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1 Introduction

The search for a partner—whether in business or in personal life—includes

both productive and strategic considerations: People seek productive part-

nerships that maximize their pay-offs, but also search strategically by con-

sidering the likelihood a potential partner will also be interested in them.

As a result, we observe that matching is not perfectly assortative nor purely

random.

In this paper we propose a model that endogenizes the degree of random-

ness in the search and matching process by formalizing the fact that when

looking for a match agents have two incentives: first, maximize their payoffs

(which we refer to as the productive motive), and second, maximize the odds

of forming a match (which we refer to as the strategic motive).

Our model can be empirically tested and we use it to rationalize observed

matching rates in the U.S. marriage market and estimate the underlying

match payoff function between males and females. We show that the tension

between the productive and the strategic motive drives a wedge between

the shape of sorting patterns and the shape of the underlying match payoff

function recovered by the model. This result has important implications for

empirical inference as it implies that one can derive the wrong conclusion

about the form of productive complementarities, and hence, the amount of

losses from mismatch in the marriage market by just looking at the matching

rate.

We build on the frictionless matching environment of Becker (1973) with

two-sided heterogeneity, and assume that even though both males and fe-

males know the distribution and their preferences over types of the other

side of the market, there is noise and they cannot locate potential partners

with certainty.
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Males and females can pay a search cost to locate prospective matches

more accurately, however accurately locating their best match is too costly

so agents do not target one person with certainty. Instead, each male and

female optimally chooses a discrete probability distribution over all types. An

element of this distribution reflects the likelihood with which they will target

each potential match, based on its expected pay-off. A more targeted search

(placing a higher probability on specific types) is costlier than choosing a

more spread out distribution across types because it implies a bigger search

effort and cost, but allows males and females to target their better matches

more accurately and guarantees a higher expected payoff.

Once each male and female select their optimal probability distribution,

they draw a match from that distribution. If the outcome of the draw is

reciprocated and is mutually beneficial, a match is formed and the output

of the match is split between the two parties. Because the search involves

balancing costs and benefits about prospective matches, agents will optimally

choose partially targeted strategies—they will not place a unit mass on a

particular potential partner—and some participants will remain unmatched.

Both the productive and the strategic motive are at play when choosing

the optimal distribution. The productive motive drives agents to target the

person that renders a higher payoff, while the strategic motive drives agents

to target the person that is more likely to be interested in them.

These two motives play a crucial role in shaping two theoretical predic-

tions of our model: (1) the uniqueness and inefficiency of the equilibrium;

(2) the implications for sorting patterns.

In terms of the uniqueness of the equilibrium, the strategic motive makes

the search strategies for both sides of the market complementary; both sides

will be more interested in someone who is more likely to be able to locate
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them (reciprocate their interest). The strength of these complementarities

is key for determining the uniqueness of the equilibrium.1 In the optimal

assignment model, complementarities between search strategies are strong

and lead to multiplicity of equilibria,2 whereas complementarities are absent

in random matching models. We show that an increase in the search cost

makes the search strategies of market participants less complementary and

eliminates the multiplicity of equilibria.

Whether the productive or the strategic motive dominates depends on the

search cost. When search costs are sufficiently high, the productive motive

dominates and there is always a positive probability for a low type to be

matched with a high type (because the low-type knows that the high-type

cannot locate another high-type with accuracy). In this case the equilibrium

that emerges is unique and of the mixing type, i.e., some high types match

with high types and some high types match with low types. If the costs

are below a certain threshold, the strategic motive dominates and there are

multiple equilibria that can deliver positive assortative matching, negative

assortative matching, or a mixing equilibrium.3

As a result, the equilibria of our model lie in between the random match-

ing outcome and the frictionless assignment outcome and encompass both

outcomes as limiting cases. In the extreme, if search costs tend to infinity,

then agents will choose not to incur the cost and the optimal strategy will

correspond to the random matching outcome. If search costs are zero, then

1The complementarities in our model are different from search externalities studied by
Diamond (1982); where an increase in the number of participants makes it easier for one
side of the market and more difficult for the other side to find a match. In our model, the
complementarity arises because if one person targets another, the other has an incentive
to reciprocate.

2Many models of directed search, e.g. Shimer (2005), introduce additional assumptions
in order to select one of those equilibria. The requirement of “stability” is another common
equilibrium selection strategy.

3Our taxonomy of equilibria in this case follows that of Burdett and Coles (1999).
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agents can locate their best match with certainty and the outcome is a fric-

tionless assignment. Furthermore, we show that the equilibria that emerge

from a positive and finite cost are inefficient relative to the constrained Pareto

allocation, although the outcomes are constrained efficient in both limiting

cases.

The intuition behind the inefficiency is as follows: When an agent decides

to pay a higher cost, she is choosing a more targeted strategy. This increases

the probability of ending up with a more productive match and lowers the

probability of being paired with a less productive one. Because of the com-

plementarities in our model, high types are more likely to assign a higher

probability in their distribution to other high types. Low types would then

assign a lower probability to this (high-type) participant in their distribution

and target someone else. Market participants are unable to fully internalize

this positive externality. Males and females fail to appropriate all social ben-

efits of their actions, and, as a result, the quantity and the quality of matches

are both inefficiently low.

The second theoretical prediction of our model is that the shape of the

payoff function determines whether the productive and the strategic mo-

tives are aligned or lead in different directions. Furthermore, the correlation

between the shape of the equilibrium matching rate and the shape of the un-

derlying payoff function depends on whether these motives co-move or clash.

If the payoff function exhibits relative advantage,4 the productive motive

points all agents in different directions and the strategic motive ensures that

the agent that renders the higher payoff is also more likely to reciprocate

(because there is no competition for the same agent). Hence, the resulting

4We say that the payoff exhibits relative advantage when (1) a high-type female is
better off with a high-type male and a low-type female is better off with a low-type male
and vice versa or (2) more generally when for each type on one side the best option on
the other side is different.

4



correlation between the matching rate and the underlying payoff function

is high. However, if the payoff function exhibits absolute advantage,5 the

productive motive points all agents in the same direction, and the strategic

motive tends to coordinate agents’ to place a higher probability on those

whom their competitors are less likely to consider (to improve the odds of

forming a match). Hence, the resulting correlation between the matching

rate and the underlying payoff function can be low.

To show the empirical relevance of this result, we take our model to the

data. We use a standard dataset for matching in the U.S. marriage market,

and construct matching rates based on income, age, and education sepa-

rately. Our theory is testable in the sense that it places certain restrictions

on equilibrium outcomes which may or may not be rejected by the data. We

provide a simple example showing that there exist matching rates that can-

not be explained by our model. Nevertheless, we find that the model does

a very good job rationalizing the observed marriage matching rates based

on income, age, and education, and for these three cases we estimate the

underlying payoffs implied by our model.

We find that the payoffs based on income and age exhibit absolute ad-

vantage and that the payoff based on education exhibits both relative and

absolute advantage. For income, this means that marrying someone with

higher income is always better. For age, this means that females have a

strong preference for older males independent of their own age, while males

are virtually indifferent about the age of their spouse. For education, people

with low levels of education and people with high levels of education prefer

someone with their same level of education, generating a region of relative

advantage. However, people with a medium level of education tend to prefer

5We say that the payoff exhibits absolute advantage if there is a single type on each
side of the market that is preferred by everyone.
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highly educated people, generating a region with absolute advantage.

The correlation between the three observed matching rates and the re-

covered payoff functions ranges from 0.4 to 0.7. This means that strategic

considerations uncovered by endogenizing randomness can drive a significant

wedge between the shape of the observed sorting pattern and the shape of

the underlying payoff function. Ignoring these considerations may result in

misleading implications about the degree of mismatch present in the market

and hence about the size of the losses associated with it.

Our paper effectively blends two approaches to introducing randomness

used in the empirical literature. The first approach introduces search frictions

by assuming that it takes time to find a match, as in Shimer and Smith (2000).

The second approach introduces unobserved characteristics as a tractable way

of accounting for the deviations of the data from the stark predictions of the

frictionless model, as in Choo and Siow (2006) and Galichon and Salanie

(2012).

We build on the discrete choice rational inattention literature—i.e., Chere-

mukhin, Popova, and Tutino (2015) and Matejka and McKay (2015)—that

endogenizes the multinomial logit discrete choice model by introducing cogni-

tive constraints that capture limits to processing information. Consequently,

the equilibrium matching rates in our model have a multinomial logit form

similar to that in Galichon and Salanie (2012). Unlike Galichon and Salanie,

the equilibrium of our model predicts strong interaction between distribu-

tions of randomness in matching that is driven entirely by conscious strategic

choices of agents, rather than by some unobserved characteristics with fixed

distributions.

The search and matching literature has models like Menzio (2007) and

Lester (2010) that nest directed search and random matching to generate
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outcomes with an intermediate degree of randomness. Our paper contributes

to the literature by providing a theory that produces equilibrium outcomes

featuring endogenous randomness in between random matching and the fric-

tionless assignment, without nesting these two frameworks.

Finally, the paper contributes to the literature on directed search and co-

ordination frictions, as in Eeckhout and Kircher (2010) and Shimer (2005).6

The directed search paradigm generally predicts socially efficient and assor-

tative equilibrium outcomes. In contrast, our targeted search model does not

appear to possess a market mechanism that can implement the constrained

efficient allocation, nor does it guarantee assortativeness.

The paper proceeds as follows: Section 2 describes the model and derives

the theoretical predictions. In Section 3 we take the model to the U.S.

marriage market data. Section 4 states some final remarks.

2 The Model

In this section, we present a model that endogenizes the degree of randomness

in matching. We build on the frictionless matching environment of Becker

(1973), males and females are heterogeneous in their type and all are search-

ing for a match. Both males and females know the distribution and their

preferences over types on the other side of the market, but there is noise—

agents cannot locate potential partners with certainty—and they can pay a

search cost to help locate them more accurately.

Agents face a search cost and choose search effort by choosing an optimal

probability distribution over types. This distribution reflects the likelihood

of locating a particular agent. A more targeted search, or a probability

distribution that is more concentrated on a particular group of agents implies

6See Chade, Eeckhout and Smith (2016) for a neat summary of this literature.
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a higher cost as it means that the agent is exerting more search effort to locate

a potential match of a certain type. As agents optimally choose how targeted

their search strategy is by choosing a probability distribution, the degree of

randomness in matching is endogenous. When they play a more targeted

strategy, the degree of randomness goes down.

The probability distribution needs to satisfy two properties: 1) By the

nature of the choice between a finite number of options, the distribution

must be discrete; and 2) for strategic motives to play a role, agents should

be able to vary each element of the distribution and consider small devia-

tions of each element in response to changes in the properties of the options.

Hence, this probability distribution cannot be confined to a specific family

of distributions.

The choice of functions in economics that satisfy these requirements is

very limited. We use the Kullback-Leibler divergence (relative entropy) as the

measure of search effort. This specification accommodates both full choice of

a distribution and a discrete choice problem. In addition, it turns out that,

in our specific case of a choice among discrete options, this specification

enhances tractability and leads to closed-form solutions. Specifically, the

solution has the form of a multinomial logit that is well understood and

already widely used in empirical studies of discrete choice environments.

After choosing their optimal probability distribution over types, both

males and females make a draw from their distribution. If the draw is recip-

rocated, a match is formed if it is mutually beneficial and the output from

the match is split between the two parties. As the search involves balancing

the costs and benefits of prospective matches, some participants will not find

partners immediately.
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2.1 The environment

There are F females indexed by x ∈ {1, ..., F} and M males indexed by

y ∈ {1, ...,M}. Both males and females are heterogeneous in types and

are actively searching for a match. A match between female x and male y

generates a payoff Φxy.
7 If a male and a female match, the payoff is split

between them. We normalize the outside option of both to zero. We denote

the share of the payoff appropriated by the female εxy and the share of the

payoff appropriated by the male ηxy such that Φxy = εxy + ηxy.
8 The payoff

and the split generated by any potential (x, y) match are known ex-ante to

female x and male y.

Each female chooses a discrete probability distribution, px (y), which re-

flects the probability with which female x will target male y (seek him out).

Each female x rationally chooses her strategy (i.e. the probability of target-

ing a male y) while facing a trade-off between a higher payoff and a higher

cost of searching. Likewise we denote the strategy of a male qy (x). It rep-

resents the probability of a male y targeting a female x. Each agent can

vary and choose each element of their distribution. Placing a higher mass

on any particular potential match, implies that the agent choosing the dis-

tribution has exerted more search effort, will target a potential partner more

accurately and hence, will have a higher probability of matching with them.

A female’s total cost of searching is given by cx (κx(px(y))). This cost is

a function of the search effort, κx, and hence of the probability distribution,

px(y), chosen by female x. Likewise, we denote a male’s cost of searching by

cy (κy(qy(x))), where the cost is a function of the search effort, κy, and hence

of the probability distribution, qy(x), chosen by male y.

7Note that we do not place any restrictions on the payoff function.
8Given that our aim is to understand the implications of having endogenous random-

ness, we focus on the simplest model and assume fixed payoff shares.
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Figure 1 illustrates the strategies of males and females. Consider a female

x = 1. The solid arrows show how she assigns a probability of targeting each

male p1 (y). Similarly, dashed arrows show the probability that a male y = 1

assigns to targeting a female q1 (x). Once these are selected, each male and

female will make one draw from their respective distribution to determine

which individual they will actually target. A match is formed between male

y and female x if and only if: 1) according to the female’s draw of y from

px (y), female x targets male y; 2) according to the male’s draw of x from

qy (x), male y also targets female x; and 3) their payoffs are non-negative.

Figure 1. Strategies of males and females

Since negative payoffs lead to de facto zero payoffs due to the absence of

a match, we can assume that all payoffs are non-negative:

Φxy ≥ 0, εxy ≥ 0, ηxy ≥ 0.

Each female x chooses a strategy px (y) to maximize her expected net

payoff:

Yx = max
px(y)

M∑
y=1

εxyqy (x) px (y)− cx (κx (px (y))) .
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The female gets her expected return from a match with male y minus

the cost of searching. The probability of a match between female x and

male y is given by the product of the distributions qy (x) px (y). Note that in

equilibrium the matching rate that female x faces from male y equals male y’s

strategy qy (x) . As matching rates are equilibrium objects, they are assumed

to be common knowledge to participating parties.

The cost function is given by cx (κx) = θxκx, where θx is the search cost.

Here, we are using the linear case for simplicity, but all of our proofs will

hold for more general cost functions. As mentioned earlier, κx reflects search

effort and needs to accommodate the full choice of a discrete distribution

and attach a cost to it. One function that satisfies these requirements is the

following:9

κx =
M∑
y=1

px (y) ln
px (y)

1/M
, (1)

where px (y) must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all y.

Note that, κx, is increasing in the distance between a uniform distribution

{1/M} over males and the strategy, px (y). If an agent does not want to exert

any search effort, she can choose a uniform distribution px (y) = 1
M

over

types, the cost of search is zero, and her search is random. As she chooses

a more targeted strategy the distance between the uniform distribution ( 1
M
)

and her search strategy px(y) is greater, increasing κx and the overall cost

of searching, and her search will be less random. By increasing search effort

agents bring down uncertainty about the location of a prospective match,

9In the model of information frictions used in the rational inattention literature, κx,
would represent the relative entropy between a uniform prior {1/M} over males and the
posterior strategy, px (y). This definition is a special case of Shannon’s channel capacity
where information structure is the only choice variable (See Thomas and Cover (1991),
Chapter 2).
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which allows them to target their better matches more accurately.

Similarly, male y chooses his strategy qy (x) to maximize his expected

payoff:

Yy = max
qy(x)

F∑
x=1

ηxypx (y) qy (x)− cy (κy (qy (x))) ,

where

κy =
F∑

x=1

qy (x) ln
qy (x)

1/F
, (2)

and qy (x) must satisfy
F∑

x=1

qy (x) = 1 and qy (x) ≥ 0 for all x.

2.2 Matching Equilibrium

Definition 1. A matching equilibrium is a set of strategies of females,

{px (y)}Fx=1, and males, {qy (x)}My=1, that simultaneously solve problems of

males and females.

Theorem 1. A matching equilibrium exists.

Proof. Note that since the strategies are discrete, this is a normal-form game.

The equilibrium of the matching model can be interpreted as a Nash equi-

librium of this game. The set of distributions mapping compact sets into

compact sets is a lattice under the natural ordering. Hence, all the results

for lattices described by Vives (1990) apply to it. Since cross-derivatives

of objective functions in our case are all non-negative, this game is super-

modular. Hence, there exists a Nash equilibrium.

Theorem 2. The matching equilibrium is unique if

a) cost functions are non-decreasing and convex;

b) ∂cx(κx)
∂κx

∣∣∣
p∗x(y)

= θx > εxyp
∗
x (y);

c) ∂cy(κy)

∂κy

∣∣∣
q∗y(x)

= θy > ηxyq
∗
y (x).
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Proof. The payoffs of all males and females are continuous in their strategies.

They are also concave in these strategies when cost functions are (weakly)

increasing and convex in κ. “Diagonal dominance” conditions (b) and (c)

guarantee that the Hessian of the game is negative definite along the equilib-

rium path. Then, by the generalized Poincare-Hopf index theorem of Simsek,

Ozdaglar, and Acemoglu (2007), the equilibrium is unique.

Note that the assumptions we make to prove uniqueness are by no means

restrictive. The assumption that cost functions are non-decreasing and con-

vex is a natural one. The additional “diagonal dominance” conditions in our

case can be interpreted as implying that the search cost of reducing noise

should be sufficiently high for the equilibrium to be unique. If these condi-

tions do not hold, then there can be multiple equilibria. This is a well-known

outcome of the assignment model, which is a special case of our model under

zero search costs. In a frictionless environment, the multiplicity of equilibria

is eliminated by requiring that the matching be “stable”, i.e., that there is no

profitable pairwise deviation. In our framework, ensuring “stability” would

require that all males know the location of all females to be able to check all

pairwise deviations. Since locating agents is very costly in our model, the

equilibrium outcome generically does not satisfy “stability.”

The result of Theorem 2 is intuitive. Recall that there are two motives

for female x to target male y. The productive and the strategic motive. The

payoff of a female depends on the product of the portion she appropriates

from the output of the match and the probability of reciprocation. While her

portion of the split does not depend on equilibrium strategies, the strategic

motive does. When the search cost, θx, is very low, females (and males) are

able to place a high probability of targeting one counterparty and exclude all

others. As a result, when θx is extremely low, the strategic motive dominates.
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It does not matter what portion of the payoff female x will get from a match

with male y if the male chooses not to consider female x. When the strategic

motive dominates, multiplicity of equilibria is a natural outcome. In the

extreme, any pairing of agents is an equilibrium since no one has an incentive

to deviate from any mutual reciprocation.

As θx and θy increase, probability distributions become less precise, as

it is increasingly costly to target a particular counterparty. That is, the

search costs dampen the strategic motive and the productive motive plays a

bigger role. At some threshold level of θ each agent will be exactly indifferent

between following the strategic motive and seeking a better match. This level

of costs is precisely characterized by the “diagonal dominance” conditions of

Theorem 2. Agents require the strategic motive, characterized by the off-

diagonal element of the Hessian of the game, to be lower than the productive

motive, captured by the diagonal element. Above the threshold the unique

equilibrium has the property that each agent places a higher probability on

the counterparty that promises a higher payoff, i.e., the productive motive

dominates.

When cost functions are non-decreasing and convex, it is easy to verify

that first-order conditions are necessary and sufficient conditions for equi-

librium. Rearranging the first-order conditions for males and females, we

obtain

p∗x (y) = exp

(
εxyq

∗
y (x)

θx

)
/

F∑
f ′=1

exp

(
εxy′q

∗
y′ (x)

θx

)
,

q∗y (x) = exp

(
ηxyp

∗
x (y)

θy

)
/

M∑
m′=1

exp

(
ηx′yp

∗
x′ (y)

θy

)
. (3)

These necessary and sufficient conditions for equilibrium cast the optimal

strategy of female x and male y in the form of a best response to optimal

strategies of males and females, respectively.
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Equilibrium conditions (3) have an intuitive interpretation. They predict

that the higher the female’s private gain from matching with a male, the

higher the probability of targeting that male. Similarly, the higher the prob-

ability that a male targets a particular female, the higher the probability that

that female targets that male. Overall, females target males that promise

higher expected private gains by placing higher probabilities on those males.

Males are naturally sorted in each female’s strategy by the probability of the

female targeting each male. The strategies of males have the same properties

due to the symmetry of the problem.

In equilibrium, a male’s strategy is the best response to the strategies

of females, and a female’s strategy is the best response to the strategies of

males. Theorem 2 predicts that an increase in θ reduces the complementar-

ities between search strategies of females and males. Once θ is sufficiently

high, the intersection of best responses leads to a unique equilibrium. Note

that, by the nature of the index theorem used in the proof of uniqueness, it is

enough to check diagonal dominance conditions locally in the neighborhood

of the equilibrium. There is no requirement for them to hold globally. This

suggests a simple way of finding equilibria of our model in most interesting

cases. We first need to find one solution to the first-order conditions (3) and

then check that diagonal dominance conditions are satisfied.

Now, consider the properties of equilibria for two limiting cases. First, as

the search costs go to zero, targeting strategies become more and more pre-

cise. In the limit, in every equilibrium each female places a unit probability

on a particular male, and that male responds with a unit probability of con-

sidering that female. Each equilibrium of this kind implements a matching

of the classical assignment problem (not all of them are stable).

Second, in the opposite case when search costs go to infinity, optimal
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strategies of males and females approach a uniform distribution. This unique

equilibrium implements the standard uniform random matching assumption

extensively used in the literature. Thus, the assignment model and the ran-

dom matching model are special cases of our targeted search model, when θ

is either very low or very high.

2.3 Efficiency

To evaluate the efficiency of the equilibrium, we compare the solution of

the decentralized problem to a social planner’s solution. We assume that

the social planner maximizes the total payoff, which is a utilitarian welfare

function. To achieve a social optimum, the planner can choose the strategies

of males and females. If there were no search costs, the planner would always

choose to match each male with the female that produces the highest output.

The socially optimal strategies of males would be infinitely precise.

To study the constrained efficient allocation we impose on the social plan-

ner the same costs of search that we place on males and females. Thus, the

social planner maximizes the following welfare function:

W = max
px(y),qy(x)

F∑
x=1

M∑
y=1

Φxypx (y) qy (x)−
F∑

x=1

cx (κx (px (y)))−
M∑
y=1

cy (κy (qy (x)))

subject to (1-2) and to the constraints that px (y) and qy (x) are well-defined

probability distributions.

Under the assumption of increasing and convex cost functions, the social

welfare function is concave in the strategies of males and females. Hence,

first-order conditions are necessary and sufficient conditions for a maximum.

Rearranging and substituting out Lagrange multipliers, we arrive at the fol-

lowing characterization of the social planner’s allocation:
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pox (y) = exp

(
Φxyq

o
y (x)

θx

)
/

F∑
f ′=1

exp

(
Φxy′q

o
y′ (x)

θx

)
,

qoy (x) = exp

(
Φxyp

o
x (y)

θy

)
/

M∑
m′=1

exp

(
Φx′yp

o
x′ (y)

θy

)
. (4)

The structure of the social planner’s solution is very similar to the struc-

ture of the decentralized equilibrium given by (3). From a female’s perspec-

tive, the only difference between the two strategies is that the probability of

targeting a male depends on the social gain from a match rather than on her

private gain. Notice that the same difference holds from the perspective of a

male. Thus, it is socially optimal for both females and males to consider the

total payoff, while in the decentralized equilibrium they consider only their

private payoffs.

This result is reminiscent of goods with positive externalities where the

producer undersupplies the good if she is not fully compensated by the

marginal social benefits that an additional unit of the good would provide to

society. In our model, additional search effort exerted by an individual male

or female has a positive externality on the whole matching market.

For instance, when a male chooses to increase his search effort, he can

better locate his preferable matches. As a consequence, the females he targets

will benefit (through an increase in the personal matching rate) and the

females he does not target will also be better off as his more targeted strategy

will help them exclude him from their search (through a decrease in the

personal matching rate). Nevertheless, in this environment agents can not

appropriate all the social benefits (the output of a match) they provide to

society when increasing their search effort. They only get a fraction of the

payoff. This failure of the market to fully compensate both females and males
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with their social marginal products leads to under-supply of search effort by

both sides in the decentralized equilibrium.

Because the social gain is always the sum of private gains, there is no fea-

sible way of splitting the payoff such that it implements the social optimum.

When θ is finite and positive, a socially optimal equilibrium has to satisfy

the following conditions simultaneously:

εxy = Φxy, ηxy = Φxy.

In the presence of heterogeneity, these optimality conditions can hold in

equilibrium only if the total payoff is zero, as private gains have to add up

to the total payoff, εxy + ηxy = Φxy. Therefore, we have just proven the

following theorem:

Theorem 3. The matching equilibrium is socially inefficient for any split of

the payoff if all of the following hold:

1) cost functions are increasing and convex;

2) Φxy > 0 for some (x, y);

3) Φxy �= Φxy′ for some x, y and y′;

4) Φxy �= Φx′y for some y, x and x′;

5) 0 < ∂cx(κx)
∂κx

∣∣∣
p∗x

= θx < ∞;

6) 0 < ∂cy(κy)

∂κy

∣∣∣
q∗y

= θy < ∞.

Proof. See Appendix A.

The first two conditions are self-explanatory; the case when all poten-

tial matches yield zero payoffs is a trivial case of no gains from matching.

Conditions 5 and 6 state that marginal costs of reducing noise have to be

finite and positive in the neighborhood of the equilibrium. When θ is zero,

the best equilibrium of the assignment model is socially optimal. When θ
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is very high, the random matching outcome is the best possible outcome.

For all intermediate values of marginal costs, the decentralized equilibrium

is socially inefficient.

Conditions 3 and 4 together require heterogeneity to be two-sided. If

heterogeneity is one-sided, i.e. condition 3 or condition 4 is violated, then

the allocation of intentions towards the homogeneous side of the market will

be uniform. In this case, search becomes one-sided and equilibrium alloca-

tions are efficient contingent on the actively searching side appropriating 100

percent of the payoff.10

One notable property of the equilibrium is that, by considering only frac-

tions of the total payoff when choosing their strategies, males and females

place lower probabilities on pursuing their best matches. This implies that

in equilibrium, probability distributions of males and females are more dis-

persed and the number of matches is lower than is socially optimal.

Another way of thinking about the inefficient quantity of matches is to

consider the reduction in strategic complementarities. To illustrate these

complementarities consider the case of a female who chooses her strategy

under the assumption that all males implement socially optimal strategies.

Because a female considers only her private gains from matching with a

male, the female’s optimal response would be to target less accurately the

best males than is socially optimal. In a second step, taking as given these

strategies of females, males will be discouraged to reduce noise further, not

only by the fact that they appropriate fractions of the total gains from a

match, but also by the fact that females do not choose strategies that are as

targeted as is socially optimal. These complementary disincentives will lower

the probabilities of males pursuing their best match. Iterating in this way on

10See Appendix B for a version of the model with one-sided heterogeneity.
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strategies of males and females, at each step the probability of targeting the

best matches decreases. As a result, agents will target their better matches

instead of the best possible matches.

The inefficiency that arises in the two-sided model can in principle be

corrected by a central planner. This can be done by promising both males

and females that they will receive the entire payoff of each match and then

by collecting lump-sum taxes from both sides of the market to cover the costs

of the program. Nevertheless, to do so, the planner himself would need to

acquire extensive knowledge about the distribution of the payoffs, which is

costly. We leave this point for future research.

2.4 Implications for Sorting

To better understand the effect of the productive and strategic motives, it

is useful to consider simple examples of payoffs to understand the relative

importance of these motives for equilibrium matching rates. Let us consider

a matching market where there are just two males and two females, with

types labeled, high (H) and low (L). Let us also consider two specific cases

of the form of the payoff function.

Case one: The high type female is better off with a high type male, and

the low type female is better off with a low type male. The same property

is true for males. We shall generally refer to a payoff function where for

each type the best option on the other side is different - as the case of

relative advantage. Case two: Both females prefer the high type male, and

both males prefer the high type female. We shall generally refer to a payoff

for which everyone’s best option is the same type as the case of absolute

advantage.

In the case of relative advantage, the strategic and the productive motives
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are aligned. The productive motive points all agents in different directions,

and the strategic motive ensures that the same agent that implies a higher

payoff is also the one that is more likely to reciprocate (because agents have no

incentive to compete for the same match). However, in the case of absolute

advantage, the productive motive points all agents in the same direction,

while the strategic motive tends to coordinate agents on paying attention to

those whom their competitors are less likely to consider, to maximize the

odds of finding a match. Thus, there is a conflict between the two motives

as they pull intentions in different directions.

If the payoff function exhibits relative advantage, and the search costs

are low enough, our model can have two different equilibrium patterns. The

first pattern is when the high type is more likely to target the high type and

the low type to target the low type (HH, LL). This is the case of positive

assortative matching (PAM). The second pattern is when the high type is

more likely to target a low type, because the low type is more likely to recip-

rocate (HL, LH). This is the case of negative assortative matching (NAM).

However, if search costs are high, only the PAM equilibrium survives because

the productive motive dominates.

If the payoff function exhibits absolute advantage, and search costs are low

enough, in addition to the PAM and NAM equilibria that we described above,

there is a third equilibrium pattern, which we call a mixing equilibrium. In

the mixing equilibrium, both females target the high type male, and both

males target the high type female. Moreover, for high enough search costs,

the unique equilibrium has the mixing pattern, while the PAM and NAM

equilibria disappear. These patterns are illustrated in Figure 1.

This last result is in stark contrast with the literature on optimal assign-

ment, which predicts a PAM equilibrium as the only stable outcome. The
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prediction of the assignment model is driven by the strategic motive. If search

costs are low, the high types look at only each other, so it makes no sense for

the low types to target the high types as, despite a higher potential payoff,

the chance their interest will be reciprocated is zero. However, when search

costs are high enough, the strategic motive is dampened to the extent that

the productive motive starts to play a dominant role. The productive motive

instructs people to place a higher probability on the type that promises a

higher payoff. Hence, the unique mixing equilibrium.

PAM NAM Mixing

Figure 1: Three types of equilibria and their sorting patterns
Note: We show by an arrow the direction in which each agent places the highest probability.

This basic intuition has important implications for empirical inference. If

the productive and strategic motives are perfectly aligned, as they are in the

relative advantage case, then the shape of the equilibrium matching pattern

looks very similar to the shape of the payoff function. Indeed, agents will

always place the highest probability on the types that give the highest payoff

and we shall see a larger number of matches between those pairs of types. The

presence of a conflict between these motives, as in the absolute advantage

case, drives a wedge between the shape of the payoff and the shape of the

matching rates. On the one hand, you should still see more matches between
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pairs of types that are more productive. On the other hand, there is a large

number of competing agents that would be able to compensate for the lower

payoff by a higher probability of reciprocation. The main consequence of this

result is that when the payoff function is such that the two motives are in

conflict, the pattern of who marries whom may differ substantially from the

pattern of who would be better off with whom.

To quantify this difference, we run a set of Monte Carlo simulations and

compute the correlation between the equilibrium matching rate and the un-

derlying payoff function. For the Monte Carlo simulations, we assume three

males and three females and draw each element of the 3-by-3 payoff ma-

trix from a uniform distribution. We make 25,000 draws. We then find all

equilibria and corresponding matching rates for each draw of the payoff func-

tion. We discard all the payoffs that produce multiple equilibria. For the

draws that have a unique equilibrium, we compute the correlation between

the matrix of equilibrium matching rates and the payoff matrix. In Figure 2

we show the probability density functions of correlations for three classes of

payoff functions: those exhibiting absolute advantage, relative advantage, or

no clear advantage pattern.
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Figure 2: Correlation of Matching rate and Payoff

We find that, indeed, in the case of absolute advantage the correlation is

significantly lower than that in the case of relative advantage. The interme-

diate shapes of payoff generate intermediate values of the correlation. Thus,

when our model is the true data-generating process, the conflict between the

productive and strategic motive could drive a substantial wedge between the

shape of the underlying payoff function and the shape of the matching rate.

Consequently, the empirical researcher could easily arrive at wrong conclu-

sions about the shape of the underlying payoff by simply looking at the shape

of the matching rates. As we shall discuss at the end of the empirical section,

this is indeed what workhorse models of the marriage market do.
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To put this result in context, we note that both random matching models

a la Shimer and Smith (2000), and directed search models a la Eeckhout and

Kircher (2010) can produce a substantial wedge between the shape of the

payoff function and the shape of the matching rates. In the case of random

matching the distribution is uniform, while in the case of directed search

matching is fully assortative. Matching patterns in both of these cases are

accommodated by our model under extreme (very high or very low) values

of search costs. Our model also spans the continuum of matching patterns

in between these two extremes.

To show that the wedge between the matching pattern and the payoff

function is indeed present in the data and empirically relevant, in the em-

pirical section, we explore three prominent examples of matching patterns

in the marriage market. We show that, when viewed through the lens of

our model, they exhibit absolute advantage or a combination of absolute and

relative advantage. Also, we observe a substantial wedge between the shape

of the underlying payoff function and the matching rate.

2.5 Invertibility

Our model builds on the interaction of strategic motives of agents and is hence

more complicated computationally than leading examples in the literature.

This fact has both bonuses and drawbacks. We find that in our model the

mapping between the payoff and the matching rate is not invertible. By that

we mean that there exist matching rate patterns that cannot in principle be

generated by our model. Also, we cannot exclude the possibility that some

matching rate pattern could be generated by more than one payoff function

(although we could not find an example of this in practice).

This implies that our model is testable. That is, we could observe data
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on matching rates that would be at odds with the predictions of our model.

To illustrate this point we perform a Monte-Carlo exercise by drawing the

elements of the 2-by-2 payoff matrix from a uniform distribution, computing

the equilibrium and the corresponding matching rates. We normalize the

total expected number of matches to one and plot all the possible vectors of

equilibrium matching rates on a (3-dimensional) simplex. Figure 3 illustrates

our findings.

Figure 3: Subset of model-generated matching rates in a 3D simplex
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We find that large white spaces remain in the simplex, implying that many

shapes of matching rates cannot be obtained as an equilibrium outcome of

our model. The intuition for this result is simple. If, for example, both

types of males search actively, an equilibrium cannot allocate the majority of

prospective matches to just one of the males and generate almost no matches

for the other male. This is why we argue that our theory of targeted search is

testable. It implies certain restrictions on equilibrium outcomes which may

or may not be rejected by the data. This result is in contrast with workhorse

models in the marriage literature, such as Choo and Siow (2006) and Galichon

and Salanie (2012), which can rationalize any observed matching rates.

Given the non-invertibility of the mapping between the payoff and the

matching rates, how do we test the model and estimate the payoff function

from matching rate data? Our empirical methodology proceeds in three

steps. First, we make a few identifying assumptions. In particular, we assume

that search costs are identical across agents on both sides of the marriage

market, θx = θy = θ. This assumption will allow us to identify the ratio

of the payoff to search cost, Φxy/θ, for each pair of types. In addition,

we assume that each payoff is split equally between males and females, i.e.

εxy = ηxy = Φxy/2.

Second, for any shape of the payoff function, Φxy, we find all equilibria (if

there are more than one) and compute all corresponding equilibrium match-

ing rates implied by the model. Third, we search for a shape of the payoff

that maximizes the likelihood function of the data given the predicted match-

ing rates. Whenever a proposed payoff function produces multiple equilibria,

we select the one that fits the observed matching rate best, i.e. has the high-

est likelihood. Maximization of the likelihood function efficiently minimizes

the properly weighted sum of distances between the data and the model’s
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prediction and should lead to consistent estimates. Maximum likelihood es-

timation of discrete games with multiple equilibria have been reasonably well

studied in the literature, e.g. Aguirregabiria and Mira (2007). Here we do not

employ any computational tricks since the 3-by-3 case can be computed by

brute force in reasonable time. The results of such estimation can be treated

as an upper bound on the explanatory power of the model. In the empirical

section, we apply this method to three prominent examples of sorting in the

marriage market and find that the model fits the data very well.

3 Empirical Application

To take the model to the data, we use a standard dataset for matching rates

in the U.S. marriage market. The data on unmarried males and females

and newly married couples comes from IPUMS for the year 2001.11 For

computational transparency we attribute both males and females to three

equally sized bins, which we refer to as low (L), medium (M), and high (H)

types. We consider three dimensions along which males and females evaluate

each other in the marriage market: income, age, and education. In each case

we choose the cutoffs between bins in such a way as to split the whole U.S.

population of each gender to equally sized bins.

In the case of age, we restrict our attention only to adults between the

ages 21 and 33. To make them as close as possible to equal size, the bins cor-

respond to ages 21-23, 24-27, 28-33. We discard all younger and older people

from the analysis because there is a disproportionate amount of unmarried

people in these other age categories who only rarely marry. One reason for

this may be that a large fraction of them are not searching for a spouse and

are thus not participating in the marriage market. To avoid misspecification

11We thank Gayle and Shephard (2015) for kindly sharing the IPUMS data with us.
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due to our inability to observe search effort, we exclude them from our anal-

ysis. In the case of education, the natural breakdown into three bins is to

have people who never attended college, those who are currently in college,

and those who have graduated from college. Income is a continuous charac-

teristic, so the three bins correspond to people with low, medium, and high

incomes.

For each of the three cases, we estimate the shape of the payoff function

using the maximum likelihood methodology described earlier. We assume

that all currently unmarried males and females are searching, and the number

of matches is proxied by the number of couples that were married in the

past 12 months, as indicated by answers to the questionnaire. The dataset

contains roughly 93,599 unmarried males, 82,673 unmarried females, and

23,572 newly married couples above the age of 21.

The matching rate for the case of income is presented in the left panel

of Figure 4. The estimate of the underlying payoff is shown in the right

panel of the same Figure. A notable property of the payoff is that it exhibits

strong absolute advantage. That is, marrying a spouse with a higher income

is always better. We find that the matching rate and the payoff have a

correlation of 0.72.
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Figure 4: Sorting by income

The matching rate for the sorting by age is presented in the left panel of

Figure 5. Looking at the shape of the matching rate, we would expect to see

the pattern of relative advantage here, with slightly older males looking for

slightly older females. However, the shape of the payoff that best explains

this sorting pattern is very close to absolute advantage. Females have a

strong preference for older males independent of their own age. Meanwhile,

males are virtually indifferent to the age of their spouse. The highest payoff

is produced by males at age 30 marrying females at age 23. The correlation

between the matching rate and the payoff is a staggeringly low 0.42.
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Figure 5: Sorting by age

The matching rate for sorting by education is presented in the left panel

of Figure 6. In this case the payoff exhibits a combination of absolute and

relative advantage. Low educated people and high educated people prefer

someone with their same level of education, generating a region of relative

advantage. However, people with a medium level of education tend to prefer

highly educated people, generating a region with absolute advantage. The

matching rate and the payoff function have a correlation of 0.52.

Figure 6: Sorting by education

A widely used workhorse model in the marriage literature is the model of

Choo and Siow (2006). They estimate a static transferable utility model that
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generates a nonparametric marriage matching function. This model postu-

lates that, in equilibrium, each pair of cohorts of males and females reaches

an implicit agreement on the matching rate among themselves; matching (or

staying single) is a voluntary decision. In their model, the payoff is recovered

as a simple algebraic function of the matching rates and the number of people

searching. The first notable property of this mapping is that it is one-to-one,

i.e., for any payoff there is a unique matching rate and for any matching rate

one can invert the relationship to compute the payoff.

The second notable property is that the matching rate depends only on

the characteristics of the agents directly involved in the match, but not on

the characteristics of other agents present in the marriage market. This

is because the strategic motive is absent from their model, so the shape

of the matching rate mimics closely the shape of the payoff function. An

important consequence of these two properties is that any set of matching

rates observed in the data can be rationalized by some form of payoff function.

Thus, the model of Choo and Siow does not place any constraints on the

data and cannot be tested. This also implies that the distance between

the assumptions and implications is minimal: the correlation between the

matching rates across pairs of types and the implied values of the payoff are

close to one.

We illustrate this feature in Figure 7 where we use the 3-by-3 Monte

Carlo simulation from Section 4.1. We plot the correlation between the true

underlying payoff and the equilibrium matching rate obtained from our model

on the horizontal axis and the correlation between the same matching rate

and the corresponding payoff function recovered by the model of Choo and

Siow on the vertical axis. We find that in many cases, the shape of the true

payoff and of the matching rate descends to 0.4, while the model of Choo and
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Siow would imply that they have a similar shape with a correlation above

0.75. We color the payoffs with the three patterns of advantage in three

different colors. We find that while the correlation depends significantly on

the pattern of advantage in our model, in Choo and Siow’s model it does

not.

The Figure also compares our empirical findings with the Monte Carlo

simulation. We find that the three prominent empirical examples that we

have considered indeed belong to the range of correlation values commonly

generated by payoffs that exhibit absolute advantage.

Figure 7: Monte Carlo results and Data
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This result emphasizes the importance of considering the effect of strate-

gic motives on the sorting patterns in empirical research. If a researcher looks

at the data through the lens of a model with exogenous randomness, that

model by construction ignores any strategic considerations that may affect

agents’ search strategies. As we have shown, strategic considerations can

drive a significant wedge between the shape of the productive complemen-

tarities and the shape of the observed sorting pattern. Ignoring endogenous

randomness may thus lead to vastly misleading conclusions regarding the

amount of mismatch present in a market and the size of the losses associated

with it.

4 Final Remarks

In this paper we endogenize the degree of randomness in the matching process

by proposing a model where agents must pay a cost for searching to better

locate potential matches. If they increase search effort, they increase the

probability of targeting a better match. The model features a productive

motive that drives agents to target the person that renders a higher payoff

and a strategic motive that drives agents to target the person with whom

their interest is more likely to be reciprocated. We believe that ignoring

these considerations may result in misleading implications about the degree

of mismatch present in the market and hence about the size of the losses

associated with it.

With endogenous randomness as the driving force of matching patterns,

our model is well suited to study a host of real-life matching markets where

people typically have limited time and ability to reduce noise. Roth and

Sotomayor (1990) and Sönmez and Ünver (2010) provide examples of such

markets. Moreover, for many markets, equilibrium outcomes are neither pure
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random matching nor optimal assignment, as documented in the empirical

literature. Our model can be a useful tool for analyzing these markets.

Furthermore, our model describes markets where the degree of centraliza-

tion is fairly low. This structure encompasses a number of markets ranging

from labor markets to education and health care. In many two-sided market

models a platform acts both as a coordination device and as a mechanism to

transfer utility. Our model can be used to study the optimal degree of cen-

tralization and the social efficiency of pricing schemes in these markets. We

view the study of the optimal design of centralization in two-sided search en-

vironments as an exciting area of future research and a practical application

of our theory with far-reaching consequences.
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NOT FOR PUBLICATION

Appendix A: Proof of Theorem 3

The proof proceeds in 3 steps.

Step 1. Under the assumption of increasing convex cost functions, both

individual payoff functions and the social welfare function are concave in the

strategies of males and females. Hence, first-order conditions are necessary

and sufficient conditions for a maximum.

Step 2. We denote by CEFOC the first-order conditions of the decen-

tralized equilibrium and by POFOC the first-order conditions of the social

planner. In formulae:

POFOCqy(x): Φxyp̃x (y)− ∂cy(κ̃y)

∂κ̃y

∣∣∣
q̃y(x)

1
ln 2

(
ln q̃y(x)

1/F
+ 1
)
− λ̃y = 0

POFOCpx(y): Φxy q̃y (x)− ∂cx(κ̃x)
∂κ̃x

∣∣∣
p̃x(y)

1
ln 2

(
ln p̃x(y)

1/M
+ 1
)
− λ̃x = 0

CEFOCqy(x): ηxypx (y)− ∂cy(κy)

∂κy

∣∣∣
qy(x)

1
ln 2

(
ln qy(x)

1/F
+ 1
)
− λy = 0

CEFOCpx(y): εxyqy (x)− ∂cx(κx)
∂κx

∣∣∣
px(y)

1
ln 2

(
ln px(y)

1/M
+ 1
)
− λx = 0

For the equilibrium to be socially efficient we need to have the following:

p̃x (y) = px (y) for all x, y

q̃y (x) = qy (x) for all x, y
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Step 3. By contradiction, imagine that the two conditions above hold.

Then, by construction,

∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

= ay

and
∂cx (κ̃x)

∂κ̃x

∣∣∣∣
p̃x(y)

=
∂cx (κx)

∂κx

∣∣∣∣
px(y)

= ax.

Denote them ay and ax respectively.

It then follows that:

Φxyp̃x (y)− λ̃y =
∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

1

ln 2

(
ln

q̃y (x)

1/M
+ 1

)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

1

ln 2

(
ln

qy (x)

1/M
+ 1

)

= ηxypx (y)− λy

i.e. Φxyp̃x (y) − λ̃y = ηxypx (y) − λy for all x and y. We can use the

first-order conditions of the females to derive the formulas for λ and λ̃:

(i) M exp
(
1 + λ̃y

ay/ ln 2

)
=

M∑
x=1

exp
(

Φxypx(y)

ay/ ln 2

)

(ii) M exp
(
1 + λy

ay/ ln 2

)
=

M∑
x=1

exp
(

εxy(x)px(y)

ay/ ln 2

)

(iii) (Φxy − εxy) px (y) = λ̃y − λy for all x

Jointly (i) (ii) and (iii) imply:

M∑
x′=1

exp

(
Φx′ypx′ (y)

af / ln 2

)

M∑
m′=1

exp

(
εx′ypx′ (y)
ay/ ln 2

) =
exp

(
Φxypx(y)

ay/ ln 2

)

exp
(

εxypx(y)

ay/ ln 2

) for all x
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Hence,

exp(Φxypx(y))

exp(εxypx(y))
=

exp(Φx′ypx′ (y))
exp(εx′ypx′ (y))

for all x and x′.

Therefore, either:

a) Φxy = εxy for all x or

b) Φx′y = Φx′′y and εx′y = εx′′y for all x′ and x′′;

Similarly from males’ first-order conditions it follows that either :

c) Φxy = ηxy for all y or

d) Φxy′ = Φxy′′ and ηx′y = ηx′′y for all y′ and y′′

Cases b) and d) have been ruled out by the assumptions of the theorem.

Cases a) and b) jointly imply that εxy = ηxy = Φxy = εxy + ηxy which leads

to a contradiction εxy = ηxy = Φxy = 0.

Appendix B: One-sided model

Here we consider a one-sided model where females are searching for males

who are heterogeneous in type and females face a search cost. We assume

that there is no heterogeneity on the female side of the market. As such the

probability that a male reciprocates the intentions of a female is given by

qy. The strategy of a female, denoted px (y), represents the probability of

female x locating male y. It is also the female’s probability distribution. We

assume that each female can rationally choose her strategy facing a trade-off

between a higher payoff and a higher cost of searching.
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Like before a female’s cost of searching is given by cx (κx). Once the

optimal distribution px (y) is chosen, each female draws from it to determine

which male to contact.12

Female x chooses a strategy px (y) to maximize her expected income flow:

Yx = max
px(y)

M∑
y=1

εxypx (y) qy − cx (κx)

We normalize the outside option of females to zero. A female receives her

expected share of the payoff in a match with male y conditional on matching

with that male. She also incurs a cost that depends on search effort:

κx =
M∑
y=1

px (y) ln
px (y)

1/M
(5)

where the female’s strategy must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all

y.

Definition 2. A matching equilibrium of the one-sided matching model is a

set of strategies of females, {px (y)}Nx=1, which solve their optimization prob-

lems.

Theorem 4. If the cost functions are non-decreasing and convex, the one-

sided matching model has a unique equilibrium.

Proof. The payoffs of all females are continuous in their strategies. They are

also concave in these strategies when cost functions are (weakly) increasing

and convex. Hence, each problem has a unique solution.

12As in the model of Section 2, we assume that each female pursues only one male.
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When in addition the cost functions are differentiable, it is easy to verify

that first-order conditions are necessary and sufficient conditions for equilib-

rium.13 Rearranging the first order conditions for the female, we obtain:

p∗x (y) = exp

⎛
⎜⎝ εxyqy

1
ln 2

∂cx(κx)
∂κx

∣∣∣
p∗x

⎞
⎟⎠ /

M∑
y′=1

exp

⎛
⎜⎝ εxy′qy′

1
ln 2

∂cx(κx)
∂κx

∣∣∣
p∗x

⎞
⎟⎠ . (6)

This is an implicit relationship as p∗x appears on both sides of the expres-

sion. If cost functions are linear functions of , κx, then the derivatives on the

right hand side are independent of p∗x, and the relationship becomes explicit.

The equilibrium condition (6) has an intuitive interpretation. It predicts

that the higher is the female’s expected gain from matching with a male,

the higher is the probability placed on locating that male. Thus, males are

naturally sorted in each female’s strategy by probabilities of contacting those

males.

Efficiency To study the constrained efficient allocation we impose upon

the social planner the same constraints that we place on females. Thus, the

social planner maximizes the following welfare function:

W =
F∑

x=1

M∑
y=1

Φxypx (y) qy −
F∑

x=1

cx (κx)

13Taking derivatives of the Lagrangian function corresponding to the problem of female
x, we obtain for all y:

εxyqy − ∂cx(κx)
∂κx

∣∣∣
p∗
x

1
ln 2

(
ln

p∗
x(y)
1/M + 1

)
= λx

We can invert this first-order condition to characterize the optimal strategy:

p∗x (y) =
1
M exp

(
εxyqy−λx

1
ln 2

∂cx(κx)
∂κx

|
p∗x

− 1

)
.
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subject to (5) and to the constraint that the px (y)’s are well-defined probabil-

ity distributions. Under the assumption of increasing convex cost functions,

the social welfare function is concave in the strategies of females. Hence,

first-order conditions are sufficient conditions for a maximum. Rearranging

and substituting out Lagrange multipliers, we arrive at the following charac-

terization of the social planner’s allocation:

pox (y) = exp

⎛
⎜⎝ Φxyqy

1
ln 2

∂cx(κx)
∂κx

∣∣∣
pox

⎞
⎟⎠ /

M∑
y′=1

exp

⎛
⎜⎝ Φxy′qy

1
ln 2

∂cx(κx)
∂κx

∣∣∣
pox

⎞
⎟⎠ . (7)

The first observation to make is that the structure of the social planner’s

solution is very similar to the structure of the decentralized equilibrium.

Second, from the female’s perspective, the only difference between the cen-

tralized and decentralized equilibrium strategies is that the probability of

locating a male depends on the social gain from a match rather than on

the private gain. Thus, it is socially optimal to consider the whole expected

payoff when determining the socially optimal strategies, while in the decen-

tralized equilibrium females only consider their private gains.

To decentralize the socially optimal outcome the planner needs to give

all of the payoff to the females, εxy = Φxy, effectively assigning them a share

of 1. Note that, if the planner could choose the probability that a male

reciprocates a female, qy, he would also set it to 1.

The only special cases, when the outcome is always efficient are the lim-

iting cases discussed earlier. When search costs are absent, the equilibrium

of the model is socially optimal. When costs are very high, the random

matching outcome is the best possible outcome. For all intermediate values

of costs, the decentralized equilibrium is socially efficient contingent on the

female having all the bargaining power.
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