote the corresponding least squares

estimates of the unknown coeffi cients by hats, namely φ̂ii, λ̂i0 and λ̂i1. These estimates are con-

sistent and asymptotically normally distributed (see CP). Note that (44) consists of N different

equations. Therefore, using estimates φ̂ii, λ̂i0 and λ̂i1, for i = 1, 2, ..., N , and provided that matrix

Ĝ0 = IN −diag
(
λ̂0

)
W̃′ is invertible, where W̃ = τw

′
, τ is N ×1 vector of ones, one could obtain

the following GVAR model

xt = F̂xt−1 + Ĝ−10 ε̂t, (45)

where F̂ = Ĝ−10 Ĝ1, Ĝ1 = Φ̂ + diag
(
λ̂1

)
W̃′, and Φ̂ = diag

(
φ̂11, φ̂22, ..., φ̂NN

)
. However, it is

not optimal to use (45) for forecasting in this set-up for the following two reasons. First, G0 =

IN − diag
(
λ̂0

)
W̃′ is by construction rank deficient; to see this note that

w′G0 = w′
[
IN − diag

(
λ̂0

)
W̃′
]

= w′ −w′diag
(
λ̂0

)
τw′,

and recalling that
∑N

i=1wiγi = γ∗, we have

w′G0 = w′ −
N∑
i=1

(
wiγi
γ∗

)
w′ = w′ −w′ = 0′,

which establishes that G0 has a zero eigenvalue. Since G0 is singular, the system of equations (44)

is not complete and it is unclear what the properties of Ĝ−10 are, given that the individual elements

of Ĝ0 are consistent estimates of the elements of G0. Second, the parameters in the conditional

models {φii, λi0, λi1}Ni=1 do not contain information about the persistence of unobserved common

factor, ρ, due to the conditional nature of these models.

Chudik, Grossman, and Pesaran (2014) consider augmenting (44) with the following marginal
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equation for cross-section averages,

x∗t = ρx∗t−1 + γηft +Op

(
N−1/2

)
, (46)

where x∗t is treated as a proxy for the (scaled) unobserved common factor. See (31). Combining

(44) and (46), they obtain the following VAR model in zt = (x′t, x
∗
t )
′,

B0zt = B1zt−1 + uzt +Op

(
N−1/2

)
, (47)

where uzt =
(
u′t, γηft

)′,
B0 =

 IN −λ0

0′ 1

 , B1 =

 Φ λ1

0′ ρ

 ,
and Φ is an N × N diagonal matrix with elements φii, for i = 1, 2, ..., N , on the diagonal. The

matrix B0 is by construction invertible. Consider now the following forecast of xi,t+h conditional

on It = {xt,xt−1, ...}

xfith = ẽ′iB
`zt, (48)

where B = B−10 B1, and ẽi is an N + 1 dimensional selection vector that selects the i-th element.

Chudik, Grossman, and Pesaran (2014) establish that

xfith = E (xi,t+h| It) +Op

(
N−1/2

)
, (49)

where the expectation operator is taken assuming xt is given by a factor augmented infinite-

dimensional VAR model (27) with one factor given by (43), namely

E (xt+h| It) = Θhxt +
(
ρhIN−Θ`

)
γft.

This shows the large N optimality of forecast xfith defined in (48).

Even when G0 is invertible, it is possible that augmentation by equations for cross section

averages can improve forecasting performance. Note that the GVAR model (9) does not feature an
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unobserved factor error structure. We have seen that a suffi cient number of cross-section averages

in the individual country-specific conditional models in (3) takes care of the effects of any strongly

cross-sectionally dependent processes that enter as an unobserved common factors for the purpose of

estimation of country-specific coeffi cients. Inclusion of a suffi cient number of cross section averages

will also lead to a weak cross section dependence of the vector of errors εt in the country-specific

models. But since the reduced form innovationsG−10 εt must be strongly cross-sectionally dependent

when a strong factor is present in xt, then it follows that G−10 (if it exists) cannot have bounded

spectral matrix norm in N . Forecasts based on the augmented model avoid inversion of high-

dimensional matrices. Monte Carlo findings reported in Chudik, Grossman, and Pesaran (2014)

suggest that augmentation of the GVAR by equations for cross section averages does not hurt when

G0 is invertible while it can considerably improve forecasting performance when G0 is singular.

6.1 Important issues in forecasting global economy

There are two important issues in forecasting the global economy: the presence of structural breaks

and model uncertainty. Structural breaks are quite likely, considering the diverse set of economies

and the time period spanning three or more decades, which covers a lot of historical events (financial

crises, wars, regime changes, natural disasters, etc.) The timing and the magnitude of breaks and

the underlying DGP are not exactly known, which complicates the forecasting problem. Pesaran,

Schuermann, and Smith (2009a) address both problems by using a forecast combination method.

They considered simple averaging across selected models (AveM) and estimation windows (AveW)

as well as across both dimensions, models and windows (AveAve); and obtain evidence of superior

performance for their double-average (AveAve) forecasts. These and other forecasting evidence

is reviewed in more detail in the next section. Forecast evaluation in the GVAR model is also

challenging due to the fact that the multi-horizon forecasts obtained from the GVAR model could

be cross-sectionally as well as serially dependent. One statistics to evaluate forecasting performance

of the GVAR model is proposed by Pesaran, Schuermann, and Smith (2009a) who develop a panel

version of the Diebold and Mariano (1995, DM) DM test assuming cross-sectional independence.
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7 Long-run properties of GVARs

7.1 Analysis of long-run

Individual country VARX∗ models in (3) allow for cointegration among domestic variables as well as

among domestic and country-specific cross section averages of foreign variables. Let zit = (x′it,x
∗′
it)
′

be a (ki + k∗)×1 vector of domestic and country-specific foreign variables for country i, and denote

ri cointegrating relations among the variables in the vector zit as β′izit, where βi is a (ki + k∗)× ri

dimensional matrix consisting of ri cointegrating vectors. The overall number of cointegrating

vectors in the stacked GVAR model is naturally reflected in the eigenvalues of the companion

representation of the GVAR model. These eigenvalues characterize the dynamic properties of the

model which can also be used to examine the overall stability of the GVAR. In particular, when

the overall number of cointegrating relations is r =
∑N

i=1 ri, then k − r eigenvalues of the GVAR

model fall on the unit circle, and the remaining eigenvalues fall within the unit circle for the model

to be stable.

7.1.1 Testing for number of cointegrating vectors

Testing for the number of cointegrating relations can be conducted using Johansen’s trace and

maximum eigenvalue test statistics as set out in Pesaran et al. (2000) for models with weakly

exogenous I (1) regressors. Small sample evidence typically suggests that the trace test performs

better than the maximum eigenvalue test, but both are subject to usual size distortions when

the time dimension is not suffi ciently large.15 Selecting the number of cointegrating vectors is

important, since misspecification of the rank of the cointegrating space can have severe impact on

the performance of the resulting GVAR model, with adverse implications for stability, persistence

profiles and impulse responses.

7.1.2 Identification of long-run relations

Once the number of cointegrating vectors is determined, it is possible to proceed with the identifi-

cation of long-run structural relations and, if desired, to impose over-identifying restrictions. These

15The maximum eigenvalue test statistics is also less robust to departures from normal errors, see Cheung and Lai
(1993) for a Monte Carlo evidence.
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restrictions can then be tested using the log-likelihood ratio test statistics. See Garratt et al. (2006)

for a comprehensive review of long-run identification methods in macroeconometric literature. The

first contribution on the identification of long-run relations in the GVAR literature is Dées, Holly,

Pesaran, and Smith (2007) who used bootstrapping to compute critical values for the likelihood

ratio tests of overidentifying restrictions on the long-run relations of the country-specific models.

7.1.3 Persistence profiles

The speed of convergence with which the adjustment to long-run relations takes place in the global

model can be examined by persistence profiles (PPs). PPs refer to the time profiles of the effects of

system or variable-specific shocks on the cointegrating relations and they provide another valuable

evidence on the validity of chosen long-run relations, see Pesaran and Shin (1996) for a discussion

of PPs in cointegrated VAR models and Dées, Holly, Pesaran, and Smith (2007) for implementation

of PPs in the GVAR.

7.2 Permanent/transitory component decomposition

Given that the GVAR model provides a coherent description of the short-run as well as long-run

relations in the global economy, it can be used to provide estimates of steady-states or the permanent

components of the variables in the GVAR model. Assuming no deterministic components are

present, then the vector of permanent components is simply defined as long-horizon expectations:

xPt = lim
h→∞

Et (xt+h) . (50)

In the case when deterministic components are present, xPt will be given by the sum of the determin-

istic components and long-horizon expectations of de-trended variables. The vector of deviations

from steady states is in both cases given by

x̃t = xt − xPt .
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Assuming that the information set is non-decreasing over time, it follows from (50) that xPt =

limh→∞Et
(
xPt+h

)
, which ensures that the steady-states are time consistent, in the sense that

Et
(
xPt+s

)
= lim

h→∞
Et
(
xPt+s+h

)
= xPt for any s = 0, 1, 2, ...,

and, in the absence of deterministic components, xPt satisfy the martingale property, Et
(
xPt+1

)
=

xPt . Such a property is a natural requirement of any coherent definition of steady-states, but this

property is not satisfied for the commonly used Hordick-Prescott (HP) filter and some of the other

statistical measures of steady-states.

Permanent components can be easily obtained from the estimated GVAR model using the

Beveridge-Nelson decomposition, as illustrated in detail by Dées, Holly, Pesaran, and Smith (2007).

Estimates of steady-states are crucial for the mainstream macroeconomic literature, which focuses

predominantly on modelling the business cycle, that is explaining the behavior of deviations from

the steady-states. The GVAR provides a coherent method for constructing steady states that

reflect global influences and long-run structural relationships within as well as across countries in

the global economy.

8 Specification tests

It has become a norm in applied work to perform a number of specification tests and robustness

checks. DdPS apply a suite of residual based break tests to test for the stability of coeffi cients

and/or breaks in error variances. Although, in the context of cointegrated models, the possibility

of a structural break is relevant for both long-run as well as short-run coeffi cients, the focus is on

the stability of short-run coeffi cients, as the availability of data hinders any meaningful tests of

the stability of cointegrating vectors. In particular, DdPS performed the following tests: Ploberger

and Krämer (1992) maximal OLS cumulative sum (CUSUM) statistics; its mean square variant;

Nyblom’s (1989) tests for the parameter constancy against non-stationary alternatives; the Wald

form of Quandt’s (1960) likelihood ratio statistics; the meanWald statistics of Hansen; and Andrews

and Ploberger (1994) Wald statistics based on exponential average. The last three tests are Wald

type tests utilizing a single break at an unknown point. The heterokedasticity-robust version of

31



the tests were also conducted. Stability tests performed are based on residuals of the individual

country models, which depend on the dimension of the cointegrating space, and do not require the

cointegrating relationships to be identified. The critical values of the tests, computed under the

null of parameter stability, can again be calculated using the sieve bootstrap samples. Details of the

bootstrap procedure is given in DdPS (2007, Supplement A). In the context of global macroeconomic

modelling, DdPS and other applied papers typically find, perhaps surprisingly, relatively small

rejection rates, and the main reason for the rejection seems to be breaks in the error variances as

opposed to coeffi cient instability. Once breaks in error variances are allowed for, the remaining

parameters are typically reasonably stable.

A number of robustness checks could also be performed to test the sensitivity of the findings

to variations of different assumptions, including lag selection, choice of the aggregation weights,

selection of the number of cointegrating relations and possibly over-identifying long-run relations,

sample selection, and similar robustness checks.

9 Empirical applications of the GVAR approach

Since the introduction of the GVAR model by Pesaran et al. (2004), there have been numerous

applications of the GVAR approach developed over the last decade. The GVAR handbook edited

by di Mauro and Pesaran (2013) provides an interesting collection of a number of GVAR empirical

applications from 27 contributors. The GVAR handbook is a useful non-technical resource aimed at

general audience and/or practitioners interested in the GVAR approach. This handbook provides a

historical background of the GVAR approach (Chapter 1), describes an updated version of the basic

DdPS model (Chapter 2), and then provides 7 applications of the GVAR approach on international

transmission of shocks and forecasting (Chapters 3-9), 3 finance applications (Chapters 10-12),

and 5 regional applications. The applications in the handbook span various areas of the empirical

literature. Chapters on international transmission on forecasting investigate, among others, the

problem of measuring output gaps across countries, structural modelling, the role of financial

markets in the transmission of international business cycles, international inflation interlinkages,

and forecasting the global economy. Finance applications include a macroprudential application of

the GVAR approach, a model of sovereign bond spreads, and an analysis of cross-country spillover
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effects of fiscal spending on financial variables. Regional applications investigate the increasing

importance of the Chinese economy, forecasting of the Swiss economy, imbalances in the Euro

Area, regional and financial spillovers across Europe, and modelling interlinkages in the West

African Economic and Monetary Union. We refer the reader to this Handbook for further details

on these interesting applications.

The remainder of this section reviews the empirical literature using the GVAR approach fo-

cussing on the different types of questions being addressed. We separate forecasting applications

from the other applications of the GVAR approach. We divide the latter literature depending

on the definition of cross-section units into two broad categories: ‘global’finance and macro ap-

plications, where units are individual countries, or countries grouped into regions, or a mixture

of countries/regions and other cross-section units (so-called mixed cross-section GVARs), and ‘sec-

toral and other’applications, in which the main cross-section units are sectors, individual consumer

price categories, or other types of cross section units other than countries.

9.1 Forecasting applications

Pesaran, Schuermann, and Smith (2009a) is the first GVAR forecasting application to the global

economy. These authors utilize the version of the GVAR model developed in DdPS and focus on

forecasting real as well as financial variables, namely one and four quarters ahead forecasts for real

output, inflation, real equity prices, exchange rates and interest rates. As we mentioned earlier

in Section 6, forecasting the global economy is challenging due to the likely presence of multiple

structural breaks and model uncertainty. The main finding of Pesaran, Schuermann, and Smith

(2009a) is that simple averaging across model specifications and estimation windows can make

a significant difference. In particular, the double-averaged GVAR forecasts (across windows and

models) perform better than the typical univariate benchmark competitors, especially for output,

inflation and real equity prices. Further forecasting results and discussions are presented in a

rejoinder, Pesaran, Schuermann, and Smith (2009b).

Ericsson and Reisman (2012) provide an empirical assessment of the DdPS version of GVAR

with an impulse indicator saturation technique, which is a new generic procedure for evaluating

parameter constancy. Their results indicate the potential for an improved, more robust specification
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of the GVAR model.

Forecasting key South African variables with a GVAR is investigated in de Waal and van

Eyden (2013a). This paper considers small and large versions of the GVAR model and compare

GVAR forecasts with forecasts generated from a vector error correction model (VECM) augmented

with foreign variables as well as with univariate benchmarks. De Waal and van Eyden find that

modelling the rest-of-the-world economies in a coherent way using the GVARmodel can be useful for

forecasting domestic variables for South Africa. In particular, they find that forecast performance

of the large version of the GVAR model is generally superior to the performance of the customized

small GVAR, and that forecasts of both GVAR models tend to be better than the forecasts of the

augmented VECM, especially at longer forecast horizons.

Forecasting regional labor markets with GVARs is undertaken in Schanne (2011) using German

regional labor market data. Schanne focuses on the forecasting different labour market indicators

and finds that including information about labor-market policies and vacancies, and accounting

for the lagged and contemporaneous spatial dependence can improve the forecasts relative to a

simple bivariate benchmark model. On the other hand, business-cycle indicators seem to have no

information regarding labor-market predictions.

Conditional forecasting is considered in Bussière, Chudik, and Sestieri (2012), who apply a

GVAR model to analyze global trade imbalances. In particular, they compare the growth rates of

exports and imports of the 21 countries in the sample during the Great Trade Collapse of 2008-09

with the model’s prediction, conditioning on the observed values of real output and real exchange

rates. The objective of this exercise is to assess whether the collapse in world trade that took

place during 2008-2009 can be rationalized by standard macro explanatory variables (domestic and

foreign output as proxies for demand terms and real exchange rates as proxies for relative prices)

alone or if other factors may have played a role. The standard macro explanatory variables alone are

found to be quite successful in explaining the collapse of the global trade for most of the economies

in the sample. This exercise also uncovers that it is easier to reconcile the Great Trade Collapse of

2008-09 in the case of advanced economies as opposed to emerging economies.

Forecasting of trade imbalances is also considered in Greenwood-Nimmo, Nguyen, and Shin

(2012b). They compute both central forecasts and scenario-based probabilistic forecasts for a range
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of events and account for structural instability by use of country-specific intercept shifts identified by

taking into account both statistical evidence and a priori knowledge of historic economic conditions

and events. The authors find that predictive accuracy of the GVAR model is broadly comparable to

that of standard benchmark models over short horizons and superior over longer horizons. Similarly

to Bussière, Chudik, and Sestieri (2012), they conclude GVAR models may be a useful forecasting

tool for policy institutions.

Nowcasting of global growth with GVARs is considered in Chudik, Grossman, and Pesaran

(2014), who focus on the information content of timely purchasing manager indices (PMIs) for

the nowcasting of growth. This exercise does take into account data release lags, and conditional

forecasts for real output growth (conditional on the latest available unbalanced information at a

given point in time) are derived. Moreover, the authors also consider averaging across estimation

windows and Ridge estimation of the individual country models in the GVAR with the penal-

ization/shrinkage parameter chosen by cross-validation. The GVAR based on individual country

models estimated subject to the penalization constraint is often found to have better forecasting

performance.

Improved forecasting performance of the GVAR model constructed based on country models

estimated with shrinkage estimators is also reported in Feldkircher et al. (2014) who implemented

a number of Bayesian priors in estimating country-specific models in the GVAR. In particular,

they implemented the normal-conjugate prior, a non-informative prior on the coeffi cients and the

variance, the inverse Wishart prior, the Minnesota prior, the single-unit prior, which accommodates

potential cointegration relationships, and the stochastic search variable selection prior. While

Bayesian estimation of the country models tends to improve the forecasting performance for all of

the priors considered, the use of the stochastic search variable selection prior is found to improve

out-of-sample predictions systematically.

Forecasting with a regime-switching GVAR model is considered in Binder and Gross (2013)

who find that combining the regime-switching and the GVAR methodology improves out-of-sample

forecast accuracy significantly in an application to real GDP, price inflation, and stock prices.
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9.2 Global finance applications

The first GVAR model in the literature, developed by PSW, is applied to the problem of credit risk

modelling with a global perspective. PSW investigate the effects of various global risk scenarios

on a bank’s loan portfolio. The use of a GVAR model for modelling credit risk has also been

explored in Pesaran, Schuermann, and Treutler (2007) who investigated the potential for portfolio

diversification across industry sectors and across different countries and find that full firm-level

parameter heterogeneity along with credit rating information matters a great deal for capturing

differences in simulated credit loss distributions. Further results on the modelling of credit risk

with a global perspective are provided by Pesaran, Schuermann, Treutler, and Weiner (2006).

The GVAR based conditional credit loss distribution is used, for example, to compute the effects

of a hypothetical negative equity price shock in South East Asia on the loss distribution of a

credit portfolio with global exposures over one or more quarters ahead. Pesaran, Schuermann,

Treutler, and Weiner (2006) find that the effects of such shocks on losses are asymmetric and non-

proportional, reflecting the highly nonlinear nature of the credit risk model. de Wet, van Eyden,

and Gupta (2009) develop a South African-specific component of the GVAR model for the purpose

of credit portfolio management in South-Africa. Their set of domestic factors for South Africa is

extended beyond those used in PSW in such a way to take into account both retail and corporate

credit risk. Castrén, Dées, and Zaher (2010) use a GVAR to analyze the behavior of euro area

corporate sector probabilities of default under a wide range of different shocks. They link the core

GVAR model with a satellite equation for firm-level Expected Default Frequencies (EDFs) and find

that, at the aggregate level, the median EDFs react most to shocks to GDP, exchange rate, oil

prices and equity prices.

A number of other empirical GVAR papers focus on modelling various types of risk. Gray,

Gross, Paredes, and Sydow (2013) analyze interactions between banking sector risk, sovereign risk,

corporate sector risk, real economic activity, and credit growth for 15 European countries and the

United States. The goal is to analyze the impact and spillover effects of shocks and to help identify

policies that could mitigate banking system failures, sovereign credit risk and recession risk-policies

including bank capital increases, purchase of sovereign debt, and guarantees. Alessandri, Gai,

Kapadia, Mora, and Puhr (2009) develop a quantitative framework for gauging systemic risk which
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explicitly characterizes banks’balance sheets and allows for macro credit risk, interest income risk,

market risk, network interactions, and asset-side feedback effects. Their core macro model is a

2-country version of the GVAR (UK as a small open economy and the US) and they focus on

projections for system-wide banking assets in the United Kingdom and show how a combination of

extreme credit and trading losses can precipitate widespread defaults and trigger contagious default

associated with network effects and fire sales of distressed assets.

Dreger and Wolters (2011) investigate the implications of an increase in liquidity in the years

preceding the global financial crises on the formation of price bubbles in asset markets. They find

that the link between liquidity and asset prices seems fragile and far from being obvious. Impli-

cations of liquidity shocks and their transmission are also investigated in Chudik and Fratzscher

(2011). In addition to liquidity shocks, Chudik and Fratzscher (2011) identify risk shocks and find

that while liquidity shocks have had a more severe impact on advanced economies during the re-

cent global financial crisis, it was mainly the decline in risk appetite that affected emerging market

economies. The tightening of financial conditions was a key transmission channel for advanced

economies, whereas for emerging markets it was mainly the real side of the economy that suffered.

They also find some interesting differences over different types of economies, with Europe being

more adversely affected by the fall in risk appetite than other advanced economies. Effects of risk

shocks are also scrutinized in Bussière, Chudik, and Mehl (2011) for a monthly panel of real effective

exchange rates featuring 62 countries. Bussière, Chudik, and Mehl (2011) find that the responses of

real effective exchange rates of euro area countries to a global risk aversion shock after the creation

of euro have become similar to those of Italy, Portugal or Spain before the European monetary

union, i.e. of economies in the euro area’s periphery. Moreover, their findings suggest that the

divergence in external competitiveness among euro area countries over the last decade, which is

at the core of today’s debate on the future of the euro area, is more likely due to country-specific

shocks than to global shocks. Dovern and van Roye (2013) use a GVAR to study the international

transmission of financial stress and its effects on economic activity and find that financial stress

is quickly transmitted internationally. Moreover, they find that financial stress has a lagged but

persistent negative effect on economic activity, and that economic slowdowns induce only limited

financial stress.
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Gross and Kok (2013) use a mixed-cross-section (23 countries and 41 international banks)

GVAR specification to investigate contagion among sovereigns and banks. They find that spill-over

potential in the credit default swap (CDS) market was particularly pronounced in 2008 and more

recently in 2011-12. Moreover, contagion primarily tends to move from banks to sovereigns in 2008,

whereas the direction seems to have been reversed in 2011-12 in the course of the sovereign debt

crisis. Last but not least, their results indicate that the system of banks and sovereigns has become

more closely connected over time.

Interrelation between volatility in financial markets on macroeconomic dynamics is investigated

in Cesa-Bianchi, Pesaran, and Rebucci (2014), who extend the GVAR model of DdPS by a volatility

module. Assuming that all variables are driven by the same set of unobserved common factors, and

moreover these common factors affect the volatility and macroeconomic activity with a time lag of at

least of a quarter (financial markets react instantaneously, whereas macroeconomic variables react

with a lag). Under these assumption, Cesa-Bianchi, Pesaran, and Rebucci (2014) find a statistically

significant and economically sizable impact of future output growth on current volatility, and no

effect of an exogenous change in volatility on the business cycle over and above those driven by the

common factors. They interpret this evidence as suggesting that volatility is a symptom rather a

cause of economic instability.

9.3 Global macroeconomic applications

DdPS update the PSW GVAR model by expanding the country coverage (to 33 with 25 of these

modelled separately and the remaining countries grouped into a single euro area economy) as well

as the time coverage, and provide further theoretical results, some of which were reviewed above.

Their focus is on the enhancement of the global model and its use to analyze transmission of shocks

across countries with a particular attention on the implications for the euro area economy. Using

variety of shocks, including shocks to US equity prices, oil prices, US short term interest rates, as

well as US monetary policy shocks (identified by using partial ordering of variables), DdPS find

that financial shocks are transmitted relatively rapidly and often get amplified as they travel from

US to euro area. The impact of US monetary policy shocks on euro area is, however, rather limited.

Effects of different shocks on the economy has also been the focus of many other papers reviewed
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below.

9.3.1 Global inflation

Galesi and Lombardi (2009) study the effects of oil and food price shocks on inflation. They find

that the inflationary effects of oil price shocks are felt mostly in the developed countries while less

sizeable effects are observed in the case of emerging economies. Moreover, food price increases

also have significant inflationary direct effects, especially for emerging economies, and significant

second-round effects are reported in some countries. Inflation is also the focus of Anderton, Galesi,

Lombardi, and di Mauro (2010) who construct a GVAR model to examine oil price shocks and other

key factors affecting global inflation. They consider calculating the impact of increased imports

from low-cost countries on manufacturing import prices and estimate Phillips curves in order to

shed light on whether the inflationary process in OECD countries has changed over time. They

find that there seem to be various significant pressures on global trade prices and labor markets

associated with structural factors, and argue that these are partly due to globalization which, in

addition to changes in monetary policy, seem to be behind some of the changes in the inflationary

process over the period under consideration.

Using the GVAR model, Dées, Pesaran, Smith, and Smith (2009) provide estimates of New

Keynesian Phillips Curves (NKPC) for eight developed industrial countries and discuss the weak

instrument problem and the characterization of the steady states. It is shown that the GVAR

generates global factors that are valid instruments and help alleviate the weak instrument problem.

Moreover, it is argued that the GVAR measures of the steady states perform better than the

Hodrick-Prescott (HP) measure, and the use of foreign instruments substantially increases the

precision of the estimates of the output coeffi cient in the NKPC equations.

9.3.2 Global imbalances

The effects of demand shocks and shocks to relative prices on global imbalances are examined in

Bussière, Chudik, and Sestieri (2012)’s GVAR model of global trade flows. Their results indicate

that changes in domestic and foreign demand have a much stronger effect on trade flows than
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changes in relative trade prices. Using the GVAR approach, global imbalances are also investigated,

although with a different focus, in Bettendorf (2012).

9.3.3 Role of US as a dominant economy

The role of the US as a dominant economy in the world is examined in Chudik and Smith (2013)

by comparing two models: one that treats US as a globally dominant economy, and a standard

version of the GVAR model that does not separate the impact of US variables from the cross-section

averages of foreign economies, as in DdPS. They find some support for the extended version of the

GVAR model, allowing the US to be the dominant player in the world economy, but they had

to restrict the set of variables in the GVAR model to only 4 (short-term interest rates, output,

inflation and real exchange rates) in order to bring down the number of unknown parameters in the

extended version of the GVAR model that treats US as a dominant economy. The role of the US

as a potentially globally dominant economy and its evolution over time has also been investigated

by Dées and Saint-Guilhem (2011) who model real output alone in a global setting and find that

the role of US somewhat diminished over time.

9.3.4 Business cycle synchronization and interdependence of a country (region) with

the rest of the world economy

Dreger and Zhang (2013) investigate interdependence of business cycles in China and industrial

countries and study the effects of shocks to Chinese economy, particularly stemming from the

recent fiscal stimulus package. Substantial impact on growth in the advanced economies and the

Asian region are found. Moreover, China is found to be vulnerable to shocks in industrial countries

as well.

Understanding the interdependence between China, Latin America and the world economy is

the main goal of Cesa-Bianchi, Pesaran, Rebucci, and Xu (2012), who find that the long-term

impact of a China GDP shock on the typical Latin American economy has increased by three

times since mid-1990s. Moreover, the long-term impact of a US GDP shock has halved, while the

transmission of shocks to Latin America and the rest of emerging Asia (excluding China and India)
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GDP has not undergone any significant changes. These findings are based on a GVAR model with

time-varying trade weights, which altered the transmission mechanism, and they indicate that the

emergence of China as an important source of world growth might be the driver of the so called

“decoupling”of emerging markets business cycle from that of advanced economies reported in the

literature.

The rise of China in the world economy and emerging markets in particular is also investigated

in Feldkircher and Korhonen (2012). They find that a +1% shock to Chinese output translates to

a permanent increase of 1.2% in Chinese real GDP and a 0.1% to 0.5% rise in output in the case

of large economies. The countries of Central Eastern Europe and the former Commonwealth of

Independent States also experience an output rise of 0.2%, while countries in South-Eastern Europe

see a permanent 0.1% reduction in output. By contrast China seems to be little affected by shocks

to the US economy. Feldkircher and Korhonen (2012) also find that Russia’s real output increases

by about 6% following a 50% hike in oil prices, whereas the surge in oil prices decreases Chinese

output by 4.5% in the long-run.

Understanding the Latin America business cycle is the goal of Dreger and Zhang (2013). In a 9

country/region version of the GVAR, they quantify the relative contribution of domestic, regional

and international factors to the fluctuation of domestic output in Latin American countries. In

particular, they find that only a modest proportion of LA countries’domestic output variability is

explained by industrial countries’ factors and that domestic and regional factors account for the

main share of output variability at all simulation horizons.

International linkages of the Korean economy are investigated in Greenwood-Nimmo, Nguyen,

and Shin (2012a). They uncover that the real economy and the financial markets are highly sensitive

to the oil price changes even though it has little effect on inflation and that the interest rate is set

largely without recourse to overseas conditions except to the extent that they are captured by the

exchange rate. They find that the Korean economy is most affected by US, the eurozone, Japan

and China.

Understanding interlinkages between the Emerging Europe and the global economy is investi-

gated in Feldkircher (2013) who develop a GVAR model covering 43 countries. The main findings

are that the Emerging Europe’s real economy reacts to a US output shock as strongly as it does
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to a corresponding euro area shock. Moreover, Feldkircher (2013) uncovers a negative effect of

tightening in the euro area’s short-term interest rate on output in the long run throughout the

Central, Eastern and Southeastern Europe and the Commonwealth of Independent States.

Sun, Heinz, and Ho (2013) use the GVAR approach with combined trade and financial weights to

investigate cross-country linkages in Europe. Their findings show strong co-movements in output

growth and interest rates but weaker linkages between inflation and real credit growth within

Europe.

The impact of foreign shocks on South Africa is studied in de Waal and van Eyden (2013b).

Using time-varying weights they uncover increasing role of China and decreasing role of the US,

reflecting the substantial increase in South Africa’s trade with China since the mid-1990s. The

impact of a US shock on South African GDP is found to be insignificant by 2009, whereas impact

of a shock to Chinese GDP on South African GDP is found to be three times stronger in 2009 than

in 1995. These findings are in line with the way the global crisis of 2007-09 affected South Africa,

and highlight increased risk to the South African economy from shocks to Chinese economy.

9.3.5 Impact of EMU membership

Two papers, Pesaran, Smith, and Smith (2007) and Dubois, Hericourt, and Mignon (2009) investi-

gate counterfactual scenarios of a monetary union membership. Pesaran, Smith, and Smith (2007)

provide a conceptual framework to analyze counterfactual scenarios using macroeconometric mod-

els and investigate empirically the consequences of a scenario where UK joins Euro in 1999. They

report probability estimates that output could have been higher and prices lower in the UK and in

the euro area as a result of entry, and they also examine the sensitivity of these results to a variety

of assumptions about UK entry. The aim of Dubois, Hericourt, and Mignon (2009) is to answer the

counterfactual question of the consequences of no euro launch in 1999. They find that monetary

unification promoted lower interest rates and higher output in most euro area economies, rela-

tive to a situation where national monetary policies would have followed a German-type monetary

policy. An opposite picture emerges if national monetary policies had adopted British monetary

preferences after September 1992.
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9.3.6 Commodity price models

Gutierrez and Piras (2013) construct a GVAR model of global wheat market. Due to the nature

of the GVAR approach, the feedback between the real and the financial sectors and also the link

between food and energy prices can be taken into account. Their impulse response analysis reveals

that a decrease of wheat stocks with respect to the level of consumption, and an increase in oil

prices, and real exchange rate devaluation have all inflationary effects on wheat export prices,

although their impacts are different across the main export countries.

While oil prices are included in majority of GVAR models as an important observed common

factor, these studies generally do not focus on the nature of oil shocks and their effects. Identification

of oil shocks is attempted in Chudik and Fidora (2012) and Cashin, Mohaddes, Raissi, and Raissi

(2014). Both papers argue that the cross section dimension can help in the identification of (global)

oil shocks and utilize a set of sign restrictions. The former paper investigates the effects of oil supply

driven increases in oil prices on output and real effective exchange rates and find that adverse oil

supply shocks have significant negative impact on real output growth of oil importers within which

emerging markets tend to be more affected as compared with the more mature economies. Moreover,

oil supply shocks tend to cause an appreciation (depreciation) of oil exporters’(oil importers’) real

effective exchange rates but also lead to an appreciation of the U.S. dollar. Cashin, Mohaddes,

Raissi, and Raissi (2014) identify both demand as well as supply shocks and find that economic

consequences of the two types of shocks are very different. They also find negative impacts of

adverse oil supply shocks for energy importers, while the impacts on oil exporters that possess

large proven oil/gas reserves is positive. A positive oil-demand shock, on the other hand, is found

to be associated with long-run inflationary pressures, an increase in real output, a rise in interest

rates, and a fall in equity prices in almost all countries in their sample.

9.3.7 Housing

Jannsen (2010) investigates the international effects of housing crises, focusing on US, Great Britain,

Spain and France. Among other findings, Jansen’s results show that on average a housing crisis

has the most severe effects in the first two years - particularly between the fifth and the seventh

quarter after the house prices have reached their peak, and the output gap is not expected to close

43



within five years. However, when several important industrial countries face a housing bust at the

same time, economic activity in other countries is likely to be dampened as well via international

transmission effects, leading to significant losses of GDP growth in a number of countries, notably

in Europe.

Hiebert and Vansteenkiste (2009) adopt the GVAR approach to investigate house price spillovers

across euro area countries, using three housing demand variables: real house prices, real per capita

disposable income, and the real interest rate for 10 euro area countries. Their results suggest

limited house price spillovers in the euro area, in contrast with the impacts of a shock to domestic

long-term interest rates, with the latter causing a permanent shift in house prices after around 3

years. Moreover, house price spillovers are found to be quite heterogenous across countries.

9.3.8 Effects of fiscal policy

International effects of fiscal policy shocks is examined in Favero, Giavazzi, and Perego (2011) using

the GVAR approach. These authors argue that effects of fiscal policy on output differs depending

on the different debt dynamics, the different degree of openness, and the different fiscal reaction

functions across countries. Such heterogeneities concern not only the size of the fiscal multiplier,

but also its sign. Moreover, it is argued that an average fiscal multiplier is of very little use to

describe the effect of exogenous shifts in fiscal policy on output due to intrinsic heterogeneities.

9.3.9 Labor market

GVAR model developed by Hiebert and Vansteenkiste (2010) is used to analyze spillovers in the

labor market in the US. Using data on 12 manufacturing industries over the period 1977-2003,

Hiebert and Vansteenkiste (2010) analyze responses of a standard set of labor-market related vari-

ables (employment, real compensation, productivity and capital stock) to exogenous factors (such

as a sector-specific measure of trade openness or a common technology shock), along with industry

spillovers using specific measures of manufacturing-wide variables for each sector. Their findings

indicate that increased trade openness negatively affects real compensation, has negligible employ-

ment effects and leads to higher labor productivity. The impacts of technology shocks are found to

affect significantly and positively both real compensation and employment.
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9.3.10 Role of credit

The role of credit in the international business cycles is investigated using a GVAR approach in

Eickmeier and Ng (2011), Xu (2012) and Konstantakis and Michaelides (2014). The first paper

focuses on the transmission of credit supply shocks in the US, the euro area and Japan. Using sign

restrictions on the short-run impulse responses to financial shocks that have the effect of reducing

credit supply to the private sector, Eickmeier and Ng (2011) find that negative US credit supply

shocks have stronger negative effects on domestic and foreign GDP, compared to credit supply

shocks from the euro area and Japan. Domestic and foreign credit and equity markets respond to

the credit supply shocks as well, and exchange rate responses are consistent with a flight to quality

to the US dollar. Xu (2012) also investigates the effects of the US credit shocks and the importance

of credit in explaining business cycle fluctuations. Her findings reveal the importance of bank

credit in explaining output growth, changes in inflation and long term interest rates in countries

with developed banking sector. Using GIRFs she finds strong evidence of the spillover of US credit

shocks to the UK, the Euro area, Japan and other industrialized economies. Konstantakis and

Michaelides (2014) use the GVAR approach to model output and debt fluctuations in the US and

the EU15 economies. They analyzes the transmission of shocks to debt and GDP using GIRFs and

find that EU15 economy is more vulnerable to foreign shocks as compared to the US. Moreover,

the effects of a shock to the US debt has significant and persistent impact on the EU15 and US

economies, whereas a shock to EU15 debt does not have statistically significant impact on the US

economy.

9.4 Sectoral and other applications

The GVAR approach does not necessarily need to have a country dimension and other cross-section

units could be considered. Holly and Petrella (2012) adopt the GVAR approach to model highly

disaggregated manufacturing sectors. They uncover that factor demand linkages can be important

for the transmission of both sectoral and aggregate shocks.

Vansteenkiste (2007) models regional housing market spillovers in the US. Using state-level data

on 31 largest US states she uncovers strong interregional linkages for both real house prices and

real income per capita. Vansteenkiste (2007) also considers the effects of real interest rates shocks
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on house prices and finds that an increase of 100 basis points in the real 10-year government bond

yield results in a relatively small long run fall in house prices of between 0.5 and 2.5%.

Holly, Hashem Pesaran, and Yamagata (2011) investigate adjustment to shocks in a system of

UK regional house prices, treating London as a dominant region and linking UK house prices also

to the international developments via New York house price changes. They show that shocks to

house prices in the London region impact other UK regions with a delay, and these lagged effects

then echo back to London activity as the dominant region. Moreover, New York house prices have

a direct effect on London house prices.

Chudik and Pesaran (2014) use highly disaggregated consumer price category data for Germany,

France and Italy to investigate inflation persistence. They allow for neighborhood effects in their

disaggregate GVAR model of consumer price categories. The objective of their analysis is to

investigate the persistence of aggregate inflation. In particular, they investigate how the dynamic

heterogeneity and the unobserved common factor persistence interact in their impact on consumer

price inflation. Their findings suggests that the interaction of the persistence in common factors

and the parameter heterogeneity are the key to understanding the slow response of the aggregate

inflation to macro shocks.

10 Concluding remarks

Although the GVAR approach was originally developed for the purpose of credit risk modelling by

Pesaran et al. (2004), it soon became clear that there are numerous possibilities for the application

of this approach. Indeed, already there are numerous empirical applications of the GVAR approach

developed over the last decade. Moreover, new theoretical insights are provided on the conditions

that justify the individual building blocks of the GVAR model in large N large T setting where

all variables are endogenously determined. Despite these developments, there are still areas that

could greatly benefit from future research.

First, a deeper econometric understanding of the GVAR approach as N,T
j→∞ would be help-

ful. This includes several different areas, such as a better understanding of cross-country cointegra-

tion in high-dimensional VARs when N is large, a more detailed analysis of the consequences of ag-

gregation implicit in the data-shrinkage applied to observations for the rest-of-the-world economies,
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or linking the GVAR approach to the spatial literature.

The second important area is the integration of the GVAR the DSGE approaches to macroecono-

metric modelling. Since the GVAR approach provides a coherent reduced form VAR representation

of the global economy, and solution of DSGE model is a VAR model, it will be useful to bring the two

approaches together. A first step in this direction is provided by Dées, Pesaran, Smith, and Smith

(2014), who consider a number of issues, including measurement of steady-states, the specification

of short-run country-specific models and the identification and estimation of the model subject to

the theoretical constraints required for a determinate rational expectation model. Full integration

of the GVAR and the DSGE approaches would require development of N -country open economy

DSGE models capable of modelling long-run as well as short-run business cycle movements.
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