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Figure 1: Growth in Business-Sector TFP, R&D Capital, and Public Infrastructure

Notes: Centered five-year moving average annualized growth rates based on quarterly data. Business-sector
TFP is the utilization-adjusted measure of Fernald (2012). Public infrastructure consists of nondefense
structures and equipment. The definition of R&D capital includes a capitalization of expenditures for
software development. See Appendix A for variable definitions. Sources: BEA, Fernald (2012).

With the exception of a brief period in the late 1990s and early 2000s, aggregate U.S.

productivity growth has slowed markedly since the late 1960s. Figure 1 shows that this slow-

down coincides with a decline in public investments in research and development (R&D).1

The causality underlying this relationship, however, is far from clear, and as Figure 1 shows,

higher growth in business R&D capital or public infrastructure prior to the 1970s are plau-

sible alternative contributing factors.

Several significant empirical challenges need to be overcome in order to isolate the causal

role of government R&D in driving innovation and productivity growth. Any productivity

spillovers likely occur only after long and uncertain lags. Various potential channels for re-

verse causality need to be accounted for, since policymakers’ decisions to boost or cut funding

for R&D could be influenced by a wide range of factors with independent effects on innova-

tion. Aggregate estimates must also be interpreted with care, as more government funding

for R&D can impact private spending on R&D, or affect other productivity-enhancing public

investments.

In this paper, we propose a novel empirical strategy to estimate the aggregate dynamic

effects of changes in government R&D spending, and to identify direct versus indirect pro-

ductivity effects. Because the lags between spending decisions and actual outlays are often

long, the starting point of our analysis is a new dataset of all postwar appropriations enacted

1See also the discussion in Gruber and Johnson (2019) or Bloom et al. (2019), among others.
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for the budgetary accounts funding R&D at the major federal agencies: The Department

of Defense (DoD), Department of Energy (DoE), National Aeronautics and Space Adminis-

tration (NASA), National Institutes of Health (NIH) within the Department of Health and

Human Services, National Science Foundation (NSF), and their historical precursors. To

guard against reverse causality, we perform a narrative classification of all major changes in

federal R&D appropriations for these agencies to construct measures that, after condition-

ing on a suitable set of controls, are largely unanticipated and plausibly free of confounding

influences. We use the narrative measures in long-horizon Jordà (2005) local projections

with quarterly postwar data to estimate the dynamic causal effects of shocks to R&D ap-

propriations on aggregate TFP and various other indicators of innovative activity.

The knowledge spillovers from defense and nondefense R&D are likely quite different, if

only because advancements in military know-how are unlikely to be disseminated as quickly

in order to maintain military superiority. For this reason, we distinguish throughout the

analysis between defense and nondefense R&D. Based on local projections, we find that a

positive shock to appropriations for nondefense R&D robustly leads to a delayed and gradual

increase in aggregate TFP that becomes highly statistically significant at long forecast

horizons (8 to 15 years). For a shock that induces a one percent increase in government

R&D capital, our baseline estimates show eventual increases in the level of TFP of about 0.2

percent. Positive shocks to nondefense R&D also induce increases in various indicators of

innovative activity, such as patent grants, the number of doctoral recipients in STEM fields,

the number of researchers engaged in R&D, or the number of technology publications. In

contrast, we find little evidence that a positive shock to defense R&D leads to any persistent

productivity increases, at least not within horizons of 15 years.

To better understand the estimated TFP responses, we investigate various decomposi-

tions of the spending changes that occur following shocks to R&D appropriations. As em-

phasized by Akcigit et al. (2020), public investments that focus more heavily on producing

basic knowledge can create important complementarities with private research investments,

and have larger spillovers. We find that nondefense shocks lead to relatively larger increases

in funding for more fundamental research, and to particularly persistent increases in funding

for research performed within government agencies and at universities. The majority of the

increase in nondefense R&D funding, in terms of dollars, stems from higher appropriations

for NASA, followed by the NIH. Defense shocks instead mostly result in increased funding

for development and product improvement, with more of the work performed by businesses.

We find that positive shocks to R&D appropriations for both defense and nondefense

activities lead to higher private investment in R&D. As in the theoretical framework of

Akcigit et al. (2020), this suggests that private and public R&D investments indeed act as

complements rather than substitutes. However, the increases in private R&D are relatively

small, particularly in response to nondefense shocks. We find that one channel through which

a positive nondefense shock likely has important additional indirect effects on productivity
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is a gradual expansion of public infrastructure funded by state and local governments. This

expansion is broad-based, with the largest increases in education structures (schools and

universities), followed by roads, and power, water, and sewer systems.

In order to isolate the direct productivity effects of government R&D, we formulate an

aggregate production function with public infrastructure and government R&D capital as

separate arguments, and we structurally estimate the elasticity of government R&D capital.

Our identification strategy relies on two key steps. First, we use available estimates of

the production function elasticity of public infrastructure to remove its contribution to

business-sector TFP growth. We consider values of this elasticity between 0.065 and 0.12,

the range deemed plausible by Ramey (2021) in a recent review of the existing evidence.

In the second step, we use the SP-IV estimator of Lewis and Mertens (2023) to estimate

the production function elasticities of defense and nondefense government R&D capital.

Intuitively, this estimator is a GMM estimator that obtains the elasticity as the value that

best fits the relationship between the estimated responses of government R&D capital and

(infrastructure-adjusted) TFP to the R&D appropriations shocks. Based on the responses to

nondefense R&D shocks, the point estimates of the production function elasticity to total

government R&D capital across various specifications lie within a relatively tight range

of a value of 0.12, and these estimates are generally highly statistically significant under

weak-instrument-robust inference procedures.2 In contrast, the results for defense R&D are

inconclusive, as the estimates vary greatly across specifications, and are very imprecise.

Using the estimates of the production function elasticities, we find that nondefense R&D

accounts on average for about one quarter of all TFP growth in the postwar period. Despite

the fact that the government invests significantly less in R&D than in public infrastructure,

the contribution of government R&D to TFP growth is consistently of a similar magnitude

to, and frequently greater than, the contribution of public infrastructure. Depending on the

assumed value of the public infrastructure elasticity, slower growth in all forms of public

capital explains 0.38 to 0.45 percentage points of the TFP slowdown of around 1 percentage

point after the 1960s. Our findings indicate that the slower growth in government R&D was

equally important, if not more so, than the slower pace of public infrastructure investment.

Finally, we calculate the rate of return to government nondefense R&D, both indirectly

from the production function elasticity estimates and directly from SP-IV estimates in re-

gressions of TFP growth on the ratio of net R&D investment to output. Depending on the

method of calculation and empirical specification, we obtain rates of return on nondefense

R&D between 150 and 300 percent under a Cobb-Douglas assumption, which are consider-

ably higher than similar calculations for the return on public infrastructure. Our findings

therefore point to a misallocation of public capital, and substantial underinvestment in non-

defense R&D.

2The value of 0.12 for the elasticity to total government R&D capital translates to an elasticity to nondefense R&D
capital of 0.06, given that nondefense R&D averages about one half of total government R&D in the postwar sample.
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This paper contributes to a large empirical literature estimating ‘social’ returns to R&D,

i.e. returns that include various spillovers on other firms or industries, which are typically

found to well exceed the normal return on other investments.3 Firm or industry-level studies,

however, are restricted in the scope of spillovers and general equilibrium effects that can be

captured. While aggregate data are better suited for estimating the concept of a ‘social’

return, the main challenge is causal identification. Our paper proposes a strategy for causal

identification with aggregate data in the context of government-funded R&D.

A number of recent empirical studies focus on industry-specific spillovers or patent re-

sponses to specific government R&D programs. For instance, Azoulay et al. (2018) find that

NIH spending spurs the generation of private patents, Myers and Lanahan (2022) find large

private R&D spillovers from the DoE’s Small Business Innovation Research program, and

Kantor and Whalley (2022) find persistent manufacturing output and productivity spillovers

from local NASA R&D spending during the moon mission. Moretti et al. (2019) find posi-

tive spillovers from defense R&D to private R&D and productivity growth in a panel study

of defense R&D spending across OECD countries. Each of these studies provides evidence

for some of the spillovers that we aim to measure collectively.

Our paper is also related to several recent studies of the longer-run macroeconomic effects

of fiscal policy shocks. Cloyne et al. (2022), for example, find that a corporate tax cut leads

to increases in R&D spending by businesses, as well as longer-run increases in TFP. Antolin-

Diaz and Surico (2022) study the long-run effects of military spending shocks, and find that

these shocks lead to long-run increases in output and productivity. Consistent with our

results, the authors argue that the long-run effects are associated with shocks that expand

the share of government spending going to R&D, which they identify by maximizing the

variance of government R&D spending at forecast horizons of up to one year. De Lipsis

et al. (2022) also study the effects of shocks to government R&D spending, in their case

identified with short-run restrictions similar to Blanchard and Perotti (2002). As we do, they

find that government R&D crowds in private investment and raises output in the long-run.

Different from Antolin-Diaz and Surico (2022) or De Lipsis et al. (2022), we focus on shocks

to R&D appropriations rather than R&D spending, use a narrative identification scheme,

and distinguish between defense and nondefense government R&D. Despite methodological

differences, it is reassuring that our conclusions regarding the potential for government R&D

spending to boost economic growth are broadly similar.

Finally, this paper contributes to the literature on the productivity effects of public

capital, see e.g. Bom and Ligthart (2014) and Ramey (2021) for surveys. Since the early

contributions of Aschauer (1989) and Munnell (1990), this literature has typically focused

mostly on (nondefense) public infrastructure. Our paper presents estimates of the produc-

3For example, Bloom et al. (2013) use firm-level accounting data and changes in tax incentives for R&D to identify a
social rate of return to R&D of 55%. See Hall et al. (2010) or Jones and Summers (2020) for overviews of the evidence.
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tion function elasticity of government R&D capital that can be used to separately study

the role of intangible public capital in quantitative growth models. These estimates are also

useful for budgetary analyses of fiscal policy initiatives (e.g. CBO 2016; CBO 2021).

I. Measurement, Definitions and Facts

The measures of public capital used in this paper are based on data from the Bureau of

Economic Analysis (BEA). Specifically, we use data on gross investment from the National

Income and Product Accounts (NIPAs) to construct quarterly series of the value of gov-

ernment fixed assets (at real cost) that are consistent with the annual series in the BEA’s

Fixed Asset Account, see Appendix A for details. We distinguish between (i) defense capi-

tal (defense-related equipment and structures), (ii) public infrastructure (federal nondefense

and state and local government equipment and structures), (iii) defense R&D capital, and

(iv) nondefense R&D capital. Our definition of R&D capital includes a capitalization of

expenditures for software development, and therefore corresponds to the concept of ‘intel-

lectual property’ for the government sector in the NIPAs; we use the term ‘R&D capital’ as

such throughout the rest of the paper. We refer to the aggregate of (iii) and (iv) as ‘gov-

ernment R&D capital’. R&D expenditures are measured in the NIPA by source of funding,

so government R&D capital includes federally-funded ‘contract R&D’ performed by firms,

universities, nonprofits, and public-private partnership ‘R&D centers’ (e.g., the Lawrence

Livermore National Laboratory). Figure 2 plots the quarterly time series of public capital

and its subcomponents as a ratio of GDP. As is clear from the figure, government R&D

capital is relatively small compared to other types of public capital, with nondefense and

defense R&D capital averaging 3.9 percent and 2.7 percent of GDP, respectively.

The expenditure data underlying the BEA measures of R&D capital are constructed

primarily from annual surveys conducted by the NSF’s National Center for Science and

Engineering Statistics (NCSES). Unlike the NIPA data, NCSES data on R&D spending

is available by funding agency, performing sector, and type of research activity. The NSF

defines R&D as the “creative and systematic work undertaken in order to increase the stock

of knowledge ... and to devise new applications of available knowledge.” This wide umbrella

for spending on innovative activity is typically separated into three types: basic research,

applied research, and experimental development work. The NSF defines basic research as

experimental or theoretical work pursuing knowledge “without specific applications toward

processes or products” whereas experimental development work is defined as “systematic

work, drawing on knowledge gained from research and practical experience and produc-

ing additional knowledge, which is directed to producing new products or processes or to

improving existing products or processes.” Falling between these two, applied research is

defined as “original investigation undertaken in order to acquire new knowledge... directed

primarily towards a specific practical aim or objective” (NSF 2022).
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Figure 2: Composition of Public Capital

Notes: R&D capital includes software. Public in-
frastructure is nondefense structures and equip-
ment. See Appendix A for variable definitions.
Source: BEA.

Figure 3: Government R&D Expenditures

Notes: Nominal shares of GDP. Fiscal year NSCES
data converted to calendar years and excludes
plant R&D. Sources: BEA; NSCES, National Pat-
terns of R&D Resources (Tables 7, 8, and 9).

Figure 3 plots the NCSES measures of government R&D spending by type, along with

NIPA totals for comparison. Government spending on basic and applied research each av-

eraged 0.23 percent of GDP over the sample period shown, while experimental development

averaged 0.61 percent. Government spending on basic research is considerably larger than

that of the private sector, which instead spends relatively more on applied research and de-

velopment.4 As emphasized in Akcigit et al. (2020), this compositional difference suggests

that distinguishing between private and public R&D spending is potentially important.

As Figure 3 shows, government R&D expenditures in the NSF surveys do not align

perfectly with the corresponding series in the national accounts, as the BEA adjusts the

NSF source data and uses additional budgetary data to match required NIPA concepts.

‘Software development,’ in particular, is a broader concept in the NIPAs and includes various

non-experimental development expenditures.5 Note that not all spending labeled research

or development in other data sources, such as the appropriations data we use in our analysis,

necessarily flows exclusively into the NIPA measure of government R&D expenditures. For

example, DoD spending on ‘operational systems development’ is mostly classified by the

BEA as equipment. Similarly, ‘R&D plant,’ i.e., spending on major research facilities and

equipment, is also mostly recorded as investment in equipment or structures by the BEA.

Figure 4 plots NCSES data on government R&D spending broken out by performing

sectors and the major funding agencies. Panel (a) shows that the bulk of government R&D

spending funds activity performed by private businesses, universities, or private-public R&D

centers, as opposed to ‘intramural’ R&D conducted within the federal agencies. During the

height of the Cold War, most government-funded R&D was performed by businesses, but the

4Over the same period, average private expenditures are 0.14 percent of GDP on basic research, 0.30 percent of GDP
on applied research, and 0.97 percent of GDP on development (Source: NSCES, National Patterns of R&D Resources).

5However, NIPA software development excludes software embedded in other products, e.g., computers or cars.
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Figure 4: Government R&D Expenditures

(a) By Performing Sector

Notes: Nominal shares of GDP, all levels of gov-
ernment. Fiscal year data is converted to calendar
years. Source: NSCES, National Patterns of R&D
Resources (Table 6).

(b) By Federal Agency

Notes: Nominal shares of GDP, federal R&D out-
lays by agency excluding plant R&D. Fiscal year
data converted to calendar years. Source: NSCES,
Survey of Federal Funds for R&D (Various tables).

share has fallen substantially since, and a steadily growing share is performed at universities.

Government funds for R&D are provided largely by the federal government—more than 90

percent on average in the postwar period; the remainder consists mainly of funding by state

and local governments for research at universities.

Panel (b) in Figure 4 provides a breakdown of federal R&D spending by agency. Early

in the Cold War, DoD and NASA accounted for the bulk of federal R&D spending, and

much of the decline in overall funding since the late 1960s can be attributed to Congress

reversing course on funding for these agencies after the nuclear triad was deployed and the

moon landing was successfully completed. Another major source of funding is DoE and

its historical precursors, covering both defense activities (e.g., nuclear weapons and naval

propulsion) and nondefense activities (e.g., civilian energy and physics research); in the

NIPAs, DoE’s national security functions are included in defense R&D. In recent decades,

NIH funding for medical research has gradually grown in importance. The final agency

engaged in significant R&D funding is the NSF. Various other federal agencies also provide

funding for R&D, but in much smaller amounts.

II. Measuring Exogenous Variation in Government R&D Spending

Our strategy for identifying the causal effects of government R&D spending on aggregate

productivity is based on novel empirical measures of exogenous variation in federal funding

for R&D. As is well known in the literature, an important identification concern is that

changes in fiscal policy are often anticipated, and mistiming the arrival of news about fiscal

policy can lead to misleading results (Ramey 2011; Mertens and Ravn 2013; Leeper et

8



al. 2013). To address these concerns, we rely on time series of all enacted appropriations

authorizing future federal spending on R&D, and not just on current R&D expenditures as

in Antolin-Diaz and Surico (2022) or De Lipsis et al. (2022).

The other identification concern is that changes in policy reflect systematic reactions by

policymakers to macroeconomic developments that independently affect innovative activity

and aggregate productivity growth. We take a two-step approach to isolating changes in

appropriations that are plausibly uncorrelated with other influences on productivity trends.

First, we adopt a narrative identification strategy and—on the basis of an extensive analysis

of historical sources—retain only those changes in appropriations that are not motivated

by short-run macroeconomic considerations.6 Second, to guard against the possibility that

R&D policy responds systematically to other longer-term drivers of productivity trends,

we embed the narrative measures in empirical models that remove predictable variation in

future productivity growth through a wide variety of lagged controls at a quarterly frequency.

As we will show, neither the narrative identification step nor the choice of controls will prove

crucial for our main empirical finding that nondefense R&D raises TFP in the long run,

which likely helps explain why our results broadly agree with those of Antolin-Diaz and

Surico (2022) or De Lipsis et al. (2022). Before we describe the econometric methodology

in full detail, the rest of this section first discusses the appropriations data as well as the

narrative measures used for identification.

A. Data on Appropriations for R&D

As the overwhelming majority of government R&D funding is by the federal government,

we restrict attention to congressional appropriations for R&D activities. To construct a

time series on federal R&D appropriations, we rely on information in the Budget of the

U.S. Government and its appendices. Specifically, we collect information on all enacted

appropriations for the budgetary accounts funding R&D activities at federal agencies for all

fiscal years from 1947 to 2019. To keep the data collection manageable, we only consider

the budget accounts for the five major federal agencies discussed in Figure 4: DoD, DoE,

NASA, NIH, and NSF.7 Together, these five agencies typically account for roughly 87 to 93

percent of total federal R&D spending in any given fiscal year. For each agency, we obtain

the appropriations from the ‘Budget Authority’ (BA) or—prior to the introduction of BA

as a budgeting concept—the ‘Appropriation (adjusted)’ line item for each R&D account.

The data we collect reflects all annual appropriations bills adjusted for any supplemental

appropriations, subsequent transfers between accounts, or sequestration cuts. We date the

appropriations to the quarter they take effect, either the start of that fiscal year or when

6Examples of similar empirical approaches include applications to monetary policy (Romer and Romer 1989), govern-
ment spending (Ramey 2011; Ramey and Zubairy 2018), federal tax policies (Romer and Romer 2010; Mertens and Ravn
2013; Mertens and Montiel Olea 2018), and housing credit policies (Fieldhouse et al. 2018).

7The Atomic Energy Commission and Energy Research and Development Administration are included as precursors
to the Department of Energy.
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the appropriations bill was subsequently enacted. As such, most changes are dated to the

first quarter of the following fiscal year. To match defense and nondefense spending in

the NIPAs, we separate the appropriations for DoD and for the national security functions

of DoE from all other appropriations. References to all data sources by agency/year are

available in Fieldhouse and Mertens (2023).

B. Narrative Classification

One potential reason that changes in R&D appropriations are endogenous is that they

may be correlated with business cycle shocks. Comin and Gertler (2006) and Bianchi et

al. (2019), for example, argue that expansionary business cycle shocks can raise aggregate

productivity at longer horizons through endogenous growth channels, while Ilzetzki (2022)

provides evidence that high capacity utilization during WWII spurred innovation out of

necessity. Government R&D appropriations may be procyclical given that there is more

room in government budgets during booms. On the other hand, R&D spending may also

rise in recessions if increases in appropriations for R&D are systematically folded into larger

fiscal stimulus packages.

As we will rely on quarterly regression specifications that include lagged cyclical indica-

tors as controls, it is possible to appeal to lags in the policymaking process for identification,

as in for example Blanchard and Perotti (2002). However, as including lagged cyclical in-

dicators as controls may not suffice to remove all sources of cyclical endogeneity, we prefer

to conduct our analysis with a subset of changes in appropriations that are classified as ex-

ogenous by a narrative analysis. More specifically, for each of the five agencies, we conduct

a narrative analysis for all fiscal years with ‘significant’ changes in (real) appropriations,

defined as year-over-year increases of at least 5 percent, or decreases of at least 2.5 percent.

We focus on larger changes for two reasons. First, it is easier to infer legislative intent from

available historical sources for the more meaningful deviations from current policy. Second,

the focus on larger changes substantially reduces the number of agency-fiscal year pairs

to analyze. In total, we classify 218 agency-fiscal year pairs with significant real changes

in appropriations over the FY1947-2019 sample. Roughly one-third of the policy changes

involve decreases in real appropriations for R&D and two-thirds are increases.

For each of the 218 significant agency-fiscal year changes, we rely on a variety of primary

and secondary sources to understand the context and motivation. Specifically, we study

the Budget of the U.S. Government, the Economic Report of the President, the State of

the Union address, and any other related presidential signing statements to learn the ad-

ministration’s budgetary priorities and specific goals for R&D policy. To infer legislative

intent, we analyze the House and Senate Appropriations Committee reports that accom-

pany each appropriations bill, as well as any related committee hearings. Finally, we also

scan CQ Almanac and newspaper coverage of the relevant appropriations bills, primarily
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Figure 5: Changes in Nondefense and Defense R&D Appropriations

(a) Nondefense Agencies (b) Defense Agencies

Notes: Nondefense agencies include NASA, NIH, NSF, and the nondefense functions of DoE. Defense
agencies include DoD and national security functions of DoE. Nominal appropriations are converted to real
dollars using NIPA price indices for federal nondefense/defense investment in intellectual property. Source:
Authors’ calculations based on the Budget of the U.S. Government, see Fieldhouse and Mertens (2023).

The Washington Post, The New York Times, and The Wall Street Journal.

Based on a close reading of the various sources, we classify every significant change in

real R&D appropriations for each agency as either ‘exogenous’ or ‘endogenous’. Endogenous

policy changes are those that are primarily motivated by short-run economic considerations.

Examples are increases in R&D spending that are part of a broader fiscal stimulus package

(e.g., as in the American Recovery and Reinvestment Act of 2009), increases in energy R&D

in response to oil shocks (e.g., when the Department of Energy was created in 1977), or

cuts to R&D spending as part of broader austerity measures intended to curb short-run

inflationary pressures.

Exogenous policy changes are instead motivated by a variety of other considerations

without clear macroeconomic relevance in the short run. For nondefense R&D, examples of

such motivations include policymakers’ general concerns about the adequacy of the science,

technology, and engineering base (e.g., creation of the NSF), evolving public health concerns

(e.g., Nixon’s ‘war on cancer’), multinational scientific efforts (e.g., human genome project),

certain geopolitical events (e.g. the launch of Sputnik and the creation of NASA), or ini-

tiatives with mixed diplomatic/scientific objectives (e.g., the International Space Station).

For defense R&D, examples include concerns about the adequacy of strategic capabilities

relative to geopolitical rivals (e.g., Sputnik crisis), the ratification or withdrawal from non-

proliferation treaties (e.g., exiting the Anti-Ballistic Missile Treaty), policy preferences of a

new administration (e.g., Reagan’s military buildup), or evolving threats to national secu-

rity (e.g., Global War on Terror). Long-term deficit reduction packages often cut nondefense

and/or defense R&D appropriations (e.g., Budget Control Act of 2011); such policies are
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classified as exogenous if the intent is long-term fiscal sustainability rather than curbing

near-term inflationary pressures.

Figure 5 shows the time series of the yearly changes in defense and nondefense appro-

priations, expressed in 2012 dollars per capita for ease of comparison across the sample

period. The blue bars show those changes that are classified as exogenous in the narrative

analysis, aggregated over all five agencies. Appendix B presents the same figures for each

agency separately. For the interested reader, the same appendix also provides an overview

of postwar federal R&D policy for additional background.

C. Orthogonalized Narrative Measures for Changes in Defense and

Nondefense Appropriations

The fact that defense R&D usually aims to maintain the U.S.’s military advantage is one

reason why the knowledge spillovers from defense and nondefense R&D are potentially very

different. One slight complication to isolating their separate effects empirically is that the

changes in defense and nondefense R&D appropriations shown in Figure 5 are positively

correlated. In other words, an increase in appropriations for one category tends to be

accompanied by an increase in the other. Specifically, the correlation between all changes

in defense and nondefense appropriations is 0.31, and the correlation across the exogenous

policy changes is also 0.31. To better understand any underlying differences, it is useful to

estimate the causal effects of more idiosyncratic movements in each category of government

R&D. To that end, we construct versions of the narrative measures that are orthogonalized

with respect to one another. More specifically, let ∆aexo,it denote the narrative measures of

exogenous changes in appropriations for i = D,ND (defense/nondefense) in quarter t, as

shown in blue in Figure 5. The orthogonalized narrative measures are the residual zit in the

following regression,

∆aexo,it

Ki
t−4

= ai + bi
∆aexo,−i

t

K−i
t−4

+ zit , i = D,ND .(1)

To construct the orthogonalized narrative measures, we express the (constant) dollar changes

in appropriations in category i as a fraction of the total real value of the government R&D

capital stock in that budget category four quarters earlier, Ki
t−4. We scale the changes in

R&D appropriations by the real capital stock as we are interested in elasticities to gov-

ernment R&D capital. To avoid introducing any sources of endogeneity, we scale by the

one-year lagged capital stock, although this matters very little for the results. By con-

struction, the sample correlation between zit and the exogenous appropriation change in the

other category, ∆aexo,−i
t /K−i

t−4, is zero. The orthogonalized narrative measure zit, therefore,

represents an exogenous innovation in government R&D appropriations for category i at

time t, but leaving appropriations in the other category −i contemporaneously unchanged.

12



The impulse responses identified with the orthogonalized narrative measures will have the

interpretation as the impact of a change in R&D funding targeting one category, while

leaving appropriations for the other category unchanged on impact (but not necessarily in

future quarters). In practice, the orthogonalization step turns out to matter very little for

the results, see Appendix C.2. Note that the positive correlation between defense and non-

defense measures implies that the two measures potentially both contain useful identifying

variation in defense and nondefense R&D capital. Our estimation of the production function

elasticities and rates of return will therefore also include specifications that simultaneously

use both narrative measures (without the orthogonalization) for identification.

III. The Dynamic Effects of Changes in R&D Appropriations

A. Empirical Methodology

The first part of our analysis consists of estimating impulse responses of productivity and

government R&D capital associated with unanticipated changes—or ‘shocks’—to defense

and nondefense R&D appropriations. Given the likely significant delays between an in-

crease in congressional appropriations for R&D, actual outlays for R&D, and any eventual

technological improvements as a result of those outlays, we use Jordà (2005) local projec-

tions to estimate responses at forecast horizons h = 0, ..., H − 1 of up to 15 years (H = 60

quarters).8 The impulse response for an outcome variable yt at horizon h estimated by local

projections is simply the OLS coefficient in a direct forecasting regression of yt+h on the pe-

riod t value of the orhtogonalized narrative measures, zit. This estimation approach makes

no ex ante assumptions regarding the lags between R&D spending and the productivity

effects. Because changes in R&D appropriations are serially correlated, as seen in Figure

5, we include information about past R&D appropriations in the regression. Specifically,

we include p = 4 quarterly lags of ln(ait), where ait is the cumulative sum of all past (con-

stant dollar) changes in R&D appropriations in category i. Including lags of ln(ait) rather

than zit provides more information about past R&D policies, and Appendix C.4 shows that

additionally including lags of zit has little effect on the results. We also include p = 4 lags

of the outcome variable yt in all specifications. Unless mentioned otherwise, the estimation

sample consists of 74 years of quarterly observations from 1948Q1 through 2021Q4.

In practice, we estimate the following local projections for h = 0, ..., H − 1 using OLS:

3∑
j=0

(
1

4
× yt+h−j

)
= ch + γhz

i
t +

p∑
j=1

βj
h ln a

i
t−j +

p∑
j=1

δjhyt−j +

p∑
j=1

ζj′h xt−j + vt+h(2)

where p = 4, yt+h is the outcome variable of interest at horizon h (e.g. utilization-adjusted

8Vector autoregressions (VARs) are a common alternative for impulse response estimation. As shown in Plagborg-
Møller and Wolf (2021), local projections avoid potential misspecification in finite-order VAR-based impulse response
estimators at forecast horizons beyond the VAR lag length.
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TFP), vt+h is a residual at forecast horizon h, and the sequence {γh}H−1
h=0 contains the impulse

response coefficients.

Two features of (2) warrant further discussion: First, the left-hand side is a four-quarter

backward moving average,
3∑

j=0

(
1
4
× yt+h−j

)
, rather than just the quarterly observation yt+h.

The averaging smooths out some of the quarterly noise in the impulse response estimates,

but is otherwise not important. Since we also include four quarterly lags of yt+h, the

estimation is equivalent to using yt+h as the left-hand side variable and subsequently taking

the moving average of the estimated impulse response coefficients.

Second, the specification in (2) allows for the inclusion of lags of additional control vari-

ables, xt. As is well known, including lagged predictors of the outcome variables as controls

in local projections can serve multiple purposes. One is that, even when identification is

valid without conditioning on lagged predictors of yt+h, including these predictors gener-

ally sharpens inference on the impulse response estimates by reducing the variance of the

forecast residuals, vt+h. Another is that adding a suitable set of lagged controls helps to

eliminate past influences on the outcome variable that may be correlated with the regressor

of interest, and otherwise would lead to endogeneity bias.

As discussed earlier, one of the controls included in xt is a cyclical indicator to eliminate

any remaining cyclical sources of endogeneity in the narrative measures. In the baseline

set of controls xt, we include the capacity utilization rate from the Fernald (2012) dataset,

which captures variation in both labor effort and the workweek of capital, and is strongly

correlated with other coincident cyclical indicators. Adding the unemployment rate or the

output gap has very little impact on the results, see Appendix C.3.

Even if the narrative classification and cyclical controls successfully address the short-run

sources of endogeneity that are typically of greatest concern in the identification of fiscal

shocks, it is not clear that they are adequate to address potential longer-run sources of

policy endogeneity. R&D policy may, for example, respond to productivity, demographic,

or other secular trends. A related possibility is that policy responds to the arrival of new

ideas and nascent technologies that, even in the absence of government involvement, are

anticipated to raise productivity growth with similar timing in the future.

To address concerns about longer-term sources of endogeneity, the baseline specification

includes five additional controls with the aim of removing predictable variation in TFP and

other outcome variables of interest. First, we always include lags of utilization-adjusted

TFP (in log-level) in the control set. Next, we also include real government and business-

sector R&D capital (both in log-levels) in xt. Including R&D capital stocks, rather than

just recent R&D expenditures, is preferable because of the potentially long delays between

expenditures and actual improvements in productivity. We further include an average of

the cumulative real stock market return for the high-tech, manufacturing, and health indus-

tries as a forward-looking indicator of innovation and productivity growth. Several studies
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have shown that stock market returns are predictive of output growth and TFP at longer

forecast horizons, see for instance Fama (1990) or Beaudry and Portier (2006). The natu-

ral explanation is that new ideas and research opportunities are reflected in stock market

valuations relatively quickly and well ahead of the eventual productivity improvements. In-

deed, Kogan et al. (2017) document evidence of immediate stock market reactions to patent

grants. The final element in the baseline control set xt is the defense spending news variable

of Ramey and Zubairy (2018). We include news about total defense spending to remove

additional predictable variation in defense R&D, and potentially also in nondefense R&D

arising through complementarities or government budget constraints.

In Appendix C.3, we establish robustness to a large number of additions to this baseline

set of controls, including a variety of additional fiscal policy indicators (public infrastruc-

ture capital, debt, taxes, spending, etc.), financial market indicators (interest rates, credit

spreads, and broader stock market indices), and alternative potential predictors of future

TFP and R&D spending (labor quality, non-R&D business-sector capital, patents, and the

relative price of R&D).

B. Government R&D and TFP After Shocks to R&D Appropriations

Figure 6 presents impulse responses of government R&D capital and TFP to appropriations

shocks based on the estimates of {γh}H−1
h=0 in the local projections in (2). Each panel shows

results for the baseline specification, i.e. with the six baseline controls in xt described

above. To assess the importance of including these additional controls, the panels also report

results from a simpler specification without the lags of any of the variables in xt. For ease of

comparison with the production function elasticities presented later, the responses are scaled

to imply a one percent peak increase in total government R&D capital. Inference is based

on the heteroskedasticity and autocorrelation-robust (HAR) confidence bands recommended

by Lazarus et al. (2018).

The top panels in Figure 6 show that both defense and nondefense shocks lead to highly

persistent hump-shaped increases in government R&D capital. The build-up in R&D capital

after both types of shocks is very gradual, with peak effects that occur 8 to 10 years after

the shock. The substantial delays in the capital responses show that there are, on average,

relatively long lags between a positive shock to congressional appropriations for R&D and

eventual outlays. As we show below, the modest declines in R&D capital towards the end of

the forecast horizon not only reflect depreciation, but also eventual reversals in government

R&D spending. In the baseline specification, the increase in government R&D capital after

a nondefense shock is highly statistically significant for all horizons except very short ones,

which indicates that the orthogonalized narrative nondefense measure is a strong predictor

of future government R&D spending. The increase in response to a defense shock is also

significant at the 5 percent level at horizons between 5 and 11 years, but the confidence bands

15



Figure 6: Government R&D Capital And TFP Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Government R&D Capital

Business-Sector TFP

b. Defense R&D Shock

Government R&D Capital

Business-Sector TFP

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). ‘Baseline’ includes additional lagged
controls described in the main text. Lazarus et al. (2018) HAR bands are at the 5 percent significance level.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: 1948Q1–2021Q4.

are overall wider than for the nondefense shock. The fact that congressional appropriations

are strongly predictive for future government R&D spending implies that the spending

changes are potentially anticipated well in advance. Basing identification on variation in

appropriations rather than spending is therefore preferable to avoid possible bias due to

anticipation effects. For both shocks, the point estimates vary little across the specifications

with and without the additional controls. The main effect of the additional controls is to

substantially sharpen inference for the government R&D capital response to a nondefense

shock.
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The bottom left panel of Figure 6 shows the estimated TFP response to a nondefense

R&D shock. The key finding is that, after a substantial delay, a positive shock to appro-

priations leads to a gradual increase in business-sector TFP. Moreover, the TFP increase

becomes highly statistically significant at longer horizons. In our baseline specification,

there is initially no significant change in TFP for about seven years, after which TFP slowly

increases to a level that is around 0.2 percent higher by the end of the 15-year horizon. In

the simpler specification, the TFP response is somewhat larger, up to around 0.35 percent

at the end of the forecast horizon. Including the additional controls again considerably

increases the precision of the estimates, but the TFP response is overall similar in shape,

and it is significant at longer horizons in both specifications.

The bottom right panel of Figure 6 shows that the TFP response to a positive defense

R&D shock is meaningfully different from the response to a nondefense shock. In contrast

to the nondefense shock, a defense shock leads to a decline in TFP at longer horizons. In

the baseline specification, the longer-run decrease in TFP is significant at the 5 percent

level at a several horizons around 13 years after the shock. Overall, the estimates of TFP

response to a defense shock are considerably more uncertain, and they are insignificant at

conventional levels at most horizons. Whereas the simple specification shows essentially no

impact on TFP at shorter horizons, the baseline specification shows evidence of a positive

TFP response in the near term, with point estimates that are marginally significant between

two and eight years. However, the main conclusion is that—unlike for nondefense R&D—

there is no evidence that defense R&D has positive TFP spillovers in the longer run, at least

not within the 15-year time window that we consider.

As Figure 6 shows, including the additional controls qualitatively has no major effects

on the estimated TFP responses at longer horizons. Appendix C.1 and C.2 show that the

TFP responses to both shocks also remain very similar if we use all appropriation changes

rather than just those classified as exogenous, or if we use the raw narrative measures

rather than the orthogonalized ones. Appendices C.3 and C.4 further document that the

significant positive long-run TFP response to a nondefense R&D shock is robust to many

different additions to the control set xt, as well as to various other changes in specification.

Together, these results suggest that policy endogeneity is probably not as serious a concern

as it typically is for broader changes in tax or spending policies. Nevertheless, we include

four lags of the six baseline controls in all remaining specifications in this paper, and—unless

mentioned otherwise—we continue to use the the same narrative measures for identification.

C. Effects on Other Productivity and Innovation Indicators

Figure 7 reports impulse responses of several other productivity and innovation indicators.

The estimates are again based on (2) with the six baseline controls in xt, and scaled to imply

a one percent peak increase in total government R&D capital. For brevity, the results for
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shocks to defense R&D appropriations are reported in Appendix C.5.

Panel (a) in Figure 7 shows the response of business-sector labor productivity (output

per hour). Under certain assumptions, technological change is the only source of long-run

variation in labor productivity; see e.g. Gaĺı (1999). The response of labor productivity at

longer horizons thus provides an alternative signal of the productivity effects of government

R&D. As panel (a) shows, labor productivity initially does not react to a nondefense R&D

shock, but starts rising after three years, and reaches a level that is higher by around 0.30

percent after 15 years. Just as the TFP response to a nondefense shock in Figure 6, the

response of labor productivity is highly statistically significant at longer horizons. Appendix

C.6 shows that labor input remains essentially flat after a nondefense R&D shock, although

there is some mild evidence of a decline towards end of the 15-year horizon. In contrast,

the stock of non-R&D business-sector capital rises significantly at longer horizons, with a

peak increase of around 0.2 percent. This pattern of responses is broadly consistent with

conventional balanced-growth assumptions in economic models that imply that productivity

trends have no permanent effect on hours worked per capita. To the extent that the long-run

TFP increase is widely anticipated by economic agents, the absence of any short-run response

in labor input implies that news about future TFP from changes in R&D appropriations is

not a source of fluctuations at business cycle frequencies. Indeed, Appendix C.6 documents

that real GDP shows no short-run response to a nondefense appropriations shock, but simply

rises in the longer run along a trajectory that is very similar to that of business-sector labor

productivity depicted in panel (a) of Figure 7.

The next panel in Figure 7 shows the response of CBO’s measure of potential GDP (in

logs), which is an estimate of the economy’s maximum sustainable output consistent with

stable inflation. TFP is a key determinant of the level of potential output, in addition to

the levels of labor and capital inputs being fully utilized at sustainable rates. Similar to

the responses of TFP and labor productivity, panel (b) in Figure 7 shows that there is no

effect on potential output for the first five or six years after a nondefense shock. In the

long run, however, there is a gradual and significant increase in potential output, which

expands about 0.2 percent after 8 to 15 years. With no response of labor input and non-

R&D business-sector capital increasing by around 0.2 percent, the long-run rise in potential

output appears primarily driven by an increase in total factor productivity.

Patent data are a widely used alternative to productivity measures for evaluating the

pace of technological innovation across time; see, e.g., Kogan et al. (2017), Bluwstein et al.

(2020), and Kelly et al. (2021), among others. Panel (c) in Figure 7 shows the impact of a

nondefense R&D shock on the patent-based innovation index of Kogan et al. (2017), using

the quarterly version constructed by Cascaldi-Garcia and Vukotić (2022) available through

2010Q4. This index weights new patent grants by stock market reactions to account for

their economic value. As seen in panel (c), the patent innovation index temporarily rises by

around 2 percent after a positive shock to nondefense R&D, an increase that is significant
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Figure 7: Impact of a Nondefense R&D Shock on Other Productivity/Innovation Indicators

(a) Labor Productivity (b) Potential Output (c) Patent Innovation Index

(d) STEM Ph.D. recipients (e) Researchers (f) Technology Books

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
R&D appropriations, see (1). Lazarus et al. (2018) HAR bands are for 90 and 95 percent confidence levels.
Impulses scaled to imply a 1 percent peak increase in government R&D capital. Sample: (a),(b),(d):1948Q1–
2021Q4; (c):1949Q1–2010Q4; (e):1951Q1–2019Q4; (f):1956Q1–1997Q4. See Appendix A for variable defini-
tions.

at several medium-run horizons. The rise in patent grants with economic value occurs well

in advance of the increase in TFP in Figure 6, and fades near the end of the 15-year forecast

horizon. The timing of the response is consistent with increased government funding for

nondefense R&D leading to more patents with economic value followed by improvements in

business-sector productivity.

The bottom row of Figure 7 shows responses of several other measures of research activity.

Because these measures are only available annually, we construct quarterly versions of these

annual series by linear interpolation. Panel (d) first depicts the estimated responses of the

(log) number of new Ph.D. recipients in STEM fields to a positive nondefense R&D shock.

The response shows a statistically significant increase in new STEM Ph.D. recipients at

horizons above seven or eight years. The delay is consistent with the average length of a

Ph.D. after allowing for some additional implementation lags. The increase is persistent

over longer horizons, with a peak rise in new STEM doctoral degrees of more than one

percent after roughly 12 years.

19



The next panel considers the (log) number of researchers, i.e. the number of full-time

equivalent workers engaged in R&D, based on data from the OECD and Bloom et al. (2020).

As the panel shows, a nondefense R&D shock leads to gradual increase in the number of

researchers by up to around 0.5 percent approximately three- to eight years after the increase

in appropriations. Over longer horizons, the number of researchers first returns back to prior

levels, and then declines at the end of the 15-year horizon. The long-run decline likely reflects

the eventual reversal of government R&D funding.

The last panel in Figure 7 shows the response of an index of new technology book pub-

lications, a measure of innovation constructed by Alexopoulos (2011). While the available

sample for this series is much shorter (1956 though 1997), there is evidence of a significant

increase in new technology books at horizons of three to eight years. As was the case for

the innovation index in Panel (c) and the number of researchers in Panel (e), the effect on

the number of technology publications is transitory and occurs ahead of the TFP response.

The evidence in Figure 7 indicates that a nondefense R&D shock leads to increases

in both inputs (researchers and STEM scientists) and outputs (patents, new technology

books) of the knowledge production function. Both in direction and timing, the responses

appear consistent with the simplest explanation of the delayed increase in TFP in Figure

6, which is that government funding for research directly leads to innovations that prove

valuable in private production. After taking into account the additional lags between R&D

appropriations and outlays, the timing of the effects also appears broadly in line with existing

evidence that innovation and productivity responses typically lag private R&D spending by

two- to five years, see e.g. Hall et al. (2010) for an overview.

Appendix C.5 shows that, in contrast to a nondefense shock, a positive shock to defense

R&D does not lead to similarly unambiguous increases in the same productivity and inno-

vation indicators, reinforcing our earlier conclusion that defense R&D spending on average

does not appear to have the same positive long-run spillovers on private productivity as

nondefense R&D within the horizons that we consider.

D. A Closer Look at the Response of R&D Spending

Figure 6 showed that the shocks to appropriations for nondefense and defense R&D lead to

hump-shaped increases in government R&D capital. To gain a better understanding of the

nature of both types of R&D shocks, we next take a closer look at the responses of the R&D

spending flows using additional information available in the underlying NSCES survey data.

Specifically, we study how the shocks affect government R&D spending by type, performer,

and funding agency using the series in Figures 3 and 4.

To estimate decompositions of the spending changes, we use the following Törnqvist
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index approximation of the log change in total real R&D spending, I tott ,

∆ ln I tott ≈
∑
j

sjt + sjt−1

2
∆ ln Ijt(3)

where Ij is gross R&D investment in category j in constant dollars and sj denotes the

nominal expenditure share of category j in total R&D spending (sj = In,j/In,tot, where

In,j is gross R&D investment in category j in current dollars). To obtain the individual

contributions of each category, we estimate the cumulative impulse response of each of the

terms of the summation in (3) using the baseline specification in (2). Because the NSCES

survey data is only available for fiscal years, we convert the series to calendar years, and use

linear interpolation to obtain quarterly spending shares. We then apply these shares to the

BEA expenditures to construct quarterly series for all the subcategories that are consistent

with the NIPA totals. The impulses are scaled such that the peak increase in total spending

on nondefense (left panel) or defense (right panel) R&D is one real dollar. The resulting

estimates can be interpreted as the real dollar changes in spending in category j given a

peak increase in nondefense (or defense) spending of one dollar.

The first two rows in Figure 8 show the responses of total government R&D spending,

together with the decompositions by type of R&D and by performing sector. As can be

seen in the figure, both shocks lead to a gradual build-up in total R&D spending flows,

and partial spending reversals in the longer run. In response to a nondefense shock, R&D

spending is approximately unchanged for the first six quarters, after which it slowly rises

to a peak after about six years, and subsequently gradually declines. After about 10 years,

there is a reversal in spending that lasts until the end of the forecast horizon. The response

to a defense shock is similar, except that the rise in spending starts immediately on impact.

The decomposition in the first row of Figure 8 shows that both shocks lead to increases in

each of the three types of R&D (basic research, applied research, and development) during

the boom phase. However, the nondefense shock leads to a substantially larger increase

in basic and applied research (up to 38 cents and 22 cents, respectively). A defense shock

instead leads mostly to increases in spending on development (up to 75 cents). For the

nondefense shock, the eventual reversal in spending is exclusively in development, while

funding for basic research remains elevated throughout. For the defense shock, the reversal

is instead in all three types of R&D. As mentioned earlier, Akcigit et al. (2020) argue

that basic research generates greater knowledge spillovers than non-basic research. Beyond

national security prerogatives limiting knowledge spillovers from defense activities, the larger

and more persistent impact of the nondefense shock on basic research therefore possibly

contributes to the difference between the long-run TFP responses to defense and nondefense

shocks in Figure 6.

As shown earlier in Figure 4, most government R&D spending funds activity that is
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Figure 8: Response of R&D Spending by Type, Performer and Agency

a. Nondefense R&D Shock b. Defense R&D Shock
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Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). Impulses scaled to imply a unit peak
increase in government R&D expenditures (row 1 and 2) or federal R&D expenditures (row 3). See notes
in Figures 3 and 4 for data sources. Quarterly values are obtained by interpolation of annual data. Real
variables based on the NIPA deflator for government intellectual property (R&D and software). Sample:
1954Q1–2021Q1.
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not performed at federal agencies, but at private businesses, private-public R&D centers, or

universities. The decomposition in the second row of Figure 8 shows that this is also the

case for the spending increases induced by the shocks. A nondefense shock that increases

total R&D spending by up to one dollar raises intramural spending by at most 33 cents,

while a defense shock raise intramural spending by at most 27 cents. In both cases, the bulk

of the spending increase funds research conducted by private businesses or universities. For

the nondefense shock, the eventual spending reversal is driven exclusively by decreases in

funding for businesses and R&D centers. The increase in funding for research at universities

and government agencies is instead highly persistent, which likely mirrors the persistent

impact of the nondefense shock on funding for more fundamental research. For the defense

shock, in contrast, the reversal in spending affects the R&D activity of all performers.

The final row in Figure 8 shows a decomposition of the response of federal R&D spending

across the main federal funding agencies. As the left panel shows, a nondefense shock

leads to persistent increases in funding by NASA, NIH, and the NSF. Quantitatively, the

increase in spending by NASA is by far the largest in size, although NIH funding also sees

a meaningful and persistent increase. The increase in nondefense spending also appears

to crowd out some of the funding for defense R&D, as there are decreases in DoD outlays

for R&D throughout the entire forecast horizon. Energy R&D spending—which covers

both defense and nondefense functions—initially increases, but decreases at longer horizons.

Unsurprisingly, the bottom right panel of Figure 8 shows that a positive defense R&D shock

leads mainly to increases in DoD spending. There is little evidence for large crowding-out

effects on funding for the nondefense agencies.

The decomposition by federal agency shows that, in dollar terms, the nondefense shock

is dominated by R&D funding for NASA. This finding suggests that changes in appropria-

tions for NASA, especially at the time of the agency’s rapid growth during the space race,

are potentially very important as a source of identifying variation. In Appendix C.4, we

show that the positive TFP response to a nondefense shock is robust to excluding NASA

appropriations during the height of the space race (FY1958-63). Whereas the uncertainty

around the estimates increases meaningfully, the long-run TFP increase remains significant

and similar in size. In Sections 4 and 5 below, we will consistently report results for spec-

ifications that omit the space race from the narrative measures to verify the sensitivity of

the results to this potentially influential part of the sample.

E. Indirect Channels for Long-Run TFP Spillovers

The evidence presented so far is consistent with a significant direct effect of government

nondefense R&D on the level of innovative activity with spillovers on productivity in the

business sector. However, the long-run TFP responses in Figure 6 are potentially also shaped

by additional indirect effects. For example, the appropriations shocks may affect other long-
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run determinants of productivity growth, such as R&D funding by the private sector or

resources allocated to public infrastructure with spillovers on business-sector productivity.

We next explore the importance of these indirect channels.

We first investigate how changes in appropriations affect total R&D capital in the econ-

omy (private and public). The top row in Figure 9 presents a decomposition of the impulse

response of total R&D capital into the individual contributions of each funding sector. These

contributions are estimated as in the previous section, using the following approximation of

the log change in total R&D capital, Ktot
t ,

∆ lnKtot
t ≈

∑
j

sjt + sjt−1

2
∆ lnKj

t(4)

where Kj is R&D capital of category j in constant dollars and sj denotes the nominal share

of capital of category j in total R&D capital (sj = Kn,j/Kn,tot, where Kn,j is capital in

category j in current dollars). The four main funders of total R&D capital are (i) federal

defense agencies, (ii) federal nondefense agencies, (iii) state and local governments, and (iv)

the private sector. The contributions of each funding category are the cumulative impulse

response of the individual terms in (4) estimated with the baseline specification in (2). The

impulses are scaled such that the peak increase in federal nondefense R&D capital (left

panel) or defense capital (right panel) is one real dollar. The resulting estimates can be

interpreted as the dollar change in capital in category j given a peak increase in nondefense

(or defense) R&D capital of one dollar.

The top panels in Figure 9 show that the defense and nondefense shocks primarily affect

R&D capital within the own category. A positive nondefense shock leads to some crowding

out of defense R&D capital by up to 20 cents after 15 years, while there is very little effect

of a defense shock on nondefense R&D capital. Consistent with the framework in Akcigit

et al. (2020) and the evidence in De Lipsis et al. (2022), there are increases in private R&D

capital, both for nondefense as well as defense shocks. The increases in private R&D capital

following a nondefense shock, however, are relatively small, with a maximum of 19 cents

per federally-funded dollar. For defense R&D, the peak increase in private R&D capital is

somewhat larger at 52 cents per federally-funded dollar.9

To investigate how the shocks to government R&D affect the various other components

of the public capital stock, the bottom panels of Figure 9 depict analogous decompositions

of the response of the total public capital stock by type of capital. The responses in this case

are scaled to induce a one-dollar peak increase in government R&D capital in the nondefense

(left) or defense (right) category.

The bottom left panel in Figure 9 shows that, in the decomposition of total public capi-

9Changes in domestic R&D spending may also affect R&D spending in the rest of the world, which in turn could lead
to spillovers domestically. Because of data availability, we do not look into the role of global spillovers.
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Figure 9: Total R&D and Public Capital Following an Increase in R&D Appropriations

a. Nondefense R&D Shock

Total R&D Capital

Total Public Capital

b. Defense R&D Shock

Total R&D Capital

Total Public Capital

Notes: Estimates based on (2) using the orthogonalized narrative measure of changes in federal nondefense
(left panel) and defense (right panel) R&D appropriations, see (1). R&D capital includes software. Impulses
scaled to imply a unit peak increase in federal nondefense (left) or defense (right) R&D capital. See Appendix
A for variable definitions. Sample: 1948Q1–2021Q4.

tal, there is no evidence of crowding out of defense R&D capital. However, the nondefense

shock leads to a broader reallocation from defense to nondefense public capital. While the

defense capital stock for structures (e.g., military bases and facilities) as well as equipment

(e.g., ships and aircraft) declines, there is a relatively large increase in nondefense structures

(schools and universities; roads; power, water and sewer systems, etc). For a peak increase

in nondefense R&D capital of one dollar, the stock of nondefense structures rises by up to

1.58 dollars after about 8 years. While this increase is much smaller than the average ratio of

structures-to-R&D capital in the nondefense category, it is almost certainly too large to be

explained exclusively by the reclassification of R&D plant expenditures as ‘structures’ in the

national accounts. In Appendix C.7, we present further decompositions showing that about
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80 percent of the increase in structures originates with state and local governments, which

finance most nondefense public infrastructure. Given the shared funding arrangements for

interstate highways, one possibility is that nondefense R&D appropriations are positively

correlated with federal transfers for interstate highway spending. However, the federal ap-

propriations bills financing increases in R&D generally do not provide significant funding for

public infrastructure investment via transfers to state and local governments. In Appendix

C.7, we further show that federal transfers, if anything, decline in response to a positive

nondefense R&D shock. The rise in investment expenditures by state and local government

is instead financed initially by debt, and later on by increases in tax revenues relative to

other expenditures. The rise in state and local structures is also broad-based, with the

largest increases in education structures (schools and universities), followed by highways

and streets, and power, water, and sewer systems. Overall, the expansion in public in-

frastructure appears large enough to potentially generate meaningful indirect productivity

effects.

The bottom right panel in Figure 9 shows that a defense R&D shock is also associated

with increases in other types of public capital. In general, defense shocks cause only negligi-

ble changes in the nondefense capital categories, although nondefense structures do increase

meaningfully toward the end of the forecast horizon. There is, however, a large and immedi-

ate increase in defense equipment (up to 2.48 dollars), and also a smaller increase in defense

structures (up to 48 cents). For defense functions, it is easier to point to direct linkages

between appropriations for R&D and other military investments. For example, the BEA

treats the ‘operational systems development’ component of DoD’s Research, Development,

Test, and Evaluation budget accounts, as gross investment in equipment, not R&D.10 More

importantly, the annual DoD appropriations bills that fund defense R&D also fund procure-

ment (i.e., equipment), and funding for developing new military hardware typically leads to

purchases of the newly developed equipment. Moreover, the same geopolitical events that

motivate significant increases in defense R&D are likely to also motivate other military in-

vestments, and these may not be fully predicted by the Ramey and Zubairy (2018) military

news variable in the set of controls. In contrast to nondefense public infrastructure, however,

there is little evidence in the literature that defense capital has any effects on productivity,

and the convention is to assume that these effects are zero, e.g. CBO (2016). The increases

in defense capital following defense shocks are therefore unlikely to be a major influence on

the long-run TFP response.

The main conclusions regarding the indirect channels for long-run TFP spillovers are the

following. First, the impact of shocks to government R&D in one category (i.e. defense or

nondefense) on the other is relatively small or absent. The orthogonalized narrative mea-

10Due to data limitations, our measure of DoD R&D appropriations is based on the full Research, Development, Test,
and Evaluation (RDT&E) accounts. Defense structures are largely funded by the separate Military Construction and
Veterans Affairs Appropriations bills.
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sures therefore appear largely successful in picking up idiosyncratic changes in nondefense

or defense R&D, such that reallocations of resources across both categories of R&D are un-

likely to be important for the TFP responses in Figure 6. Second, positive shocks to R&D

appropriations lead to higher private spending on R&D, such that private and government-

funded R&D capital appear to be complements rather than substitutes. At the same time,

the increases in private R&D capital are relatively small, especially after a nondefense R&D

shock. Finally, the responses of public infrastructure are sizeable. Given the widespread

evidence for productivity spillovers of public infrastructure, these responses are potentially

important in determining the long-run TFP responses to the appropriations shocks.

IV. The Production Function Elasticity of Government R&D

Figure 6 showed that a nondefense shock raising government R&D capital by one percent

increases TFP by around 0.2 percent in the longer run. The results in the previous section

suggest that indirect effects may contribute meaningfully to the TFP response, in particular

through the impact on nondefense public infrastructure. To isolate the direct spillover

effects on business-sector productivity, in this section we structurally estimate the aggregate

production function elasticity of government R&D capital.

A. Empirical Methodology and Identification Assumptions

The starting point is the following aggregate production function for quarterly aggregate

output growth in the business sector,

∆ft = α′
t∆mt + ηt∆qt + ϕt∆kt +∆νt(5)

where ft is the log of real business-sector output, the vector mt collects all business-sector

capital (including R&D) and labor inputs in logs, qt is the log of the public infrastructure

capital stock, kt is the log of government R&D capital, and νt is technological progress after

accounting for growth in both types of public capital, qt and kt. The parameters in αt

are the production function elasticities for all private inputs, ηt is the elasticity to public

infrastructure, and ϕt is the elasticity to government R&D capital. As is the convention

in the literature, it is assumed that defense capital does not generate any TFP spillovers.

The notation henceforth assumes that all growth rates are demeaned such that constants

are omitted without loss of generality.

Defining ∆tfpt = ∆ft − α′
t∆mt − ϵt, and assuming constant elasticities with respect to

public capital, (5) can be rewritten as

∆tfpt = η∆qt + ϕ∆kt +∆wt , ∆wt = ∆νt + ϵt , E[∆wt] = 0(6)

where ∆tfpt is the utilization-adjusted measure of business-sector TFP growth (or Solow
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residual) constructed by Fernald (2012), and ϵt is measurement error. The unobserved

residual term ∆wt consists of the productivity growth term ∆νt, as well as any discrepancy

ϵt between measured TFP and actual productivity growth. Apart from measurement errors

in ∆ft and ∆mt, the discrepancy between measured and actual productivity growth could

be due to mismeasurement of the elasticities in αt. As explained in Fernald (2012), the

identification of αt—which in practice is based on factor cost shares—relies on theoretical

assumptions that may not hold in reality, e.g. such as the absence of markups. As a result,

ϵt cannot generally be treated as classical measurement error, as it potentially also contains

the influence of all determinants of private factor inputs, including shocks to government

R&D. The other endogeneity concern is that movements in the residual productivity term

∆νt are correlated with government investment decisions.

Our strategy to address endogeneity relies on two steps. First, we treat η as a known

constant, and analyze estimates of ϕ across a range of values of η consistent with the

empirical literature. A recent survey by Ramey (2021) establishes a plausible range of 0.065

to 0.12 for η. We use these endpoints to estimate a corresponding range for ϕ, and we also

consider the intermediate value of η = 0.08, which is the value that the CBO currently uses

to quantify the impact of public infrastructure (CBO 2021). Treating η as known, we define

∆t̃fpt ≡ ∆tfpt − η∆qt, i.e. the growth in measured TFP adjusted for the productivity

effects of public infrastructure capital. Substituting into (6), this definition leads to the

structural estimation equation,

∆t̃fpt = ϕ∆kt +∆wt(7)

where in general E[∆kt∆wt] ̸= 0 such that endogeneity remains a concern.

The second step in our identification strategy is to estimate ϕ in (7) using the SP-IV

estimator of Lewis and Mertens (2023). The SP-IV estimator is a GMM estimator with

an intuitive closed-form solution as the OLS estimate in a regression of estimated impulse

responses to shocks that are uncorrelated with the structural error, also see Appendix D.1. In

our application, we use the responses to R&D appropriations shocks discussed in the previous

section.11 Note that the functional form in (7) makes very specific assumptions about the

lags between R&D spending and the productivity effects. Appendix D.1 shows that these

assumptions in fact align very well with the impulse responses, which are estimated without

imposing any rigid assumptions about timing.

To understand the identifying moments in the GMM problem that generates the SP-IV

estimator, let Ωt−1 ≡ {ln ait−j, yt−j, xt−j}pj=1 define the full set of lagged controls included in

the local projections in (2). Letting zt denote the Nz × 1 vector containing the Nz narrative

11One minor difference is that the impulses underlying the SP-IV estimator are estimated in balanced samples rather
than iteratively, as is required for the inference formulas developed in Lewis and Mertens (2023). Appendix C.4 shows
the impulse response estimates are very similar in the balanced sample.
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measures used to for identification, the HNz moment conditions that identify ϕ are

E
[
w⊥

t (h)z
⊥
t

]
= 0 ; h = 0, . . . , H − 1 , w⊥

t (h) ≡ t̃fp
⊥
t (h)− ϕk⊥

t (h)(8)

where z⊥t is the one-step ahead forecast error from the linear projection of zt on Ωt−1 and

t̃fp
⊥
t (h) and k⊥

t (h) are the h+ 1-step ahead forecast errors from linear projection of t̃fpt+h

and kt+h on Ωt−1. Intuitively, the identifying conditions in (8) exploit the fact that, if

the structural relationship in (7) holds in the raw data, it also holds across the h + 1-

step ahead forecast errors after projection on Ωt−1 for any forecast horizon h. The key

exogeneity assumption in (8) is that, after projection on Ωt−1, the period t innovations

in the narrative measures, z⊥t , are uncorrelated with the ex-post deviations w⊥
t (h) from

the structural relationship across the period t forecast errors at all forecast horizons h =

0, ..., H − 1.

The conditional forecast errors w⊥
t (h) arise either because of accumulated technological

progress ∆ν between period t and t + h that is unpredicted by the projection on Ωt−1, or

because of accumulated measurement error ϵ in measured TFP between period t and t+ h

that is unpredicted by projection on Ωt−1. The first part of the exogeneity requirement is a

zero correlation between z⊥t and all sources of unpredicted productivity growth between t and

t+H − 1 that are not driven by the accumulation of government R&D capital. Changes in

appropriations in quarter t are plausibly uncorrelated with future realizations of technology

shocks in quarters t + h > t. The narrative classification step is intended to preclude any

contemporaneous nonzero correlation between R&D appropriations and technology shocks

at h = 0. In addition, the typical recognition and legislative lags in fiscal policy arguably

make any systematic policy reaction to technology shocks within the same quarter unlikely.

Finally, we assume that conditioning on the variables in Ωt−1 suffices to remove any joint

influences of past shocks (realized prior to quarter t) on zt and future productivity growth.

The second part of the exogeneity requirement is that z⊥t is uncorrelated with any unpre-

dicted accumulated measurement error in TFP across the forecast horizon. If the measure-

ment error in TFP is strictly exogenous, the identifying conditions in (8) remain perfectly

valid. If the error is the result of mismeasurement of the elasticities of private factor inputs,

then w⊥
t (h) is generally a function of any shock that causes changes in the factor inputs for

which the elasticities are mismeasured. In that case, we appeal to the same arguments as

above to motivate the assumption that z⊥t is not correlated with other shocks: non-causal

correlations with future non-technology shocks are implausible, the narrative classification

and policy lags eliminate any contemporaneous correlations with non-technology shocks,

and the control set Ωt−1 removes the confounding influences of correlations with past non-

technology shocks, if there are any.

The same arguments do not apply, however, to the shocks to R&D appropriations them-

selves. If appropriations shocks cause meaningful changes in private factor inputs, and
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these changes are not properly accounted for in the measurement of TFP, then (8) would

not necessarily hold, and the SP-IV estimate of ϕ would be potentially biased. However,

the estimated impulse responses of labor and non-R&D capital inputs to R&D appropria-

tions shocks, reported in Appendix C.6, imply that any errors in the production function

elasticities for these factor inputs would have to be very large to introduce a quantitatively

significant source of bias.12 Mismeasurement could be a more serious concern for private

R&D capital because of knowledge spillovers, which are not necessarily well captured by the

cost share of private R&D capital. As shown earlier, both R&D shocks lead to increases in

private R&D capital. If the methodology in Fernald (2012) underestimates the aggregate

elasticity of private R&D capital, the estimates of ϕ are likely to be biased upward. For-

tunately, Figure 9 showed that the increases in business-sector R&D capital are relatively

small, especially for the nondefense R&D shock, such that the bias is likely relatively small.

Global spillovers through changes in R&D spending abroad are another potential source of

bias, but its importance or direction are not immediately obvious.

The estimation equation in (7) does not distinguish between defense and nondefense

government R&D capital, whereas the TFP responses in Figure 6 indicate that the spillovers

on business-sector productivity are potentially quite different. We therefore also consider

specifications that allow for different elasticities of defense and nondefense government R&D

capital. Using the approximation ∆kt ≈ sND,t∆kND
t + (1 − sND,t)∆kD

t , where sND,t is the

nominal nondefense share of total government R&D capital averaged over t and t − 1, the

estimation equation is adjusted as follows:

∆t̃fpt = ϕND

(
sND,t∆kND

t

)
+ ϕD(1− sND,t)∆kD

t +∆wt , E[∆wt] = 0(9)

This specification assumes production function elasticities to ∆kND
t and ∆kD

t that scale

with sND,t and 1−sND,t, such that ϕND (ϕD) measures the percent change in TFP for a one

percent increase in total government R&D capital that is driven exclusively by an increase

in nondefense (defense) R&D capital. The scaling has the advantage that the magnitudes of

ϕND and ϕD can be compared to the estimates of ϕ in the simpler specification in (7). For the

purpose of calibrating an aggregate production function with constant elasticities on ∆kND
t

and ∆kD
t , the estimates of ϕND and ϕD can be multiplied by 0.5, which is approximately

the average of sND,t across the sample. An alternative approach, pursued in Appendix D.4,

treats the elasticities to ∆kND
t and ∆kD

t as constants in the estimation.

When ϕND ̸= ϕD, the estimates of ϕ in the simpler specification in (7) are not necessarily

consistent for either ϕND or ϕD. In that case, the response to a nondefense shock only

identifies ϕ = ϕND in two situations: either defense R&D capital does not lead to any

12For example, following a nondefense shock that increases government R&D capital by one percent, there is a gradual
and statistically significant increase in non-R&D business-sector capital of up to 0.2 percent, see Appendix C.6. Assuming
a measured elasticity of non-R&D capital of 0.33, a one-basis-point effect on measured TFP requires a 15 percent error
in the capital elasticity (0.2× 0.33× 0.15 ≈ 0.01).
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changes in nondefense R&D capital, or there are no productivity effects of defense R&D,

ϕD = 0. Similarly, the response to a defense shock only identifies ϕ = ϕD if there is no

impact on nondefense R&D capital, or else if ϕND = 0. As discussed earlier, the impulse

responses do not show much crowding-out of one type of government R&D capital by the

other, such that we expect both specifications to provide similar estimates.

As is well known, IV estimation can be unreliable when identification is too weak. Ap-

plying the diagnostic test of Lewis and Mertens (2023) reveals that weak instruments are

a concern in several of the specifications that we consider below. For this reason, we use

the weak-instrument-robust GMM inference methods of Kleibergen (2005), which remain

valid regardless of the strength of identification. Other problems can arise when the number

of identifying moments is too large (Han and Phillips 2006; Newey and Windmeijer 2009).

Given the high persistence in the impulse response estimates for t̃fp and k, there is limited

additional identifying information in immediately adjacent quarterly horizons. To mitigate

potential many-instrument problems, we therefore do not use all horizons for identification,

but only those at one-year intervals, at h = 3, 7, 11, ..., 59.13

B. Estimation Results

Table 1 reports estimates of ϕ, ϕND, and ϕD for various specifications, together with 95

percent weak-instrument-robust confidence intervals. The first five rows show estimates

of ϕ in (7) with only total government R&D capital, whereas the remaining rows show

estimates for ϕND and ϕD in (9) with nondefense and defense R&D capital stocks included

separately. The first two columns report results for TFP adjusted for public infrastructure,

t̃fpt, using the benchmark value of η = 0.08. The remaining columns show the elasticity

estimates based on variation in nondefense capital using the lower and higher values of

η = 0.065 and 0.12, respectively. For brevity, the elasticities based on variation in defense

R&D capital for the alternative values of η are omitted.

The first row in Table 1 shows estimates based on the impulse responses identified with

the (orthogonalized) narrative measure for nondefense appropriations, zND
t . For η = 0.08,

the point estimate of ϕ in (7) based on the response to a nondefense shock is 0.12. This

estimate is highly statistically significant and fairly precisely estimated, with a 95 percent

robust confidence interval ranging from 0.09 to 0.16. The point estimates decrease with

the assumed value of η, with ϕ̂ = 0.12 for η = 0.065 and ϕ̂ = 0.11 for η = 0.12. As-

suming a larger elasticity of public infrastructure means that a greater portion of the TFP

increase after a nondefense R&D shock in Figure 6 is attributed to the increase in public

infrastructure shown in Figure 9.14 Consequently, the increase in TFP after adjusting for

13Identification is therefore based on 15 moments (rather than 60) for specifications identified with a single impulse
response, and 30 moments (rather than 120) for those identified with two. While the application is different, simulation
results in Lewis and Mertens (2023) for the estimation of the hybrid New Keynesian Phillips curve indicate that Kleibergen
(2005) inference for SP-IV displays only small size distortions in samples of 250 quarters and 20 identifying horizons.

14The point estimate is ϕ̂ = 0.16 when assuming η = 0, and ϕ̂ = 0.04 when η = 0.39. The latter value is based on
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Table 1: Estimates of Production Function Elasticities
of Government R&D Capital

Public R&D Intermediate η = 0.08 Low η = 0.065 High η = 0.12

Measure Instruments ϕ̂/ϕ̂ND ϕ̂/ϕ̂D ϕ̂/ϕ̂ND ϕ̂/ϕ̂ND

[1] Total Exo ND 0.12∗∗∗
(0.09,0.16)

0.12∗∗∗
(0.10,0.16)

0.11∗∗∗
(0.08,0.15)

[2] Total Exo ND, No Space 0.14∗∗∗
(0.09,0.31)

0.14∗∗∗
(0.09,0.32)

0.13∗∗∗
(0.08,0.29)

[3] Total All ND 0.11∗∗∗
(0.09,0.15)

0.12∗∗∗
(0.09,0.16)

0.10∗∗∗
(0.08,0.14)

[4] Total Exo D −0.30∗
(−1.39,0.01)

[5] Total All D −0.29
(−1.27,0.02)

[6] ND/D Exo ND 0.11∗∗∗
(0.06,0.22)

−0.01
(−0.25,0.43)

0.12∗∗∗
(0.06,0.23)

0.10∗∗∗
(0.05,0.21)

[7] ND/D Exo ND/D 0.10∗∗∗
(0.06,0.17)

−0.06
(−0.26,0.37)

0.10∗∗∗
(0.06,0.18)

0.09∗∗∗
(0.06,0.17)

[8] ND/D Exo ND, No Space 0.14
(−2.00†,0.50)

0.20
(−2.00†,1.62)

0.14
(−2.00†,0.51)

0.13
(−2.00†,0.48)

[9] ND/D All ND 0.11∗∗∗
(0.06,0.20)

−0.02
(−0.24,0.40)

0.11∗∗∗
(0.07,0.21)

0.10∗∗∗
(0.05,0.19)

Notes: Rows [1]-[5], SP-IV estimates of ϕ (government R&D) in (7); rows [6]-[9] SP-IV estimates of ϕND

(nondefense) and ϕD (defense) in (9). All specifications include the baseline set of lagged controls described
in Section 3. Numbers in parentheses are 95 percent weak-instrument-robust confidence intervals based
on inverting the KLM statistic of Kleibergen (2005). Test inversion is limited to a grid with endpoints
−2 and 2, † denotes intervals constrained at these endpoints. Subvector inference in rows [6]-[9] is based
on the projection method. Stars ∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10, 5 and 1 percent
levels respectively. ‘Exo ND/D’ denotes the orthogonalized narrative measure of exogenous changes in
nondefense/defense R&D appropriations. ‘All ND/D’ denotes the orthogonalized series of all changes in
nondefense/defense R&D appropriations, ignoring our narrative classification. ‘No Space’ indicates that the
instrument is also orthogonalized to all changes in space appropriations between 1958 and 1963. Sample:
1948Q1–2021Q4.

public infrastructure is smaller when η is larger, see also Appendix D.1. However, in prac-

tice the estimates of ϕ are very similar across Ramey’s (2021) plausible range of values for

η ∈ [0.065, 0.12].

Rows [2] and [3] in Table 1 show results based on impulse responses identified with

different measures of nondefense R&D appropriations. Row [2] shows the estimates when

the narrative nondefense measure is further orthogonalized to all appropriation changes for

space R&D from 1958 to 1963, the period with the fastest growth in public nondefense

R&D capital in the sample. The resulting point estimates remain highly significant and

are slightly larger than in row [1], around 0.13 to 0.14 depending on η. Without the space

race as identifying variation, the robust confidence intervals become notably wider, and in

particular, substantially larger values of ϕ cannot be ruled out. Row [3] shows estimates

based on responses to all changes in nondefense R&D appropriations (after orthogonalizing

to all defense R&D changes), i.e. regardless of their narrative classification. The estimates

Aschauer (1989), and is the highest estimate mentioned in Ramey (2021).
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are very similar to those in row [1], and the narrative classification therefore matters little

for the identification of ϕ.

The next two rows in Table 1 report estimates of ϕ identified with impulse responses

to defense R&D shocks rather than nondefense shocks. Row [4] reports ϕ̂ = −0.30 based

on the (orthogonalized) narrative measure of exogenous changes in defense R&D appro-

priations zDt , and row [5] shows that ϕ̂ = −0.29 when using all changes in defense R&D

appropriations regardless of their narrative classification. Unlike for the nondefense R&D

shocks, both estimates are negative. The confidence bands are very wide, and only the

first estimate is marginally significant at the 10 percent level. The narrative classification

is again unimportant.

The remaining rows in Table 1 report estimates of ϕND and ϕD from the specification

in (9) that includes both types of government R&D capital simultaneously, with subvector

inference based on the projection method (the simultaneous confidence sets are in Appendix

D.2). In row [6], ϕND and ϕD are identified jointly using the same narrative nondefense

measure as in row [1]. The resulting estimate of ϕND is 0.11 for intermediate η, 0.12 for

low η, and 0.10 for high η, all of which are statistically significant and very close to the

corresponding estimates in row [1]. In contrast, the point estimate of ϕD is small, -0.02, and

statistically insignificant.

Rows [7]-[9] in Table 1 provide additional estimates of ϕND and ϕD identified with dif-

ferent impulse responses. In row [7], identification is based on impulse responses to both

defense and nondefense R&D shocks using the two original exogenous narrative measures

∆aexo,it /Ki
t−4, i = D,ND, i.e. without mutual orthogonalization. Rows [8] and [9] are in-

stead based on the same narrative measures of nondefense R&D shocks as in rows [2] and

[3], i.e., excluding the space race and using all changes in nondefense R&D appropriations,

respectively. The estimates of ϕD range from -0.06 to 0.19, but are statistically insignificant

in all specifications. The estimates of ϕND, on the other hand, are very close to those in rows

[2] and [3], and they also remain highly statistically significant. The only exception is in row

[8]: Without the large NASA appropriations early in the space race, identification weakens

to the point where the robust confidence intervals become very wide and include zero in all

cases. This inference result is the only substantive difference between the weak-IV-robust

inference methods and traditional Wald inference, which leads to rejection of no spillovers

even when excluding the space race, see Appendix D.3. For the interested reader, the same

Appendix provides further robust inference results, including the simultaneous confidence

sets associated with the estimates in rows [6]-[9]. Finally, Appendix D.4 reports results for

the alternative version of (9) that instead assumes constant elasticities to ∆kND
t and ∆kD

t .

The results are broadly consistent with those in Table 1. After scaling appropriately for

comparability, the estimates of ϕND range from 0.06 to 0.16, but are generally somewhat

smaller than those reported in Table 1 for most specifications. The comparable estimates

of ϕD range from −0.23 to 0.16, and are all insignificant and imprecisely estimated.
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A key conclusion from Table 1 is that the various estimates of the elasticity to government

R&D capital based on variation in nondefense R&D do not vary greatly, ranging from

0.09 to 0.14 and a midpoint of approximately 0.12. Multiplying by the average share of

nondefense R&D capital of 0.5, the estimates imply elasticities to nondefense R&D capital

ranging from 0.045 to 0.07, with a midpoint of 0.06. The estimates of the nondefense

elasticity are relatively precise (even under weak-instrument-robust inference) and highly

statistically significant, with the exception of those in row [8]. Overall, the results point

to sizeable direct spillovers of nondefense government R&D on business-sector productivity.

In contrast, the elasticity estimates based on variation in defense R&D vary considerably

across specifications, from -0.30 to 0.19, and come with wide confidence bands. Unlike for

nondefense R&D capital, we cannot draw any sharp conclusions regarding the size—or even

the sign—of the direct spillovers of defense R&D.

V. The Macroeconomic Returns to Government R&D

This section discusses the implications of the production function elasticity estimates in

Table 1 for the historical contribution of government R&D to postwar productivity growth,

and provides estimates of the implied rate of return to government R&D.

A. Historical Contributions to TFP Growth

With the estimates of the TFP spillovers of government R&D in hand, it is possible to assess

the contribution of public capital accumulation to postwar business-sector TFP growth.

When calculating the contributions of the different types of public capital, we make the

assumption that there are no TFP spillovers from defense R&D, i.e. ϕD = 0. While the

elasticity for defense R&D is imprecisely estimated, this assumption is consistent with the

estimation results in Table 1. We also continue to assume that defense capital (i.e. defense

equipment and structures) does not generate any TFP spillovers, as is the convention in the

literature. The contribution of nondefense R&D is calculated as ϕ̂ND ×
(
sND,t∆kND

t

)
. For

ϕ̂ND, we use the point estimates from row [1] in Table 1, which are in the middle of the

range of estimates across the different specifications, for each of the three different values

of η. The contribution of public infrastructure is calculated as η∆qt. The figure in the

left panel of Figure 10 shows the resulting contributions of government R&D and public

infrastructure for η = 0.08. The table in the right panel of Figure 10 reports averages over

selected time windows for each of the three values of η.

The main finding is that government R&D has contributed substantially to total TFP

growth since WWII R&D —accounting for roughly one quarter of the total, on average—

regardless of the value of η within Ramey’s (2021) plausible range. The contribution of gov-

ernment R&D is consistently similar in size to the contribution of public infrastructure, and

often larger. Between 1947 and 1969—when both government R&D and public infrastruc-
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Figure 10: TFP Growth Contributions of Public Infrastructure and Government R&D

’47-’69 ’70-’89 ’90-’09 ’10-’21

TFP growth 1.98 0.98 1.15 0.87

a. Intermediate η

Infrastructure 0.33 0.19 0.19 0.09

R&D 0.53 0.27 0.22 0.21

b. Low η

Infrastructure 0.27 0.16 0.15 0.07

R&D 0.55 0.28 0.22 0.22

c. High η

Infrastructure 0.50 0.29 0.28 0.14

R&D 0.49 0.25 0.20 0.20

Notes: The left figure shows the annualized five-year average growth rate of utilization-adjusted TFP growth
from Fernald (2012) and the contributions of public capital assuming η = 0.08.

ture grew at a rapid pace—the combined contribution of growth in public capital accounts

for 0.82 to 0.99 percentage points of total TFP growth of 1.98 percentage points. For the

low value η = 0.065, the contribution of government R&D is about twice as large as that of

public infrastructure: 0.55 versus 0.27 percentage points, respectively. For the high value

η = 0.12, each component of public capital contributes about half a percentage point. Rel-

ative to 1947-69, average TFP growth decelerated by 1.0 percentage point in 1979-89. The

combined contribution of slower growth in public capital ranges from 0.38 to 0.45 percentage

points as η increases from low to high. For low η, around 70 percent of the contribution of

public capital ((0.55− 0.28)/0.38 = 0.71) is due to the slowdown in government R&D. For

high η, the slowdown in R&D contributes slightly more than half ((0.49−0.25)/0.45 = 0.53).

According to our estimates, therefore, the scaling back of government R&D in the 1970s-80s

was at least as important for explaining the slowdown in productivity as the slower pace

of public infrastructure investment. The contribution of government R&D to TFP growth

is 20 to 22 basis points in both 1990-2009 and 2010-2021. In contrast, the contribution of

public infrastructure to TFP growth fell by half in 2010-2021 relative to 1990-2009 as a

result of the further slowing of growth in public infrastructure.

The left panel in Figure 10 shows that government R&D spillovers were particularly

important in the 1960s and early 1970s. A potential caveat to this finding is that the

assumption of constant η throughout the entire postwar sample may not be realistic. Fernald

(1999), for example, argues that road construction in the late 1950s and 1960s provided a

one-time, unrepeatable, large productivity boost. If that is the case, our calculations likely

overstate the contribution of government R&D relative to public infrastructure in that part

of the sample. The figure in the left panel also shows that public investment—either in R&D

or infrastructure—plays little role in accounting for the high TFP growth immediately after

WWII. It is possible that the higher TFP growth in the 1950s was at least partially driven by
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wartime defense R&D, which plays no role in our decomposition because of our assumption

that ϕD = 0.15 Government R&D also matters little for the TFP burst during the IT

revolution in the 1990s.

B. Rates of Return to Government R&D

The production function elasticities reported in Table 1 can be translated into approximate

rates of return to government R&D. The net rate of return on government R&D is ρnt =

ρt − δt, where ρt = ϕYt/Kt is the marginal product of Kt (or gross return), Kt is the

government R&D capital stock, Yt is output, and δ is the depreciation rate of government

R&D capital. We restrict attention to the return to nondefense R&D, and use the estimates

reported in the ϕ̂/ϕ̂ND columns of Table 1 for the calculations. To obtain an average gross

rate of return, we divide the elasticity estimates by the average ratio of government R&D

capital to GDP (both in constant 2012 dollars), which is around 6 percent. We use real

GDP rather than business sector output for calculating the ratio based on an assumption

that the productivity spillovers extend identically to production in the non-business sectors.

The rates of return calculated as just described are derived from the earlier estimates of

the elasticity ϕ, which is assumed to be constant over the estimation sample. A common

alternative approach to estimating returns is instead to estimate ρ as a constant, see e.g.

Hall et al. (2010). Using ∆kt ≈ ∆Kt/Kt and ϕt = ρKt/Yt, and substituting into (7) yields

∆t̃fpt = ρ
∆Kt

Yt

+∆wt(10)

To estimate ρ, we follow the same methodology as in the previous section, but now with

∆Kt/Yt as the endogenous regressor. Specifically, we estimate (10) using SP-IV regressions

of the cumulative impulse responses of ∆t̃fp and ∆Kt/Yt to the appropriations shocks.

We again use real GDP rather than business output as the measure of Yt, which means

that we assume that the spillovers are the same in all sectors in the economy. We also

consider specifications that explicitly allow for different returns on defense and nondefense

government R&D capital:

∆t̃fpt = ρND
∆KND

t

Yt

+ ρD
∆KD

t

Yt

+∆wt(11)

As before, we only use forecast horizons at one-year intervals for the identifying moments

to mitigate many-instrument problems, and conduct inference using the weak-instrument-

robust procedures of Kleibergen (2005).

Table 2 reports the estimates of the gross rate of return on nondefense R&D, both

based on the elasticity estimates and those estimated directly. The various rows in the

15Including wartime R&D could offer more identifying variation for estimating ϕD, but is unlikely to influence the
estimates of ϕND, as federal R&D expenditures were almost exclusively for defense activities before the 1950s.
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Table 2: Estimates of the Return to Government R&D Capital

Government Intermediate η = 0.08 Low η = 0.065 High η = 0.12

R&D ϕ̂ND ϕ̂ND ϕ̂ND

Measure Instruments × Y
K ρ̂ND × Y

K ρ̂ND × Y
K ρ̂ND

[1] Total Exo ND 2.04 2.11∗∗∗
(1.32,2.73)

2.11 2.18∗∗∗
(1.38,2.77)

1.86 1.94∗∗∗
(1.16,2.63)

[2] Total Exo ND, No Sp. 2.40 2.88∗∗∗
(1.39,5.00†)

2.47 2.94∗∗∗
(1.47,5.00†)

2.21 2.73∗∗
(1.18,5.00†)

[3] Total All ND 1.96 1.94∗∗∗
(1.29,2.52)

2.03 2.00∗∗∗
(1.34,2.56)

1.78 1.78∗∗∗
(1.13,2.43)

[4] ND/D Exo ND 1.92 2.40∗∗∗
(0.79,3.93)

1.99 2.46∗∗∗
(0.85,3.97)

1.75 2.24∗∗∗
(0.64,3.86)

[5] ND/D Exo ND/D 1.69 2.05∗∗
(0.23,3.83)

1.76 2.11∗∗
(0.27,3.86)

1.52 1.89∗∗
(0.12,3.75)

[6] ND/D Exo ND, No Sp. 2.36 3.00
(−2.00†,5.00†)

2.43 3.05
(−2.00†,5.00†)

2.17 2.87
(−2.00†,5.00†)

[7] ND/D All ND 1.88 2.02∗∗∗
(0.71,3.65)

1.94 2.08∗∗∗
(0.76,3.68)

1.71 1.86∗∗∗
(0.57,3.57)

Notes: Rows [1]-[3], SP-IV estimates of ρ (government R&D) in (10); rows [4]-[7] SP-IV estimates of ρND

in (11). All specifications include the baseline set of lagged controls described in Section 3. Numbers in
parentheses are 95 percent weak-instrument-robust confidence intervals based on inverting the KLM statistic
of Kleibergen (2005). Test inversion is limited to a grid with endpoints −2 and 5, † denotes intervals
constrained at these endpoints. Subvector inference in rows [6]-[9] is based on the projection method. Stars
∗, ∗∗ and ∗ ∗ ∗ denote statistical significance at 10, 5 and 1 percent levels respectively. ‘Exo ND/D’ denotes
the orthogonalized narrative measure of exogenous changes in nondefense/defense R&D appropriations. ‘All
ND/D’ denotes the orthogonalized series of all changes in nondefense/defense R&D appropriations, ignoring
our narrative classification. ‘No Space’ indicates that the instrument is also orthogonalized to all changes
in space appropriations between 1958 and 1963. Sample: 1948Q1–2021Q4.

Table mirror the specifications in Table 1, with rows [1]-[3] reporting results for (10), and

rows [4]-[7] reporting results for (11). Identification is based on the same variations on the

instruments as in Table 1, and each row also reports the calculation of the rate of return

based on the corresponding elasticity estimate in Table 1. The implied net returns can be

obtained by subtracting δ ≈ 0.15, which is approximately the average depreciation rate for

nondefense R&D calculated by the BEA.

As Table 2 shows, the implied rates of return to nondefense R&D are high. The estimates

range from around 150 percent to 300 percent depending on the specification, the assumed

value of η, and the method of calculation. The SP-IV estimates of ρ are highly statistically

significant regardless of the value of η. As with the elasticity estimates, the only exception

is the specification with both R&D types and the narrative measure that excludes the space

race as the instrument, see row [6]. For lower values of η, more of the TFP increase is

attributed to R&D, and the estimated returns are therefore decreasing in η. However, the

returns do not vary greatly across the plausible range for η within each specification. The

estimated returns are also roughly the same regardless of whether they are derived from the

elasticity estimates or estimated directly.

An implication of the large returns on government R&D is that there is substantial
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underinvestment of public funds in nondefense R&D. For comparison, the CBO estimates

a gross return on public infrastructure capital of 12.4 percent, and a net return of 9.2

percent after adjusting for depreciation (CBO 2021). Even after adjusting for the higher

depreciation rates on R&D, the estimated returns in Table 2 substantially exceed those for

public infrastructure, implying significant misallocation of public capital. The estimates also

suggest that government funding of nondefense R&D is self-financing from the perspective

of the federal budget, at least in the long run. Assuming a return of 200 percent, a $1 long

run increase in government R&D capital would improve the budget as long as the additional

tax revenue raised per dollar of additional GDP is at least 7.5 cents (δ/ρ = 0.15/2 = 0.075),

which is substantially below the historical ratio of federal tax revenues to GDP.

As mentioned in the introduction, the existing literature often estimates returns on

private R&D that well exceed the returns on other investments. In their survey of firm

and industry regression evidence, Hall et al. (2010) conclude that rates of return on private

R&D are likely in the range of 20 to 30 percent, though some estimates are as high as 75

percent. These estimates usually do not aim to capture all possible spillovers across firms and

industries. In that sense, our relatively higher estimates at the aggregate level are perhaps

not too surprising. In a stylized framework, Jones and Summers (2020) calculate an average

social rate of return on total R&D expenditures of 67 percent based on aggregate U.S.

data. Different from Jones and Summers (2020), but like most others in the literature, our

estimates of the rate of return rely on functional form (Cobb-Douglas) assumptions about the

aggregate production function that may not be realistic. Nevertheless, our evidence based on

appropriations shocks suggests that the return on R&D funded by federal agencies may be

significantly greater than 67 percent. As discussed earlier, one plausible explanation is that

this funding is more directed towards fundamental research with larger knowledge spillovers,

as in the framework of Akcigit et al. (2020). An important implication is that federal R&D

policy should not be restricted to tax credits and subsidies for private businesses, but also

provide adequate resources for R&D funding by federal agencies.

VI. Avenues for Future Research

This paper contributes new time series evidence on the productivity effects of government

funding for R&D by studying impulse response to shocks to R&D appropriations for five ma-

jor U.S. federal agencies. We use the impulse response estimates to structurally estimate the

aggregate production function elasticity of government R&D capital. These estimates can

be used to discipline quantitative models to study the long-run effects of public investment

in research, as well as the optimal allocation of public capital between public infrastructure

and knowledge capital. While we find evidence for direct productivity spillovers of non-

defense R&D, the results for defense R&D are inconclusive, and it appears important to

distinguish between investments in defense and nondefense research. Further distinctions
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between the various types of nondefense R&D funding, for instance by type or agency, can

be made to investigate the relative magnitude of the productivity spillovers. It is also pos-

sible to look at the effects of shocks to R&D appropriations in more disaggregated data,

and study the heterogeneous effects across firms or industries. The possible links between

government R&D funding and overall trends in research productivity, as documented by

Bloom et al. (2020), are also worth exploring. Another interesting avenue is to study R&D

appropriations shocks as a potential deeper source of the ‘technology news’ shocks that are

widely studied in macroeconomics, see also Jinnai (2014). Finally, our analysis has ab-

stracted from global spillovers and possible international coordination of public investment

in R&D. We leave these and other questions for future research.
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