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Commercializing Knowledge:
University Science, Knowledge 
Capture, and Firm Performance 
in Biotechnology

Lynne G. Zucker, Michael R. Darby, and Jeff S. Armstrong

1. INTRODUCTION

Our research program over the past 10 years has focused on the use of basic
science knowledge in commercial firms and the impact of that knowledge on firm
performance. In our earlier research, we have found substantial consistent evi-
dence that top academic science, specifically the star scientists who make most of
the defining discoveries, provides intellectual human capital that defines the tech-
nology of the firm—at least following scientific breakthroughs. Although there are
likely to be considerable spillover effects when knowledge is created or employed
(Jaffe 1986, 1989), and perhaps also an important symbolic and legitimating func-
tion of high quality science for commercial activity (Stephan and Everhart 1998),
our empirical work identifies the main and robust empirical effects due to real sci-
entific labor contributions of star scientists to performance of the firm.

To “detect” stars and quantify their labor contributions to firms, we identi-
fied 327 “star” bio-scientists worldwide based on their publications of genetic-
sequence discovery articles up to early 1990 before gene-sequencing machines
were in widespread use. Stars were those cumulatively reporting more than 40
genetic-sequence discoveries or on 20 or more articles reporting any genetic-
sequence discoveries in GenBank (1990). We identified every “star” article on which
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the star, or (more frequently) a co-author, was affiliated with a firm. The numbers
of these articles was our measure of the depth of star involvement in the firm.

Before turning to new results reported in this article, a brief summary of
our prior results will be useful for readers not already familiar with our work:

• Location of top, “star” scientists predicts location of firm entry into new
technologies (both new and existing firms), shown for the United States
and Japan in biotechnology (Zucker, Darby, and Brewer 1998, Darby
and Zucker 2001) and replicated for the semiconductor industry in the
United States (Torero et al. 2001).

• Ties that involve actual work at the science bench between star scien-
tists (mostly academics) and firm scientists consistently have a signifi-
cant positive effect on a wide range of firm performance measures in
biotechnology (Zucker, Darby, and Armstrong 1998, Zucker and Darby
2001) and in semiconductors for number and quality of patents (Torero
1998). Ties to stars also shorten the time to IPO (firms are younger) and
increase the amount of IPO proceeds (Darby et al. 2001).

• As the quality of an academic star bio-scientist increases and his/her
research becomes more relevant to commercialization, the probability
increases that the scientist conducts joint research or moves to a firm. As
expected scientific returns increase—measured by citations to other local
star scientists working with firms—the probability that the next star will
begin working with a firm also increases (Zucker et al. 2001). Quality is
also positively related to working with firms in Japan, but only number of
articles predicts significantly with this smaller sample (Zucker et al. 2000).

Our findings on the importance of basic university science to successful
commercialization of important scientific discoveries are confirmed in other
research, especially the importance of intellectual human capital (Di Gregorio
and Shane 2000). Faculty are a key resource in creating and transferring early,
discovery research via commercial entrepreneurial behavior (Yarkin 2000).
Jensen and Thursby (2001) confirm that active, self-interested participation of
discovering professors is an essential condition for successful commercial licens-
ing of university inventions. Thursby and Thursby (2000) find that the sharp
increase in university-industry technology transfer has not resulted so much
from a shift in the nature of faculty research as from an increased willingness of
faculty and administrators to license and increased interest on the part of firms.

In this article, we continue our research program on the economic value
of knowledge, especially tacit knowledge at the time of commercially relevant
scientific breakthroughs. We compare the real effects on the performance of
biotech firms of two overlapping groups of academic scientists who collaborate
with firm scientists: the stars who made significantly more genetic sequence dis-
coveries, and all relevant scientists (including the bulk of the stars) employed at
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one of the top 112 U.S. research universities ranked by federal research fund-
ing. Our overall results again support the strong effects of academic science on
the success of firms. Both science measures have strong positive independent
effects on most performance measures. The patent panels show that the labor
effort of the stars has a significant incremental impact on firm performance
above and beyond the effects of all scientists from top research universities
working with the firm. In cross-section estimates, we find significant positive
effects from either star or top 112 faculty linkages but efforts to enter both sets
of variables in the same regressions are confounded by multicollinearity. We
conclude that affordable bibliometric measures are good but not perfect substi-
tutes for the costly-to-construct star measures.

The article is organized as follows. In §2 we develop our theoretical
approach to (a) the sources and implications of the information advantage—
common to most scientific breakthrough knowledge—held by the discovering
scientists, (b) the difficulties inherent to the transfer of tacit knowledge that lead
to joint research, and (c) the amount of knowledge capture necessary for firms
to offset sunk commercial development costs. In §3 we sketch the history of 
scientific development and the rise of the biotech industry, focusing on the ties
between academic science and commercial firms. Since data are the plural of
anecdote, we present qualitative evidence of the importance of ties to star sci-
entists for the performance of the most successful firms. In §4 we briefly review
the variables and their sources and then present and discuss the empirical
results. We estimate Poisson regressions (and linear-least squares for employ-
ment) that explain the performance of a panel of biotech firms for patents and
citation-weighted patents, and cross-sections for products in development, on
the market and employment. In these regressions, we systematically test the pre-
dictive power of science (stars and top 112 university scientists tied to the firm
via co-authoring of scientific research, as well as all local academic scientific
publishing by stars), venture capital, and other firm characteristics such as use
of the dominant technology (rDNA or genetic engineering). In §5 we offer our
conclusions. Details on the data set and supplementary analyses are compiled
in a separate appendix, which is cross-referenced and available from the authors
on request.

2. THE REAL EFFECTS OF KNOWLEDGE CAPTURE

Academic-to-industry technology transfers may be rare, but we believe
they can still account for the bulk of technological progress. These are not pure
“transfers,” but necessarily knowledge captures to the degree necessary to offset
sunk development, marketing, and other costs invested in moving a discovery
into a commercial innovation. Many fundamental industry transformations or
technological breakthroughs can be traced to specific advances in science.
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While the industries experiencing technological discontinuity are a distinct
minority in our economy, we argue that a distinct minority of firms within this
distinct minority of industries account for a large part of the aggregate techno-
logical progress conventionally measured in productivity studies (Harberger
1998, Darby and Zucker 2002).

Knowledge and the Market for Information

Our argument starts from the classic Stigler (1961) observation that infor-
mation is a valuable and costly resource and that individuals are thus motivated
to adopt strategies, such as search, that weigh the expected costs and benefits
of acquiring information. For example, if individuals’ search involves unique
goods, then costs of search are sufficiently high that transactions are commonly
localized as a device for identifying potential buyers and sellers. Stigler pointed
out that medieval markets were an example of actual localization; advertising is
an example of a “virtually” localized market.

We argue that another mechanism of “virtual” localization is a profession, or
more commonly, a subspecialty within a profession.1 Here, the buyers and sellers
of knowledge, including new or “breakthrough” discoveries, are brought together
in a highly balkanized market in which the participants share a reasonably simi-
lar endowed knowledge base that makes the new knowledge potentially under-
standable and useable. The size and geographic distribution of that knowledge
base determines the extent of initial demand for the new knowledge. For the
purposes of our argument here, information and knowledge are equivalent.

From Tacit to Codified Knowledge

New information tends to be produced in tacit form, increasing in tacitness
as a function of distance from prior knowledge (hence, especially breakthrough
knowledge), and requires resources to codify. Tacit knowledge tends to be
highly personal, initially known only by one person (or a small team of discov-
ering scientists) and is difficult to transfer to others (Polyani 1962, Schutz 1962).

As knowledge increases in complexity, the probability increases that devi-
ation from “textbook” description of action will be required (Nelson 1959, Nelson
and Winter 1982). For example, internal bleeding during surgery requires deci-
sions about whether and how to deviate from the textbook that cannot be fully
prescribed in advance. This kind of complexity leads to knowledge remaining
tacit longer, perhaps remaining an “active task” that changes its nature in
response to contingencies in contrast to an “inert task” such as a secretary typ-
ing a letter written by his/her boss (Scott et al. 1967).

Knowledge becomes shared (intersubjective) to the extent that codes or
formulas are borrowed from pre-existing knowledge and/or are newly created.
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Relevance to earlier knowledge allows borrowing of codes, mathematical ex-
pressions and relations, and even machines that “embody” those codes/math.
Such knowledge is cumulative and can be easily understood and transferred,
relying on references to the well-understood prior scientific literature.

But new knowledge that cannot be readily grafted on old is likely to offer
more opportunities. Opportunity can shift incentives—increasing them along a
continuum from incremental change to breakthrough discoveries (Klevorick et
al. 1995). Increased incentives to enter arise from these greater opportunities.

Discovering scientists become important in technology transfer when a
new discovery has both high commercial value and a combination of scarcity
and tacitness that defines natural excludability, the degree to which there is a
barrier to the flow of the valuable knowledge from the discoverers to other sci-
entists. Tacit, complex knowledge provides partial natural protection of infor-
mation, both separately and jointly with more formal property rights. Those with
the most information about breakthrough discoveries are the scientists actually
making them, so there is initial natural scarcity. To the extent that the knowl-
edge is both scarce and tacit, it constitutes intellectual human capital retained
by the discovering scientists, and therefore they become the main resource
around which firms are built or transformed (Zucker, Darby, and Brewer 1998;
Zucker, Darby, and Armstrong 1998). Hence, tacit knowledge can be viewed as
at least partially rivalrous and excludable information and thus “appropriable”
as long as it remains difficult (or impossible) to learn it.

As tacit knowledge becomes increasingly codified—or translated into
“recipe knowledge” as Schutz (1962) terms it—tacitness decreases and knowl-
edge transfer is easier. But significant barriers stand in the way of codification.
Relevance between old and new knowledge can be difficult to determine
(Schutz 1970), increasing the demand for social construction of new codes, for-
mulae, and machines. The greater the discontinuity, the more difficult it is to
anchor in prior systems of knowledge.

Until there is a reliable indicator of the value of the new knowledge, the
size of the market for codification is unlikely to be large enough to cover the
cost of developing the new codes. Paradoxically, once the value is known,

• If the value is low relative to alternative uses of scientific talent, then
there are few incentives to codify it.

• If it is high, those few scientists who hold the new knowledge will have
to weigh returns to codification against returns to time invested in sci-
entific research, a trade-off that pits knowledge transfer against knowl-
edge creation.

Hence, the average scientific discovery is never codified, and valuable dis-
coveries experience a significant codification lag that tends to increase with their
value.
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Knowledge Capture via Team Production

Knowledge that is cumulative builds on an existing set of words and sym-
bols, and hence involves less or no barrier to communication: Listening to a lec-
ture or reading a text can suffice. But tacit knowledge often requires that one
of those already holding that knowledge works with the novices to teach them
in a hands-on process. For example, 81% of the new authors enter GenBank by
writing with old authors, and new authors write exclusively with new authors a
significant 36% less than “old,” experienced authors write exclusively with other
“old” authors after excluding all sole authored papers (Zucker et al. 2001).
Transfer may be very effective—there are well-documented effects of cumula-
tive experience on performance improvement (Pisano et al. 2001)—but it is
slow and requires the active participation of the holder of the tacit knowledge.

Discovering scientists are typically willing to transfer knowledge primarily
in the context of their ongoing laboratory work. At the extreme, when tacitness
is high, it is their collaborators on their research team who are the recipients of
this knowledge; others are excluded through lack of access. Thus, the initial cost
of entry is high. But entry cost tends to decline over time, and the probability
of an error in the initial discovery also declines as others replicate it, thus reduc-
ing risk to the new entering scientist.2

This restricted process of transfer will more often than “normal science”
lead to sufficient knowledge capture to justify the cost of commercial develop-
ment by a firm. Knowledge capture explains why tacit knowledge tends to be
highly localized: It will be concentrated geographically around where the dis-
coveries are made (or where the discoverers move). As shown in Figure 1, there
is considerable concentration of patented inventions, as well as human therapies
and vaccines, in development and on the market. Just two states, California and
Massachusetts with 14% of the U.S. population, have a disproportionate share
especially of U.S. products in development (49%) and on the market (58%).
Patenting is somewhat less concentrated; since patenting is both an input and
an output of the innovation process, this may suggest a lessening of geographic
concentration, perhaps as the discoveries mature and are codified. Generally
patents provide a useful incentive to the codification of knowledge, but in the
case of patented cell lines, a novel technique—deposit in an approved deposi-
tary to be publicly available on patent expiration—acknowledged the difficulty
in codifying exactly how the new organisms could be created.

Understanding the role of scientific teams in tacit knowledge transfer ex-
tends the arguments for team production: (a) Team organization makes routine
the transfer of tacit knowledge from the discoverer to other team members, and if
team members cross organizational boundaries, then tacit knowledge is efficiently
transferred—in the present case, most interestingly from university discovering
scientists to firm scientists (Zucker, Darby, and Armstrong 1998). (b) Through
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team organization, more productive cooperation is often achieved via special-
ization than possible through the linking of individual efforts across impersonal
markets (Demsetz 1995, p. 17).

The greater the labor effort of the discovering university scientist(s) with
teams containing firm scientists, the greater the amount of tacit knowledge
transfer. In bench level collaboration, you can actually see how the science is
done. As tacit knowledge transfer increases from the discovering scientists, the
success of the firm also increases. Thus, managers of high tech firms have incen-
tives to hire the top-discovering scientists if their discoveries have commercial
value. Discovering scientists also have incentives to found a new firm. In sharp
contrast, in industries where “normal science” reigns, hiring of below average,
acceptably competent scientists at a low wage is the typical practice (Korn-
hauser 1962). Obviously, each can be a market-value–maximizing strategy for
the firms facing different knowledge frontiers.

3. SCIENTISTS’ LEADERSHIP AND INDUSTRY SUCCESS: 
3. COMMERCIALIZING KNOWLEDGE

Biotechnology is a preeminent example of an industry undergoing very
rapid growth associated with radical technological change initiated in academe
and based on basic science breakthroughs. The key attributes can be summa-
rized concisely:

• Breakthrough discovery: Professors Stanley Cohen (Stanford) and Her-
bert Boyer (University of California–San Francisco) reported the basic

Figure 1

The Geographic Distribution of Biotech Patents and New Products as of 1991
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technique for recombinant DNA, also known as rDNA, genetic engi-
neering, or gene splicing (Cohen et al. 1973).

• University scientists: We identified star bio-scientists based on genetic
sequence discoveries reported in GenBank (1990), an online reference
file, and in this article introduce bio-scientists identified in ISI’s elec-
tronic file of research articles written by at least one author located at
one of the top 112 U.S. research universities.3 Star articles are (nearly)
a subset of top 112 articles (U.S. stars not in a top 112 university and
conference papers—less than 1% of the total star articles—are not
included in the ISI article files).

• Links/collaborations with firms: Articles that are co-authored by firm
employees and top scientists, including “stars” and the top 112 univer-
sity scientists, indicate the intensity of involvement with the firm’s
research effort.4 Most of these scientists “wear two hats,” one as professor
at a university and one as a leader or lab head at a firm (confirmed
through interviews at universities and firms on both coasts).

Firm Success and Knowledge Capture

The degree to which an open scientific literature can produce such strong
apparent “knowledge capture” effects on firm success rests on (a) characteris-
tics of tacit, complex knowledge that lead to natural excludability, and (b) selec-
tion by firms of discoveries for which the degree of knowledge capture is likely
to offset sunk costs incurred in making the scientific discovery a commercial
innovation.

To provide some intuition for our regression results, we first briefly review
examples of the prominent positions that top academic scientists are given in
the most successful biotech firms, identify their copublishing with the firm, and
finally explore the impact that top scientists’ copublications with firm scientists
have on success.

Top 10 Biotech Firms

Individual scientists are often highlighted in an IPO prospectus.5 These sci-
entists typically achieved prominence in both their university and private sector
appointments. Examples of distinguished academics from the top-112 universi-
ties6 that were appointed to corporate officer positions in one of the top 10
biotechnology firms (as of 1994) include: (a) Herbert Boyer to the position of
vice president and director of Genentech Inc.;7 (b) Edward Penhoet, former fac-
ulty member of the Biochemistry Department at UC–Berkeley and co-founder
of Chiron, to the position of president, CEO, and director of Chiron; (c) Walter
Gilbert, the American Cancer Society Professor of Molecular Biology at Harvard
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University and 1980 Nobel prize winner, to several of Biogen’s boards, with Phillip
Sharp, professor of biology at MIT, and Daniel Wang, professor of chemical and
biochemical engineering at MIT, on its scientific board; (d) two founders of
Genetics Institute were university faculty, who also were executive officers and
directors of the company, as well as members of its scientific advisory board;
and (e) Amgen included on its scientific board prominent university professors from
UCLA, CalTech, and Stanford, all members of the National Academy of Sciences.

Table 1 shows that 40% of these top 10 biotech companies reported at
least one star on their team when going public, while 70% had linked articles
(star copublishing with at least one firm employee). Not surprisingly, because
of the much broader coverage of both scientists and universities, these top 10
biotech companies reported a higher percentage of top 112 university scientists:
80% reported at least one top 112 scientist on their team when going public,
and 90% had core collaborations with one or more of these scientists. The
advantage of the publishing measure is that it weights the amount of involve-
ment of the scientist: For example, Centocor had only 1/20 as many core col-
laborative research articles as Genentech.

IPOs listed many former or current university professors as company
founders, officers, directors or key members of scientific advisory boards (see
Appendix Table A1). Almost every scientist holding a top management position
had done so since the company’s founding. These scientists were not brought
in as part of the preparation for the IPO to merely “signal” the firm’s success,
contrary to a suggestion in Stephan and Everhart (1998).

Table 1

The 10 Most Highly Valued Biotechnology Firms in 1994: 
Leading Academic Scientists Appear on Their IPO Prospectus and as Joint Authors
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Is Success in the Stars?

Certainly, scientists in high-ranking positions in these now public firms
provide scientific control and are important for firm success. However, the
majority of firms in our sample do not go public before the end of our time
period. In any case, we are interested in the actual work that top scientists do
that is joint with the firm. We measure this joint work by the cumulative num-
ber of collaborative articles.

Using the total number of joint articles, drawing on both of our science
measures, we can take a preliminary look at our findings by graphing the mean
values of the cumulative number of tied articles: for the stars, articles that
involve a star scientist and a firm scientist (where the star can also be an
employee of the firm) and for scientists at the top 112 universities, articles that
involve joint work by at least one university and one firm scientist. These values
are shown in Figure 2a. The differences are particularly striking at the 10+ article
level. The mean success by tied star articles is consistently and markedly higher
than for top 112 university scientists across our major success measures: patents,
products in development, and products on the market.

Figure 2a

Biotech Firms Are More Successful if Tied to Star Scientists 
or if Linked to Top Research University Faculty
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Figure 2b presents the comparable data on venture capital funding (data
from Venture Economics). The amount of venture capital funding is less consis-
tent in its effects compared to tied/linked science results. While increasing
cumulative amount of venture financing generally increases both patents and
products in development, the magnitude of differences is small relative to the
tied/linked science effects shown in Figure 2a.

Concentration of Success

Darby and Zucker (2002) argue that much if not most of technological
progress is accounted for by relatively few firms operating in relatively few
industries undergoing rapid change. We will just touch on examples of concen-
tration here:

• Industry Success Concentration: Top-decile biotech firms account for
64% of the total number of human therapies and vaccines in devel-
opment (485 as of 1991), 43% of all patents, and dominated human
therapies and vaccines on the market (82%). (See Appendix Figure A1.)

• Geographic Concentration: 64% of the total products in development
are concentrated in the top five states (Appendix Table A2); 58% of the
total products on the market are concentrated in those same five states
(Appendix Table A3).

Figure 2b

Biotech Firms Are More Successful if Funded by Venture Capitalists
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4. EMPIRICAL RESULTS

The Data

The Zucker-Darby star-scientists/articles database has been a powerful
tool for exploring the co-evolution of life sciences and biotechnology. However,
that methodology involves an expenditure of resources justifiable only for pio-
neering academic efforts or sophisticated financial institutions. As the ISI data-
bases are increasingly available, the extent to which electronic bibliometry can
substitute for hand coding and specialized technical knowledge is a question of
practical importance to both academic researchers and industry practitioners.

Here we use the basic tool of copublishing between academic and firm
scientists as a detector of joint research and (often two-way) university-industry
technology transfer. The Institute of Scientific Information (ISI 2000) U.S. Uni-
versity Science Indicators database on CD-ROM has extensive information on all
the scientific articles with at least one author at any of the top 112 U.S. research
universities.

Table 2 defines all the variables used in the empirical estimates and pro-
vides summary sample statistics for each. As in Zucker, Darby, and Armstrong
(1998), we classify each article in GenBank of which a star scientist is an author
relative to each firm as affiliated with the firm, as linked to the firm if the star
is unaffiliated but writing with the firm’s employees, and otherwise as untied 
to the firm. Aggregating over all stars and time for each firm gives the first six
variables in Table 2. The “local” in local untied articles refers to articles by stars
affiliated with universities or research institutes in the firm’s functional economic
area (metro area plus exurbs as defined by the U.S. Bureau of Economic Analysis).

We attempted to find all articles written by any employee of each of our
biotech firms in the ISI (2000) database; these articles also must have at least
one top 112 university author to be included. Among these joint articles, we
focus on the “core collaborations” in the four central biotech fields catalogued
by ISI: biochemistry and biophysics, cell and developmental biology, molecular
biology and genetics, and microbiology. To control for variation in quality of the
collaborators, we also collected the number of citations in ISI-indexed journals
in the current plus next four years for each article.

The firm characteristics and the last five dependent variables were mostly
collected from paper directories and industry studies used by industry partici-
pants when looking for suppliers and customers. This methodology is tedious,
but it is one of the few available for analysis of large numbers of privately (as
well as publicly) held firms. As described in other papers referenced in Table 2,
considerable effort was expended in ensuring that uniform coding procedures
were applied to obtain quantitative variables from text records.

The primary exception was the venture-funding data obtained by licens-
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ing the Venture Economics database and deflating dollar amounts by the GDP
deflator. We also had the list of licensees of the UC–Stanford Cohen-Boyer
patent as an alternate indicator of the use of recombinant DNA technology. We
bought our list of biotech patents from CHI Research, Inc., in 1997. We ensured
that the CHI list included all those on U.S. Department of Commerce, Patent and
Trademark Office (1993) and appropriate others. Counts of citations to date by
other patents were included.

Table 2

Definitions and Sample Statistics for Variables
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The Estimates

In a technology-intensive industry like biotechnology, patents are a crucial
measure of success. Patents serve as a measure of output from a firm’s “knowl-
edge production function” (Griliches 1990). The patent permits knowledge cap-
ture by establishing ownership rights to the invention’s commercial rewards
until the patent expiration date and even beyond expiration to the extent the
firm establishes brand recognition. Patenting success also impacts the firm’s
ability to raise public equity capital.8 Because patent acquisition is key to both
financial and nonfinancial measures of success and citations data are available
with which to quality-adjust a firm’s patents, the patenting success models are
a key testing ground for the electronic version of our star methodology.

Table 3 reports standard Poisson regression estimates for panel data on
U.S. patenting by U.S. biotech firms. The standard errors are corrected using the
procedure of Wooldridge (1991).9 Models a and e in Table 3 indicate that sim-
ple firm characteristics available for both private and public firms do a good job

Table 3

Panel Estimates for Patenting-Success Models for All U.S. Firms and Years 1976–1991
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of explaining patenting. Entrants are generally at a disadvantage, experience
helps, and use of the dominant technology (recombinant DNA or genetic engi-
neering) is a positive factor for both quantity and quality of patenting. As always
with forward-looking financial variables, the positive effect of the cumulative
amount of venture capital investment may confound real R&D productivity of
the investments with forecasting the effects of other, omitted variables.

Firms that have many articles with star scientists also tend to have many
articles with top 112 university faculty—indeed nearly all the linked star articles
are also included in the top 112 core collaborations count of joint faculty-firm
articles. If one adds either the star variables used in Zucker, Darby, and Arm-
strong (1998) or core collaborations and their mean citations (a quality meas-
ure) as in Models b and c or f and g, we see that either set of indicators
improves the explanatory power of the models. In the current case of patents
and patent citations, the fit is a little better with the new variables than with the
star-based variables, but we will see below that just the opposite is true for all
products and for human therapeutics and vaccines on the market. The failure of
local untied star articles to enter significantly positively reaffirms our (1998)
result that localized knowledge impacts of universities on industry are associ-
ated with market transactions rather than uncompensated spillovers from the
ivory tower. The coefficients on cumulative venture capital investment are only
mildly reduced by inclusion of either (or both) of the star or top 112-based
measures of the firm’s science base. This suggests that venture capitalists in the
1980s were not discriminating much among biotech firms on the basis of scien-
tific depth, so we obtain independent effects on research productivity of both
intellectual and financial capital. The significance of the knowable science-base
information implies that the capital markets were not fully incorporating it in
allocating capital.

Models d and h in Table 3 experiment with adding both sets of science indi-
cators at once. Since linked star articles are generally included in the top 112 core
collaboration counts, the coefficient on linked articles measures the additional
impact of stars on firm research output over and above that of the “average” joint
authorship with a professor from a top 112 university. The coefficients for all core
collaborations and their mean citations as well as this additional star impact are
positive and significant for patents and patent citations. The negative coefficient
on affiliated star scientists in these full regressions appears to reflect the special
circumstances of one or two firms that have the bulk of affiliated articles.

Unfortunately, the smaller samples for the cross-section results in Tables 4,
5, and 6—comparable patent cross-sections are in the appendix available on
request—seem more confounded by the near multicollinearity of the science
variables observed cumulatively up to 1990: For the full Models d and h, where
both the star and top 112 article faculty-firm coefficients are significant they
have opposite signs. We would prefer panel estimates for products in development
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and on the market and employment also, but each observation is very costly to
obtain from old paper directories for these predominantly private start-up firms.
As with the patent panels, we get generally significantly positive coefficients for
linked and affiliated star articles (Models b and f in Tables 4, 5, and 6) or for
top 112 core collaboration articles and their mean citations. Employment is the
one dependent variable without many zeroes; in Table 6 we estimate the log of
1994 employment in accord with Gibrat’s Law (Sutton 1997).

In summary, the empirical work strongly supports the central message that
university-firm technology transfer for breakthrough discoveries generally involves
detectable joint research between top professors and firms that they own or are
compensated by. We have shown that our electronic bibliometry provides good
but imperfect substitutes for the more costly to obtain and difficult to opera-
tionalize star measures. In particular, in large samples where we can obtain sep-
arable impacts, star linkages appear to have a significantly larger effect on firm
research productivity than the average article written jointly by top research uni-
versity professors and firm employees.

Table 4

Estimates for Products-in-Development Models for All U.S. Firms
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5. CONCLUSIONS

Breakthrough discoveries in gene splicing set off a revolution in bio-
science and created the biotechnology industry. These discoveries set the stage,
then, for increased opportunity and increased incentives to enter. But significant
natural barriers to the communication of new knowledge often exist. New
knowledge tends to be developed in tacit form and requires resources to codify.
New codes and formula to describe discoveries develop slowly—with insuffi-
cient incentives if value is low and too many competing opportunities if the
value is high. Hence new knowledge tends to remain uncodified, difficult to
obtain except through hands-on learning at the lab bench, and hence naturally
excludable and appropriable. Our basic argument is that knowledge close to
breakthrough discoveries needs to be transformed into words, codes, and/or
formula before it can be easily transferred.

Difficulties inherent to the transfer of tacit knowledge lead to joint
research: Team production allows more knowledge capture of tacit, complex
discoveries by firm scientists. A robust detector of tacit knowledge capture by

Table 5

Estimates for Products-on-the-Market Models for All U.S. Firms



166 Lynne G. Zucker, Michael R. Darby, and Jeff S. Armstrong

the firm (and strong predictor of firm success) is the number of research articles
written jointly by scientists working at a firm and the discovering, “star” scien-
tists, nearly all working at top universities. For firms to commercialize new dis-
coveries, there must be sufficient knowledge capture by the firm to offset sunk
commercial development costs.

We find the results reported in Zucker, Darby, and Armstrong (1998) to be
replicated to a major extent in the whole United States. The principal finding in
our earlier paper, covering only California firms, was that research collabora-
tions between firm scientists and university star scientists (the ties ) had a robust
significant positive effect on firm performance. The local pool of bioscience
knowledge generated by nearby but noncollaborating scientists had no positive
effect, providing further evidence for embodied technology transfer through
markets rather than “knowledge spillovers.” But this article is not simply a repli-
cation and scale-up.

In this article we add a generalized form of our star measure: the collab-
orative research articles between firm scientists and top U.S. university scientists.

Table 6

OLS Estimates for 1994 Employment for All Reporting U.S. Firms, Dependent
Variable: Natural Logarithm of Total Employees as of 1994
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In panel analyses, firms whose scientists collaborate with stars and/or top 112
U.S. university scientists have more patents and more highly cited patents. Fur-
ther, star articles have an incremental positive effect above top 112 university
scientists’ articles on the number and quality of patents. Our cross-sectional
analyses of products and employment show a generally similar pattern of posi-
tive effects on firms’ success of collaborations with stars or top university scien-
tists, but the incremental effects are less systematic. This nonrobustness appears
to be due to multicollinearity. As predicted, untied star articles are either non-
significant or oscillate between significant positive and negative effects. Venture
capital funding amounts were always significant and usually positive.

The overall importance of ties, compared to lack of significance or insta-
bility of untied star effects, suggests that working jointly at the lab bench is a
crucial transfer mechanism when knowledge has an important or large tacit com-
ponent. Further, our findings suggest that, as we predicted, tacit knowledge is
embodied in individual, discovering scientists. Telephone interviews conducted
by Jeff Armstrong of university star scientists revealed that their relationships
with firms were governed by tight contractual arrangements, academic scientists
typically being “vertically integrated” into the firm in the sense of receiving
equity compensation and being bound by exclusivity agreements. This evidence
that star scientists were either fully employed by firms or were governed in their
relationships with firms by explicit contracts supported our conclusion that firm
success was not the result of a general knowledge “spillover” from universities
to firms but due to star scientists taking charge of their discoveries.
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NOTES

1 Most commonly, there are multiple virtually localized markets organized around competing per-
spectives or models employed within the subspecialty. There is also geographic localization
within the professions, with advantages to universities or cities with a “critical mass” of scien-
tists who can interact. Thus, UCSF with its critical mass of molecular biologists and related 
sciences, and nearby strong universities, was “ripe” for a breakthrough.
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2 Note that when multiple teams are racing for a “ripe” discovery and publish their results almost
simultaneously, we have much more rapid confirmation/validation of the discovery, which pro-
motes faster learning by others. Gina Durante, graduate student at the Anderson School at
UCLA, suggested this point.

3 The top 112 universities are defined in terms of rank order on federal research funding received.
The top 112 are defined by the Institute for Scientific Information, and the data were purchased
from them.

4 In 1994, Jeff Armstrong conducted a telephone survey of randomly selected linked stars in Cali-
fornia and found that most possess a significant equity or founding interest in the firm.

5 The prospectuses were obtained from Thomson Financial Services. The 10 companies in the
table were the top biotechnology firms in 1994 as reported by Lee and Burrill (1995, p. 16).

6 Due to human subjects’ restrictions, we cannot reveal the identity of the star scientists. The fol-
lowing scientists may or may not be included in our list of U.S. stars.

7 It is interesting that Genentech—with the largest number of star scientists of any firm—
appeared to avoid mentioning stars on its prospectus resume unless the star had a formal cor-
porate position. The one leading scientist who was listed on the prospectus was Dr. Boyer, who
made it a policy never to publish a genetic-sequence discovery article as or with a Genentech
employee.

8 See Darby et al. (2001).
9 The significance of key variables in these regressions is generally not sensitive to the

Wooldridge correction, but to achieve an estimate of the variance-covariance matrix that is not
restricted by first-moment parameter estimates, we apply the Wooldrige method as we did in
the California study. An alternative would be to implement a binomial specification, but as
explained in Wooldridge (1991), this procedure may bias both first- and second-moment esti-
mates, whereas the Poisson process potentially biases only the second-moment parameters.
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