Offshore Production and Business Cycle Dynamics
with Heterogeneous Firms*

Andrei Zlate†
Federal Reserve Board
September 25, 2009

Abstract

Cross-country variation in production costs encourages the relocation of production facilities to other countries, a process known as offshoring through vertical foreign direct investment. I examine the effect of offshoring on the international transmission of business cycles. Unlike the existing macroeconomic literature, I distinguish between fluctuations in the number of offshoring firms (the extensive margin) and in the value added per offshoring firm (the intensive margin) as separate transmission mechanisms. In the model, firms are heterogeneous in labor productivity. They face a sunk entry cost in the domestic market and an additional fixed cost to produce offshore. Offshoring increases with the difference between the domestic and foreign cost of effective labor and with firm-specific productivity. The key results are: (1) The model replicates the procyclical pattern of offshoring, as well as the extensive and intensive margin dynamics that I document using data from Mexico’s maquiladora sector; (2) Offshoring enhances the co-movement of output between the countries involved; and (3) Offshoring reduces price dispersion across countries, because it dampens the real exchange rate appreciation that follows a productivity increase in the parent country. The results are relevant for the study of macroeconomic interdependence between countries separated by persistent wage differences, such as the U.S. and Mexico or the original and new E.U. member states.

JEL classification: F23, F41

Keywords: offshore production, extensive and intensive margins, business cycle dynamics, vertical FDI, heterogeneous firms, firm entry, terms of labor, real exchange rate.

*I am grateful to Fabio Ghironi, James Anderson and Susanto Basu for their generous help during my dissertation work at Boston College. Special thanks to Richard Arnott, Marianne Baxter, Matteo Iacoviello, Peter Ireland, Federico Mandelman, Joel Rodrigue, Pedro Silos, Vitaliy Stroshush, and Christina Wang for insightful discussions on this paper. I would like to recognize participants at the IEFS/ASSA 2009 Meeting, 4th DYNARE Conference, Green Line Macro Meetings at Boston College/Boston University, as well as the R@BC and Dissertation Workshops at Boston College for important suggestions. Dissertation fellowships at the FRB of Atlanta and the FRB of Boston were extremely useful for the development of this paper. The views expressed here are the author’s and not necessarily those of the Board of Governors of the Federal Reserve System.

†Andrei.Zlate@frb.gov. Phone: (202) 452-3542. Board of Governors of the Federal Reserve System, Division of International Finance, Mail Stop 24, 20th and C St., Washington, DC 20551.
1 Introduction

Firms often follow strategies that involve the fragmentation of production chains and the establishment of foreign affiliates at locations with relatively lower labor costs, an activity known in the international trade literature as offshoring through vertical foreign direct investment (FDI) (Helpman, 1984). Unlike production under horizontal FDI - which means that foreign affiliates attempt to gain market access by replicating the operations of their parent firms in the country where final consumption takes place - the type of vertically-integrated production that I model is primarily motivated by lower production costs, as foreign affiliates add value to the final goods that are ultimately sold for consumption in the multinationals’ country of origin. The number of offshoring firms (which I refer to as the extensive margin of offshore production) and the real value added per offshoring firm (the intensive margin) fluctuate over the business cycle, and thus affect output, prices and wages in both the parent and the host countries.

This paper contributes to the international macroeconomics literature by analyzing the extensive and intensive margins of offshoring as separate transmission mechanisms of business cycles between the parent and the host country. I model offshoring as an endogenous, firm-level decision that depends on the difference between the domestic and the foreign cost per unit of effective labor, the fixed cost of offshore production, and the trade cost of shipping output back to the parent country. Fluctuations in the number of offshoring firms are linked to domestic firm entry and to the resulting changes in the relative cost of effective labor. Thus, an increase in aggregate productivity in the parent country encourages domestic firm entry and causes domestic wages to rise faster than productivity, as labor demand increases to cover firm entry requirements. In turn, the increase in the domestic cost of effective labor causes more firms to relocate production offshore (i.e. an increase in the extensive margin). The increase in the number of offshoring firms is gradual, as it mirrors the gradual appreciation of the

1The term "offshoring" refers to the activity of firms that relocate certain stages of their production to foreign countries. To this end, firms become integrated across borders through vertical or/and horizontal FDI, or purchase intermediate goods and services from unaffiliated foreign suppliers. In contrast, "outsourcing" applies to situations when firms purchase intermediates from unaffiliated suppliers - either at home or abroad - rather than producing them in house. See Helpman (2006) for a discussion of the related literature.

3Bergin, Feenstra and Hanson (2008) analyze the extent to which fluctuations in the extensive margin of offshoring account for variations in Mexico’s maquiladora employment. They show that more than one third of the adjustment in industry-level employment and nearly half of the adjustment in maquiladora’s total employment occur at the extensive margin, i.e. through variation in the number of plants over time.

4I maintain a one-to-one identification between an offshoring firm, a final good variety, and an offshore plant. Under this assumption, the extensive margin of offshoring can also be interpreted as the number of offshore plants every period; the intensive margin can be regarded as the value added per offshore plant.
cost of effective labor generated by domestic firm entry.

I document a set of stylized facts that characterize the cyclicality of offshoring from U.S. manufacturing to Mexico’s maquiladora sector.\(^5\) Using the number of maquiladora establishments as an empirical proxy for the extensive margin, I find that the total value added offshore is procyclical with U.S. manufacturing output. More, the pattern of business cycle fluctuations differs across the extensive and intensive margins of offshore production (Figure 6). In particular, expansions in U.S. output precede increases in the number of maquiladora establishments by at least three quarters, a result that highlights the inter-temporal link between U.S. manufacturing and the extensive margin of offshoring.

Despite the empirical evidence, the theoretical macroeconomic literature does not fully capture the business cycle dynamics of offshoring along its extensive and intensive margins. For instance, Burstein, Kurz, and Tesar (2008) examine the role of production sharing in the transmission of business cycles in a two-country model in which the location of plants is fixed over time.\(^6\) Bergin, Feenstra, and Hanson (2007) focus on the importance of offshore production in amplifying the transmission of shocks across countries, in a model in which the number of offshoring firms makes an abrupt shift rather than a gradual adjustment over time - as I find in the data - in response to aggregate shocks.

I address these deficiencies by incorporating the endogenous determination of the number of offshoring firms in a two-country (North and South), dynamic stochastic general equilibrium model with firm entry and firm heterogeneity, along the lines of Ghironi and Melitz (2005, henceforth GM2005). Firm entry is subject to a sunk cost reflecting the regulation of starting a business in the country of origin. Following entry, each firm can use either domestic or foreign inputs in the production of a different variety of final goods. The use of foreign inputs involves the establishment of an offshore production plant and is subject to a fixed cost of offshoring every period. Also, offshoring involves the so-called iceberg trade costs that reflect transportation, insurance, and trade barriers, costs incurred in the shipping of final good varieties produced offshore back to the country of origin. Thus, when deciding on where to locate production (domestically vs. offshore), each firm balances the lower foreign costs of effective labor against the fixed and trade costs associated with offshore production.\(^7\)

\(^5\)Mexico’s maquiladora sector consists of manufacturing plants that import intermediate goods, process them, and export the resulting output (Gruben, 2001). Although not entirely owned by U.S. multinationals, most of the maquiladora plants accommodate the offshoring operations of U.S. firms: They import most of their inputs (82 percent) and send most of their gross output (90 percent) from/to the U.S. (Hausman and Kaytko, 2003; Burstein, Kurz and Tesar, 2008). The maquiladora sector accounts for 20 percent of the Mexico’s manufacturing value added (INEGI), nearly 50 percent of the Mexico’s exports, and approximately 25 percent of Mexico’s employment (Bergin, Feenstra, Hanson, 2007, 2008).

\(^6\)In Burstein, Kurz and Tesar (2008), the low elasticity of substitution between the domestic and foreign varieties in an Armington composite enhances the cross-country co-movement of output.

\(^7\)I define the cost of effective labor as the ratio between the real wage and aggregate productivity (w_t/Z_t in the North and w^*_t/Z^*_t in the South).
Since firms are heterogeneous in productivity, the decision to produce offshore is firm-specific: Only the more productive firms can afford the fixed costs of offshoring, and their number varies over time. The model also implies that the relocation of production offshore takes place one-way: Since the cost of effective labor is relatively lower in the South, only Northern firms have the incentive to relocate production offshore. All Southern firms produce domestically.\(^8\)

The implications of the model are consistent with the empirical evidence provided by recent studies on the determinants of vertical production networks. For instance, Hanson, Mataloni, and Slaughter (2005) show that U.S. multinational firms import more intermediate inputs when their foreign affiliates benefit from lower wages and lower trade costs in the host economy. Kurz (2006) shows that U.S. firms choosing to offshore are \textit{ex-ante} larger and more productive than their domestic counterparts, as their higher idiosyncratic productivity levels allow them to cover the fixed costs of offshoring.

The key results of the paper are as follows. First, the model generates a procyclical pattern of offshoring that is consistent with the stylized facts from Mexico’s maquiladora industry. In particular, following an economic expansion in the parent country, the value added per offshoring firm (the intensive margin) jumps on impact. Domestic firm entry leads to a gradual appreciation of the terms of labor, which in turn generates a gradual increase in the number of offshoring firms over time (the extensive margin).\(^9\) Second, offshoring enhances the co-movement of output relative to the benchmark model with exports developed in GM2005. As firm entry places upward pressure on the domestic effective wage and causes more firms to relocate production offshore, higher demand for domestic labor (due to firm entry) and sequentially higher demand for offshore labor (due to the relocation of production) enhance the co-movement of wages and aggregate incomes.\(^10\) The result is consistent with the empirical regularity documented by Burstein, Kurz, and Tesar (2007) that countries with stronger offshoring-related trade links tend to exhibit higher correlations of manufacturing output.

Third, offshoring narrows the price dispersion across countries, as it dampens the appreciation of the real exchange rate that follows an increase in aggregate productivity in the parent country (the Harrod-Balassa-Samuelson effect). This result is driven by several channels, including the upward

\(^8\)I derive an asymmetric steady state in which differences in the regulation of firm entry in the country of origin are translated in differences in real effective wages across countries. In the model, I set firm entry costs to be higher in the South; since the more regulated economy attracts a relatively smaller number of firms, labor demand and the cost of effective labor are lower in the South.

\(^9\)The terms of labor is defined as the ratio between the Southern and Northern real cost of effective labor expressed in units of the same consumption basket, \(TOL_t = \frac{Q_t w_t^S / Z_t^S}{w_t^N / Z_t^N}\). An increase in the cost of effective labor in the North would cause the terms of labor to appreciate (i.e. the TOL to decrease).

\(^10\)In contrast, in the traditional IRBC literature, a domestic increase in aggregate productivity leads to increased production at home but not offshore, such as in Backus, Kehoe, Kydland (1992).
pressure on the foreign wage, the decrease in size of the domestic non-traded sector, and the decline in import prices that occurs as offshoring crowds out the less productive foreign exporters. Fourth, offshoring enhances the procyclicality of investment and firm entry in the parent country relative to the benchmark model with exports only, as the lower-cost alternative of producing offshore increases the profitability of the domestic potential entrants. In turn, the employment loss caused by offshoring is partially offset by the employment gain generated by greater domestic firm entry.

This paper is related to a growing body of macroeconomic literature that focuses on endogenous firm entry and adjustments along the extensive margin of exports (but not of offshoring). For example, GM2005 study the export decision of firms in the presence of fixed exporting costs, in a framework with firm entry and firm heterogeneity. Alessandria and Choi (2007) analyze the extensive margin of exports in a model with sunk and continuation fixed costs that explains the "exporter hysteresis" behavior. Corsetti, Martin, and Pesenti (2007) examine the terms-of-trade implications of productivity improvements affecting the entry of firms and the production sector, in a model in which the extensive margin of exports is endogenous. And Mejean (2006) emphasizes the implications of endogenous firm entry in the tradable sector for the real exchange rate dynamics and the Harrod-Balassa-Samuelson effect.

The study of the macroeconomic implications of offshoring through vertical FDI is particularly relevant for pairs of countries and for economic areas that are separated by persistent differences in the cost of effective labor. For instance, offshoring through vertical FDI has been important for the U.S. multinational firms acting within the NAFTA region, and also within Central and South America: As much as 50 percent of the manufacturing sales of U.S. affiliates in Mexico (and 26 percent of the sales of U.S. affiliates in Latin America as a whole) were directed towards their U.S. parent firms in 2005 (as opposed to only 3 percent for the U.S. affiliates in Europe, and 5 percent for those in the Asia-Pacific region; BEA, 2007). A similar pattern exists between Western Europe and the new member countries of the European Union (Marin, 2006; Meyer, 2006).

The rest of this paper is organized as follows: Section 2 introduces a DSGE model of offshoring that allows for fluctuations in offshoring at both the extensive and the intensive margins. Section 3

11 Recent empirical literature highlights the role of the extensive margin in international trade in the presence of fixed exporting costs: Baldwin and Harrigan (2007) show that the number of traded goods (the extensive margin) decreases with distance and increases with the size of the importing country. Besedes and Prusa (2006) find that the survival rate of exports for differentiated good varieties increases with the initial transaction size and also with the length of the relationship. Hummels and Klenow (2005) show that larger economies have larger exports, and that the extensive margin accounts for as much as 60 percent of this difference.

12 "Exporter hysteresis" refers to the behavior of firms that continue to serve the foreign market even after a real exchange rate appreciation reduces their export competitiveness.
defines the average productivity levels of the representative firms producing domestically and offshore. Section 4 discusses the model calibration. Section 5 presents the results, including the macroeconomic dynamics in the presence of aggregate productivity shocks, and a comparison between the empirical moments of offshoring to Mexico and their model counterparts. Section 6 concludes with a summary and possible extensions of the model.

2 Model of Offshoring with Heterogeneous Firms

2.1 Model Setup: Markets and Production Strategies

This section summarizes the two-stage model of firm entry and offshore production, which I illustrate in Figure 1. In the first stage, an unbounded pool of potential entrant firms face a trade-off between the sunk entry cost (reflecting the cost of starting a business in the firms’ country of origin), the expected stream of future monopolistic profits, and the probability of exit very period, as in GM2005. After paying the sunk entry cost, each firm is assigned an idiosyncratic labor productivity factor drawn independently from a common distribution over a support interval, which the firm keeps for the entire duration of its life.

In the second stage, post-entry firms are monopolistically competitive and heterogeneous in labor productivity. Every period after entry, firms choose the destination market(s) that they serve as well as the location of production, as follows:
1. Firms serving their domestic market can use either domestic or foreign inputs in production. The use of foreign labor involves the establishment of offshore production plants (i.e. offshoring through vertical FDI). It offers the advantage of a lower production cost, but is subject to a per-period fixed offshoring cost, and to an iceberg trade cost that affects the final goods shipped back to the country of origin for consumption.

2. Some of the firms can also serve the foreign market. They use exclusively domestic labor in production, and export the resulting final goods subject to a per-period fixed cost, as in GM2005. Thus, I nest the framework of GM2005 (exports only, no offshoring) as an extreme case in my model with offshoring.13

Next I describe in detail the model with firm entry and offshore production.

2.2 Firms Serving the Domestic Market: Domestic vs. Offshore Production

This section outlines the mechanisms of domestic and offshore production as alternative choices for the Northern firms that serve the domestic market. It does not concern the Southern firms, as offshoring takes place one-way, from the Northern economy to the low-wage South.

In the North, a continuum of monopolistically-competitive firms produce final good varieties for the domestic market. Firms are heterogeneous in productivity, with each firm producing a different variety of final goods. Since each firm produces one variety, the firm-specific labor productivity z also serves as an index for the existing varieties of final goods. Every period, firms can choose one of the two possible production strategies:

(i) **Domestic production:** The Northern firm with idiosyncratic labor productivity z employs labor l_t to produce its final good variety:

$$ y_{D,I}(z) = Z_l z l_t, $$ \hfill (1)

where Z_l is the aggregate productivity of labor in the North and z is the firm-specific labor productivity;13

13I abstract from the possibility of offshoring through horizontal FDI: As an alternative to exports, firms serving the foreign market may produce abroad using the local labor of the country whose market they target, thus engaging in offshoring through horizontal FDI as in Contessi (2006). Production under horizontal FDI is motivated by improved access to the foreign market, and involves the simultaneous production of the same final good variety both at home (to be sold in the home market) and offshore (to be sold in the host market). In contrast to horizontal FDI, firms engaging in vertical FDI shift part of the production chain offshore in order to take advantage of the relatively lower cost of effective labor. They relocate downstream production activities offshore (e.g. manufacturing, assembly and packaging) while continuing to perform the upstream operations (e.g. research, marketing and sales) at home.
(2) Offshore production: Alternatively, the firm with idiosyncratic labor productivity \(z \) may choose to relocate production offshore using Southern labor \(l_t^s \) as the only input in production:

\[
y_{V,t}(z) = Z_t^s z_l^s.
\]

Thus, I assume that each offshoring firm becomes subject to the Southern aggregate labor productivity \(Z^s \), but is able to carry its own idiosyncratic labor productivity \(z \) to the Southern economy.\(^{14} \) Given the demand for final good varieties produced domestically, \(y_{D,t}(z) = \rho_{D,t}(z)^{-\theta} C_t \), and also the demand for varieties produced offshore by the vertically-integrated firms, \(y_{V,t}(z) = \rho_{V,t}(z)^{-\theta} C_t \), the monopolistically-competitive firms solve their profit-maximization problem:

\[
\max \{ \rho_{D,t}(z) \} \quad d_D(z) = \rho_{D,t}(z) y_{D,t}(z) - \frac{w_t}{Z_t^s} y_{D,t}(z),
\]

\[
\max \{ \rho_{V,t}(z) \} \quad d_V(z) = \rho_{V,t}(z) y_{V,t}(z) - \frac{w_t^{s} Q_t}{Z_t^s} y_{V,t}(z) - f_V \frac{w_t^s Q_t}{Z_t^s}.
\]

The cost of producing one unit of output either domestically or offshore varies not only with the cost of effective labor \(\frac{w_t}{Z_t} \) and \(\frac{w_t^s Q_t}{Z_t^s} \) across countries, but also with the level of idiosyncratic labor productivity \(z \) across firms.\(^{15} \) I define the real exchange rate \(Q_t = \frac{P_t^s \varepsilon_t}{P_t} \) as the ratio between the price indexes in the South and North expressed in the same currency, where \(\varepsilon_t \) is the nominal exchange rate. In addition to the marginal cost, the Northern firms producing offshore incur a period-by-period fixed offshoring cost equal to \(f_V \) units of Southern effective labor, a cost that reflects the building and maintenance of the offshore production facility.\(^{16} \) They also face an iceberg trade cost \((\tau > 1) \) associated with the shipping of goods produced offshore back to the parent country: For every \(\tau \) units produced offshore,

\[^{14} \text{Strategies 1 and 2 are extreme cases of a broader framework of offshoring, in which I allow for the offshoring firm with idiosyncratic labor productivity } z \text{ to use a mix of Northern and Southern labor, } l_t \text{ and } l_t^s. \text{ Following the specification in Antras and Helpman (2004), the production of final good variety } z \text{ is a Cobb-Douglas function of domestic and foreign inputs:}

\[
y_{V,t}(z) = \left[\frac{Z_t l_t}{\alpha} \right]^\alpha \left[\frac{Z_t^s l_t^s}{1 - \alpha} \right]^{1 - \alpha}.
\]

In this paper, I explore two extreme scenarios: At one extreme, I set \(\alpha = 1 \) to shut down offshoring under vertical FDI, in which case I revisit GM2005. At the other extreme, I set \(\alpha = 0 \) so that the offshoring firms use exclusively foreign inputs. The smaller \(\alpha \), the larger the range of operations that offshoring firms relocate abroad (e.g. manufacturing, assembly, packaging, customer service). For the two extreme cases, I use the l'Hôpital rule to obtain: \(\lim_{\alpha \to 0} \left(\frac{1}{\alpha} \right) = \lim_{\beta \to \infty} \frac{\beta^{1/\beta}}{\beta^{1/\beta}} = \lim_{\beta \to \infty} \frac{\ln \beta}{\beta} = \lim_{\beta \to \infty} \frac{\ln \beta}{\beta} = e^{\lim_{\beta \to \infty} \frac{\ln \beta}{\beta}} = e^{\frac{\text{l'Hôpital's rule}}{\lim_{\beta \to \infty} \frac{1/\beta}{1/\beta}}} = e^{0} = 1 \).

\[^{15} \text{Given the domestic and offshore real wages (} w_t \text{ and } w_t^s \text{), the marginal cost of producing one unit of variety } z \text{ domestically is } \frac{w_t}{Z_t}, \text{ and the marginal cost of producing it offshore is } \frac{w_t^s Q_t}{Z_t^s}. \text{ The real wage } w_t = W_t / P_t \text{ in the North is expressed in units of the domestic consumption basket; the offshore real wage } w_t^s = W_t^s / P_t^s \text{ is expressed in units of the Southern consumption basket.}

\[^{16} \text{The cost of } f_V \text{ units of Southern effective labor is equivalent to } f_V w_t^s / Z_t^s \text{ units of the Southern consumption basket.} \)
only one unit reaches the Northern consumers, as the difference is lost due to costs associated with trade barriers, transportation, insurance, and differences in the legal systems, as discussed in Anderson and Wincoop (2004).

The profit-maximization problem under monopolistic competition implies the following equilibrium prices per unit of output produced domestically and offshore:

\[\rho_{D,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t z} \]

\[\rho_{V,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t Q_t}{Z_t^* z} \]

The resulting profits from domestic and offshore production, both expressed in units of the Northern consumption basket \(C_t \), are:

\[d_{D,t}(z) = \frac{1}{\theta} \rho_{D,t}(z)^{1-\theta} C_t, \]

\[d_{V,t}(z) = \frac{1}{\theta} \rho_{V,t}(z)^{1-\theta} C_t - f V \frac{w_t Q_t}{Z_t^*}. \]

To summarize the above, the profits associated with domestic and offshore production depend on the cost of effective labor in the North and South, the fixed offshoring cost, the iceberg trade cost, as well as the firm-specific labor productivity. Firms producing offshore benefit from the relatively lower cost of effective labor, but their profits decline with the per-period fixed offshoring cost, and also with the iceberg trade cost. Thus, when deciding upon the location of production every period, the firm with productivity \(z \) compares the profit \(d_{D,t}(z) \) it would obtain from domestic production with the profit \(d_{V,t}(z) \) it would obtain from producing the same variety offshore.

The model implies that only the relatively more productive Northern firms find it profitable to locate production offshore every period. Despite the lower cost of effective labor in South relative to North, only firms with idiosyncratic productivity above a certain cutoff \(z > z_{V,t} \) obtain profits that are large enough to cover the fixed offshoring cost and the iceberg trade cost. This implication of the model is consistent with the empirical evidence provided by Kurz (2006) that firms choosing to produce offshore are ex-ante larger and more productive than their domestic counterparts, as the larger idiosyncratic productivity levels allow them to cover the fixed costs of offshoring.\(^{17}\)

\(^{17}\)A useful implication of firm heterogeneity is that the more productive firms have larger output and revenue (see Melitz, 2003). Given two firms with idiosyncratic productivity \(z_2 > z_1 \), the ratios of output and profits are \(\frac{w(z_2)}{w(z_1)} = \left(\frac{z_2}{z_1} \right)^{\theta} > 1 \), \(\frac{r(z_2)}{r(z_1)} = \left(\frac{z_2}{z_1} \right)^{\theta-1} > 1 \). Empirical studies show that firms using imported inputs in production not only are more productive, but also are larger and employ more workers (Kurz, 2006).
As a particular case, the firm with labor productivity equal to the cutoff \(z_{V,t} \) is indifferent between producing domestically or offshore. After accounting for the fixed offshoring cost and the iceberg trade cost, the firm at the cutoff obtains equal profits from domestic and offshore production. Using this property, I derive the endogenous productivity cutoff \(z_{V,t} \) that drives the location decision as:

\[
z_{V,t} = \{ z \mid d_{D,t}(z_{V,t}) = d_{V,t}(z_{V,t}) \}. \tag{9}
\]

Existence of the equilibrium productivity cutoff Next I show that the existence of the equilibrium productivity cutoff \(z_{V,t} \) requires a cross-country asymmetry in the cost of effective labor, so that some of the Northern firms will always maintain an incentive to produce offshore.

I begin by re-writing the profits obtained from domestic and offshore production as

\[
d_{D,t}(z) = B_t \left(\frac{w_t}{Z_t} \right)^{1-\theta} z^{\theta-1} \text{ and } d_{V,t}(z) = B_t \left(\tau \frac{w_t^* Q_t}{Z_t} \right)^{1-\theta} z^{\theta-1}, \]

respectively, where \(B_t \equiv \frac{1}{\beta} \left(\frac{\theta}{1-\theta} \right)^{1-\theta} \). \(C_t \) measures the size of the Northern market. In Figure 2, I plot the corresponding profits as functions of the idiosyncratic productivity parameter \(z^{\theta-1} \) over the support interval \([z_{\text{min}}, \infty)\). The vertical intercepts represent the annualized value of the sunk entry cost for the case of domestic production \((-\Theta f_E \frac{w_t}{Z_t}\)) and the annualized value of the sunk entry cost plus the period-by-period fixed cost for the case of offshore production \((-\Theta f_E \frac{w_t}{Z_t} - f_V \frac{w_t^* Q_t}{Z_t} \)) where parameter \(\Theta \equiv \frac{1-\beta(1-\delta)}{\beta(1-\delta)} \).

The existence of the equilibrium productivity cutoff \(z_{V,t} \) in Figure 2 requires that the profit function from offshoring must be steeper than the profit from domestic production, i.e. slope \(\{d_{V,t}(z)\} > \text{slope} \{d_{D,t}(z)\} \). When the condition is met, offshoring generates greater profits than domestic production for the Northern firms with idiosyncratic productivity \(z \) along the upper range of the support interval. The slope inequality is equivalent to:

\[
\tau \frac{w_t^* Q_t}{Z_t} < \frac{w_t}{Z_t} \left(\frac{\tau}{\beta(1-\delta)} \right). \tag{10}
\]

The inequality implies that the effective wage in the South must be sufficiently lower than that in the North so that the difference covers both the fixed cost of offshoring and the iceberg trade cost \((\tau > 1) \), and thus provides an incentive for some of the Northern firms to produce offshore every period.\(^\text{18}\)

\(^{18}\)In Appendix 9, I derive a second condition necessary to avoid the corner solution when all firms would produce offshore. It ensures that \(z_{V,t} > z_{\text{min}} \) in all periods.
2.3 Firms Serving the Foreign Market: Exports

This section describes the problem of the Northern firms that serve the Southern market through exports. The equations for the Southern firms are similar unless indicated otherwise. Variables for the Southern economy are marked with the (*) superscript.

Firms in each economy have the option to serve the foreign market through exports, as in GM2005. The Northern exporting firm with idiosyncratic productivity z uses an amount of domestic labor l_t in the production of its final good variety $y_{H,t}(z)$ exported to the Southern market:

$$ y_{H,t}(z) = Z_t z l_t. \quad (11) $$

Serving the foreign market involves a period-by-period fixed exporting cost equal to f_H units of

19I view exporting as a special case within a broader framework, in which I allow for firms to serve the foreign market by using a mix of domestic and foreign inputs in production. In this framework, production is described by the following Cobb-Douglas specification:

$$ y_{H,t}(z) = \left[\frac{Z_t z l_t}{\eta} \right]^\eta \left[\frac{Z_t^* z l_t^*}{1-\eta} \right]^{1-\eta}, $$

where a larger η accounts for a smaller content of Southern inputs used in the production of final goods sold in the Southern market. In this paper I nest the special case with endogenous exports in GM2005 by setting $\eta = 1$. Alternatively, I would nest the case in which firms serving the Southern market produce exclusively through their foreign affiliates (as in Contessi, 2006) by setting $\eta = 0$. In the latter case, production in the South through horizontal FDI allows firms to avoid the trade cost τ^* by using local inputs. Using the l'Hôpital rule, $\lim_{\eta \to 0} \left(\frac{1}{\eta} \right)^\eta = \lim_{\beta \to -\infty} \beta^{1/\beta} = \lim_{\beta \to -\infty} \frac{\ln \beta}{\beta} = \lim_{\beta \to -\infty} \frac{\sqrt{\beta^{1/\beta}}}{\sqrt{\beta^{1/\beta}}} \text{l'Hôpital rule} = e^{\lim_{\beta \to -\infty} \left(\frac{\beta}{\beta} \right)} = e^0 = 1$. The corresponding price and profit functions are $p_{H,t}(z) = \frac{\theta}{\theta-1} \left(\tau^{*} \frac{w_{t}Q_t^{-1}}{z_{t}z} \right)^\eta \left(\frac{w_{t}Q_t}{z_{t}z} \right)^{1-\eta}$ and $d_{H,t}(z) = \frac{1}{\theta} \rho_{H,t}(z)^{1-\theta} C_{t}\tau - f_{H} \left(\frac{w_{t}}{\tau_{t}} \right)^\eta \left(\frac{w_{t}Q_t}{\tau_{t}z} \right)^{1-\eta}$.
Northern effective labor, as well as the iceberg trade cost τ^*. The profit maximization problem of the Northern exporting firms generates the following price and profit functions:

\[
\rho_{H,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t Q_t^{-1}}{Z_t z}, \quad (12)
\]

\[
d_{H,t}(z) = \frac{1}{\theta} \rho_{H,t}(z)^{1-\theta} C_t^\gamma Q_t - f_H \frac{w_t}{Z_t}. \quad (13)
\]

The model implies that every period t, the Northern firms with idiosyncratic labor productivity above a certain cutoff ($z > z_{H,t}$) find it profitable to export to the Southern market at the same time with serving their domestic market (North). They obtain profits that are large enough to cover both the fixed cost and the iceberg trade cost of exporting. As in GM2005, the firm with the idiosyncratic labor productivity equal to the cutoff obtains zero profits from exporting. Thus, I derive the time-variant productivity cutoff $z_{H,t}$ as:

\[
z_{H,t} = \inf \{ z \mid d_{H,t}(z_{V,t}) > 0 \}. \quad (14)
\]

2.4 Households

Financial autarky Households in each country maximize the expected lifetime utility (as a function of consumption) and provide labor inelastically:

\[
\max_{\{B_{t+1}, x_{t+1}\}} \left[E_t \sum_{\tau=0}^{\infty} \beta^{s-t} C_s^{1-\gamma} \frac{1}{1 - \gamma} \right], \quad (15)
\]

subject to the budget constraint:

\[
(\bar{v}_t + \tilde{d}_t) N_t x_t + (1 + r_t) B_t + w_t L \geq \bar{v}_t (N_t + N_{E,t}) x_{t+1} + B_{t+1} + C_t, \quad (16)
\]

where $\beta \in (0, 1)$ is the subjective discount factor, C_t is the consumption basket, and $\gamma > 0$ is the inverse of the inter-temporal elasticity of substitution.

The representative Northern household starts every period t with mutual fund share holdings x_t (whose market value is $\bar{v}_t N_t$) and real bond holdings B_t. It receives dividend income $\tilde{d}_t N_t$ on the mutual fund stocks (equal to the profit of the average firm times the number of firms) in proportion with its stock holdings x_t. It also receives interest $r_t B_t$ on bond holdings, and labor income equal to the real wage w_t for the amount of labor $L = 1$ that it supplies inelastically. The Northern household purchases two types of assets every period. First, it purchases x_{t+1} shares in a mutual fund of Northern
firms that includes: (i) N_t firms already producing at time t, either domestically or offshore, and (ii) $N_{E,t}$ new firms that enter the domestic market in period t. Each share is worth its market value \tilde{v}_t, equal to the net present value of the expected stream of future profits of the average firm. Second, the household buys the risk-free bond B_{t+1} denominated in units of the Northern consumption basket. (Bond holdings play a role in the extended model with international trade in bonds, which I present in the Appendix.)

In addition, households purchase the consumption basket C_t, which includes varieties of final goods produced by Northern firms ($\omega \in \Omega^N_t$) either domestically or offshore; it also includes the imports of final good varieties produced by the Southern firms ($\omega \in \Omega^S_t$):

$$C_t = \begin{bmatrix} \int_{y_D,t(\omega)}^{\infty} y_D,t(\omega) \frac{\omega^\theta}{\sigma} d\omega + \int_{y_V,t(\omega)}^{\infty} y_V,t(\omega) \frac{\omega^\theta}{\sigma} d\omega + \int_{y_H,t(\omega)}^{\infty} y_H,t(\omega) \frac{\omega^\theta}{\sigma} d\omega \end{bmatrix}$$

$$\tilde{v}_t$$

where $\theta > 1$ is the symmetric elasticity of substitution across final good varieties. I use the home consumption basket C_t as the numeraire good, and define the real price of variety z in units of the Northern consumption basket as $\rho_t(z) = p_t(z)/P_t$. Thus, the the consumption-based price index in the North is:

$$1 = \left[\int \rho_t(\omega)^{1-\theta} d\omega \right]^{\frac{1}{1-\theta}}, \omega \in \Omega^N_t \cup \Omega^S_t. \quad (18)$$

The first-order conditions generate the Euler equations for bonds and stocks:

$$C_t^{-\gamma} = \beta (1 + r_{t+1}) E_t \left[C_{t+1}^{-\gamma} \right], \quad (19)$$

$$\tilde{v}_t = \beta (1 - \delta) E_t \left[\left(C_{t+1}/C_t \right)^{-\gamma} (d_{t+1} + \tilde{v}_{t+1}) \right]. \quad (20)$$

2.5 Firm Entry and Exit

Following GM2005, firm entry takes place every period. In the North, firm entry requires a sunk entry cost equal to f_E units of Northern effective labor, which reflects the cost of starting a business in the

20In the model with complete financial autarky (i.e. stocks in the mutual fund and bonds are not traded across countries), the equilibrium conditions for stock and bond holdings are $x_t = x_{t+1} = 1$ and $B_t = B_{t+1} = 0$.

21If $p_t(z)$ denotes the nominal price of each variety z, the price index of the home consumption basket is $P_t = \left[\int p_t(\omega)^{1-\theta} d\omega \right]^{\frac{1}{1-\theta}}$ for $\omega \in \Omega^N_t \cup \Omega^S_t$.

13
firms’ country of origin. Potential entrants become aware of their idiosyncratic labor productivity \(z \) only after entering the market. After paying the sunk entry cost, each firm is randomly assigned an idiosyncratic labor productivity \(z \) which is drawn independently from a common distribution \(G(z) \) with support over the interval \([z_{min}, \infty)\), and which the firm keeps for the entire duration of its life.

The potential entrant firms are forward looking and correctly anticipate their expected post-entry value \(\tilde{v}_t \), which is given by the expected stream of future profits \(\tilde{\alpha}_t \) and by the exogenous probability \(\delta \) with which they receive an exit-inducing shock every period. The forward iteration of the Euler equation for stocks (20) generates the following expression for the expected post-entry value of potential entrants:

\[
\tilde{v}_t = E_t \left\{ \sum_{s=t+1}^{\infty} [\beta(1 - \delta)]^{s-t} \left(\frac{C_s}{C_t} \right)^{-\gamma} \tilde{\alpha}_s \right\}.
\] (21)

In equilibrium, firm entry takes place until the value of the average firm \(\tilde{v}_t \) equals the sunk entry cost \(f_E w_t / Z_t \), both expressed in units of the Northern consumption basket:

\[
\tilde{v}_t = f_E \frac{w_t}{Z_t}.
\] (22)

The \(N_{E,t} \) firms entering at time \(t \) do not produce until period \(t+1 \). Irrespective of their idiosyncratic productivity, all firms - including the new entrants - are subject to a random exit shock that occurs with probability \(\delta \) at the end of every period after production has taken place. Thus, the law of motion for the number of producing firms is:

\[
N_{t+1} = (1 - \delta)(N_t + N_{E,t}),
\] (23)

where \(N_t = N_{t,D} + N_{t,V} \) consists of firms producing either domestically or offshore every period.

3 Solving the Model with Firm Heterogeneity

As a necessary step in solving the model with firm heterogeneity, this section derives analytical solutions for the average productivity, prices and profits of the representative Northern firms that produce domestically and offshore. It also provides the expressions for aggregate accounting and the balance of international payments that close the model with offshoring.

22 The sunk entry cost is equivalent to \(f_E w_t / Z_t \) units of the Northern consumption basket.
3.1 Average Firm Productivity Levels

Firms serving the domestic market I define two average labor productivity levels: (1) \(\bar{z}_{D,t} \) corresponds to the Northern firms producing domestically, and (2) \(\bar{z}_{V,t} \) corresponds to the Northern firms producing offshore. I illustrate them in Figure 3, in which I plot the density of the firm-specific labor productivity levels \(z \) over the support interval \([z_{\text{min}}, \infty)\).

![Figure 3. Average labor productivities for firms serving the domestic market through domestic (\(\bar{z}_{D,t} \)) and offshore (\(\bar{z}_{V,t} \)) production.](image)

Every period \(t \), there are \(N_{D,t} \) of the relatively less productive Northern firms \((z < z_{V,t})\) that choose to produce domestically; their average productivity is \(\bar{z}_{D,t} \). The remaining \(N_{V,t} \) are the relatively more productive Northern firms \((z > z_{V,t})\) that choose to produce offshore;\(^{23}\) their average productivity is \(\bar{z}_{V,t} \).\(^{24}\) Since the firm-specific labor productivities \(z \) are random draws from a common distribution \(G(z) \) with density \(g(z) \), I write the average idiosyncratic productivities of the Northern firms producing domestically and offshore as:

\[
\bar{z}_{D,t} = \left[\frac{1}{G(z_{V,t})} \int_{z_{\text{min}}}^{z_{V,t}} z^{-1}g(z)dz \right]^{\frac{1}{\sigma-1}} \quad \text{and} \quad \bar{z}_{V,t} = \left[\frac{1}{1 - G(z_{V,t})} \int_{z_{V,t}}^{\infty} z^{-1}g(z)dz \right]^{\frac{1}{\sigma-1}}. \tag{24}
\]

Pareto-distributed firm productivity Following GM2005, I assume that the firm-specific labor productivity draws \(z \) are Pareto-distributed, with p.d.f. \(g(z) = k z_{\text{min}}/z^{k+1} \) and c.d.f. \(G(z) = z_{\text{min}}/z_{V,t}^{k+1} \) and c.d.f. \(G(z) = \)\(^{23}\) The total number of Northern firms is \(N_t = N_{V,t} + N_{D,t} \).

\(^{24}\) The difference between \(\bar{z}_{V,t} \) and \(z_{V,t} \) is that the former is the average productivity of offshoring firms, whereas the latter is the cutoff productivity above which firms produce offshore.
Using the assumption, I derive analytical solutions for the average productivities of the two representative Northern firms producing domestically and offshore as functions of the time-variant productivity cutoff $z_{V,t}$:

$$
\tilde{z}_{D,t} = \nu z_{\min} \frac{z_{V,t}^{k(\theta-1)} - z_{\min}^{k(\theta-1)}}{z_{V,t}^k - z_{\min}^k} \quad \text{and} \quad \tilde{z}_{V,t} = \nu z_{V,t},
$$

(25)

where the productivity cutoff is $z_{V,t} = z_{\min}(N_t/N_{V,t})^{1/k}$, and the parameters are $\nu = \left[\frac{k}{k-(\theta-1)}\right]^{-\frac{1}{\theta-1}}$ and $k > \theta - 1$. Since offshoring takes place one-way, from North to South, the Southern firms serve their domestic market exclusively through domestic production. Their average productivity is a constant, $\tilde{z}_{D} = \nu z_{\min}^*$.

Exporting firms Under the assumption of Pareto-distributed productivity draws, I derive the average productivity levels of the exporting firms in each economy as in GM2005:

$$
\tilde{z}_{H,t} = \nu z_{\min} \left(\frac{N_t}{N_{H,t}}\right)^{1/k} \quad \text{and} \quad \tilde{z}_{H,t}^* = \nu z_{\min}^* \left(\frac{N_{D,t}^*}{N_{H,t}^*}\right)^{1/k},
$$

(26)

3.2 Average Prices and Profits

Using the average productivities derived above, I re-write the model of offshoring in terms of three representative Northern firms: one produces domestically, another produces offshore (each serving the Northern market), while a third firm produces domestically and exports to the Southern market. Due to the wage asymmetry across countries, the Southern firms do not produce offshore. There are only two representative Southern firms: one produces for the local market, and the other exports to the North.

Finally, I use the average firm productivities defined above to re-write the prices and profits associated with each representative firm, as summarized in Table 1.

25I provide their derivation in the Appendix.

26I use the functional form for the Pareto c.d.f. in order to derive the productivity cutoff as $z_{V,t} = z_{\min}(N_t/N_{V,t})^{1/k}$.

The shares of Northern firms producing domestically and offshore are $N_{D,t}/N_t = G(z_{V,t})$ and $N_{V,t}/N_t = 1 - G(z_{V,t})$, and the total number of Northern firms in every period is $N_t = N_{D,t} + N_{V,t}$.

27Parameter k reflects the dispersion of the productivity draws: A relatively larger k implies a smaller dispersion and a higher concentration of productivities z towards the lower productivity bound z_{\min}. Also, the condition $k > \theta - 1$ ensures that the variance of firm size is finite, given the average productivities of the firms producing domestically and offshore.
Table 1. Average prices and profits

<table>
<thead>
<tr>
<th>Production</th>
<th>Destination</th>
<th>Prices</th>
<th>Profits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Domestic</td>
<td>$\tilde{\rho}{D,t} = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t^{\tilde{\tau}{D,t}}} $</td>
<td>$\tilde{d}{D,t} = \frac{1}{\theta} (\tilde{\rho}{D,t})^{1-\theta} C_t^* $</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{d}{D,t} = \frac{1}{\theta} \left(\tilde{\rho}{D,t}^* \right)^{1-\theta} C_t^* $</td>
<td></td>
</tr>
<tr>
<td>Offshore</td>
<td>Domestic</td>
<td>$\tilde{\rho}{V,t} = \frac{\theta}{\theta - 1} \frac{w_t^* Q_t}{Z_t^* Z_t^{\tilde{\tau}{V,t}}} $</td>
<td>$\tilde{d}{V,t} = \frac{1}{\theta} (\tilde{\rho}{V,t})^{1-\theta} C_t - f_V w_t^* Q_t $</td>
</tr>
<tr>
<td>Domestic</td>
<td>Export</td>
<td>$\tilde{\rho}{H,t} = \frac{\theta}{\theta - 1} \frac{w_t^* Q_t}{Z_t^* Z_t^{\tilde{\tau}{H,t}}} $</td>
<td>$\tilde{d}{H,t} = \frac{1}{\theta} (\tilde{\rho}{H,t})^{1-\theta} C_t^* Q_t - f_H w_t^* $</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\tilde{d}{H,t} = \frac{1}{\theta} \left(\tilde{\rho}{H,t}^* \right)^{1-\theta} C_t^* Q_t - f_H w_t^* $</td>
<td></td>
</tr>
</tbody>
</table>

Endogenous productivity cutoff for offshoring Using the property that the Northern firm at the productivity cutoff $z_{V,t}$ is indifferent about the location of production, I derive the following relationship between the average profits of the two representative Northern firms that serve their domestic market through either domestic and offshore production:

$$\tilde{d}_{V,t} = \frac{k}{k - (\theta - 1)} \left(\frac{z_{V,t}}{z_{D,t}} \right)^{\theta - 1} \tilde{d}_{D,t} + \frac{\theta - 1}{k - (\theta - 1)} f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t}{Z_t^*} \right)^{1-\alpha}. $$

(27)

In addition, using the property that the firm at the productivity cutoff $z_{H,t}$ obtains zero profits from exporting as in GM2005, the average profits from exports are:

$$\tilde{d}_{H,t} = \frac{f_H w_t}{Z_t}, \text{ and } \tilde{d}_{H,t}^* = \frac{f_H w_t^*}{Z_t^*}. $$

(28)

Price indexes The consumption price index in the Northern economy is a function of the average prices of goods produced domestically and offshore by the Northern firms, as well as of the average price of goods imported from the South:

$$1 = N_{D,t} (\tilde{\rho}_{D,t})^{1-\theta} + N_{V,t} (\tilde{\rho}_{V,t})^{1-\theta} + N_{H,t}^* (\tilde{\rho}_{H,t}^*)^{1-\theta}. $$

(29)

In the South, there is no representative firm producing offshore. The consumption price index includes the average price of goods produced domestically by the Southern firms, and also that of goods imported from the North:

$$1 = N_{D,t}^* (\tilde{\rho}_{D,t}^*)^{1-\theta} + N_{H,t} (\tilde{\rho}_{H,t})^{1-\theta}. $$

(30)

28See the Appendix for the derivation.
Total profits The total profits of the Northern firms include the average profits from domestic production, from offshore production, and from exporting:

\[N_t \tilde{d}_t = N_{D,t} \tilde{d}_{D,t} + N_{V,t} \tilde{d}_{V,t} + N_{H,t} \tilde{d}_{H,t}. \]

(31)

The total profits of the Southern firms combine the profits from domestic production and from exports:

\[N^*_D,t \tilde{d}_t = N^*_{D,t} \tilde{d}_{D,t} + N^*_{H,t} \tilde{d}^*_{H,t}. \]

(32)

3.3 Aggregate Accounting and the Balance of International Payments

I use value added as a measure of aggregate income in order to avoid the double-counting of offshore production conducted by the Northern firms in the South. Offshore production is measured as the wage bill of Southern workers, and belongs to the aggregate income of the Southern economy. Thus, aggregate income is the sum of the wage bill and the amount of stock dividends that households in each economy obtain every period:

\[Y_t = w_t + N_t \tilde{d}_t \quad \text{and} \quad Y^*_t = w^*_t + N^*_{D,t} \tilde{d}^*_t. \]

(33)

Under financial autarky in the markets for both bonds and stocks (i.e. \(B_{t+1} = B_t = 0 \) and \(x_{t+1} = x_t = 1 \) in equilibrium), aggregate accounting implies that households spend their income from labor and stock holdings on consumption and investment in new firms:

\[C_t + N_{E,t} \tilde{v}_t = Y_t \quad \text{and} \quad C^*_t + N^*_{E,t} \tilde{v}^*_t = Y^*_t. \]

(34)

Finally, the real exchange rate \(Q_t \) is determined by the balanced current account condition for the North:

\[CA^\text{Autarky}_t = N_{H,t} (\tilde{\rho}_{H,t})^{1-\theta} C^*_t Q_t + \underbrace{N_{V,t} \tilde{d}_{V,t}}_{\text{Repatriated profits}} - \underbrace{N_{V,t} (\tilde{\rho}_{V,t})^{1-\theta} C_t}_{\text{Offshore value added}} - \underbrace{N^*_{H,t} (\tilde{\rho}^*_{H,t})^{1-\theta} C^*_t}_{\text{Imports from Southern firms}} \]

Under financial autarky, the balanced current account condition \((CA^\text{Autarky}_t = 0)\) implies that the sum of (a) exports by the Northern firms to the South and (b) repatriated profits of offshore affiliates must equal the sum of (c) imports from offshore affiliates and (d) imports of final good varieties produced by the Southern firms.
3.4 Model Summary

As shown in Appendix A.1, the baseline model with financial autarky for the Northern economy can be summarized by 16 equations in 16 endogenous variables: \(N_t, N_{D,t}, N_{V,t}, N_{H,t}, N_{E,t}, d_t, d_{D,t}, d_{V,t}, d_{H,t}, z_{D,t}, z_{V,t}, z_{H,t}, \tilde{v}_t, r_t, w_t \) and \(C_t \). Since the Southern firms do not offshore to the high-wage North, the Southern economy is described by only 11 equations in 11 endogenous variables: There are no Southern counterparts for \(N_t, N_{V,t}, d_{V,t}, z_{D,t} \) and \(z_{V,t} \). In particular, the average labor productivity of the representative Southern firm producing for the domestic market \((z^*_D) \) is constant over time. Variables \(N_{D,t}, r_t, N^*_t \) and \(r^*_t \) are predetermined.

4 Calibration

I use a standard quarterly calibration by setting the subjective rate of time discount \(\beta = 0.99 \) to match an average annualized interest rate of 4 percent. The coefficient of relative risk aversion is \(\gamma = 2 \). Following GM2005, I set the intra-temporal elasticity of substitution at \(\theta = 3.8 \). Although the resulting markup of 35.71 percent over the marginal cost might appear too large compared to the standard macroeconomic literature, its magnitude must be considered in the context of the sunk entry cost that places a wedge between the firms’ marginal and average cost. I also calibrate the probability of firm exit \(\delta = 0.025 \) to match the annual 10 percent job destruction in the U.S.

As summarized in Table 2, I calibrate the fixed costs of offshoring \((f_V) \) and exporting \((f_H \text{ and } f^*_H) \), as well as the Pareto distribution parameter \((k) \) so that the model matches the importance of offshoring and trade for the Mexican economy, as illustrated by four empirical moments: (1) Maquiladora’s value added represents approximately 20 percent of Mexico’s manufacturing GDP (INEGI, 2008), as compared to 25 percent in the model; (2) Maquiladora’s exports represent approximately half of Mexico’s total exports (Bergin, Feenstra, and Hanson, 2008), as compared to 60 percent in the model; (3) Employment in the maquiladora sector accounts for approximately 25 percent of Mexico’s total manufacturing employment (Bergin, Feenstra, and Hanson, 2008), as compared to 22 percent in the model; (4) Total imports represent the equivalent of 33 percent of Mexico’s GDP (INEGI, 2008), as compared to 32 percent in the model. To this end, I set \(f_V = 0.0057 \) (the fixed cost of offshoring for Northern firms), \(f_H = 0.032 \) and \(f^*_H = 0.018 \) (the fixed costs of exporting for Northern and Southern firms, respectively), as well as \(k = 4.2 \) (the Pareto distribution coefficient).\(^{29}\) Without loss

\(^{29}\)In the model with exports only, I set \(f_H = 0.0260 \) and \(f^*_H = 0.0226 \) so that the fraction of Northern exporting firms (10 percent) and that of Southern exporting firms (63 percent) match the corresponding steady state values from the model with offshoring.
of generality, I set the lower bound of the support interval for firm-specific productivities in the North and the South at $z_{\text{min}} = z^*_{\text{min}} = 1$.

Table 2. Baseline model with offshoring: calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f_E = 1$</td>
<td>Sunk firm entry cost, North</td>
<td>$k = 4.2$ Pareto distribution coefficient</td>
</tr>
<tr>
<td>$f_E^* = 4f_E$</td>
<td>Sunk firm entry cost, South</td>
<td>$\beta = 0.99$ Standard quarterly calibration</td>
</tr>
<tr>
<td>$f_V = 0.0057$</td>
<td>Fixed cost of offshoring</td>
<td>$\gamma = 2$ CRRA coefficient</td>
</tr>
<tr>
<td>$f_H = 0.0320$</td>
<td>Fixed cost of exporting, North</td>
<td>$\delta = 0.025$ Probability of firm exit</td>
</tr>
<tr>
<td>$f_H^* = 0.0180$</td>
<td>Fixed cost of exporting, South</td>
<td>$\theta = 3.8$ Elasticity of substitution</td>
</tr>
</tbody>
</table>

In order to derive an asymmetric steady state with respect to the relative wage, I set the sunk entry cost - which reflects the regulation of starting a business in the firm’s country of origin - to be larger in the South than in the North ($f_E^* = 4f_E$ and $f_E = 1$).\(^{30}\) As a result, the steady state number of firms, labor demand and real wage are relatively lower in the South. The calibration reflects the considerable variation in the cost of starting a business across countries. The corresponding monetary cost is 3.3 times higher in Mexico than in the U.S. or Canada. It is 6.2 times higher in Hungary than in the U.K. (World Bank, 2007; see Appendix 5). The asymmetric sunk entry costs, along with the trade iceberg cost ($\tau = 1.3$) and the values for f_V, f_H and f_H^* reported above, generate a steady state value for the terms of labor that is less than one ($TOL = 0.76$). In other words, the steady state cost of effective labor in the South, defined as the real wage divided by the aggregate productivity level, is 76 percent of the corresponding value in the North. The calibration provides an incentive for the Northern firms to produce offshore in steady state.

The resulting steady-state fraction of the Northern firms that use inputs imported from their offshore affiliates (N_V/N) is 1.4 percent; the fraction of exporting firms (N_H/N) is 10.1 percent.\(^{31}\) Since I model offshoring in an asymmetric two-country framework that abstracts from exchanges between U.S. firms and the rest of the world (other than Mexico), the steady state values reported above are less than their empirical counterparts. In the data, approximately 14 percent of the U.S.

\(^{30}\)The sunk entry cost asymmetry is one method that generates a gap in the effective wages across countries. The same result would be obtained with at least two other methods: (1) Introduce a cross-country asymmetry in the size of firms (rather than in their number) through the price elasticity of demand. With identical sunk entry costs and equal average labor productivity levels in the two economies, firms in the economy with the lower price elasticity of demand charge relatively higher markups and produce relatively less output. Therefore, the lower labor demand generates lower wages. (2) Another way to generate different firm sizes across countries, similar to the one I use in this paper, would be to allow for multi-product firms and sunk costs of creating new product varieties. While keeping the sunk firm entry costs equal across countries, there will be fewer varieties per firm and lower demand for labor in the economy with the higher sunk cost of creating a new variety.

\(^{31}\)In the Southern economy, the ratio of exporting firms in the total is 63 percent.
firms (other than domestic wholesalers) used imports from both Mexico and the rest of the world in 1997 (Bernard, Jensen, Redding and Schott, 2007), out of which intra-firm imports (as opposed to arm’s length transactions) represented half of the total (Bardhan and Jafee, 2004). Approximately 21 percent of the U.S. manufacturing plants were exporters in 1992 (Bernard, Eaton, Jensen and Kortum, 2003).

The calibration also implies that the steady-state share of Northern expenditure on the varieties produced by Northern firms domestically (66.0 percent) - firms which are relatively less productive than the average - is less than their fraction in the total number of varieties available in the North (89.2 percent). In contrast, since the offshore varieties are produced by the relatively more productive Northern firms, their market share (21.2 percent) is more than their fraction in the total number of varieties available in the North (1.2 percent).

5 Results

5.1 Offshoring Dynamics

Under financial autarky, I log-linearize the model with offshore production around the steady state and compute the impulse responses to a transitory one-percent increase in aggregate productivity in the North. I assume that productivity is described by the univariate process \(\log Z_{t+1} = \rho \log Z_t + u_t \)

with the persistence parameter \(\rho = 0.9 \).

The intensive margin Figure 4 shows the impulse responses of the model with offshoring (solid line), and contrasts them with those of the benchmark model with endogenous exports and no offshoring as in GM2005 (dotted line). For each variable, the horizontal axis illustrates quarters after the initial shock, and the vertical axis shows the percent deviations from the original steady state in each quarter.

On impact, the increase in aggregate labor productivity in the North generates an equal increase in the real wage \(w_t \). The increased demand for the final good varieties produced both domestically and offshore causes an immediate increase in offshoring along its intensive margin. As a result, the real wage in the South \((w^*_t) \) and the terms of labor \(TOL_t = \frac{Q_t w^*_t / Z^*_t}{w_t / Z_t} \) spike upward on impact. Since

32 The value would understate the fraction of plants that use imported inputs if the importing firms tend to operate multiple plants manufacturing multiple product varieties.

33 The market share of Southern varieties - produced by Southern firms that are relatively less productive than the Northern exporters - is 61.66 percent in the South. This is less than their fraction in the total number of varieties available in the South (62.77 percent).
the increase in aggregate labor productivity in the North is not replicated in the South, on impact there is excess demand for the Southern units of effective labor. Therefore, the number of Northern firms that produce offshore \((N_{V,t})\) drops on impact due to: (i) the increase in the marginal cost of producing offshore, and (ii) the increase in the fixed cost of offshoring, both of which are sensitive to the Southern effective wage.

Figure 4. Offshoring (continuos line) vs. exports only (dotted line), impulse responses to a transitory 1 percent increase in aggregate productivity in the North

The extensive margin As aggregate labor productivity in the North persists above its initial steady state, the larger market size encourages firm entry over the business cycle, which causes the number of Northern firms \((N_t)\) to increase gradually over time (Figure 4). The rising number of incumbent firms generates an increase in the demand for Northern labor, and thus leads to a gradual appreciation of the cost of effective labor in the North relative to that in the South. (The appreciation is shown by the decline of \(TOL_t\) below its initial steady state in the medium run). Following the appreciation of the terms of labor, more of the Northern firms have an incentive to relocate production to the South. Thus, the gradual increase in the number of offshoring firms \((N_{V,t})\) - the extensive margin
- mirrors the gradual appreciation of the terms of labor.

The instantaneous jump in the Southern real wage - caused by the increase in offshoring along its intensive margin - is followed by a gradual increase over time - which occurs as more of the Northern firms relocate production to the South. Thus, the gradual increase in offshoring along its extensive margin places additional upward pressure on the Southern wage, and causes the terms of labor to appreciate by less in the medium run relative to the model with no offshoring in GM2005 (the TOL_t declines by less). The increase in labor demand in the North, caused by firm entry, and subsequently the increase in labor demand in the South, caused by offshoring, enhance the cross-country co-movement of wages and aggregate incomes relative to the framework in GM2005.

5.2 Real Exchange Rate Dynamics

Average prices and product variety In this section I analyze the model’s predictions for the relative price dynamics in response to aggregate shocks. Due to the existence of endogenous product variety in the model, I use the consumer price index (CPI)-based real exchange rate $\tilde{Q}_t = \varepsilon_t \tilde{P}_t^* / \tilde{P}_t$ as the theoretical counterpart to the empirical real exchange rate. As discussed in Broda and Weinstein (2003) and GM2005, the average prices \tilde{P}_t and \tilde{P}_t^* best represent the corresponding empirical CPI levels. Therefore, I break down the welfare-based price indexes P_t and P_t^* into (a) components reflecting product variety, and (b) components reflecting average prices (\tilde{P}_t and \tilde{P}_t^*):

$$P_t = (N_{D,t} + N_{V,t} + N_{H,t}^*)^{1/\eta} \tilde{P}_t$$ and $$P_t^* = (N_{D,t}^* + N_{H,t})^{1/\eta} \tilde{P}_t^*$$

Then I write the CPI-based real exchange rate as:

$$\tilde{Q}_t^{1-\theta} = \left(\frac{N_{D,t} + N_{V,t} + N_{H,t}^*}{N_{D,t}^* + N_{H,t}} \right) \left(\frac{TOL_{t}^{\eta} \left(\frac{1}{2D_t} \right)^{1-\theta} + N_{H,t} \left(\frac{TOL_{t} \left(\frac{1}{2V_t} \right)^{1-\theta} + N_{V,t} \left(\frac{\eta TOL_t}{2V_t} \right)^{1-\theta} + N_{H,t} \left(\frac{\eta TOL_t}{2H_t} \right)^{1-\theta} }{N_{D,t}^* + N_{H,t}} \right)^{1-\theta}}{N_{D,t} + N_{V,t} + N_{H,t}^*} \right)^{1-\theta}$$

Variable $N_{D,t}$ represents the number of final good varieties produced by Northern firms domestically and sold in the Northern market; $N_{V,t}$ represents varieties produced by Northern firms offshore and sold in the North; and $N_{H,t}^*$ reflects varieties produced by Southern firms and exported to the North. It follows that $\tilde{Q}_t^{1-\theta} = \left(\frac{N_{D,t} + N_{V,t} + N_{H,t}^*}{N_{D,t}^* + N_{H,t}} \right) \tilde{Q}_t^{1-\theta}$.

The CPI-based real exchange rate \tilde{Q}_t deviates from the welfare-based real exchange rate $Q_t = \varepsilon_t P_t^* / P_t$ due to cross-country differences in product variety. As discussed in GM2005, an appreciation of the CPI-based real exchange rate \tilde{Q}_t (i.e. an increase in the CPI in the North relative to that in South) may be offset by the increase in product variety in the North $(N_{D,t} + N_{V,t} + N_{H,t}^*)$ relative to the South $(N_{D,t} + N_{H,t})$, so that the welfare-based real exchange rate Q_t depreciates (i.e. despite the increase in average prices, consumers derive higher utility due to the larger product variety).
where the terms of labor $TOL_t = \frac{Q_t w_t / Z_t}{w_t / Z_t}$ measures the cost of effective labor in the South relative to the North; the iceberg trade costs τ_t and τ_t^* (which I allow to vary over time) affect the imports of the North and the South, respectively. The expression nests the model with endogenous exports of GM2005; I shut down offshoring and revisit the GM2005 case when $N_{V,t} = 0$.

Analytical results The log-linearized version of (36) is:

$$
\hat{Q}_t = [s_D - s_V + s_D^* - 1] \hat{TOL}_t +
+ (s_D - s_V) \hat{z}_{D,t} + s_V \hat{z}_{V,t} - (1 - \alpha)s_V \hat{\tau}_t +
+ (1 - s_D) \left(\hat{z}^*_{H,t} - \hat{\tau}_t \right) - (1 - s_D^*) \left(\hat{z}_{H,t} - \hat{\tau}_t^* \right) +
+ \frac{1}{\theta - 1} \left(s_V - \frac{N_V}{N_D + N_V + N_H} \right) \left(\hat{N}_{V,t} - \hat{N}^*_{H,t} \right) +
+ \frac{1}{\theta - 1} \left[\left(\frac{N_D}{N_D + N_V + N_H} - s_D^* \right) \left(\hat{N}^*_{D,t} - \hat{N}_{H,t} \right) -
- \left(\frac{N_P}{N_D + N_V + N_H} - (s_D - s_V) \right) \left(\hat{N}_{D,t} - \hat{N}^*_{H,t} \right) \right],
$$

where parameter s_D is the steady-state share of spending in the North on goods produced by Northern firms both domestically and offshore; s_V is the steady-state share of spending in the North only on goods produced by Northern firms offshore (I revisit GM2005 when $s_V = 0$); s_D^* is the steady-state share of spending in the South on goods produced by Southern firms domestically. The calibration ensures that:

(a) $(s_D - s_V) + s_D^* > 1$, as the domestically-produced varieties represent more than 50 percent of the consumption spending in each country; (b) $\left(\frac{N_D}{N_D + N_V + N_H} - (s_D - s_V) \right) > 0$ and $\left(\frac{N_D}{N_D + N_H} - s_D^* \right) > 0$, i.e. the market shares of varieties produced domestically by the less productive firms are smaller than their fraction in the total number of varieties; and (c) finally, $\left(s_V - \frac{N_V}{N_D + N_V + N_H} \right) > 0$, i.e. the market share of varieties produced offshore by the more productive Northern firms is larger than their fraction in the total number of varieties available in the North. The model implies that the more productive firms are larger and have larger market shares than their less productive counterparts, which is in line with the empirical evidence in Kurz (2006).

The log-linearized form of (36) outlines five channels (labeled C1-C5 in the log-linearized expression above) through which the CPI-based real exchange rate is affected by: (1) changes in the price of non-tradable goods induced by fluctuations in the terms of labor (\hat{TOL}_t); (2) changes in the price of offshored goods reflecting fluctuations in the average productivity of offshoring firms ($\hat{z}_{V,t}$) and in the magnitude of trade costs ($\hat{\tau}_t$); (3) changes in the relative import prices triggered by fluctuations in

\[^{36}\text{See the Appendix for the derivation.}\]
the average productivity of Northern exporters ($\tilde{z}_{H,t}$) relative to that of their Southern counterparts ($\tilde{z}^*_{H,t}$); (4) changes in the relative availability of varieties produced by Northern offshoring firms ($\tilde{N}_{V,t}$) relative to that of Southern exported varieties ($\tilde{N}^*_{V,t}$); and (5) changes in the relative availability of domestic varieties ($\tilde{N}_{D,t}$) relative to that of Southern exported varieties ($\tilde{N}^*_{D,t}$).

Impulse responses I find that, relative to the benchmark model with endogenous exports in GM2005, offshoring dampens the appreciation of the real exchange rate following an aggregate productivity improvement in the North. Specifically, the effect occurs through channels C1 (the price of non-traded goods), C3 (the relative import prices) and C4 (the availability of offshored varieties vs. Southern imported varieties). The impulse responses for the variables of interest are outlined in Figure 5; their impact on the real exchange rate is described next.

![Figure 5. Offshoring (continuous line) vs. exports only (dotted line), impulse responses to a transitory 1 percent increase in aggregate productivity in the North](image-url)
(C1) Changes in the price of non-traded goods. In the benchmark model with endogenous exports and no offshoring, a productivity increase in the North encourages firm entry and leads to the appreciation of the terms of labor in the medium run (i.e. TOL_t decreases). This causes the average price of non-traded goods in the North to increase relative to that in the South, and thus leads to the appreciation of the real exchange rate (i.e. \tilde{Q}_t decreases).

In my model, offshoring dampens the appreciation of the real exchange rate through this channel in two ways: (a) Offshoring dampens the appreciation of the terms of labor relative to the benchmark model with exports only (i.e. TOL_t decreases by less), because the relocation of production offshore transfers upward pressure from the domestic wage onto the foreign one; (b) Offshoring also reduces the share of non-traded goods in total spending (i.e. $s_D - s_V$, where $s_V > 0$).

(C2) Changes in the price of offshored goods. On impact, the increase in offshoring along its intensive margin and the resulting spike in the Southern wage cause the number of offshoring firms to drop, and their average productivity to rise. In the medium run, however, offshoring becomes an increasingly profitable option due to the gradual appreciation of the terms of labor. The average productivity $\tilde{z}_{V,t}$ of offshoring firms declines, and their average price increases over time. Therefore, offshoring contributes to the appreciation of the real exchange rate through this channel.\footnote{\(s_{D} - s_{V} > 0\)}

(C3) Changes in relative import prices. In the benchmark model with exports only, the appreciation of the terms of labor reduces the export profitability of the Northern firms relative to that of their Southern counterparts. Therefore, the average productivity of the surviving Northern exporters ($\tilde{z}_{H,t}$) increases relative to that of the Southern exporters ($\tilde{z}_{H,t}$). This causes a decline in the average price of the Southern imports relative to that of the Northern imports, which results in the appreciation of the real exchange rate.

Offshoring reverses this effect. The upwards pressure on the Southern wage causes the export profitability of the Southern firms to decline, and thus the productivity of the surviving Southern exporters to increase by more than that of their Northern counterparts. In contrast to the benchmark model with exports only, offshoring causes the average price of the Northern imports to decline relative to the average price of the Southern imports, a result which dampens the appreciation of the real exchange rate through import prices.

(C4) Expenditure switching from imports towards offshored goods. Following an increase in aggregate productivity, offshoring puts upward pressure on the Southern wage and reduces

\footnote{Exogenous policy changes can also affect the price of goods produced offshore. For instance, tariff cuts for the varieties of final goods produced offshore (i.e. a policy measure reflected by a decrease in τ_t) would dampen the appreciation of the CPI-based real exchange rate.}
the competitiveness of the Southern exports. Thus, Northern consumers switch their expenditure away from the increasingly less competitive Southern varieties ($N_{H,t}$ decreases) and towards the relatively cheaper varieties produced by Northern firms offshore ($N_{V,t}$ increases). The result dampens the appreciation of the real exchange rate through import prices in the medium run. It is consistent with the empirical evidence that FDI inflows in Mexico between 1994 and 2002 were associated with the crowding out of domestic investment, particularly in manufacturing (Gallagher and Zarsky, 2007).

(C5) Expenditure switching from imports towards domestic goods. Firm entry in the North generates an increase in the number of domestic varieties ($N_{D,t}$) relative to foreign imported varieties ($N_{H,t}$) available to Northern consumers. In turn, consumers switch their expenditures from imports towards the final good varieties produced domestically by the relatively less productive firms, and which are available at relatively higher average prices. As in the model with no offshoring, this channel works towards the appreciation of the real exchange rate.

5.3 Theoretical vs. Empirical Moments: The Cyclicality of Offshoring

In this section I provide empirical evidence in support of the theoretical model of offshoring, using data on U.S. manufacturing and Mexico’s maquiladora sector. First, I provide unconditional correlations between the industrial production index for U.S. manufacturing (USIP) and three indicators of offshore production in Mexico (the total value added, the number of maquiladora plants, and the value added per plant). I compare the empirical correlations to their theoretical counterparts, focusing on the dynamics of the extensive and intensive margins of offshoring implied by the model. Second, I estimate impulse responses of Mexico’s maquiladora indicators to permanent technology shocks in U.S. manufacturing, and compare them to the predictions of the model described in Figure 4.

Empirical setup Mexico’s maquiladora sector constitutes an appropriate empirical setup to study the cyclicality of offshoring through vertical FDI, due to the absence of local consumption and the dominant share of the U.S. as the destination market for its final goods. By definition, plants operating under Mexico’s maquiladora program import inputs, process them, and ship the resulting goods back to the country of origin (Gruben, 2001). Although not all plants in Mexico’s maquiladora sector are owned by U.S. firms, most of the maquiladora’s imported inputs (82 percent in 2001) originate in the U.S., and most of the maquiladora’s value added (roughly 90 percent) is exported to the U.S. (Hausman and Haytko, 2003; Burstein, Kurz, Tesar, 2007).
The maquiladora sector is strongly procyclical with the U.S. manufacturing output. In Figure 6 (panels A-C on the left), I plot the detrended series for several maquiladora indicators (real value added, total hours worked, and the number of plants) against the USIP index for the interval 1990:1-2006:4. The charts show that the U.S. manufacturing expansion throughout the 1990s, as well as the recession in 2001, were associated with similar developments in Mexico’s maquiladora sector. In panels D-F (on the right), I also plot the unconditional correlations between the maquiladora indicators and the USIP index measured at lags and leads. The estimates show that the U.S. output is contemporaneously correlated with the number of hours worked in the maquiladora sector, whereas it tends to lead the

I apply the Baxter-King bandpass-filter to the quarterly data in natural logs in order to eliminate fluctuations with periodicity lower than 18 months and greater than eight years. The data for U.S. manufacturing (i.e. seasonally adjusted real industrial production and the nominal hourly wage in manufacturing) is provided by the Board of Governors of the Federal Reserve System and by the U.S. Bureau of Labor Statistics. Data for Mexico’s maquiladora sector (real value added, hours worked and the number of plants), at monthly frequency and without seasonal adjustment, is provided by the Instituto Nacional de Estadística y Geografía (INEGI), Mexico. Thus, I take the quarterly averages of the Mexican data and perform the seasonal adjustment using the X-12-ARIMA method of the U.S. Census Bureau.
number of maquiladora plants (the extensive margin of offshoring) by at least three quarters.39

Theoretical measures of offshore production I derive three theoretical measures of offshore production, using the demand and price functions for final good varieties under monopolistic competition. First, I write the total value added offshore as:

$$VA_t = N_{V,t} \left[\frac{\theta}{\theta - 1} \frac{w_t \tau_t TOL_t}{\bar{z}_{V,t}} z_{V,t}^{1-\theta} \right] C_t, \text{ with } \theta > 1,$$

where $\bar{z}_{V,t}$ is the average idiosyncratic productivity of the offshoring firms. Second, the number of offshoring firms ($N_{V,t}$) measures the *extensive margin* of offshore production, and constitutes the theoretical counterpart for the number of maquiladora plants in Mexico. Third, the real value added per offshoring firm ($VA_{R,t}/N_{V,t}$) represents the *extensive margin of offshoring*; it is the theoretical counterpart for the value added per maquiladora plant.40

The productivity process In study the theoretical implications of the baseline model of offshoring under financial autarky, augmented with elastic labor supply. I also assume that aggregate productivity in the North and the South follow a bivariate autoregressive process:

$$\begin{bmatrix} \log Z_t \\ \log Z^*_t \end{bmatrix} = \begin{bmatrix} \rho_Z & \rho_{ZZ^*} \\ \rho_{Z^*Z} & \rho_{Z^*} \end{bmatrix} \begin{bmatrix} \log Z_{t-1} \\ \log Z^*_{t-1} \end{bmatrix} + \begin{bmatrix} \xi_t \\ \xi^*_t \end{bmatrix},$$

and that the productivity shocks are the only source of international business cycles in the model. Following Backus, Kehoe, and Kydland (1992), I set the persistence parameters to $\rho_Z = \rho_{Z^*} = 0.906$, and the spillover parameters to $\rho_{ZZ^*} = \rho_{Z^*Z} = 0.088$; the variance of the shocks is 0.00852 and the covariance is 0.18728×10^{-4}, values which correspond to a correlation of innovations of 0.258.

Unconditional correlations Figure 7 (panels A-C, circles) provides the empirical correlations between the USIP manufacturing index and the three indicators of Mexico’s maquiladora sector (total value added, number of establishments, and total value added per establishment). It also shows their

39 Although the interval of three quarters may appear too short for the creation of new offshore plants, one must consider that a sizable fraction of the non-U.S. owned maquiladora plants represent arm’s length contractors that have the flexibility to enter into and exit from outsourcing relationships with U.S. firms over the business cycle.

40 To compute moments, I deflate the value added offshore by the average CPI in the North economy in order to eliminate the variety effect, i.e. $(VA)_{R,t} = P_t (VA_t) / \bar{P}_t$, where $P_t = N_{t,1}^{1/\theta} \bar{P}_t$.

29
theoretical counterparts generated by the model (squares).

Figure 7. Unconditional correlations (empirical vs. theoretical):

Mexico’s maquiladora variables at t and the USIP at $t + j$

The model is successful in replicating the contemporaneous co-movement between U.S. manufacturing and Mexico’s maquiladora sector (Figure 7, panel A). The contemporaneous theoretical correlation between output in the North and the amount of offshore production in the South (0.78) is close to the corresponding empirical correlation (0.71).

Turning towards the extensive margin (Figure 7, panel B), the data indicates a strong and positive correlation between the number of maquiladora plants and past U.S. manufacturing output. As discussed, the result suggests that U.S. economic expansions tend to lead the number of offshore plants by at least three quarters. The model is successful in capturing this pattern: the correlation between the number of offshoring firms and past output in the North is positive. (It peaks for Northern output lagged by four quarters). The result is caused by that, following a productivity improvement in the North, the gradual increase in offshoring along its extensive margin mirrors the gradual appreciation of the terms of labor caused by domestic firm entry.\footnote{The model deviates from the empirical evidence in that the contemporaneous correlation between the number of offshoring firms and output in the North is negative (rather than positive as in the data). On impact, the greater demand for Southern varieties causes the Southern wage to spike upwards, thus reducing the number of offshoring firms and generating a negative contemporaneous correlation between the number of offshoring firms and Northern output.}

Regarding the intensive margin (Figure 7, panel C), the empirical correlation between value added per maquiladora plant and the past manufacturing output is negative and statistically significant. The
model is successful in replicating this pattern as well. Following a positive technology shock in the North, the number of offshoring firms increases faster than the total value added offshore, and thus the value added per offshoring firm declines below its initial level several quarters after the shock. As a result, the theoretical correlation between the intensive margin of offshoring and past output in the North is negative.

Estimated impulse responses I also report the estimated impulse responses for the key maquiladora variables (total value added, number of plants, and the value added per plant) to permanent technology shocks in U.S. manufacturing. The estimation details are discussed in Zlate (2009). I estimate a structural VAR model with five variables: (i) labor productivity in U.S. manufacturing, (ii) labor productivity in Mexico’s maquiladora, (iii) value added per plant and (iv) the number of plants in Mexico’s maquiladora, as well as (v) hours worked in U.S. manufacturing. With the exception of the intensive margin, all variables have a unit root and therefore enter the VAR model in first differences. My identification strategy assumes that long-run labor productivity in U.S. manufacturing responds exclusively to U.S. technology shocks. Conversely, long-run labor productivity in Mexico’s maquiladora sector - which uses production machinery received on loan from U.S. firms - responds to both U.S. and Mexico-specific permanent technology shocks.

In Figure 8, I plot the estimated impulse responses of Mexico’s maquiladora indicators, together with the +/- 2 standard error confidence intervals. Following a one-standard-deviation, positive, permanent technology shock to U.S. manufacturing, the number of maquiladora plants (the extensive margin) does not react on impact, but increases gradually over time. The value added per maquiladora plant (the intensive margin) exhibits an immediate jump, followed by an additional increase until it reaches a peak two quarters after the shock. The intensive margin then declines below its initial level, and returns to it over time.

The results are consistent with the predictions of the theoretical model of offshoring. Following a positive, transitory technology shock to aggregate productivity in the North, the extensive margin of offshoring increases gradually over time. The intensive margin jumps on impact, then drops below and returns to the original steady state, as in the data.
5.4 Theoretical Moments: Cross-Country Co-movement of Output and Consumption

In this section I examine the cross-country correlations of output and consumption in the model with offshoring relative to those generated by the model with exports only. I also conduct sensitivity analysis for key model parameters. Under the baseline framework of offshoring with financial autarky, I assume that productivity follows the bivariate autoregressive process in (38), and that aggregate productivity shocks are the only sources of business cycle fluctuations.

The productivity process For the matrix of persistence and spillover coefficients describing the bivariate productivity process, I use parameter values that are in line with the international real business cycle literature. In particular, I focus on three cases:

1. Low persistence \(\rho_Z = \rho_{Z*} = 0.906 \) and positive spillover parameters \(\rho_{ZZ*} = \rho_{Z*Z} = 0.088 \) as in Backus, Kehoe, and Kydland (1992, 1994);

2. Near-unit persistence \(\rho_Z = \rho_{Z*} = 0.999 \) and zero spillovers as in Baxter and Farr (2005), with the variance of shocks 0.00852 and covariance 0.18728 * 10^{-4} (correlation 0.26) as in Backus, Kehoe, and Kydland (1992);

3. Asymmetric persistence \(\rho_Z = 0.996 \) and \(\rho_{Z*} = 0.951 \) and zero spillovers, with the shocks
being more volatile in Mexico than in the U.S. (i.e. variances 0.0139570^{-2} vs. 0.0050939^{-2}) and covariance 0.1898×10^{-4} (correlation 0.27), as estimated in Mandelman and Zlate (2008) using total factor productivity (TFP) data for the U.S. and Mexico.

Table 3 shows the cross-country correlations of output $\text{Corr}(Y_R, Y_R^*)$ and consumption $\text{Corr}(C_R, C_R^*)$, for (i) the model with offshoring and (ii) the model with exports only (i.e. no offshoring) as in GM2005, for the three productivity specifications described above.\footnote{In order to compute the cross-country correlations of national income and consumption, I deflate the corresponding variables by the average price indices in each country. For instance, I deflate the national income in North as $Y_{R,t} = \frac{P_t Y_{t}}{\bar{P}_t}$, where $P_t = (N_{D,t} + N_{V,t} + N_{H,t}) \bar{P}_t$, since the empirical price deflators are best represented by the average price index \bar{P}_t rather than the welfare-based price index P_t, as discussed in Ghironi and Melitz (2005).} The results show that offshoring enhances the cross-country co-movement of both output and consumption relative to the model with exports. In particular, under the specification with near-unit persistence, the model with offshoring under financial autarky reverses the ranking of correlations (the cross-country correlation of output exceeds that of consumption).

Table 3. Output and consumption co-movement, financial autarky

<table>
<thead>
<tr>
<th>Calibration:</th>
<th>(1) Low persistence, (\rho_Z = \rho_{Z^*} = 0.906)</th>
<th>(2) High persistence, (\rho_Z = \rho_{Z^*} = 0.999)</th>
<th>(3) Asymm. persistence, (\rho_Z = 0.996, \rho_{Z^*} = 0.951)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>Offshoring No offshoring</td>
<td>Offshoring No offshoring</td>
<td>Offshoring No offshoring</td>
</tr>
<tr>
<td>$\text{Corr}(Y_R, Y_R^*)$</td>
<td>0.41 0.39</td>
<td>0.33 0.25</td>
<td>0.35 0.27</td>
</tr>
<tr>
<td>$\text{Corr}(C_R, C_R^*)$</td>
<td>0.96 0.92</td>
<td>0.32 0.28</td>
<td>0.40 0.28</td>
</tr>
</tbody>
</table>

Sensitivity to \(\rho, \theta, \tau\) I study the sensitivity of cross-country correlations of output and consumption to variations in the following parameters: (a) the persistence of the bivariate autoregressive productivity process \(\rho_Z\) (with zero spillovers); (b) the elasticity of substitution between the Northern and Southern final good varieties \(\theta\); and (c) the iceberg trade cost \(\tau\).

The results in Figure 9 show that the model with offshoring under financial autarky generates larger cross-country correlations for both output and consumption relative to the benchmark model with exports, a result which holds for a wide range of values for the persistence parameter \(\phi_Z \in [0.9, 1]\), the elasticity of substitution \(\theta \in [2.5, 4.1]\), and the iceberg trade cost \(\tau \in [1.20, 1.33]\). In particular, the cross-country correlation of output decreases with the iceberg trade cost. Following a positive shock in the North, a larger trade cost dampens the firms’ incentive to relocate production offshore, which leads to a lower co-movement of output. The result is in line with the stylized facts documented in
Burstein, Kurz, and Tesar (2007), namely that countries involved in offshoring more intensely tend to display higher correlations of manufacturing output.

Figure 9. Offshoring under financial autarky: co-movement sensitivity to ρ_Z, θ and τ.

5.5 Theoretical Moments: Offshoring and the Macroeconomy

Table 4 compares the theoretical moments generated by the model with offshore production (panel A) and those generated by the model with exports only and no offshoring in GM2005 (panel B), under the baseline framework with inelastic labor supply augmented with *international trade in bonds*. (The equations are described in Appendix 2.) I assume that productivity follows the bivariate productivity process in 38, with the persistence parameter $\rho_Z = \rho_{Z^*} = 0.906$, positive spillover parameters $\rho_{Z Z^*} = \rho_{Z^* Z} = 0.088$, the variance of shocks 0.00852 and the covariance 0.18728×10^{-4}, as in Backus, Kehoe, and Kydland (1992, 1994).

The results are similar to those in GM2005, with a couple of exceptions that I discuss here. First, in the presence of offshoring, investment and firm entry in the North become more procyclical with domestic output. For instance, the correlation between output and investment is larger in the model with offshoring (0.89) than in the model with exports only (0.86). Offshoring - as a low-cost alternative to domestic production - enhances the expected profitability of potential entrants in the North, and therefore stimulates investment and firm entry. In turn, the employment loss caused by offshoring is partially offset by the gain from stronger firm entry. (The result is in line with the employment dynamics discussed in Appendix 3).

Second, the trade balance for the North is more countercyclical in the model with offshoring than in the model with exports only. The correlation between the trade balance and output is more negative with offshoring (-0.12) than with exports only (-0.10). The correlation between the trade balance
and the value added offshore is also negative \((-0.23\)\), a result which shows that the offshoring-related imports contribute to the expanding trade deficit that follows a productivity increase in the North. The stronger domestic firm entry in the presence of offshoring also enhances the lending by Southern households to the North.

Table 4. Offshoring and the macroeconomy: theoretical moments

<table>
<thead>
<tr>
<th></th>
<th>Absolute std. dev.</th>
<th>Relative std. dev.</th>
<th>Correlations with output in:</th>
<th>Other correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Offshoring, financial integration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>North: 0.95</td>
<td>South: 0.92</td>
<td>North: 1.00</td>
<td>South: 1.00</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.64</td>
<td>0.60</td>
<td>0.67</td>
<td>0.65</td>
</tr>
<tr>
<td>Investment</td>
<td>3.23</td>
<td>4.33</td>
<td>3.40</td>
<td>4.71</td>
</tr>
<tr>
<td>Firm entry</td>
<td>3.26</td>
<td>4.40</td>
<td>3.43</td>
<td>4.78</td>
</tr>
<tr>
<td>Trade bal./GDP</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>CPI-based RER</td>
<td>0.06</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(B) No offshoring (GM2005), financial integration						
Output	North: 0.95	South: 0.92	North: 1.00	South: 1.00	\(y_R, y_R^*\)	0.40
Consumption	0.65	0.61	0.68	0.66	\(C_R, C_R^*\)	0.96
Investment	3.64	3.83	3.83	4.16	\(\tilde{v}_R^E, \tilde{v}_R^{E*}\)	-0.55
Firm entry	3.66	3.93	3.85	4.27	\(\frac{y_R-C_R}{y_R}, \frac{\tilde{v}_R}{y_R}\)	0.97
Trade bal./GDP	0.11	0.11	0.12	0.12	\(\frac{C_R}{y_R}, Q_{CPI}\)	-0.02
CPI-based RER	0.04	0.04			\(\frac{C}{y_R}, Q\)	0.74

6 Conclusion

I study the way in which the relocation of production across borders alters the cross-country transmission of business cycles. In particular, I focus on the fluctuations of offshore production along its extensive and intensive margins (the number of firms and the value added per firm, respectively) as separate transmission mechanisms, and analyze their impact on output, wages and relative prices in
the parent and host countries. In the model, offshore production is determined endogenously in the presence of domestic firm entry and heterogeneity in labor productivity across firms. Offshoring depends on the difference between the domestic and foreign cost of effective labor, on the firm-specific labor productivity, as well as on the fixed and iceberg trade costs.

The key results of the paper are as follows. First, the implications of the model are consistent with the procyclical pattern of offshoring, as well as with the extensive and intensive margin dynamics that I document using data from U.S. manufacturing and Mexico’s maquiladora sector. Following an aggregate productivity increase in the North, the value added per offshoring firm (the intensive margin) jumps on impact and then returns to its initial steady state. In the medium run, domestic firm entry causes the Northern wage to increase faster than aggregate productivity. Thus, the gradual appreciation of the cost of effective labor caused by domestic firm entry is mirrored by the gradual increase in the number of offshoring firms (the extensive margin).

Second, offshoring enhances the cross-country co-movement of output relative to the model with endogenous exports. As firm entry in the parent country leads to the appreciation of the terms of labor, the increasing demand for domestic labor (due to firm entry) and sequentially the increasing demand for labor offshore (due to the relocation of production) enhance the co-movement of wages and aggregate incomes. The result is consistent with the stylized fact outlined in Burstein, Kurz, and Tesar (2008), that countries with stronger trade links from production sharing tend to display closer co-movements of manufacturing output.

Third, offshoring reduces the price level gap between the countries involved, because it dampens the appreciation of the real exchange rate that follows an aggregate productivity improvement in the parent country. In particular, the relocation of production transfers some of the upward pressure from the domestic wage (caused by domestic firm entry) onto the foreign wage, and thus dampens the appreciation of the terms of labor. Offshoring also crowds out the less competitive foreign exporters, and therefore leads to a decrease in the average import prices.

I suggest several extensions to this paper. First, the model provides a useful framework to analyze the impact of offshore production on employment and wages in the parent and the host countries. The preliminary analysis of employment dynamics in Appendix 3 shows that, as offshoring enhances firm entry in the parent country, the domestic job loss caused by offshoring is partially offset by the creation of new jobs associated with new product varieties. Second, the model allows to study the welfare implications of offshoring and trade liberalization, as discussed in Appendix 4. Third, in an empirical extension of this paper, I study the dynamic responses of the extensive and intensive
margins of Mexico’s maquiladora output to long-run labor productivity shocks in U.S. manufacturing, identified as permanent technology shocks (Zlate, 2009). Fourth and finally, one extension with rich policy implications involves the study of interactions between offshore production and labor migration within an integrated framework, in which both offshoring and labor mobility are driven by fluctuations in relative wages. (For the study of labor migration, see Mandelman and Zlate, 2008).

References

A Appendix

A.1 Summary: Model of Offshoring with Financial Autarky

Table A.1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euler equation, bonds</td>
<td>(C_t^{-\gamma} = \beta (1 + r_{t+1}) E_t \left[C_{t+1}^{-\gamma} \right])</td>
</tr>
<tr>
<td></td>
<td>(C_t^{\gamma} = \beta (1 + r^{}{t+1}) E_t \left[C{t+1}^{*\gamma} \right])</td>
</tr>
<tr>
<td>Euler equation, stocks</td>
<td>(\bar{v}t = \beta (1 - \delta) E_t \left(\frac{C{t+1}}{E_t} \right)^{-\gamma} (d_{t+1} + \bar{v}_{t+1}))</td>
</tr>
<tr>
<td></td>
<td>(\bar{v}^{}_t = \beta^ (1 - \delta^) E_t \left(\frac{C_{t+1}^{}}{E_t} \right)^{-\gamma} (d^{}_{t+1} + \bar{v}^{}_{t+1}))</td>
</tr>
<tr>
<td>Free entry</td>
<td>(\bar{v}t = \frac{f{\bar{v}_t}}{z_t})</td>
</tr>
<tr>
<td></td>
<td>(\bar{v}^{}t = \frac{f{\bar{v}^{}_t}}{z_t})</td>
</tr>
<tr>
<td>Rule of motion, # firms</td>
<td>(N_{t+1} = (1 - \delta)(N_t + N_{E,t}))</td>
</tr>
<tr>
<td></td>
<td>(N_{D,t+1} = (1 - \delta)(N^{}_{D,t} + N^{}_{E,t}))</td>
</tr>
<tr>
<td>Aggregate accounting</td>
<td>(C_t + N_{E,t} \bar{v}_t = w_t L + N_t \bar{d}_t)</td>
</tr>
<tr>
<td></td>
<td>(C_t^{} + N^{}_{E,t} \bar{v}^{}_t = w^t L^* + N^*{D,t} \bar{d}^{*}_t)</td>
</tr>
<tr>
<td>Consumption price index</td>
<td>(1 = N_{D,t} (\bar{p}{D,t})^{1-\theta} + N{V,t} (\bar{p}{V,t})^{1-\theta} + N^{*}{H,t} (\bar{p}^{*}_{H,t})^{1-\theta})</td>
</tr>
<tr>
<td></td>
<td>(1 = N^{}_{D,t} (\bar{p}^{}{D,t})^{1-\theta} + N{H,t} (\bar{p}_{H,t})^{1-\theta})</td>
</tr>
<tr>
<td>Total profits</td>
<td>(N_t \bar{d}t = N{D,t} \bar{d}{D,t} + N{V,t} \bar{d}{V,t} + N{H,t} \bar{d}_{H,t})</td>
</tr>
<tr>
<td></td>
<td>(N^_{D,t} \bar{d}^t = N^*{D,t} \bar{d}^{D,t} + N{H,t} \bar{d}^_H)</td>
</tr>
<tr>
<td>Number of firms (Home)</td>
<td>(N_t = N_{D,t} + N_{V,t})</td>
</tr>
<tr>
<td>VFDI profits link (Home)</td>
<td>(\bar{d}{V,t} = \frac{k}{k-(\theta-1)} \left(\frac{\bar{v}{V,t}}{z_{D,t}} \right)^{\theta-1} \bar{d}{D,t} + \frac{\theta-1}{k-(\theta-1)} f{V} \frac{w_t Q_t}{Z_t})</td>
</tr>
<tr>
<td>HFDI profits link</td>
<td>(\bar{d}^{}{H,t} = \frac{\theta-1}{k-(\theta-1)} f{H} \frac{w^_t Z^*_t}{Z_t})</td>
</tr>
<tr>
<td>Dom. productivity (Home)</td>
<td>(\bar{z}{D,t} = \nu z{\min} z_{V,t} \left[\frac{k^{1-\theta-1} z_{\min}^{1-\theta} - k^{1-\theta-1}}{\nu z_{V,t}^{1-\theta} - z_{\min}^{1-\theta}} \right]^{\frac{1}{\nu-\theta}})</td>
</tr>
<tr>
<td>VFDI productivity (Home)</td>
<td>(\bar{z}{V,t} = \nu z{\min} \left(\frac{N_{V,t}}{N_{V,t}} \right)^{1/k})</td>
</tr>
<tr>
<td>HFDI productivity</td>
<td>(\bar{z}{H,t} = \nu z{\min} \left(\frac{N_{H,t}}{N_{H,t}} \right)^{1/k})</td>
</tr>
<tr>
<td>Balanced trade</td>
<td>(N_{H,t} (\bar{p}{H,t})^{1-\theta} C_t^{*} Q_t + N{V,t} \bar{d}_{V,t} =)</td>
</tr>
<tr>
<td></td>
<td>(= N_{V,t} (\bar{p}{V,t})^{1-\theta} C_t + N^{*}{H,t} (\bar{p}^{*}_{H,t})^{1-\theta} C_t)</td>
</tr>
</tbody>
</table>

The baseline model with financial autarky for the Northern economy is summarized by 16 equations in 16 endogenous variables: \(N_t, N_{D,t}, N_{V,t}, N_{H,t}, N_{E,t}, \bar{d}_t, \bar{d}_{D,t}, \bar{d}_{V,t}, \bar{d}_{H,t}, \bar{z}_{D,t}, \bar{z}_{V,t}, \bar{z}_{H,t}, \bar{v}_t, r_t, w_t \) and
As the Southern firms do not offshore to the high-wage North, the Southern economy is described by only 11 equations in 11 endogenous variables: There are no Southern counterparts for N_t, $N_{V,t}$, $\tilde{d}_{V,t}$, $\tilde{z}_{D,t}$ and $\tilde{z}_{V,t}$. In particular, the average labor productivity of the representative domestic Southern firm (\bar{z}_D^*) is constant over time. Variables $N_{D,t}$, τ_t, N_t^* and r_t^* are predetermined.

A.2 Offshoring with Financial Integration

I allow for trade in international bonds in an extended version of the model with endogenous offshoring. Following GM2005, I assume that: (1) International asset markets are incomplete, as households in each country issue risk-free bonds denominated in their own currency. (2) Nominal returns are indexed to inflation in each economy, so that each type of bonds provides a real return denominated in units of that country’s consumption basket. (3) I introduce quadratic costs of adjustment for bond holdings, a tool which allows to pin down the steady state and ensure stationarity for the net foreign assets in the presence of temporary shocks.

The infinitely-lived representative household in the North maximizes the inter-temporal utility subject to the constraint:

$$
(\tilde{d}_t + \tilde{v}_t)N_t x_t + w_t L + (1 + r_t) B_{h,t} + (1 + r_t^*) Q_t B_{f,t} + T_t
\geq C_t + \bar{v}_t (N_t + N_{E,t}) x_{t+1} + B_{h,t+1} + \frac{\pi}{2} (B_{h,t+1})^2 + Q_t B_{f,t+1} + \frac{\pi}{2} Q_t (B_{f,t+1})^2,
$$

where r_t and r_t^* are the rates of return of the North and South-specific bonds; $(1 + r_t)B_{h,t}$ and $(1 + r_t^*)Q_tB_{f,t}$ denote the principal and interest income from each type of bonds; $\frac{\pi}{2} (B_{h,t+1})^2$ and $\frac{\pi}{2} Q_t (B_{f,t+1})^2$ are the adjustment costs for each type of bond holdings; T_t is the fee rebate. Setting $\pi = 0.0025$, I add the two Euler equations for bonds to the baseline model:

$$
1 + \pi B_{h,t+1} = \beta (1 + r_{t+1}) E_t \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma},
$$

$$
1 + \pi B_{f,t+1} = \beta (1 + r_{t+1}^*) E_t \left(\frac{Q_{t+1}}{Q_t} \right) \left(\frac{C_{t+1}}{C_t} \right)^{-\gamma}.
$$

The budget constraint of the Southern household is similar, and the corresponding Euler equations
for bonds are:

\[
1 + \pi B^*_{h,t+1} = \beta^*(1 + r_{t+1})E_t \frac{Q_{t}}{Q_{t+1}} \left(\frac{C^*_t}{C^*_{t+1}} \right)^{-\gamma},
\]

\[
1 + \pi B^*_{f,t+1} = \beta^*(1 + r^*_{t+1})E_t \left(\frac{C^*_{t+1}}{C^*_t} \right)^{-\gamma}.
\]

The market clearing conditions for bonds are:

\[
B_{h,t+1} + B^*_{h,t+1} = 0,
\]

\[
B_{f,t+1} + B^*_{f,t+1} = 0.
\]

Thus, financial integration through trade in bonds adds 4 new variables \((B_{h,t}, B_{f,t}, B^*_h, B^*_f)\) and 6 new equations \((40, 41, 42, 43, 44 \text{ and } 45)\) while removing the original two Euler equations from the baseline model with financial autarky. Trade in bonds also involves changes in the aggregate accounting equations and in the balanced current account condition. I re-write the expressions for aggregate accounting in the North and the South as:

\[
C_t + N_{E,t} \tilde{v}_t + B_{h,t+1} + Q_t B_{f,t+1} = w_t L + N_t \tilde{d}_t + (1 + r_t) B_{h,t} + (1 + r^*_t) Q_t B_{f,t},
\]

\[
C^*_t + N^*_E \tilde{v}^*_t + Q^{-1}_t B^*_{h,t+1} + B^*_f + B^*_{f,t+1} = w^*_t L^* + N^*_D \tilde{d}^*_t + (1 + r_t) Q^{-1}_t B^*_{h,t} + (1 + r^*_t) B^*_f.
\]

I also replace the balanced current account condition from the model with financial autarky with the expression for the balance of international payments:

\[
T B_t + \underbrace{N_{V,t} \tilde{d}_{V,t}}_{\text{Repatriated profits}} \quad + r_t B_{h,t} + \underbrace{r^*_t Q_t B_{f,t}}_{\text{Income from bonds}} = \underbrace{(B_{h,t+1} - B_{h,t}) - Q_t (B_{f,t+1} - B_{f,t})}_{\text{Change in bond holdings}}
\]

which shows that the current account balance (trade balance plus repatriated profits of foreign affiliates plus investment income) must equal the negative of the financial account balance (the change in bond holdings).

A.3 Employment Dynamics

Theoretical measures of sectoral employment In this section I study the effect of offshoring on employment in both the North and the South. To this end, I focus on the offshoring sector in the Southern economy in addition to the three employment sectors in each economy (entry, domestic
and exporting) described in GM2005. The representative Northern offshoring firm hires Southern labor both for covering the fixed cost of offshoring \(\frac{f_V}{Z_t} \) units of Southern labor every period and for production \(\bar{L}_{V,t} = \bar{d}_{V,t} \frac{q_V-1}{w_t} + f_V \frac{q_V-1}{Z_t} \). Thus, I write the total employment in the offshoring sector as:

\[
L^*_{V,t} = N_{V,t} \left(\frac{\bar{L}_{V,t} + \frac{f_V}{Z_t}}{Z_t} \right).
\] (49)

The log-linearized expressions for total employment in each economy are:

\[
\hat{L}_t = \frac{L_E}{L} \hat{L}_{E,t} + \frac{L_{D}}{L} \hat{L}_{D,t} + \frac{L_{H}}{L} \hat{L}_{H,t},
\] (50)

\[
\hat{L}_t^* = \frac{L^*_V}{L^*} \hat{L}_{V,t} + \frac{L^*_E}{L^*} \hat{L}_{E,t}^* + \frac{L^*_D}{L^*} \hat{L}_{D,t}^* + \frac{L^*_H}{L^*} \hat{L}_{H,t},
\] (51)

where the calibration implies that the steady state shares of employment in the North are 22, 53 and 25 percent for the entry, domestic and exporting sectors. In the South, they are 15, 48 and 15 percent respectively, plus the remaining 22 percent in the offshoring sector.

Impulse responses for a productivity increase in the North Figure A.1 illustrates the employment dynamics in the offshoring model in response to a positive productivity shock in the North, when productivity follows the autoregressive univariate process \(\log Z_{t+1} = \rho \log Z_t + u_t \) with persistence parameter \(\rho = 0.9 \). In order to analyze the employment dynamics, I add elastic labor

43In the North, the representative firm serving the domestic labor hires labor for production \(\bar{L}_{D,t} = \frac{q_D-1}{w_t} \bar{d}_{D,t} \) units of labor). The representative firm serving the foreign market through exports hires labor both for production \(\bar{L}_{H,t} = \bar{d}_{H,t} \frac{q_h-1}{w_t} + f_H \frac{q_h-1}{Z_t} \) and for covering the fixed cost of exporting \(\frac{f_H}{Z_t} \) units of labor). In addition, the new firms hire labor to satisfy the entry cost requirements \(\frac{f_E}{Z_t} \) units of labor per new entrant every period). Thus, the amount of labor hired by each of the three sectors in the North (entry, domestic, and export) every period is \(L_{E,t} = N_{E,t} \frac{L_E}{Z_t} \), \(L_{D,t} = N_{D,t} \bar{d}_{D,t} \) and \(L_{H,t} = N_{H,t} \left(\bar{L}_{H,t} + \frac{f_H}{Z_t} \right) \), respectively.
supply to the framework with offshoring under financial autarky.\footnote{The representative household aiming to maximize the expected inter-temporal utility}

\begin{align*}
&\max_{\{h_t, x_t, L_t\}} \left[E_t \sum_{t=1}^{\infty} \beta^{t-1} \left(\ln C_s - \frac{L_t^{1+1/\psi}}{1+1/\psi} \right) \right] \text{consumes and supplies } L_t \text{ working hours elastically in a competitive labor market subject to the budget constraint } B_{t+1} + \tilde{v}_t \left(N_t + N_{E,t} \right) x_{t+1} + C_t = (1 + r_t) B_t + (\tilde{d}_t + \tilde{v}_t) N_t x_t + w_t L_t, \text{ where } \chi > 0 \text{ is the weight of disutility from labor in the period utility function, and } \psi \geq 0 \text{ is the Frisch elasticity of labor supply to wages and the inter-temporal elasticity of substitution in labor supply. Following King, Plosser and Rebello (1988) and the discussions in Campbell (1994) and Bilbie et al. (2006), I use log utility for consumption (which is equivalent to setting } \gamma = 1 \text{ in the baseline model) in order to obtain constant steady state labor supply in a model in which utility is additively separable over consumption and hours. I incorporate the usual first order conditions with respect to hours worked into the model, } \chi (L_t)^{\frac{1}{\psi}} = w_t C_t^{-1} \text{ and } \chi^* (L_t)^{\frac{1}{\psi}} = w_t C_t^{-1}. \text{ Using the baseline model calibration, I set the weight parameter } \chi = 0.9188 \text{ and } \chi^* = 0.9458, \text{ so that the steady-state level of hours worked is equal to unit, } \bar{T} = \left\{ \frac{1}{\frac{1}{\chi} \frac{1}{\psi}} \right\}^{\psi} = 1. \text{ The wage elasticity of labor supply in North and South is } \psi = 3.}
\end{align*}

In the North, on impact, employment rises in the entry sector and declines in the domestic and exporting sectors. Thus, the reallocation of labor across sectors supports the creation of new product varieties following the productivity improvement in the Northern economy, both in the model with offshoring and in the model with exports only.

Important differences in employment dynamics across the two models become visible in the medium run. First, as the option to produce offshore improves the average profitability of prospective entrants,
Appendix

firm entry is more persistent and employment in the entry sector declines by less in the model with offshoring than in the model with exports only. Second, an aggregate productivity increase stimulates employment in the Northern exporting sector in the presence of offshoring (and reduces it without), as the dampened appreciation of the terms of labor enhances the competitiveness of the Northern exports relative to the model with exports only. Third, offshoring reduces employment in the Northern domestic sector, partly due to the relocation of production to the South, and partly due to the within-country reallocation of employment towards the entry and exporting sectors in the North. Overall, the employment loss in the North caused by offshoring is partially offset by the employment gains generated by enhanced product creation and export competitiveness in the North.

In the Southern economy, the increase in employment in the offshoring sector offsets the loss in the domestic and exporting sectors, as well as the loss in the entry sector in the short run. The result is in line with the empirical evidence that, due to the crowding out of domestic investment, most of the new jobs in Mexico’s manufacturing (96 percent) during 1994-2002 were in the maquiladora sector (Gallagher and Zarsky, 2007, Chapter 2).

A.4 Welfare Analysis: Offshore Production and Trade Costs

In this section I analyze the welfare effect of a sudden and permanent decrease in the iceberg trade cost that affects offshoring from $\tau_0 = 1.3$ to $\tau_1 = 1.2$, which occurs in addition to the stochastic transitory shocks to aggregate productivity. To this end, I take a second order approximation around the steady state, and assume that aggregate productivity follows the bivariate autoregressive process described in expression (38), with the persistence, spillover and variance-covariance matrix of shocks from Backus, Kehoe, and Kydland (1992, 1994).

Figure A.2 plots the transition paths to the new steady state for key variables of the model. The lower trade cost associated with offshoring increases profitability and hence stimulates firm entry in the North. In turn, the total number of Northern firms, the real wage, output and consumption converge to relatively higher steady state levels, an outcome which is welfare-enhancing for the Northern economy. The total value added offshore and the number of offshoring firms also converge to higher steady state levels. In the Southern economy, the real wage, consumption and output decrease to lower steady
state values due to the crowding out of domestic entry by offshoring.

Figure A.2. Transition paths to new steady states, following a permanent decrease in the iceberg trade cost of offshoring (from $\tau_0 = 1.3$ to $\tau_1 = 1.2$)

In order to compute the consumption-equivalent gain that the Northern economy obtains from the decline in the fixed cost of offshoring, I compare the level of welfare that the Northern household holds in the initial steady state (V_0) with the level of welfare that it holds as of period t' when the decrease in the trade cost takes place ($V_{t'}$):

$$V_0 = \frac{1}{1 - \beta} U \left(\frac{\bar{C}}{\tau_0 = 1.3} \right) \quad \text{and} \quad V_{t'} = E_{t'} \sum_{v = t'}^{\infty} \beta^v U \left(\frac{\bar{C}_v}{\tau_1} \right). \quad (52)$$

The welfare level of period t' takes into account the discounted stream of utilities that the Northern household achieves at all future periods during the transition path to the new steady state. Then I define the constants \bar{C}_0 and \bar{C}_1 to denote the permanent streams of consumption necessary to generate the welfare values V_0 and $V_{t'}$:

$$V_0 = \frac{1}{1 - \beta} \frac{\bar{C}_0^{-1-\gamma}}{1 - \gamma} \quad \text{and} \quad V_{t'} = \frac{1}{1 - \beta} \frac{\bar{C}_1^{-1-\gamma}}{1 - \gamma}. \quad (53)$$
and compute the consumption-equivalent welfare gain ($\lambda > 0$) or loss ($\lambda < 0$) that corresponds to the permanent decrease of the iceberg trade cost for offshored goods as:

$$\lambda = \left(\frac{C_1}{C_0} - 1 \right) \times 100.$$ (54)

Figure A.3 (continuous line) plots the consumption-equivalent welfare gain measured as a percentage increase in steady-state consumption (on the vertical axis) associated with the permanent decrease in the trade cost for offshored goods; I allow the elasticity of substitution between domestic and offshored varieties (on the horizontal axis) to vary over $\theta \in [3.1, 3.9]$. The results show that the Northern economy obtains a welfare gain that exceeds the equivalent of 5 percent of initial consumption for the entire range of elasticity values. Moreover, the gain increases with the degree of complementarity between the domestic and offshored varieties.

Figure A.3. Consumption-equivalent welfare gain/loss, following a permanent decrease in the iceberg trade cost of offshoring (from $\tau_0 = 1.3$ to $\tau_1 = 1.2$)

A.5 Asymmetric Firm Entry Costs

The World Bank’s *Doing Business* report outlines the large variation in the regulation of starting a business across countries at different levels of economic development (Table A.2). For instance, the monetary cost is 3.3 times higher in Mexico than in the U.S. or Canada; it is 6.2 times higher in
Hungary than in the U.K.

Table A.2. Firm entry costs, selected economies

<table>
<thead>
<tr>
<th>Economy</th>
<th>Procedures (number)</th>
<th>Duration (days)</th>
<th>Monetary Cost (USD)</th>
<th>Relative Cost (U.S.=1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>6</td>
<td>6</td>
<td>314.79</td>
<td>1.0</td>
</tr>
<tr>
<td>Canada</td>
<td>2</td>
<td>3</td>
<td>325.53</td>
<td>1.0</td>
</tr>
<tr>
<td>Mexico</td>
<td>8</td>
<td>27</td>
<td>1,046.71</td>
<td>3.3</td>
</tr>
<tr>
<td>Germany</td>
<td>9</td>
<td>18</td>
<td>2,087.34</td>
<td>6.6</td>
</tr>
<tr>
<td>U.K.</td>
<td>6</td>
<td>13</td>
<td>321.44</td>
<td>1.0</td>
</tr>
<tr>
<td>France</td>
<td>5</td>
<td>7</td>
<td>402.05</td>
<td>1.3</td>
</tr>
<tr>
<td>Poland</td>
<td>10</td>
<td>31</td>
<td>1,736.28</td>
<td>5.5</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>10</td>
<td>17</td>
<td>1,344.08</td>
<td>4.3</td>
</tr>
<tr>
<td>Hungary</td>
<td>6</td>
<td>16</td>
<td>1,938.15</td>
<td>6.2</td>
</tr>
</tbody>
</table>

A.6 Solution for the Asymmetric Steady State ($TOL < 1$)

In this section I provide the steady state solution for the model of offshoring in the presence of cross-country differences in the cost of effective labor ($TOL < 1$). To this end, I use an integrated framework that nests both the baseline model of offshoring (for calibration $\alpha = 0, \eta = 1$) and the benchmark model with exports only and no offshoring in GM2005 (for $\alpha = 1, \eta = 1$), as described in footnotes 14 and 19 above.

I obtain a numerical solution for the unique steady state using a non-linear system of 12 equations in 12 unknowns, listed below. The unknowns are the steady state values of: z_V (the offshoring cutoff productivity), z_H (the exporting cutoff productivity in North), TOL, $\frac{C}{C^*Q}$, Q, $\frac{\tilde{d}_D}{w}$, $\frac{\tilde{d}_V}{w}$, $\frac{\tilde{d}_H}{w}$, z_H^* (the exporting cutoff productivity in South), \tilde{p}_H, \tilde{p}_H^*, and $\frac{N}{N_D}$. Subsequently, I use the numerical solution for the initial 12 variables to compute the steady state values of the remaining variables of the model. A technical appendix providing their complete derivation is available upon request.

I use the following pricing and profit formulas (in which $Z = Z^* = 1$) in order to derive the steady
state solution:

Table A.3

<table>
<thead>
<tr>
<th>Table A.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Prices</td>
</tr>
<tr>
<td>Domestic production, North</td>
</tr>
<tr>
<td>Domestic production, South</td>
</tr>
<tr>
<td>Offshore production (vertical FDI, $\alpha = 0$)</td>
</tr>
<tr>
<td>Exports ($\eta = 1$) or horizontal FDI ($\eta = 0$), North</td>
</tr>
<tr>
<td>Exports ($\eta^* = 1$) or horizontal FDI ($\eta^* = 0$), South</td>
</tr>
</tbody>
</table>

| **Average Profits** |
Domestic production, North	$\tilde{\bar{d}}_{D,t} = \frac{1}{\bar{p}} (\tilde{\rho}_{D,t})^{1-\theta} C_t$
Domestic production, South	$\tilde{\bar{d}}_{D,t} = \frac{1}{\bar{p}} (\tilde{\rho}_{D,t})^{1-\theta} C_t$
Offshore production (vertical FDI, $\alpha = 0$)	$\tilde{\bar{d}}_{V,t} = \frac{1}{\bar{p}} (\tilde{\rho}_{V,t})^{1-\theta} C_t - f_V w TOL^{1-\alpha}$
Exports ($\eta = 1$) or horiz. FDI ($\eta = 0$), North	$\tilde{\bar{d}}_{H,t} = \frac{1}{\bar{p}} (\tilde{\rho}_{H,t})^{1-\theta} C_t Q_t - f_H w TOL^{1-\eta}$
Exports ($\eta^* = 1$) or horiz. FDI ($\eta^* = 0$), South	$\tilde{\bar{d}}_{H,t} = \frac{1}{\bar{p}} (\tilde{\rho}_{H,t})^{1-\theta} C_t Q_t^{-1} - f_{H,t} w^* \left(\frac{w^*}{z^*_V} \right) (\frac{1}{TOL})^{1-\eta^*}$

In addition, using that $v = \frac{\beta(1-\delta)}{1-\beta(1-\delta)} d$, $N_E = \frac{\delta}{1-\delta} N$, and $v = f_e w$ in the expression for total profits in the Northern economy, the first equation in the system is:

$$
\frac{1 - \beta(1-\delta)}{\beta(1-\delta)} f_E = \frac{N_D}{N} \tilde{d}_D + \frac{N_V}{N} \tilde{d}_V + \frac{N_H}{N} \tilde{d}_H,
$$

(55)

where $\frac{N_D}{N} = \left(\frac{1}{2} \right)^k$, $\frac{N_E}{N} = 1 - \left(\frac{1}{2} \right)^k$, $\frac{N_V}{N} = \left(\frac{1}{2} \right)^k$.

Next, the profit formulas for the Northern economy imply:

$$
\frac{\tilde{d}_D}{w} = \frac{k}{k-(\theta-1)} f_H TOL^{\theta(1-\eta)} \frac{C}{C^* Q^1 - \theta^* \tau^{\theta(1-\eta)} (z_V^* / z_H)} \theta - 1 \frac{z_V^*}{z_V^*} - 1,
$$

(56)

$$
\frac{\tilde{d}_V}{w} = \frac{k}{k-(\theta-1)} f_H TOL^{1-\alpha+\theta(\alpha-\eta)} \frac{C}{C^* Q^1 - \theta} \tau^{\theta(1-\eta)} \tau^{\theta(1-\eta)} - f_V TOL^{1-\alpha},
$$

(57)

$$
\frac{\tilde{d}_H}{w} = \frac{(\theta-1)}{k-(\theta-1)} f_H w TOL^{1-\eta},
$$

(58)

$$
\frac{\tilde{d}_V}{w} = \frac{z_V^* - 1}{z_V^* - \frac{1}{(\theta-1)}} \tilde{d}_D + \frac{\theta - 1}{k-(\theta-1)} f_V w TOL^{1-\alpha}.
$$

(59)
The expression for total profits in the Southern economy implies:

\[
\frac{1 - \beta^* (1 - \delta^*)}{\beta^* (1 - \delta^*)} f^*_E = \frac{k}{k - (\theta - 1)} f^*_H TOL^0 TOL^{\theta (\eta^* - 1)} \tau^V TOL^{\theta - 1} \tau^* \eta^* - 1 \tau^V \tau^* \eta^* - 1 \tau^V TOL^0 f^*_H TOL^0 \eta^* - 1 C^* Q + C^* Q + C^* \frac{Q}{C} + \frac{\theta - 1}{k - (\theta - 1)} \left(\frac{1}{z_H} \right)^k f^*_H TOL^\eta^* - 1.
\]

Next, the consumption ratio adjusted for the real exchange rate is:

\[
\frac{C}{C^* Q} = f^*_H TOL^{\theta (\eta + \eta^* - 1)} Q^{\theta - 1} \left(\frac{z_H \tau^\eta}{z_H \tau^* \eta} \right)^{\theta - 1}.
\]

Using the balanced current account condition, I obtain:

\[
(1 - \alpha) z_V^{-k} TOL^{-\alpha} \left[\frac{(\theta - 1) k}{z_H} f^*_H \left(\frac{z_V}{z_H^*} \right)^{\theta - 1} TOL^{\theta (\alpha + \eta^* - 1)} \right. + \left. f_V \right]
\]

\[
= \Lambda \frac{f_H}{z_H} \left(\frac{N}{N_D} \right)^{-1} TOL^{-\eta} - \Lambda^* \frac{f_H}{z_H^*} \left(\frac{N}{N_D} \right)^{-1} TOL^\eta^* - 1,
\]

where \(\Lambda = \left(\eta + \frac{(1 - \eta^*)}{k - (\theta - 1)} \right) - (1 - \eta) \) and \(\Lambda^* = \left(\eta^* + \frac{(1 - \eta^*)}{k - (\theta - 1)} \right) - (1 - \eta^*). \)

The expression for the real exchange rate in steady state is:

\[
Q^{1 - \theta} = TOL^{1 - \theta} + (\tau^* TOL^{1 - \eta})^{1 - \theta} z_H^{\theta - 1 - k} \frac{N}{N_D} + z_V z_H^* \frac{N}{N_D} (\tau TOL) (1 - \alpha) (1 - \theta) + z_V z_H^* \frac{N}{N_D} (\tau TOL) \eta^* (1 - \theta)
\]

The remaining equations are:

\[
\frac{\theta k}{k - (\theta - 1)} f_H \frac{\rho_H^\theta - 1}{TOL^\eta} = 1 + \frac{1 - \beta^*}{\beta^* (1 - \delta^*)} f^*_E \frac{\rho_H^\theta - 1}{\Xi_t},
\]

\[
\frac{\theta k}{k - (\theta - 1)} f^*_H TOL^\eta \rho_H^\theta - 1 = 1 + \frac{1 - \beta}{\beta (1 - \delta)} f_E \frac{\rho_H^\theta - 1}{\Omega_t},
\]

\[
\frac{N}{N_D} \left(\frac{\rho_H}{\rho_H^*} \right)^{\theta - 1} = \frac{\Xi_t}{\Omega_t}.
\]
where:

\[
\Xi_t = \left[\frac{1}{z_H} \left(\frac{\tau^*}{TOL} \right) \right]^{\eta-1} + z_H^{-k} \frac{N}{N_D}; \tag{67}
\]

\[
\Omega_t = \left(1 - z_V^{-k} \right) \left(\frac{z_V}{z_H} \right)^{\theta-1} \frac{z_V^{k-\theta-1}}{z_V^{k-1}} \left(\tau TOL \right)^{\eta(\theta-1)}
\]

\[+ z_V^{-k} \left[\frac{z_V}{z_H} \left(\tau TOL \right)^{\eta+\alpha-1} \right]^{\theta-1} + z_H^{-k} \left(\frac{N}{N_D} \right)^{-1}. \tag{68}\]

A.7 Demand Functions and the Welfare-Based Price Index

The Northern representative household minimizes the total expenditure associated with the consumption basket \(C_t \), which includes final good varieties produced by the Northern firms domestically (\(y_{D,t} \)), offshore (\(y_{V,t} \)), as well as final good varieties produced by Southern firms (\(y_{H,t}^* \)):

\[
\min_{\{y_{D,t}(z), y_{V,t}(z), y_{H,t}^*(z)\}} P_t C_t = \int_{z_{\min}}^{z_H} \int_{z_{\min}}^{z_V} \int_{z_{\min}}^{z_H} p_{D,t}(z) y_{D,t}(z) dz + \int_{z_{\min}}^{z_V} \int y_{V,t}(z) y_{V,t}(z) dz + \int p_{H,t}^*(z) y_{H,t}^*(z) dz, \tag{69}\]

subject to \(C_t = \left[\int y_{D,t}(z) \frac{\theta-1}{\sigma} dz + \int y_{V,t}(z) \frac{\theta-1}{\sigma} dz + \int y_{H,t}^*(z) \frac{\theta-1}{\sigma} dz \right]^{\frac{\sigma}{\theta-1}} \). The first-order conditions with respect to \(y_{D,t}(z) \), \(y_{V,t}(z) \) and \(y_{H,t}^*(z) \) imply:

\[p_{D,t}(z) = \lambda_t C_t^{\frac{1}{\theta}} y_{D,t}(z)^{-\frac{1}{\theta}}, \quad p_{V,t}(z) = \lambda_t C_t^{\frac{1}{\theta}} y_{V,t}(z)^{-\frac{1}{\theta}} \text{ and } p_{H,t}^*(z) = \lambda_t C_t^{\frac{1}{\theta}} y_{H,t}^*(z)^{-\frac{1}{\theta}}, \tag{70}\]

which I use to re-write the total expenditure amount:

\[
P_t C_t = \int_{z_{\min}}^{z_H} \int_{z_{\min}}^{z_V} \int_{z_{\min}}^{z_H} p_{D,t}(z) y_{D,t}(z) dz + \int_{z_{\min}}^{z_V} \int y_{V,t}(z) y_{V,t}(z) dz + \int_{z_{\min}}^{z_H} p_{H,t}(z) y_{H,t}^*(z) dz = \lambda_t C_t. \tag{71}\]

Next I insert the resulting identity \(\lambda_t = P_t \) and the demand functions \(y_{D,t}(z) = (p_{D,t}(z)/P_t)^{-\theta} C_t \), \(y_{V,t}(z) = (p_{V,t}(z)/P_t)^{-\theta} C_t \), \(y_{H,t}^*(z) = \left(p_{H,t}^*(z)/P_t \right)^{-\theta} C_t \) into the expression for total expenditure,
Appendix

\[P_t C_t = \int_{z_{\text{min}}}^{z_{V,t}} p_{D,t}(z) y_{D,t}(z) \, dz + \int_{z_{V,t}}^{\infty} p_{V,t}(z) y_{V,t}(z) \, dz + \int_{z_{H,t}}^{\infty} p_{H,t}(z) y_{H,t}(z) \, dz, \]

in order to derive the price index:

\[P_t = \left[\int_{z_{\text{min}}}^{z_{V,t}} \frac{p_{D,t}(z)}{P_t} \, dz + \int_{z_{V,t}}^{\infty} \frac{p_{V,t}(z)}{P_t} \, dz + \int_{z_{H,t}}^{\infty} \frac{p_{H,t}(z)}{P_t} \, dz \right]^{\frac{1}{1-\theta}}. \] (73)

Throughout the model I use the consumption basket as the numeraire good in each economy. Thus, the real prices of final good varieties expressed in units of the Northern consumption basket are:

\[\rho_{D,t}(z) \equiv \frac{p_{D,t}(z)}{P_t}, \quad \rho_{V,t}(z) \equiv \frac{p_{V,t}(z)}{P_t} \quad \text{and} \quad \rho_{H,t}(z) \equiv \frac{p_{H,t}(z)}{P_t}, \] (74)

and the demand functions for final good varieties become:

\[y_{D,t}(z) = \rho_{D,t}(z)^{-\theta} C_t, \quad y_{V,t}(z) = \rho_{V,t}(z)^{-\theta} C_t, \quad \text{and} \quad y_{H,t}(z) = \rho_{H,t}(z)^{-\theta} C_t. \] (75)

A.8 Profit Maximization with Domestic and Offshore Production

Northern firms producing domestically Firms set optimal prices by solving the profit maximization problem:

\[
\max_{\{\rho_{D,t}(z)\}} \rho_{D,t}(z)y_{D,t}(z) - \frac{w_t}{Z_t} y_{D,t}(z). \] (76)

Using the demand function \(y_{D,t}(z) = \rho_{D,t}(z)^{-\theta} C_t \), price is equal to the marginal cost plus the markup:

\[
y_{D,t}(z) + \rho_{D,t}(z) \frac{\partial y_{D,t}(z)}{\partial \rho_{D,t}(z)} - \frac{w_t}{Z_t} \frac{\partial y_{D,t}(z)}{\partial \rho_{D,t}(z)} = 0 \Rightarrow \rho_{D,t}(z) = \frac{\theta}{\theta - 1} \frac{w_t}{Z_t}. \] (77)

Northern firms producing offshore The firm with idiosyncratic labor productivity \(z \) that produces final goods using a mix of domestic and offshore inputs solves the following profit maximizing problem:\(^{45}\)

\[
\max_{\{\rho_{V,t}\}} \rho_{V,t}(z)y_{V,t}(z) - \left(\frac{w_t}{Z_t} \right)^\alpha \left(\frac{w_t^* Q_t}{Z_t^* z} \right)^{1-\alpha} y_{D,t}(z) - f_V \left(\frac{w_t}{Z_t} \right)^\alpha \left(\frac{w_t^* Q_t}{Z_t^* z} \right)^{1-\alpha}. \] (78)

\(^{45}\)The cost minimization problem in the broader framework of offshoring, \(\min_{\{l_i^t, l_i^t\}} w_t l_i + \tau w_t^* Q_t l_i^t \) so that \(y_{V,t}(z) = \left[\frac{\tau z_i^t l_i^t}{\alpha} \right]^\alpha \left[\frac{\tau z_i^t l_i^t}{\alpha} \right]^{1-\alpha}, \) leads to the following expression for the marginal cost: \(MC_t = \left(\frac{w_t}{Z_t} \right)^\alpha \left(\frac{\tau w_t^* Q_t}{Z_t^* z} \right)^{1-\alpha}. \)
Using the demand function \(y_{V,t}(z) = \rho_{V,t}(z)^{-\theta}C_t \), the resulting price formula is:

\[
\rho_{V,t}(z) = \frac{\theta}{\theta - 1} \left(\frac{w_t}{Z_t z} \right)^\alpha \left(\frac{\tau^* w_t Q_t}{Z_t^* z} \right)^{1-\alpha}.
\]

(79)

Firms serving the foreign market The pricing formulas for firms originating in the North and the South, each serving the foreign market through either exports (\(\eta = \eta^* = 1 \)) or horizontal FDI (\(\eta = \eta^* = 0 \)), are obtained in a similar way:

\[
\rho_{H,t}(z) = \frac{\theta}{\theta - 1} \left(\frac{\tau^* w_t Q_t^{-1}}{Z_t z} \right)^{\eta} \left(\frac{w_t^*}{Z_t^* z} \right)^{1-\eta} \quad \text{and} \quad \rho_{H,t}^*(z) = \frac{\theta}{\theta - 1} \left(\frac{\tau^* w_t^* Q_t^*}{Z_t^* z} \right)^{\eta^*} \left(\frac{w_t^*}{Z_t^* z} \right)^{1-\eta^*}.
\]

(80)

A.9 Existence of Equilibrium for the Offshoring Productivity Cutoff

As discussed in the text, two conditions must hold every period in order to ensure existence of the equilibrium productivity cutoff \(z_{V,t} \): (1) \(d_{V,t}(z) \) must be steeper than \(d_{D,t}(z) \); and (2) \(z_{\text{min}} < z_{V,t} \).

The first condition implies that the effective wage in the South must be low enough relative to the effective wage in the North (\(TOL_t < 1 \)), so that the more productive Northern firms find it profitable to relocate production offshore despite the iceberg trade cost (\(\tau > 1 \)):

\[
\frac{\tau^* w_t Q_t}{Z_t^* z} < \frac{w_t}{Z_t z} \iff \tau TOL_t < 1.
\]

(81)

The second condition, \(z_{\text{min}} < z_{V,t} \), requires that:

\[
\text{Slope}(d_{V,t}(z)) < \frac{\Theta f_{E W_t} + f_{V} w_t^* Q_t}{z_{\text{min}}^{\theta - 1}},
\]

\[
z_{\text{min}}^{\theta - 1} \left(\frac{\theta}{\theta - 1} \right) \frac{w_t}{Z_t} \left(\frac{\tau^* w_t Q_t}{Z_t^* z} \right)^{1-\theta} C_t < \Theta f_{E W_t} Z_t + f_{V} w_t^* Q_t Z_t,
\]

\[
1 \left(\frac{\theta}{\theta - 1} \right) \frac{w_t}{Z_t z_{\text{min}}} \left(\frac{\tau^* w_t Q_t}{Z_t^* z} \right)^{1-\theta} C_t < \Theta f_{E W_t} Z_t + f_{V} w_t^* Q_t Z_t,
\]

\[
d_{D,t}(z_{\text{min}}) < \Theta f_{E W_t} Z_t + f_{V} w_t^* Q_t Z_t.
\]

(82)

where \(\Theta = \frac{1-\beta(1-\delta)}{\beta(1-\delta)} \). The last inequality shows that the profit obtained by the firm with the minimum productivity \(z_{\text{min}} \) from domestic production must be smaller than the sum of the per-period value of the sunk entry cost and the fixed cost of offshoring.
A.10 Average Firm-Specific Productivity Levels under the Pareto Distribution

Northern firms producing offshore

\[
\bar{z}_{V,t} = \left[\frac{1}{1 - G(z_{V,t})} \int_{z_{V,t}}^{\infty} z^{\theta - 1} g(z) dz \right]^{\frac{1}{\theta - 1}} = \\
= \left[\frac{z_{V,t}}{z_{\min}} \int_{z_{V,t}}^{\infty} z^{\theta - 1 k z_{\min}^{k}}^{\theta - 1 k z_{\min}^{k} + 1} dz \right]^{\frac{1}{\theta - 1}} = \\
= \left[\frac{z_{V,t}}{z_{\min}} k k z_{\min}^{k} \int_{z_{V,t}}^{\infty} z^{\theta - 1 k z_{\min}^{k} - 1} dz \right]^{\frac{1}{\theta - 1}} = \\
= \nu z_{V,t},
\]

where \(\nu \equiv \left[\frac{k}{k - (\theta - 1)} \right]^{\frac{1}{\theta - 1}} \).

Northern firms producing domestically

\[
\bar{z}_{D,t} = \left[\frac{1}{G(z_{V,t})} \int_{z_{\min}}^{z_{V,t}} z^{\theta - 1} g(z) dz \right]^{\frac{1}{\theta - 1}} = \\
= \left[\frac{z_{V,t}}{z_{\min}} \int_{z_{V,t}}^{\infty} z^{\theta - 1 k z_{\min}^{k}}^{\theta - 1 k z_{\min}^{k} + 1} dz \right]^{\frac{1}{\theta - 1}} = \\
= \left[\frac{z_{V,t}}{z_{\min}} k k z_{\min}^{k} \int_{z_{V,t}}^{\infty} z^{\theta - 1 k z_{\min}^{k} - 1} dz \right]^{\frac{1}{\theta - 1}} = \\
= \nu \left[\frac{(z_{\min} z_{V,t})^{k}}{z_{\min}^{k} - z_{V,t}^{k}} \left(\frac{1}{z_{V,t}^{k - (\theta - 1)}} - \frac{1}{z_{\min}^{k - (\theta - 1)}} \right) \right]^{\frac{1}{\theta - 1}} = \\
= \nu z_{\min} z_{V,t} \left[\frac{k - (\theta - 1)}{z_{V,t}^{k} - z_{\min}^{k}} \right]^{\frac{1}{\theta - 1}}. \quad (84)
\]
A.11 Average Profits: Domestic and Offshore Production

The average profit of the Northern firms producing domestically is:

\[
\dd_d(t) = d_d(t;\bar{z}_d) = \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t z_d} \right]^{1-\theta} C_t = \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t} \right]^{1-\theta} C_t \bar{z}_d^{-1} = \\
= \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t} \right]^{1-\theta} C_t \left(\nu z_{\min} \bar{z}_{V,t} \right)^{\theta-1} \\
= \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t}{Z_t z_{V,t}} \right]^{1-\theta} C_t \left(\nu z_{\min} \right)^{\theta-1} \\
= d_d(t;\bar{z}_{V,t}) \left(\nu z_{\min} \right)^{\theta-1} \left[\frac{\bar{z}_{V,t}^{\theta-1} - \frac{z_{\min}}{z_{\min}}}{z_{\min}} \right]. \tag{85}
\]

The average profit of the Northern firms producing offshore through vertical FDI is:

\[
\dd_V(t) = d_V(t;\bar{z}_{V,t}) = \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t^* Q_t^*}{Z_t^* \bar{z}_{V,t}} \right]^{1-\theta} C_t - f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t^*}{Z_t^*} \right)^{1-\alpha} = \\
= \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t^* Q_t^*}{Z_t^*} \right]^{1-\theta} C_t \bar{z}_{V,t}^{\theta-1} - f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t^*}{Z_t^*} \right)^{1-\alpha} = \\
= \left\{ \frac{1}{\theta} \left[\frac{\theta}{\theta - 1} \frac{w_t^* Q_t^*}{Z_t^*} \right]^{1-\theta} C_t - f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t^*}{Z_t^*} \right)^{1-\alpha} \right\} \nu^{\theta-1} + \\
\left(\nu^{\theta-1} - 1 \right) f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t^*}{Z_t^*} \right)^{1-\alpha} = d_V(t;\bar{z}_{V,t}) \nu^{\theta-1} + \frac{\theta - 1}{k - (\theta - 1)} f_V \left(\frac{w_t}{Z_t} \right)^{\alpha} \left(\frac{w_t^* Q_t^*}{Z_t^*} \right)^{1-\alpha}. \tag{86}
\]

The Northern firm with productivity equal to the cutoff \(z_{V,t} \) is indifferent between locating production domestically or offshore. Thus, I use the equality of the corresponding profits at the productivity cutoff, i.e. \(d_d(t;\bar{z}_{V,t}) = d_V(t;\bar{z}_{V,t}) \), along with the expressions 85 and 86 above, to derive the link
between the two average profits as:

\[
\tilde{d}_{V,t} = \left(\frac{1}{\nu_{z_{\text{min}}}} \right)^{\theta-1} \left[\frac{k-(\theta-1) - \min_{k}}{z_{V,t} - \min_{k}} \right]^{-1} \tilde{d}_{D,t} \nu^{\theta-1} + \frac{\theta - 1}{k - (\theta - 1)} f_{V} \left(\frac{w_{t}}{Z_{t}} \right)^{\alpha} \left(\frac{w_{t}^{*} Q_{t}}{Z_{t}^{*}} \right)^{1-\alpha} = \\
= \frac{k}{k - (\theta - 1)} \left(\frac{z_{V,t}}{z_{D,t}} \right)^{\theta-1} \tilde{d}_{D,t} + \frac{\theta - 1}{k - (\theta - 1)} f_{V} \left(\frac{w_{t}}{Z_{t}} \right)^{\alpha} \left(\frac{w_{t}^{*} Q_{t}}{Z_{t}^{*}} \right)^{1-\alpha}.
\]

(87)

A.12 Real Exchange Rate

Using the definition \(\tilde{Q}_{t}^{1-\theta} = \left(\frac{N_{D,t} + N_{V,t} + N_{H,t}}{N_{D,t}^{*} + N_{V,t}^{*} + N_{H,t}^{*}} \right) Q_{t}^{1-\theta} \) and the notation \(\tilde{N}_{t} = N_{D,t} + N_{V,t} + N_{H,t}^{*}\), \(\tilde{N}_{t} = N_{D,t}^{*} + N_{H,t}^{*}\); I re-write the CPI-based real exchange rate as:

\[
\tilde{Q}_{t}^{1-\theta} = \frac{N_{D,t}^{*} \left(\tilde{P}_{D,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{D,t}^{*} \right)^{1-\theta} + N_{H,t}^{*} \left(\tilde{P}_{H,t}^{*} \tilde{P}_{t}^{*} \right)^{1-\theta}}{\tilde{N}_{t}^{*} \left(\tilde{P}_{D,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{D,t}^{*} \right)^{1-\theta} + N_{V,t} \left(\tilde{P}_{V,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{V,t}^{*} \right)^{1-\theta} + N_{H,t}^{*} \left(\tilde{P}_{H,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{H,t}^{*} \right)^{1-\theta}} = \\
= \frac{N_{D,t}^{*} \left(\tilde{P}_{D,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{D,t}^{*} \right)^{1-\theta} + N_{V,t} \left(\tilde{P}_{V,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{V,t}^{*} \right)^{1-\theta} + N_{H,t}^{*} \left(\tilde{P}_{H,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{H,t}^{*} \right)^{1-\theta}}{N_{D,t} \left(\tilde{P}_{D,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{D,t}^{*} \right)^{1-\theta} \tilde{z}_{D,t}^{*} + N_{V,t} \left(\tilde{P}_{V,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{V,t}^{*} \right)^{1-\theta} \tilde{z}_{V,t}^{*} + N_{H,t}^{*} \left(\tilde{P}_{H,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{H,t}^{*} \right)^{1-\theta} \tilde{z}_{H,t}^{*}} = \\
= \frac{N_{D,t} \left(\tilde{P}_{D,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{D,t}^{*} \right)^{1-\theta} + N_{V,t} \left(\tilde{P}_{V,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{V,t}^{*} \right)^{1-\theta} + N_{H,t}^{*} \left(\tilde{P}_{H,t}^{*} \tilde{P}_{t}^{*} \tilde{z}_{H,t}^{*} \right)^{1-\theta}}{N_{D,t} \tilde{z}_{D,t}^{*} + N_{V,t} \tilde{z}_{V,t}^{*} + N_{H,t}^{*} \tilde{z}_{H,t}^{*}}.
\]

(88)

In what follows I use the notation \(s_{D} = \tilde{N}_{t} \left(\tilde{z}_{D,t}^{*} \right)^{1-\theta} + N_{V,t} \left(\tilde{z}_{V,t}^{*} \right)^{1-\theta} \) to denote the steady-state share of spending in the North on goods produced by the Northern firms both domestically and offshore. Expression \(s_{V} = N_{V,t} \left(\tilde{z}_{V,t}^{*} \right)^{1-\theta} \) denotes the steady-state share of spending in the North on goods produced by the Northern firms offshore only. (Therefore, \(s_{V} < s_{D} \).) Expression \(s_{D}^{*} = \tilde{N}_{t} \left(\tilde{z}_{D,t}^{*} \right)^{1-\theta} \) denotes the steady-state share of spending in the South on goods produced by the Southern firms domestically. I also take into account the fact that the average productivity of the Southern firms producing domestically \(\tilde{z}_{D,t}^{*} \) is constant over time. Using all of the above, I log-linearize
the CPI-based real exchange rate:

\[
(1 - \theta)\hat{Q}_t = s_D^* \left[\hat{N}_{D,t}^* - \hat{N}_t^* + (1 - \theta) \hat{TOL}_t \right] + \\
+ (1 - s_D^*) \left[\hat{N}_{H,t} - \hat{N}_t + (1 - \theta) \left(\eta_t^* + (1 - \eta) \hat{TOL}_t - \hat{z}_{H,t} \right) \right] - \\
- (s_D - s_V) \left[\hat{N}_{D,t} - \hat{N}_t - (1 - \theta) \hat{z}_{D,t} \right] - \\
- s_V \left[\hat{N}_{V,t} - \hat{N}_t + (1 - \theta) \left((1 - \alpha) \hat{\tau}_t + \hat{TOL}_t - \hat{z}_{V,t} \right) \right] - \\
- (1 - s_D) \left[\hat{N}_{H,t}^* - \hat{N}_t + (1 - \theta) \left(\eta^* \left(\hat{\tau}_t + \hat{TOL}_t \right) - \hat{z}_{H,t}^* \right) \right]. \tag{89}
\]

Setting $\eta = \eta^* = 1$ so that my model of offshoring nests the model with endogenous exports in GM2005, (i.e. in addition to offshoring taking place from North to South, firms in each economy serve the foreign markets through exports), the log-linearized expression for the CPI-based real exchange rate becomes:

\[
\hat{Q}_t = [s_D - (1 - \alpha)s_V + s_D^* - 1] \hat{TOL}_t + \\
+ (s_D - s_V) \hat{z}_{D,t} + s_V \hat{z}_{V,t} - (1 - \alpha)s_V \hat{\tau}_t + \\
+ (1 - s_D) \left(\hat{z}_{H,t}^* - \hat{\tau}_t \right) - (1 - s_D^*) \left(\hat{z}_{H,t}^* - \hat{\tau}_t^* \right) + \\
\frac{1}{\theta - 1} \left(s_V - \frac{N_V}{N} \right) \left(\hat{N}_{V,t} - \hat{N}_{H,t}^* \right) + \\
\frac{1}{\theta - 1} \left[\left(\frac{N_D}{N^*} - s_D^* \right) \left(\hat{N}_{D,t}^* - \hat{N}_{H,t}^* \right) - \left(\frac{N_D}{N} - (s_D - s_V) \right) \left(\hat{N}_{D,t} - \hat{N}_{H,t}^* \right) \right]. \tag{90}
\]