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Abstract  
Financial frictions and financial shocks can affect the trade-off between inflation 
stabilization and output-gap stabilization faced by a central bank. Financial frictions lead to a 
greater response in output following any deviation of inflation from target and thus lead to 
an increase in the sacrifice ratio. As a result, optimal monetary policy in the face of credit 
frictions is to allow greater output gap instability in return for greater inflation stability. Such 
a shift in optimal monetary policy can be mimicked in a Taylor-type interest rate feedback 
rule that shifts weight to inflation and the lagged interest rate and away from output. 
However, the ability of the conventional Taylor rule to mimic optimal policy gets worse as 
credit market frictions and shocks intensify. By including a financial variable like the lending 
spread in the monetary policy rule, the central bank can partially reverse this worsening 
output-inflation trade-off brought about by financial frictions and partially undo the effects 
of credit market frictions and shocks. Thus the central bank may want to include lending 
spreads in the policy rule even when financial distortions are not explicitly part of the central 
bank’s objective function. 
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1 Introduction

The recent financial crisis and ensuing recession have spurred a surged interest in the implications

of credit risk for monetary policy. Much of the inquiry is revolved around the question of whether

monetary policy deliberations should take account of financial frictions or shocks. A popular view

is that the central bank should include credit spreads in a Taylor type monetary policy rule. In his

testimony on February 26, 2008 before the Committee on Financial Services of the U.S. House of

Representatives, John B. Taylor argued that the intercept term in a Taylor type rule for monetary

policy, that is, the natural rate of interest, should be adjusted downward in proportion to observed

increase in the spread between the term Libor rate at three month maturity and an index of

overnight federal funds rates expected for the same period. Similar views have been expressed by

others, including Goodfriend and McCallum (2007), De Fiore and Tristani (2007), McCulley and

Toloui (2008), Meyer and Sack (2008), Curdia and Woodford (2009 and 2010), Woodford (2010),

and Mishkin (2010a and 2010b).

Many of these suggestions that there be an explicit role for financial market conditions in the

central bank’s policy rule are predicated on idea that financial stability should be another goal of

monetary policy, on top of the traditional inflation and output-gap stabilization objectives. There

are, however, concerns about assigning monetary policy this additional goal. As Philadelphia Fed

President Charles Plosser argued at the 2013 American Economic Association Annual Meeting,

“Financial stability should not be an explicit objective of monetary policy per se. . . we need to

resist the temptation of adding the financial stability goal to the burdens of monetary policy. . . ”

We make two contributions to this inquiry by establishing two main results. First, even when

monetary policy goals are confined to stabilizing just inflation and output-gap, credit frictions

and shocks can exacerbate tensions between the two conventional objectives. Specifically, credit

frictions and shocks change the trade-off between inflation and the output gap that can be achieved

through monetary policy. For a given deviation of inflation from its target, the resulting deviation

of output from its potential level will be more severe in the presence of credit frictions.1 As a result,

deviations in inflation from target become very costly in terms of the associated deviation of output

1One way to think of this is that financial frictions flatten the Phillips curve.
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from potential. The loss in output required to reduce inflation (the sacrifice ratio) is larger in an

environment with credit frictions and credit shocks. Given the higher cost of correcting deviations

of inflation from target, in the face of credit frictions and credit shocks, the focus of monetary

policy will shift towards ensuring that inflation never strays too far from target in the first place.

Thus the first key finding of this paper is that the presence of financial frictions or financial

shocks changes the trade-offbetween inflation and output faced by the central bank, and the central

bank responds by shifting weight to inflation stabilization. Our model takes its root in the classic

financial accelerator literature pioneered by Gertler (1988), Bernanke and Gertler (1989), Carlstrom

and Fuerst (1997), Kiyotaki and Moore (1997), and Bernanke, Gertler, and Gilchrist (1999), among

others. These models incorporate financial frictions, which through balance sheet effects lead to a

greater response of output following a shock like an unexpected increase in inflation. This financial

accelerator framework is incorporated into an otherwise standard New Keynesian framework with

both staggered wage and price setting. The presence of nominal rigidities in both price and wage

setting gives rise to a non-trivial trade-off between inflation stability and output gap stability.2

In addition to financial frictions that enhance an otherwise ordinary shock, we consider financial

shocks themselves. This type of shock was shown to be an important independent cause of business

cycle fluctuations in models like Christiano, Motto, and Rostagno (2003 and 2009), among others.3

Simulations of the model show that under Ramsey optimal monetary policy, credit frictions

and shocks lead to a shift in optimal policy away from output-gap stabilization towards inflation

stabilization. Furthermore, such shift in the conduct of monetary policy can be implemented by

modifying a Taylor-type interest-rate feedback rule. The modifications entail making the risk-free

policy rate respond relatively more aggressively to deviations of inflation from target, and the

policy rate should be set more in line with its own lags. Thus in the face of credit frictions that

worsen the trade-off between inflation and output, the central bank should reduce the variability

2For standard New Keynesian models with staggered price and wage settings, but without financial frictions and
shocks, see, among others, Huang and Liu (2002), Huang, Liu, and Phaneuf (2004), and Christiano, Eichenbaum,
and Evans (2005).

3This type of shock is documented by Taylor and Williams (2009a) who describe the sudden increase in interbank
lending spreads at the beginning of the financial crisis in August 2007. Bordo and Haubrich (2010) document
historical instances of these credit market shocks going back to 1875. Helbling et al. (2010) and Gilchrist, Yankov
and Zakrajsek (2009) single out these credit shocks and demonstrate their importance in explaining the fluctuations
in broader macro aggregates. Within the framework of a financial accelerator model, a number of recent papers, like
Attah-Mensah and Dib (2008), Nolan and Thoenissen (2009), Jermann and Quadrini (2012), and Gilchrist, Ortiz,
and Zakrajsek (2009) have introduced credit shocks into a DSGE model.
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of monetary policy and how it responds to current economic conditions. However, these changes

in the parameters of the central bank’s optimal simple rule are at best a poor substitute for the

optimal monetary response to credit frictions and shocks; the performance of the optimal simple

rule relative to that of Ramsey optimal monetary policy gets worse in a model where credit supply

shocks are major drivers of business cycle fluctuations.

The second major result of this paper is that by including credit spreads in its Taylor-type

monetary policy rule, the central bank can partially reverse the change in the output-inflation

trade-off brought about by financial frictions. This is especially true when fluctuations in the

spread are driven primarily by exogenous credit supply shocks. When the central bank cannot

include financial variables in its Taylor-type monetary policy rule, it responds to credit frictions

and shocks by shifting the focus of policy towards inflation stabilization. However, if the central

bank can also include a financial variable like the lending spread in the Taylor-type monetary policy

rule, it shifts less weight towards inflation stabilization, implying that the addition of a financial

variable in the monetary policy rule can help the central bank partially reverse the change in the

output-inflation trade-off brought about by financial frictions. It is also interesting to note that

when the central bank responds to credit frictions and shocks by shifting weight towards inflation

stabilization, price stability is only achieved at the cost of higher output gap instability. But when

the central bank responds to credit frictions and shocks by putting more weight on a financial

variable like the lending spread, both inflation variability and output gap variability are reduced.

Thus the central bank may want to include a financial variable like lending spreads in the policy

rule even when financial distortions are not explicitly part of the central bank’s objective function.

This paper will proceed as follows. Section 2 presents the model that will be used to derive

these results. The model is a new Keynesian model with financial frictions, which enable the model

to move away from the irrelevance of balance sheets implied by the Modigliani and Miller (1958)

theorem. Then the calibration of the model is discussed in section 3. The optimal parameters

in the Taylor rule as derived from simulations of the model are presented in section 4. First we

discuss how the presence of financial frictions in the model changes the central bank’s inflation-

output trade-off, and induces the central bank to shift the parameters of their policy rule towards

inflation stabilization. Then we discuss whether or not the central bank will want to directly target

a financial variable like the lending spread. Finally, section 5 concludes and offers some suggestions
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for further research.

2 Model

In the model there are four types of agents: firms, entrepreneurs, capital builders and households.

There is also a central bank that sets the risk free nominal rate of interest.

Firms use capital and labor inputs to produce tradeable output that is used for consumption

and investment. Each firm produces a differentiated good and sets prices according to a Calvo

(1983) style price setting framework, thus giving rise to nominal price rigidity.

Entrepreneurs own physical capital and rent it to firms. This physical capital is financed par-

tially through debt and partially through equity. In every period, an individual entrepreneur faces

an idiosyncratic shock to the value of their physical capital assets. While these shocks have no

direct aggregate effects, they introduce heterogeneity among entrepreneurs. The shock is uninsur-

able, and a fraction of entrepreneurs may experience an abnormally large shock to the value of

their physical capital stock and be pushed into bankruptcy, while most will not. The uncertainty

over which entrepreneurs will be pushed into bankruptcy and which will not is a type of financial

friction in the entrepreneurial sector. The ratio of debt to equity on an entrepreneur’s balance sheet

determines their ability to withstand a shock to the value of their capital stock. Creditors use the

entrepreneur’s debt-equity ratio to determine the riskiness of lending to the entrepreneurial sector,

giving rise to a default risk interest premium that depends on the debt-equity ratio.4

Capital builders purchase final goods from firms for physical capital investment. There are

diminishing marginal returns to physical capital investment. In periods when investment is high,

the marginal return of that investment in producing new physical capital is low, and vice versa.

This gives rise to a procyclical relative value of physical capital.

Households supply labor to firms and consume final output. Furthermore they supply a differ-

entiated type of labor and set wages according to a Calvo-style wage setting process, giving rise to

nominal wage rigidity.

Finally, the central bank tries to stabilize output and prices by controlling the risk-free nominal

rate of interest. The central bank sets policy using a Taylor rule function combining the current

4The fact that this idiosyncratic shock is uninsurable provides the necessary violation of the complete markets
assumption necessary to overcome the implications of the Miller and Modigliani (1958) theorem.
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period’s inflation rate, output gap, and the lagged risk free nominal interest rate. We will also

consider the case where lending spreads are part of the Taylor rule.

2.1 Firms

Goods producing firms, indexed i ∈ [0 1], combine capital and labor, kt (i) and ht (i) to produce a

unique intermediate good yt (i). The firm’s production function is:

yt (i) = Atht (i)1−α kt (i)α − φ (1)

where At is an exogenous stochastic TFP parameter that is common to all firms and φ is a fixed

cost parameter that is calibrated to ensure that firms earn zero profit in the steady state.

Intermediate goods are then combined into one aggregate final good with the following Dixit

and Stiglitz (1977) aggregator function:

yt =
(∫ 1

0 yt (i)
σ−1
σ di

) σ
σ−1

(2)

where σ is the elasticity of substitution between intermediate goods from different firms. The

aggregate final good is allocated to consumption by households, Ct, and investment by capital

builders, It, yt = Ct + It.

From this aggregator function the demand for the intermediate good from firm i as a function

of aggregate demand is:

yt (i) =

(
Pt (i)

Pt

)−σ
yt (3)

where Pt (i) is the price of the good from firm i, Pt =
(∫ 1

0 (Pt (i))1−σ di
) 1
1−σ

is the price index of

final demand.

In period t, the firm will be able to change its price with probability 1 − ξp. If the firm

cannot change prices then they are reset automatically according to Pt (i) = πt−1Pt−1 (i), where

πt−1 = Pt−1
Pt−2

.

Thus if allowed to change their price in period t, the firm will set a price to maximize:
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max
Pt(i)

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τ {Πt,t+τPt (i) yt+τ (i)−MCt+τyt+τ (i)}

where λt is the marginal utility of income in period t. As discussed in this paper’s technical

appendix, the firm that is able to change its price in period t will set its price to:

Pt (i) =
σ

σ − 1

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τMCt+τ

(
Πt,t+τ
Pt+τ

)−σ
yt+τ

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τΠt,t+τ

(
Πt,t+τ
Pt+τ

)−σ
yt+τ

If prices are flexible, and thus ξp = 0, then this expression reduces to:

Pt (i) =
σ

σ − 1
MCt

which says that the firm will set a price equal to a constant mark-up over marginal cost.

Write the price set by the firm that can reset prices in period t as P̃t (i) to denote that it is an

optimal price. Firms that can reset prices in period t will all reset to the same level, so P̃t (i) = P̃t.

Substitute this optimal price into the price index Pt =
(∫ 1

0 (Pt (i))1−σ di
) 1
1−σ
. Since a firm has

a probability of 1 − ξp of being able to change their price, then by the law of large numbers in

any period 1− ξp percent of firms will reoptimize prices, and the prices of ξp percent of firms will

be automatically reset using the previous periods inflation rate. Thus the price index, Pt, can be

written as:

Pt =

(
ξp (Πt−1,tPt−1)1−σ +

(
1− ξp

) (
P̃t

)1−σ
) 1

1−σ

The full details of this derivation are located in the appendix.

The firm hires labor and capital inputs, where Wt is the wage rate paid for labor input and

Rt is the capital rental rate, both of which the firm takes as given. Furthermore the firm must

pay their wage bill at the beginning of the period, prior to production. To do so they borrow

bwct (i) = Wtht (i). The firm’s income after paying for capital and labor inputs is:

dft (i) = Pt (i) yt (i)−Wtht (i)−Rtkt (i)− rwct bwct (i) (4)
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where rwct is the interest rate on working capital loans. Since there is no default risk from lending

working capital to firms, the interest rate on working capital loans is simply equal to the nominal

risk-free rate, rwct = it.

The aggregate income from all firms is returned to households as a lump sum payment, dft =∫ n
0 dft (i) di.

The firm will choose ht (i) and kt (i) to maximize profit in (4) subject to the production function

in (1). The working capital requirement implies that the cost of the labor input is Wt (1 + rwct ) and

the cost of the physical capital input is Rt. Given these prices, the firm’s demand for labor and

capital inputs are:

ht (i) = (1− α)
MCt

Wt (1 + rwct )
yt (i) (5)

kt (i) = α
MCt
Rt

yt (i)

where MCt = 1
At

(
Wt(1+rwct )

1−α

)1−α (
Rt
α

)α
.

2.2 Entrepreneurs

Entrepreneurs, indexed j ∈ [0 1], buy capital from capital builders and rent it to firms. At the

beginning of period t, entrepreneur j has a stock of capital,Kt (j), that he will rent to firms in period

t at a rental rate Rt. In equilibrium, the aggregate stock of capital supplied by all entrepreneurs j

is equal to the aggregate stock of capital demanded by all firms i,
∫ 1

0 Kt (j) dj =
∫ 1

0 kt (i) di.

Entrepreneurs finance this stock of capital partially through debt. The entrepreneur borrows

bt (j) to finance their capital stock Kt (j). Thus the market value of the assets and liabilities for

entrepreneur j at the beginning of period t are:

Assets: PKt Kt (j)

Liabilities: bt (j)
(6)

where PKt is the price of existing capital.

The end of the period the value of the non-depreciated capital stock for the average entrepreneur
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is PKt (1− δ)Kt. However during the period, the individual entrepreneur j receives an idiosyncratic

draw that affects the relative price of their existing capital, so for entrepreneur j the end of period

value of their non-depreciated capital stock is:

ωt (j)PKt (1− δ)Kt (j)

where ωt (j) is a i.i.d. draw from a lognormal distribution on the interval [0 ∞) with mean 1 and

standard deviation σt.

Since this draw has a mean 1, it has no effect on the aggregate capital stock. It simply introduces

heterogeneity among entrepreneurs, and in any given period a fraction of entrepreneurs receive a

draw that has a large adverse effect on the value of their existing capital (a small ωt (j)) and thus

at the end of the period, the value of their liabilities exceeds the value of their assets.

During the period the entrepreneur rents his capital stock to firms for a rental rate of Rt. The

entrepreneur finances this capital stock by borrowing with an interest rate rt. Thus at the end of

the period, after the realization of ωt (j), the nominal market value of entrepreneur j’s assets is

ωt (j)PKt (1− δ)Kt (j)+RtKt (j). At the end of the period the nominal value of the entrepreneur’s

liabilities is (1 + rt) bt (j).

Thus, after the realization of ωt (j), entrepreneur j is bankrupt if:

ωt (j)PKt (1− δ)Kt (j) +RtKt (j) < (1 + rt) bt (j) (7)

Thus the threshold value of ωt (j) below which the entrepreneur goes bankrupt in period t and

above which they continue operations is:

ω̄t =
(1 + rt)

bt(j)
Kt(j)

−Rt
PKt (1− δ)

(8)

where DAt (j) = bt(j)
Kt(j)

is the ratio of the book value of debt to the book value of assets on an

entrepreneur’s balance sheet. The history of individual entrepreneur j will influence the level of

bt (j) and Kt (j), but the ratio DAt (j) = bt(j)
Kt(j)

is equal across all entrepreneurs. This is a key

result for aggregation, for it implies that the bankruptcy cutoff value ω̄t does not depend on an

entrepreneur’s history. More intuition behind this result is presented at the end of this section and
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a formal proof is presented in the appendix.

When deciding how much to lend to entrepreneurs going into next period and at what rate,

creditors factor in the fact that if entrepreneur j does not default in period t + 1, they receive a

return of rt+1. If the entrepreneur defaults, creditors receive a share of the entrepreneur’s remaining

assets, less the bankruptcy cost µ. The threshold value ω̄t+1 in equation (8) determines whether or

not an entrepreneur goes into default next period. Thus the payoff to creditors conditional of the

realization of the draw ωt+1 (j) is:

(1 + rt+1) (bt+1 (j)) if ωt+1 (j) ≥ ω̄t+1

(1− µ)
[
ωt+1 (j) (1− δ)PKt+1Kt+1 (j) +Rt+1Kt+1 (j)

]
if ωt+1 (j) < ω̄t+1

(9)

Perfect competition among creditors implies that the lending rate, rt+1, is set such that the

expected return, after factoring in the cost of bankruptcy, is equal to the risk-free rate, it+1:

(1 + it+1) bt+1 (j) =

∫ ω̄t+1

0
(1− µ)

(
ωt+1 (j) (1− δ)PKt+1Kt+1 (j) +Rt+1Kt+1 (j)

)
dF (ωt+1;σt)

+

∫ ∞
ω̄t+1

(1 + rt+1) bt+1 (j) dF (ωt+1;σt)

where F (ωt+1;σt) is the c.d.f. of the lognormal distribution of ωt+1, and thus the fraction of

entrepreneurs that are forced to declare bankruptcy in period t+ 1.

Thus the lending rate is:

1 + rt+1 =
(1 + it+1)

1− F (ω̄t+1;σt)
−

(1− µ)
[
Rt+1F (ω̄t+1;σt) + (1− δ)PKt+1

∫ ω̄t+1
0 ωt+1dF (ωt+1;σt)

]
(1− F (ω̄t+1;σt))

bt+1(j)
Kt+1(j)

(10)

Holding all else equal, this interest rate, rt+1, is increasing in F (ω̄t+1;σt). F (ω̄t+1;σt) is

increasing in ω̄t+1. ω̄t+1 is increasing in the entrepreneur’s debt-asset ratio. Thus when there are

financial frictions in the entrepreneurial sector, the lending rate is increasing in the level of debt on

an entrepreneur’s balance sheet.

The cutoff value of ωt+1 (j) in equation (8) combined with the interest rate expression in (10)

demonstrates the feedback loop associated with financial frictions in the entrepreneurial sector.
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When the price of existing capital, PKt+1 falls, the cutoff value ω̄t+1 rises. This implies that more

firms will receive draws of ωt+1 (j) below this cutoff value and be forced into bankruptcy. When

more firms go into bankruptcy, F (ω̄t+1;σt) increases, and rt+1 increases as creditors now demand

a higher interest rate to compensate for the increased bankruptcy risk. This higher rt+1 means

higher interest expenses and lower profit for the entrepreneur, which leads to a further increase in

the cutoff value ω̄t+1.

The end of period net worth for the entrepreneur that survives is the entrepreneur’s profit in

time t plus the value of their non-depreciated capital stock:

Ñt (j) = RtKt (j)− (1 + rt) bt (j) + ωt (j)PKt (1− δ)Kt (j)

The entrepreneur will pay a dividend to shareholders of det (j) and begin the next period with

net worth Nt+1 (j) = Ñt (j) − det (j). Entrepreneurs that declare bankruptcy in period t pay no

dividend and drop out of the market, they are replaced with new entrepreneurs, which are endowed

with start up capital of N̄ . Thus the net worth of the entrepreneurial sector at the beginning of

next period is:

Nt+1 =

∫ ω̄t

0
Nt+1 (j) dF (ω̄t;σt) +

∫ ∞
ω̄t

Nt+1 (i) dF (ω̄t;σt) (11)

= N̄F (ω̄t;σt) +
(
rktKt − (1 + rt) bt − det

)
(1− F (ω̄t;σt)) + PKt (1− δ)Kt

∫ ∞
ω̄t

ωtdF (ω̄t;σt)

At the beginning of any period, entrepreneurs have different levels of net worth Nt+1 (j) that

will depend on the entrepreneur’s history of idiosyncratic shocks ωt (j).

The entrepreneur will acquire capital up to the point where the lending rate is equal to the

expected return to holding a unit of capital:

rt+1 = Et

(
Rt+1 + ωt+1 (j) (1− δ)PKt+1

PKt

)

Since ωt+1 (j) is i.i.d. and Et (ωt+1 (j)) = 1, the left hand side of the above expression is the

same across all entrepreneurs j, which implies that rt+1 is the same across all entrepreneurs.
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2.3 Capital Builders

The representative capital builder converts final goods, given by equation (2), into the physical

capital purchased by entrepreneurs. At the end of period t, the non-depreciated physical capital

stock is (1− δ)Kt, and the physical capital stock at the beginning of the next period is Kt+1. The

evolution of the physical capital stock is given by:

Kt+1 − (1− δ)Kt = φ

(
It
Kt

)
Kt

where φ′ > 0 and φ′′ < 0 implying that there are diminishing marginal returns to physical capital

investment. Capital builders purchase final goods for investment at a price Pt and sell existing

capital to entrepreneurs at a price PKt . Thus the profits of the representative capital builder are

given by:

dct = PKt (Kt+1 − (1− δ)Kt)− PtIt

In a competitive capital building sector, profit maximization implies that the relative price of

existing capital is:

PKt
Pt

=

[
φ′
(
It
Kt

)]−1

Since φ′′ < 0, when It
Kt
is high, φ′

(
It
Kt

)
is low, so PKt

Pt
is high. This implies that during times

of high physical capital investment, when the ratio of investment to the existing capital stock is

high, the relative price of existing capital is high. Since investment is highly procyclical, capital

adjustment costs imply that the relative price of capital is highly procyclical as well.

2.4 Households

Households, indexed l ∈ [0 1], supply heterogeneous labor to firms and consume from their labor

income, interest on savings, and profit income from firms, entrepreneurs, and capital builders.

The household maximizes their utility function:

12



max
∞∑
t=0

βt
[
ln (Ct (l))− ψ (Ht (l))

1+σH
σH

]
(12)

subject to their budget constraint:

PtCt (l) +Bt+1 (l) + F (ω̄t;σt) N̄ = (13)

Wt (l)Ht (l) + dft (l) + det (l) + dct (l) + (1− ζt) (1 + rt)Bt (l) + ζet

where Ct (l) is consumption by household l in period t, Ht (l) is the household’s labor effort in the

period, Bt (l) is the household’s stock of lending to entrepreneurs at the beginning of the period,

Wt (l) is the wage paid for the household’s heterogenous labor supply, ζt represents the share of

loans to the entrepreneurial sector that are lost to bankruptcy and liquidation costs, and dft (l),

det (l), and dct (l) are the household’s share of period t profits from firms, entrepreneurs, and capital

builders, respectively.5

Each household supplies a differentiated type of labor. The function to aggregate the labor

supplied by each household into the aggregate stock of labor employed by firms is:

Ht =

(∫ 1

0
Ht (l)

θ−1
θ dl

) θ
θ−1

(14)

where Ht =
∫ 1

0 ht (i) di. Since the household supplies a differentiated type of labor, it faces a

downward sloping labor demand function:

Ht (l) =

(
Wt (l)

Wt

)−θ
Ht

In any given period, household j faces a probability of 1− ξw of being able to reset their wage,

otherwise it is reset automatically according to Wt (l) = πt−1Wt−1 (l).

If household j is allowed to reset their wages in period t they will set a wage to maximize the

expected present value of utility from consumption minus the disutility of labor.

5Market clearing in the bond market implies that the sum of lending across households l is equal to the sum of
borrowing across entrepreneurs j,

∫ 1
0
Bt (l) dl =

∫ 1
0
bt (j) dj.
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Et
∞∑
τ=0

βτ (ξw)τ
{
λt+τΠt,t+τWt (l)Ht+τ (l)− ψ (Ht+τ (l))

1+σH
σH

}
Thus after technical details which are located in the appendix, the household that can reset

wages in period t will choose a wage:

Wt (l)
θ
σH

+1
=

θ

θ − 1

1 + σH
σH

ψ (Wt)
θ
σH

Et
∞∑
τ=0

βτ (ξw)τ
(

Wt+τ

Πt,t+τWt

) θ
σH

+θ
(Ht+τ )

1+σH
σH

Et
∞∑
τ=0

βτ (ξw)τ λt+τΠt,t+τ

(
Wt+τ

Πt,t+τWt

)θ
Ht+τ

If wages are flexible, and thus ξw = 0, this expression reduces to:

Wt (l) =
θ

θ − 1

1+σH
σH

ψ (Ht)
1
σH

λt

Thus when wages are flexible the wage rate is equal to a mark-up, θ
θ−1 , multiplied by the

marginal disutility of labor, 1+σH
σH

ψ (Ht)
1
σH , divided by the marginal utility of consumption, λt.

Write the wage rate for the household that can reset wages in period t, Wt (l), as W̃t (l) to

denote it as an optimal wage. Also note that all households that can reset wages in period t will

reset to the same wage rate, so W̃t (l) = W̃t.

All households face a probability of (1− ξw) of being able to reset their wages in a given period,

so by the law of large numbers (1− ξw) of households can reset their wages in a given period. The

wages of the other ξw will automatically reset by the previous periods inflation rate.

Substitute W̃t into the expression for the average wage rate Wt =
(∫ n

0 Wt (l)1−θ dl
) 1
1−θ
, to

derive an expression for the evolution of the average wage:

Wt =

(
ξw (Πt−1,tWt−1)1−θ + (1− ξw)

(
W̃t

)1−θ
) 1

1−θ

2.5 Monetary Policy

The monetary policy instrument is the risk-free rate, it, which is determined by the central bank’s

Taylor rule function:

it+1 = iss + θi (it − iss) + (1− θi) (θpπt + θyŷt − θrrp̂t) (15)
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where πt = Pt
Pt−1
− 1, and ŷt = GDPt

GD̃Pt
− 1, and rp̂t = rt+1− it+1. GD̃Pt is the level of GDP at time t

in an economy with the same structure as the one just described and subject to the same shocks,

only there are no price or wage frictions, ξp = ξw = 0, and there are no financial frictions, σt = 0.

When θr = 0, the central bank does not place any weight the spread between the lending rate

and the risk-free rate and the Taylor rule is simply the conventional Taylor rule with smoothing.

3 Parameter Values

The model in the previous section is solved with a first-order approximation and the results are

found from simulations of the calibrated model. This section will begin by presenting the basic

parameter values used in this calibration. Then we will describe the various types of exogenous

shocks that will drive the simulations of the model and the estimation of these different shock

processes.

The full list of the model’s parameters and their values is found in table 1.

The first six parameters: the discount factor, the capital depreciation rate, capital’s share of

income, the labor supply elasticity, the elasticity of substitution between goods from different firms,

and the elasticity of substitution between labor from different households are all set to values that

are commonly found in the literature.

The capital adjustment cost parameter, κ, describes the curvature of the capital adjustment

function φ
(
It
Kt

)
. It is the elasticity of the relative price of capital with respect to changes in the

investment-capital ratio. This parameter preforms the important functions of lowering the relative

volatility of investment and ensuring the procyclicality of the price of capital. Empirical estimates

of this parameter vary, but the value of 0.125 is in the middle of the range of empirical estimates

and ensures that the relative volatility of investment in the model is near what we see in the data.

The next two parameters in the table are the Calvo price and wage stickiness parameters. The

wage stickiness parameter is chosen such that on average a household adjusts their wages once a

year. The price stickiness parameter implies that prices are a little more flexible than wages and is

taken from the DSGE estimation literature (see e.g. Christiano et al. 2005).

The next two parameters are all determined so that the steady state of the model is able to

match certain features of the data; φ and ψ are the fixed cost in the production of intermediate
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goods and the weight on the disutility from labor in the household’s utility function, respectively.

These are set to ensure that in the steady state, intermediate goods firms earn zero economic profit

and the household’s labor supply is unity.

Finally the last two parameters in the table relate to the risk of bankruptcy and liquidation

costs in the entrepreneurial sector. The cost of liquidation and the idiosyncratic bankruptcy risk

in the entrepreneurial sector, µe and σe are jointly determined. These parameters ensure that in

the steady state of the model, when firms in the entrepreneurial sector have a debt-asset ratio of

0.5, an entrepreneur faces a 2% probability of bankruptcy and the steady state spread between the

lending rate and the risk-free rate is approximately 70 basis points.6

3.1 Exogenous Shock Processes

In this model there are two types of shocks. The first shock is simply a shock to total factor

productivity (TFP) in (1). The second shock is a credit supply shock. In terms of the model this

is a shock to the uncertainty about asset values for an individual entrepreneur, σt, more generally

it can be thought of as a shock to the intermediation process that causes the supply curve in the

credit market to shift to the left.

Since TFP shocks are not the primary focus of the study, we set the exogenous process that

governs TFP shocks to a simple process that is familiar in the business cycle literature. Shocks

to TFP, Ât, follow an AR(1) process with an autoregressive coeffi cient of 0.9. Since the model is

solved using a first-order approximation, we simply normalize the variance of the shocks to TFP

to one.

Alternatively we can consider shocks to credit market uncertainty, σt. Equation (10) describes

how the default rate among entrepreneurs, F (ω̄t+1;σt+1) drives fluctuations in the spread between

the lending rate and the risk-free rate, rp̂t. Fluctuations in the default rate can be broken down

into two components, one due to fluctuations in the endogenous cutoff value ω̄t+1, and one due to

exogenous fluctuations in credit market uncertainty, σt+1.

F (ω̄t+1;σt+1) ≈ f1

(
ω̄t+1 − ω̄ss

ω̄ss

)
+ f2

(
σt+1 − σss

σss

)
(16)

6The calibration that entrepreneurs have a steady state debt-asset ratio of about 0.5 is based on the historical
average debt-asset ratios for U.S. non-financial firms as reported in the Federal Reserve’s Flow of Funds Accounts.
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Due to the financial frictions in the model, movements in ω̄t+1 will cause movements in F (ω̄t+1;σt+1),

and thus the lending spread even when the TFP shock is the only shock in the model. If we calcu-

late the spread between Baa rated corporate bonds and Aaa rated corporates (the Baa-Aaa spread)

from U.S. data from the first quarter of 1984 to the fourth quarter of 2011, the spread has a first

order autocorrelation coeffi cient of 0.81, and the ratio of the standard deviation of the spread to

the standard deviation of GDP over the same period is 0.36 (if we instead calculate these statistics

over the 1984-2007 period the autocorrelation coeffi cient is 0.87 and the relative standard deviation

is 0.27).

In the model with only TFP shocks, the first order autocorrelation of rp̂t is 0.97 and the

volatility of rp̂bt relative to the volatility of the GDP is 0.03. If we assume that σt+1 follows an

AR(1) process with autoregressive coeffi cient of 0.8 then as the variance of the financial shock

increases, the autoregressive coeffi cient of rp̂t approaches 0.81. In the next section we will present

the results from finding the optimal Taylor rule coeffi cients in the model under different assumptions

about the volatility of the exogenous process for the credit supply shocks σt+1. Under each of these

different assumptions about the strength of the shocks, we will report the volatility of rp̂t relative

to the volatility of the GDP. In the different cases we consider, this relative volatility varies from

about 3% under no financial shocks to as high as 40%.

4 Results

To identify optimal monetary policy in this model with credit frictions and shocks and to see how

optimal policy changes as the degree of credit risk increases, we first have to define the loss function

that the central bank will attempt to minimize. In order to ensure that the changes in optimal policy

are due to changes in the endogenous structure of the economy and the transmission mechanism

and not due to changes in the central bank’s preferences, this loss function should remain the same

regardless of the degree of credit market risk in the economy.

When finding the optimal coeffi cients in the Taylor rule, the central bank will attempt to

minimize:

L = var (πt) + Λvar (ŷt)
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4.1 Credit frictions and the stance of monetary policy

4.1.1 The conventional Taylor rule parameters

To evaluate how monetary policy should respond to credit risk, we first identify the optimal weights

on inflation, the output gap, and the lagged interest rate in the Taylor rule function in the model

where business cycles are driven by productivity shocks. We find these optimal parameters twice,

in a model with and without a financial accelerator, setting Λ = 0.5, a value commonly used in

similar studies.

We find these parameters through a grid search. We vary θp, θy, and θi until we find the

combination of the three terms in the central bank’s Taylor rule function that minimizes the central

bank’s loss function. The results from this search are presented in table 2.

The table presents three rows of results. In the first row, there is no financial accelerator in the

model and the central bank finds chooses the optimal combination of θp, θy, and θi to minimize its

loss function. In the second row, the model does have a financial accelerator, but the central bank

cannot re-optimize its choices of θp, θy, and θi. The addition of a financial accelerator in the model

raises both the variance of inflation and the variance of the output gap.

In the third row, the model has a financial accelerator, but the central bank is able to re-optimize

its choice of coeffi cients in the Taylor rule. In deciding a new optimal policy, the central bank faces

a trade-off between inflation stability and output gap stability. The central bank chooses in favor

of inflation stability by increasing the relative weights it places on the lagged interest rate and on

current inflation.7

The results in table 2 were found under the assumption that the central bank will choose its

optimal combination of parameters to minimize a loss function consisting of the variance of the

inflation rate and one half the variance of the output gap. In table 3 we repeat the same exercise, but

assume than in its loss function the central bank places equal weight on both inflation stabilization

and output gap stabilization.

Under this different loss function the Taylor rule coeffi cient on the output gap will increase and

the coeffi cients on the inflation rate and the lagged inflation rate will fall. This is to be expected

from a new loss function where there is a greater weight on output gap stabilization, and under

7The relative weight it places on inflation, θp
θp+θy

= 0.77 before the re-optimization and 0.82 after.
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optimal policy, the variance of inflation is higher and the variance of the output gap is lower than

it was under the old loss function.

However, the same results hold as before; the addition of the financial accelerator to the model

without allowing the central bank to re-optimize will lead to higher volatilities of inflation and the

output gap, as shown in the second row of the table. However, the third row of the table shows that

when the central bank is able to re-optimize in the model that now contains a financial accelerator,

the central bank will still re-optimize in favor of inflation stabilization at the expense of greater

output gap variability. The central bank will increase the relative weight on inflation in its Taylor

rule, and thus by re-optimizing it will favor inflation stability over output gap stability, even when

the two have equal weights in the central bank’s loss function.

In tables 2 and 3, financial frictions lead to endogenous changes in lending spreads in response

to fluctuations in balance sheets and asset prices that are ultimately caused by exogenous produc-

tivity shocks. Many recent papers have also considered the role of exogenous financial shocks. As

described in equation (16), fluctuations in the lending spread are driven by fluctuations in ω̄bt , which

is determined by endogenous variables like the price of capital and debt-asset ratios, and also by

exogenous fluctuations in σt, credit supply shocks.

Define Σ as the standard deviation of the exogenous fluctuations in the lending spread. The

standard deviation of exogenous TFP fluctuations is normalized to one, so Σ measures the ratio

of the standard deviations of the two shocks in the model, the exogenous credit supply shocks and

the exogenous shocks to TFP.

Σ2 =
var

[
f2

(
σt+1−σss

σss

)]
var [At]

The performance of the Taylor rule as Σ increases is presented in table 4. This table considers

the effect of increasing Σ while not allowing the central bank to reoptimize. Thus the table measures

the optimality of the simple Taylor rule when the coeffi cients θp, θy, and θi were optimal when there

were no credit market shocks in the model, Σ = 0, but may not be optimal when there are credit

market shocks in the model.

As Σ increases, credit market shocks become more important in driving business cycle fluctu-

ations. The fourth column of the table reports the volatility of fluctuations in the lending spread
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relative to the volatility of fluctuations in GDP in simulations of the model. When Σ = 0, and there

are no exogenous credit market shocks, the relative volatility of the lending spread is about 0.03. As

Σ increases, the relative volatility of the lending spread increases. In the U.S., the relative volatility

of the Baa-Aaa spread is 0.27 over the period 1984-2007 and 0.36 over the period 1984-2011.

The fifth column of the table reports the performance of the conventional Taylor rule compared

with Ramsey optimal monetary policy. Specifically the statistics in the last column of the table

measure the value of the loss function under the Taylor rule over the value of the loss function

under Ramsey optimal policy. When Σ = 0, the Taylor rule returns a value of the loss function

that is 9.45% higher than under Ramsey policy. As Σ increases, the performance of this Taylor

rule gets worse. When Σ is high enough so that the model is able to match the relative volatility

of lending spreads that are observed in the data, the value of the loss function is 25% higher under

the conventional Taylor rule than it would be under Ramsey policy.

The variances of inflation and the output gap under Ramsey optimal policy as well as the various

Taylor rule specifications we consider in this paper are presented in table 5. In the specification

where the parameters of the central bank’s Taylor rule function are held fixed (in the table this is

listed as "Taylor rule (1)"), both the variance of inflation and the variance of the output gap increase

as Σ increases. Under Ramsey policy, as credit supply shocks become more important for driving

business cycle fluctuations, the stance of monetary policy shifts towards inflation stabilization, and

the variance of inflation remains relatively constant while the variance of the output gap increases.

Thus as the degree of credit market risk increases, the stance of monetary policy wants to shift

towards inflation stabilization.

The results in table 4 are found when the central bank is not able to reoptimize, and must use

the same parameters θp, θy, and θi that were optimal when Σ = 0. As Σ increases, the variances

of both inflation and the output gap increase. A credit market shock leads to a decline in output

and an increase in inflation. The central bank then faces a trade-off between using monetary policy

to stabilize inflation or using it to stabilize the output gap. This trade-off is shown in the last two

columns of the table. This table shows the effect on the variances of inflation and the output gap

of increasing the coeffi cient on the lagged interest rate, θi. When Σ = 0, increasing the coeffi cient

on the lagged interest rate from 0.791 to 0.801 will reduce the volatility of inflation by 0.5% but

will increase the volatility of the output gap by 1%. Given the weights of 1 and 0.5 in the loss
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function, the optimal vale of θi will be at the point where the ratio of the benefit in terms of

increased inflation stability divided the cost in terms of increased output instability is equal to

−0.5. If the ratio is less than −0.5 then the central bank should increase the coeffi cient on the

lagged interest rate. Thus the value of 0.791 is optimal when Σ = 0, as credit market shocks become

more important, the benefit of increasing θi in terms of inflation stability increases and the cost in

terms of output gap instability falls. When Σ is at levels that we would expect to see in the data,

the benefit of increasing θi is much greater and the cost is much less, implying that the ratio of the

two is less than −0.5, so as credit market shocks become more important in driving business cycle

fluctuations, the central bank should increase the coeffi cient on the lagged interest rate.

In table 3, the central bank is able to reoptimize and assign new values to the parameters θp,

θy, and θi as Σ, the variability of exogenous credit market shocks, increases. The results in the

last column of the table show that when the central bank is able to reoptimize and place, the

performance of the Taylor rule relative to Ramsey optimal policy is vastly improved. As discussed

in the earlier results when the central bank could not reoptimize, when Σ = 0 and there are no

credit market shocks, the value of the loss function under the Taylor rule is about 10% higher than

its value under Ramsey policy, but when the model includes credit market shocks akin to those that

we see in the data, the value of the loss function under the same Taylor rule is nearly 25% high than

under Ramsey policy. Now when the central bank is able to reoptimize, the loss function under the

new reoptimized Taylor rule is only about 18% above Ramsey policy, a significant improvement.

Returning to table 5 we see that by shifting the parameters in the Taylor rule towards inflation

stabilization, the central bank using a Taylor-type feedback rule is able to get much closer to true

optimal policy. The table shows that by placing more weight on the inflation terms and the lagged

interest rate, the central bank is able to mimic the fact that true optimal policy keeps inflation

variability relatively constant as Σ increases. However, the central bank using the Taylor-type

feedback rule cannot perfectly mimic true optimal policy, and this greater inflation stability only

comes at the cost of more output instability. Comparing the results under the "Taylor rule (1)"

and the "Taylor rule (2)" specifications, when the central bank is able to reoptimize their choice of

parameters, they achieve a much better result in stabilizing inflation, but this is only achieved by

allowing greater output instability.
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4.1.2 The optimal weight on lending spreads

The last two columns of table 3 shows the benefits and costs of adding lending spreads to the central

bank’s Taylor rule function. If the central bank were to put a positive coeffi cient θr on the spread

rp̂t in equation (15) then it would be using a stimulative monetary policy following a shock that

has a negative effect on output and a positive effect on inflation. Such a stimulative policy would

mitigate the fall in output, but exacerbate the increase in inflation. Thus the final two columns

of table 3 show that when the central bank increases the coeffi cient on the lending spread, the

volatility of the output gap falls but the volatility of inflation rises. Specifically, for higher values of

Σ, which correspond to the level of variability of credit market shocks that we observe in the data,

if the central bank were to raise the coeffi cient on the lending spread from 0 to 0.01, the volatility

of inflation would rise by 0.04% and the volatility of the output gap would fall by 0.13%. Given

this ratio of the costs to the benefits, the central bank should increase the coeffi cient on the lending

spread.8

The results from allowing the central bank to reoptimize and find the optimal combination of

the coeffi cients θp, θy, θi, and θr is shown in table 7. It should be noted how for small values of Σ,

the central bank will not assign any weight to the lending spread. This is due to the fact that for

small values of Σ, fluctuations in the lending spread are so small that the central bank can safely

ignore them. However this model specification leads to a counterfactually small relative volatility

of the lending spread. To have the model reproduce a relative volatility of the lending spread that

is similar to that which we observe in the data, we need a higher value of Σ, and at these more

realistic values, the clearly it is optimal to place a positive coeffi cient on the lending spread.

A comparison of the sixth column in table 7 with the fifth column in table 3 shows that by

including lending spreads in its Taylor rule, the central bank can attain a slightly lower value of

the loss function and can slightly improve the performance of its Taylor rule relative to Ramsey

optimal monetary policy. Recall from the fifth column of table 3 that when the central bank does

not include the lending spread in its optimal Taylor rule, the Taylor rule yields a value of the loss

8The partial derivative of the central bank’s loss function is: ∂L(θr)
∂θr

= ∂var(πt(θr))
∂θr

+ 1
2
∂var(ŷt(θr))

∂θr
. Thus the

optimal value of θr is the point where
∂var(ŷt(θr))

∂θr
∂var(πt(θr))

∂θr

= − 1
2
. Since ∂var(πt(θr))

∂θr
< 0, the central bank should increase the

coeffi cient θr if
∂var(ŷt(θr))

∂θr
∂var(πt(θr))

∂θr

> − 1
2
.
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function that is about 18% higher than under Ramsey policy. When the central bank can include

the lending spread in the rule, the value of the loss function if now about 16% higher than under

Ramsey policy.

Returning to table 5 we see that by including the lending spread in the Taylor-type feedback rule,

the central bank is able to reduce the variability of both inflation and the output gap. Quantitatively

the effect is small, although it is enough to get the Taylor rule policy 2% closer to the true optimal,

but qualitatively it is significant since it implies that the central bank can reduce the variability

of inflation without sacrificing output, and vice versa. In the earlier results where the central

bank could adjust only the conventional Taylor rule parameters, greater inflation stability was only

achieved by allowing greater output instability. By including the spread in its feedback rule, the

central bank is able to change its very trade-off between output and inflation.

4.2 Impulse responses to a credit supply shock

In the previous section we show how including spreads in the Taylor rule can numerically bring

us closer to true optimal policy. In this section we will instead consider impulse responses to see

the path of the output gap, inflation and other macro variables following a shock and show how

including spreads in the Taylor rule can make the path of these variables following a shock closer

to the true optimal path.

Figure 1 presents the responses of the output gap, inflation, investment, consumption, the nomi-

nal risk free rate, and the lending spread following an exogenous credit supply shock. The responses

are plotted under three assumptions for monetary policy. The solid line represents Ramsey optimal

monetary policy, the dashed line is the path when policy is determined by a Taylor rule function

of the output gap, inflation, and the lagged interest rate, and the line with stars is the path when

monetary policy is determined by a Taylor rule function of the output gap, inflation, the lagged

interest rate, and the lending spread.9

The entire process is driven by an exogenous 250 basis point increase in the lending spread, as

shown in the lower right-hand diagram. When monetary policy is determined by a conventional

Taylor rule without interbank lending spreads, this exogenous increase in the spread leads to a 3

9 In the case of the optimally chosen conventional Taylor rule without spreads, we use the coeffi cients from the
Σ = 0.175 line of table 6. The parameters for the optimally chosen modified Taylor rule are taken from the Σ = 0.175
line of table 7.
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percent fall in output, and under the conventional Taylor rule the central bank barely cuts the

risk-free rate. However, under Ramsey optimal monetary policy, the central bank cuts the nominal

risk-free rate by over 100 basis points immediately after the shock, and as a result, there is not the

same sharp drop in output and the output gap is actually slightly positive following the shock.

When spreads are included in the Taylor rule, the path of the risk free rate following the shock is

closer to the path determined by Ramsey optimal policy. When spreads are included in the Taylor

rule, the central bank cuts the risk-free rate slightly in the immediate aftermath of the credit supply

shock, and as a result, instead of falling by 3 percent, output falls by only 1 percent.

It should be noted however that the policy of including spreads in the Taylor rule, while closer

to true optimal policy than when spreads are ignored, is not costless. The exogenous credit supply

shock is a shock to the effi ciency of financial intermediation. Specifically it represents a shift in the

supply curve in the credit market. The central bank can cut the risk free rate to accommodate the

shock, but it cannot reverse the shock. The cost of accommodation is higher inflation, as shown in

the top row in the figure. Specifically, when monetary policy is determined by a Taylor rule with

spreads, accommodating the exogenous 250 basis point increase in the interbank lending spread

results in a 50 − 60 basis point increase in inflation. Under the optimal Taylor rule that did not

include spreads, inflation would only rise by 40 basis points.

5 Conclusion

Credit market risks can change the output-inflation trade-off faced by the central bank by increasing

the response of the output gap to a given deviation of inflation from target. This implies that the

credit frictions and credit shocks lead to a higher sacrifice ratio, and thus a greater cost of inflation.

Thus in the face of credit market frictions or even credit supply shocks, the central bank will place

greater weight on inflation stabilization.

This is true of the Ramsey optimal monetary response. In addition, a simple Taylor-type in-

terest rate feedback rule can mimic optimal policy. As credit frictions and credit supply shocks

become more severe, the central bank will respond by putting relatively more weight on inflation

and the lagged interest rate. While this shift towards inflation stabilization in the Taylor rule

helps the central bank get closer to optimal policy, it doesn’t nullify the effect of the credit supply
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frictions or shocks. Credit frictions change the trade-off between inflation and output and using

the conventional Taylor rule, the central bank responds by stabilizing inflation but only at the

cost of greater output instability. Although, when the central bank is able to include a financial

variable like lending spreads in its Taylor rule, it is able to partially reverse this change in the

trade-off between inflation and output and the central bank doesn’t lean as heavily towards infla-

tion stabilization. As a result, the Taylor rule with a role for financial variables like lending spreads

can mimic Ramsey optimal policy better than the conventional Taylor rule. These results have

important implications for the conduct of monetary policy in the face of varying financial market

conditions, for the central bank may want to include lending spreads in the policy rule even when

financial distortions are not explicitly part of the central bank’s objective function.
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A Technical Appendix

This appendix will present some of the more technical derivations in the paper related to the nominal

rigidities and financial frictions present in the model. The first part of the appendix, section A.1

presents the derivations involved with the Calvo style wage and price equations. The second part of

this appendix, section A.2 presents the proofs necessary for aggregation in the presence of financial

frictions.

A.1 Nominal Rigidities

A.1.1 Sticky Wages

In any given period, household j faces a probability of 1 − ξw of being able to reset their wage,

otherwise it is reset automatically according to Wt (l) = πt−1Wt−1 (l), where πt−1 = Pt−1
Pt−2

.

If household j is allowed to reset their wages in period t they will set a wage to maximize the

expected present value of utility from consumption minus the disutility of labor.

Et
∞∑
τ=0

βτ (ξw)τ
{
λt+τΠt,t+τWt (l)Ht+τ (l)− ψ (Ht+τ (l))

1+σH
σH

}
(17)

where λt+τ is the marginal utility of consumption in period t+ τ .10

Πt,t+τ =

 1 if τ = 0

πt+τ−1Πt,t+τ−1 if τ > 0

The imperfect combination of labor from different households is described in (14). Use this

function to derive the demand function for labor from a specific household:

Ht (l) =

(
Wt (l)

Wt

)−θ
Ht (18)

where Wt =
(∫ n

0 Wt (l)1−θ dl
) 1
1−θ

is the average wage across households, and Ht is aggregate labor

supplied by all households.

10We assume complete contingent claims markets among households within a country. This implies that the
marginal utility of consumption is the same across all households within a country, regardless of their income.
Therefore the total utility from the consumption of labor income in any period is simply the country specific marginal
utility of comsumption, λt, multiplied by the household’s labor income, Wt (l)Nt (l).
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Substitute the labor demand function into the maximization problem to express the maximiza-

tion problem as a function of one choice variable, the wage rate, Wt (l):

Et
∞∑
τ=0

βτ (ξw)τ

λt+τΠt,t+τWt (l)

(
Πt,t+τWt (l)

Wt+τ

)−θ
Ht+τ − ψ

((
Πt,t+τWt (l)

Wt+τ

)−θ
Ht+τ

) 1+σH
σH


After some rearranging, the first order condition of this problem is:

Wt (l)
θ
σN

+1
=

θ

θ − 1

1 + σH
σH

ψ (Wt)
θ
σH

Et
∞∑
τ=0

βτ (ξw)τ
(

Wt+τ

Πt,t+τWt

) θ
σH

+θ (
Ht+τ

) 1+σH
σH

Et
∞∑
τ=0

βτ (ξw)τ λt+τΠt,t+τ

(
Wt+τ

Πt,t+τWt

)θ
Ht+τ

If wages are flexible, and thus ξw = 0, this expression reduces to:

Wt (l) =
θ

θ − 1

1+σH
σH

ψ (Ht)
1
σH

λt

Thus when wages are flexible the wage rate is equal to a mark-up, θ
(θ−1) , multiplied by the

marginal disutility of labor, 1+σH
σH

ψ (Ht)
1
σH , divided by the marginal utility of consumption, λt.

Write the wage rate for the household that can reset wages in period t, Wt (l), as W̃t (l) to

denote it as an optimal wage. Also note that all households that can reset wages in period t will

reset to the same wage rate, so W̃t (l) = W̃t.

All households face a probability of (1− ξw) of being able to reset their wages in a given period,

so by the law of large numbers (1− ξw) of households can reset their wages in a given period. The

wages of the other ξw will automatically reset by the previous periods inflation rate.

So substitute W̃t into the expression for the average wage rate Wt =
(∫ n

0 Wt (l)1−θ dl
) 1
1−θ
, to

derive an expression for the evolution of the average wage:

Wt =

(
ξw (Πt−1,tWt−1)1−θ + (1− ξw)

(
W̃t

)1−θ
) 1

1−θ

A.1.2 Sticky Output Prices

In period t, the firm will be able to change it’s price with probability 1 − ξp. If the firm cannot

change prices then they are reset automatically according to Pt (i) = πt−1Pt−1 (i).
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The firm that can reset prices in period t will choose Pt (i) to maximize discounted future profits:

max
Pt(i)

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τ {Πt,t+τPt (i) yt+τ (i)−MCt+τyt+τ (i)}

where MCt+τ is marginal cost of production in period t+ τ .

The firm’s demand is given in (3). Substitute this demand function into the maximization

problem to express this problem as a function of one choice variable, Pt (i):

max
Pt(i)

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τ

 Πt,t+τPt (i) γ (n)
1−ρ
1−σ−1

(
Πt,t+τPt(i)

Pt+τ

)−σ
yt+τ

−MCt+τγ (n)
1−ρ
1−σ−1

(
Πt,t+τPt(i)

Pt+τ

)−σ
yt+τ


After some rearranging, the first order condition with respect to Pt (i) is:

Pt (i) =
σ

σ − 1

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τMCt+τ

(
Πt,t+τ
Pt+τ

)−σ
yt+τ

Et
∞∑
τ=0

βτ
(
ξp
)τ
λt+τΠt,t+τ

(
Πt,t+τ
Pt+τ

)−σ
yt+τ

If prices are flexible, and thus ξp = 0, then this expression reduces to:

Pt (i) =
σ

σ − 1
MCt

which says that the firm will set a price equal to a constant mark-up over marginal cost.

Write the price set by the firm that can reset prices in period t as P̃t (i) to denote that it is an

optimal price. Firms that can reset prices in period t will all reset to the same level, so P̃t (i) = P̃t.

Substitute this optimal price into the price index Pt =
(

1
n

∫ n
0 (Pt (i))1−σ di

) 1
1−σ

and use the fact

that in any period 1 − ξp percent of firms will reoptimize prices, and the prices of ξp percent of

firms will be automatically reset using the previous periods inflation rate, to derive an expression

for the price index, Pt:

Pt =

(
ξp (Πt−1,tPt−1)1−σ +

(
1− ξp

) (
P̃t

)1−σ
) 1

1−σ
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A.2 Financial Frictions

In this model, aggregation amont the continuum of atomistic entrepreneurs was only possible

because at the beginning of the period, entrepreneur j’s debt-asset ratio, DAt (j) = bt(j)
Kt(j)

, was

equal across all entrepreneurs. This section of the appendix will present the formal proof to both

of these claims.

A.2.1 Entrepreneurial sector

Prove: DAt+1 (i) = DAt+1 (j) :

Entrepreneur i will purchase capital up to the point where:

1 + rt+1 (i) = Et

(
Rt+1 + ωt+1 (i)PKt+1 (1− δ)Kt+1

PKt

)

Since Et (ωt+1 (i)) = 1 and cov
(
ωt+1 (i) , PKt+1 (1− δ)Kt+1

)
= 0, Et

(
Rt+1+ωt+1(i)PKt+1(1−δ)Kt+1

PKt

)
=

Et

(
Rt+1+PKt+1(1−δ)Kt+1

PKt

)
Since Et

(
Rt+1+PKt+1(1−δ)Kt+1

PKt

)
does not depend on any characteristics that are specific to entre-

preneur i, in equilibrium rt+1 (i) = rt+1 (j) for any two entrepreneurs i and j.

Proof by contradiction:

Suppose DAt+1 (i) < DAt+1 (j)

From the bank’s loan supply schedule:

1 + rt+1 (j) =
(1 + it+1)

1− F (ω̄t+1 (j))
−

(1− µ)
[
Rt+1F (ω̄t+1 (j)) + (1− δ)PKt

∫ ω̄t+1(j)
0 ωt+1dF (ωt+1)

]
(1− F (ω̄t+1 (j))) bt+1(j)

Kt+1(j)

where

ω̄t+1 (j) =
(1 + rt+1) bt+1(j)

Kt+1(j) −Rt+1

PKt+1 (1− δ)

If DAt+1 (i) < DAt+1 (j), then bt(i)
Kt(i)

< bt(j)
Kt(j)

, so ω̄t (i) < ω̄t (j) and rt (i) < rt (j).
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This contradicts with the earlier equilibrium condition that rt+1 (i) = rt+1 (j), thus DAt+1 (i) ≮

DAt+1 (j) and since the choice of i and j where arbitrary the only possible equilibrium is one where

DAt+1 (i) = DAt+1 (j).
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Table 1: Benchmark Parameter Values

Symbol Value Description
β 0.99 discount factor
δ 0.025 depreciation rate
α 0.36 capital’s share of income
σn 1 labor supply elasticity
σ 10 substitution elasticity across goods from different firms
θ 21 substitution elasticity across differentiated labor inputs
κ 0.125 capital adjustment cost parameter
ξp 0.62 probability that a firm cannot change prices in the current period
ξw 0.75 probability that a worker cannot change wages in the current period
φ 0.271 fixed cost in production
ψ 0.021 coeffi cient on labor effort in the utility function
µ 0.134 cost of liquidation
σ 0.370 standard deviation of idiosyncratic entrepreneur shocks

Table 2: The optimal coeffi cients on inflation, the output gap, and the lagged interest rate in the
central bank’s Taylor rule in the model with and the model without a financial accelerator.

θp θy θi var (πt) var (ŷt)

σt = 0 1.838 0.525 0.797 3.34% 8.26%
σt > 0 1.838 0.525 0.797 3.60% 8.61%

σt > 0 1.660 0.360 0.791 3.17% 9.44%

Table 3: The optimal coeffi cients on inflation, the output gap, and the lagged interest rate in the
central bank’s Taylor rule in the model with and the model without a financial accelerator. These
results are calculated assuming that the central bank places equal weight on the volatilities of
inflation and the output gap in their loss function

θp θy θi var (πt) var (ŷt)

σt = 0 1.642 0.710 0.686 5.76% 4.86%
σt > 0 1.642 0.710 0.686 6.47% 5.24%

σt > 0 1.519 0.493 0.683 5.62% 6.02%
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Table 4: The preformance of the conventional Taylor rule as credit supply shocks become more
important.

θp θy θi

√
var(rpt)

var(GDP t)
Rel. Loss ∂var(πt(θi))

∂θi

∂var(ŷt(θi))
∂θi

Σ = 0 1.660 0.360 0.791 2.71% 9.45% −0.50% 1.00%
Σ = 0.025 1.660 0.360 0.791 8.70% 10.04% −0.50% 0.99%
Σ = 0.050 1.660 0.360 0.791 16.12% 11.68% −0.51% 0.96%
Σ = 0.075 1.660 0.360 0.791 22.58% 14.04% −0.52% 0.92%
Σ = 0.100 1.660 0.360 0.791 27.88% 16.74% −0.54% 0.85%
Σ = 0.125 1.660 0.360 0.791 32.06% 19.46% −0.56% 0.76%
Σ = 0.150 1.660 0.360 0.791 35.33% 22.01% −0.59% 0.66%
Σ = 0.175 1.660 0.360 0.791 37.85% 24.29% −0.63% 0.54%

Table 5: The variance of inflation and the output gap under optimal monetary policy and three
Taylor rule specifications.

Ramsey Taylor rule (1) Taylor Rule (2) Taylor rule (3)
var (πt) var (ŷt) var (πt) var (ŷt) var (πt) var (ŷt) var (πt) var (ŷt)

Σ = 0 3.35% 7.72% 3.17% 9.44% 3.17% 9.44% 3.17% 9.44%
Σ = 0.025 3.36% 7.99% 3.24% 9.72% 3.19% 9.82% 3.19% 9.82%
Σ = 0.050 3.41% 8.78% 3.44% 10.54% 3.21% 10.97% 3.21% 10.97%
Σ = 0.075 3.47% 10.11% 3.77% 11.91% 3.31% 12.69% 3.31% 12.69%
Σ = 0.100 3.57% 11.96% 4.24% 13.82% 3.34% 15.30% 3.32% 15.28%
Σ = 0.125 3.69% 14.34% 4.84% 16.29% 3.48% 18.33% 3.43% 18.28%
Σ = 0.150 3.84% 17.26% 5.57% 19.30% 3.68% 21.89% 3.57% 21.85%
Σ = 0.175 4.02% 20.70% 6.43% 22.86% 3.90% 26.06% 3.73% 25.90%

Note: Taylor rule (1) refers to the outcome under the conventional Taylor rule where the central
bank cannot reoptimize as Σ increases, as in table 4. Taylor rule (2) refers
to the conventional Taylor rule where the central bank can reoptimize as Σ increases, as in
table 6. Taylor rule (3) refers to the outcome under the Taylor rule where the
central bank can also target lending spreads, as in table 7.
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Table 6: The preformance of the conventional Taylor rule as credit supply shocks become more
important when the central bank is able to reoptimize.

θp θy θi

√
var(rpt)

var(GDP t)
Rel. Loss ∂var(πt(θr))

∂θr

∂var(ŷt(θr))
∂θr

Σ = 0 1.660 0.360 0.791 2.71% 9.45% 0.00% 0.03%
Σ = 0.025 1.668 0.359 0.794 8.66% 10.02% 0.00% 0.02%
Σ = 0.050 1.690 0.353 0.802 15.79% 11.53% 0.01% −0.01%
Σ = 0.075 1.814 0.401 0.825 21.88% 13.32% 0.01% −0.04%
Σ = 0.100 1.950 0.429 0.847 26.50% 15.06% 0.02% −0.07%
Σ = 0.125 2.187 0.505 0.873 30.25% 16.35% 0.03% −0.11%
Σ = 0.150 2.447 0.581 0.894 33.20% 17.27% 0.03% −0.12%
Σ = 0.175 2.805 0.684 0.914 35.50% 17.78% 0.04% −0.13%

Table 7: The optimal Taylor rule coeffi cients when the central bank also targets the lending spread.

θp θy θi θr

√
var(rpt)

var(GDP t)
Rel. Loss

Σ = 0 1.660 0.360 0.791 0.000 2.71% 9.45%
Σ = 0.025 1.668 0.359 0.794 0.000 8.66% 10.02%
Σ = 0.050 1.690 0.353 0.802 0.000 15.79% 11.53%
Σ = 0.075 1.814 0.401 0.825 0.000 21.88% 13.32%
Σ = 0.100 1.887 0.387 0.844 0.374 26.56% 14.73%
Σ = 0.125 1.985 0.390 0.863 0.534 30.34% 15.73%
Σ = 0.150 2.123 0.406 0.883 0.658 33.31% 16.27%
Σ = 0.175 1.732 0.226 0.862 0.711 35.77% 16.04%
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Figure 1: Responses to financial sector uncertainty shock. Calculated under three assumptions for
monetary policy, Ramsey optimal policy (solid line), the conventional Taylor rule (dashed line),
and the modified Taylor rule that is a function of interbank lending spreads (line with stars).

36




