
Occasional Paper

The Chen-Tindall System and the Lasso Operator:
Improving Automatic Model Performance

Jiaqi Chen and Michael L. Tindall

Federal Reserve Bank of Dallas 
Financial Industry Studies Department

Occasional Paper 16-01
May 2016

DALLASFED



 
 

The Chen-Tindall System and the Lasso Operator: 
Improving Automatic Model Performance 

 
by 

 
Jiaqi Chen and Michael L. Tindall 

Financial Industry Studies Department 
Federal Reserve Bank of Dallas* 

May 2016 
 

Abstract 
 

Using U.S. monthly macroeconomic data, the automatic model system presented in 
Chen and Tindall [2016] outperforms the lasso automatic system, but the lasso is 
improved where Bayesian model averaging is employed to combine its forecasts with 
those from autoregressive schemes. The best performance is obtained using Bayesian 
model averaging to combine the Chen–Tindall system, the lasso, and autoregressive 
schemes. Performance is virtually the same using this combined approach where the 
elastic-net operator is substituted for the lasso. Similar overall outcomes are found for 
France and Germany treated as a single economic system and for Canada. 
 
Keywords: Automatic model building, Bayesian model averaging, the lasso, the elastic 
net. 

 

Previously, Chen and Tindall [2016], C–T hereafter, presented an automatic model-building 
system, the CTA system hereafter, and examined its out-of-sample macroeconomic forecasting 
performance over the course of the last recession and subsequent recovery across multiple national 
economies. C–T focused on the construction of the CTA system with emphasis on 1) the set of rules under 
which it operates, and 2) the use of Bayesian model averaging, BMA hereafter, in its operation. 

In this paper, the CTA system is applied to a larger U.S. database than that used in C–T, the 
database is extended through the end of 2014, and BMA is employed in alternative ways to combine 
forecasts from the CTA system, the lasso system (Tibshirani [1996]), and other schemes. We apply the 
same processes to a combined database for France and Germany and a Canada database. We find that 1) 
the CTA system and the lasso generate forecasting equations that are very different in structure, 2) the 
CTA system, which is designed to incorporate BMA, generally outperforms the lasso, which does not 
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benefit from BMA, 3) combining forecasts from the CTA and lasso systems with forecasts from 
autoregressive schemes using a two-step BMA approach produces superior performance results, and 4) 
superior performance can also be achieved substituting the elastic-net operator, a variation on the lasso 
proposed by Zou and Hastie [2005], for the lasso in the two-step BMA approach. 

Automatic model-building systems address key problems which arise where forecasting models 
are based on economic theory. First, the economy is a complex, dynamic system where relationships are 
constantly evolving because of changes in economic policy, technology, etc. complicating the formulation 
of theory upon which forecasting models can be based. Second, economic theory is a simplified 
representation of reality which may not capture information that could be useful in making forecasts. 
Third, available time series used in building forecasting models are often poor measures of the concepts 
embodied in economic theory. Given these problems, the best one can do may be to build forecasting 
models based on statistical properties in the data. This is what automatic forecasting systems are meant 
to do. They appeal directly to the data, bypassing economic theory. 

Automatic systems operate without the need for human judgment, and they can build forecasting 
models even where the dataset is so large that its size effectively prohibits construction by a limited 
number of human model builders. Automatic systems are unconstrained by preconceived ideas, i.e., 
economic theories, and so can provide new ideas about model construction that can be used by analysts 
to improve existing models built by human developers. 

In the area of traditional econometric forecasting, where econometric model-building is 
performed without automatic systems, the Federal Reserve has, over a period of about five decades, 
committed substantial resources to the development and implementation of econometric models as an 
aid to policymaking. In recent years, automatic systems have become a topic of research at the Federal 
Reserve. At the Federal Reserve Board of Governors, Ericsson has published extensively, as author and co-
author, on the application of automatic model-building systems to forecasting and policy analysis (see 
Campos, Ericsson, and Hendry [2005], Ericsson [2016a], Ericsson [2016b], and Ericsson, Hendry, and Hood 
[2016]). Another banking regulator, the Federal Deposit Insurance Corporation, has conducted research 
regarding their use as tools for performing key bank monitoring functions (see Kapinos and Mitnik [2015]). 
In addition, researchers at the European Central Bank have examined automatic methods as forecasting 
tools (see De Mol, Giannone, and Reichlin [2006]). Properly constructed automatic systems offer 
policymakers the prospect of advances in the kinds of economic analysis that underlie policy formulation. 

In the following section, we present the data used in the analysis. In the next section, we present 
an overview of the operation of the CTA system and the lasso. Next, we present out-of-sample forecast 
results and examine them comparatively. Then, we present conclusions. 
 
DATA 
 

All data used in the analysis are actual, rather than artificial, data. All data are monthly in 
frequency. There is a forecasting equation for every series in each of the economic databases used in the 
analysis. We employ a U.S. database consisting of 434 variables, a database for France and Germany, 
treated as a single economy, consisting of 105 series, and a Canada database consisting of 61 series. The 
appendix shows the series in the three databases broken down by types of data. The databases are not 
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intended to be comprehensive in scope or detail; in practice, an automatic system may be presented with 
datasets that are not comprehensive. 

The U.S. economy is an obvious choice for automatic model-building work. Following C–T, we also 
apply automatic model building to a combined database of time series from France and Germany. C–T 
argue that France and Germany can be combined into a single economic system because 1) the two 
countries use the euro as their common currency so that their markets are based on the same numéraire, 
2) they employ harmonized regulatory environments, 3) they operate within the common legal 
framework of the European Union, 4) they trade with each other across a shared border with a high 
degree of specialization and economic integration, and 5) financial capital flows freely in large amounts 
between them. Thus, we treat France and Germany as a single economy, which means that equations for 
time series in each country may contain right-hand variables from both countries. Combining France and 
Germany into a single economic system has the effect of subjecting automatic model-building systems to 
a rather unconventional forecasting problem. Canada’s unique economic structure presents another 
challenge to automatic model-building systems. Its economy is technologically advanced, but Canada also 
has a large agricultural sector and is a major producer and exporter of timber and petroleum products. 
 
AN OVERVIEW OF THE CTA SYSTEM AND THE LASSO 
 

The CTA System 
 
 C–T present a full description of the CTA system, but in summary its key distinguishing feature is 
that it is comprised of a set of rules developed experimentally, i.e., through empirical tests of alternative 
combinations of computational methods. C–T say that this feature sets the system apart from those 
automatic systems based on theories of model selection. They note that there is a history of controversy 
in the literature over the issue of whether it is possible to posit a theory of automatic model selection, 
and they present an approach where the automatic system is developed and constructed using empirical 
means applied to a U.S. database and then tested without further alteration using various other countries’ 
databases. C–T note that the computational methods employed in the CTA system are not new taken by 
themselves except that they make small modifications to some of the methods. Rather, they propose that 
the CTA system may be novel in that it is constructed using this empirical approach. 

The CTA system begins computation by converting each time series in the database to stationary 
form. C–T test alternative methods of conversion, and a step-wise method is chosen based on empirical 
tests of model performance. A modified form of Granger causality tests is then applied to create a list of 
time series for possible inclusion as independent variables in the forecasting equation for a given 
dependent variable. That is, each dependent variable has its own list of candidate independent variables 
generated by the modified Granger causality tests. The Granger causality tests are modified so that 
bidirectional causality, where 𝑥𝑥 Granger causes 𝑦𝑦, and 𝑦𝑦 Granger causes 𝑥𝑥, is not allowed. Where 
bidirectional Granger relationships arise between two variables, the weaker relationship based on p-
values of F statistics is ignored. C–T find that this modification, which disallows tight feedback loops 
between two variables, increases the stability of the forecasting system improving model performance in 
empirical tests.  
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Using the list of variables created by the Granger tests, a modified form of the Bayesian 
information criterion is employed to construct the forecasting equation in a process that switches back 
and forth automatically between forward selection and backward deletion. The modified Bayesian 
information criterion is selected from a set of various information criteria based on empirical tests of 
model performance. Forward selection and backward deletion are computed using cross validation. C–T 
argue that the seasonal-adjustment methods used by reporting agencies do not always effectively remove 
seasonality from time series and that this may leave substantial residual seasonal variation in equations. 
So, in the next step, seasonal binary variables are appended to the equation even where all variables in 
the equation are ostensibly seasonally adjusted, and the equation is again subjected to backward deletion. 
This improves overall model performance in empirical tests. Following that, a time-trend variable is 
appended, and the equation is subjected to backward deletion. This improves overall model performance 
marginally. We refer to this combined set of processes as the initial phase of model construction. 

Next, BMA is employed to combine this initial model and two autoregressive modeling schemes: 
1) an AR(12) model and 2) an AR(1) with appended seasonal binary variables as in 𝑦𝑦𝑡𝑡 = 𝛽𝛽1 + 𝛽𝛽2𝑦𝑦𝑡𝑡−1 +
∑ 𝛽𝛽𝑗𝑗+2𝑠𝑠𝑡𝑡−𝑗𝑗+111
𝑗𝑗=1 + 𝜀𝜀𝑡𝑡 where 𝑠𝑠 denotes the seasonal binary variable. C–T find that this application of BMA 

substantially improves forecasting performance in empirical tests.  
They argue that the improvement is a result of the fact that the three approaches represent the 

data in very different ways. While the model generated in the initial phase of construction allows feedback 
effects, the AR(12) model only contains information from the lagged dependent variable. This eliminates 
forecast instability arising from feedback effects. Feedback effects are also eliminated in the equations 
for the AR(1) process with appended seasonal binary variables, but C–T argue that there is another reason 
for incorporating forecasts from this model. Seasonal binary variables are appended to the equations 
produced in the initial phase of construction, but these binary variables are then subjected to backward 
deletion. Other variables may mimic the effects of seasonality and provide additional information other 
than seasonality and, thus, at times, displace seasonal binary variables in the backward-deletion phase 
that would otherwise survive the process. So, the forecasts from the AR(1) equations with appended 
seasonal binary variables may serve to restore lost information about seasonality to the forecasts using 
BMA. In C–T, using U.S. data, the average weights computed from BMA are 0.456, 0.277, and 0.267 for, 
respectively, 1) the equations constructed in the initial phase, 2) the AR(12) model, and 3) the AR(1) with 
appended seasonal binary variables. The weighting patterns for the other country databases examined in 
C–T are very similar. 

The CTA system employs the Gauss-Seidel method (Jeffreys and Jeffreys [1988]), GS hereafter, 
used in various mathematics software packages to solve systems of equations. Under GS, in each forecast 
period, each contemporaneous right-hand variable is set initially at its value in the previous period, and 
the forecasting equations are computed using that value in the forecasting equations. This generates 
updates of the contemporaneous right-hand variables, and the forecasting equations are computed again. 
The process is repeated until the values of variables stabilize. With well-behaved systems of equations, 
GS produces results identical to Cramer. In the empirical results presented below, where various models 
are combined using BMA, the Gauss-Seidel method is used to solve the system of equations. 
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The Lasso System 
 
 The lasso (least absolute shrinkage and selection operator) is well known, but in summary it is a 
shrinkage method, which, for a linear regression 𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖 + 𝜀𝜀𝑖𝑖 , 𝑖𝑖 = 1,2,3, … ,𝑛𝑛𝑝𝑝

𝑗𝑗=1 , can be 

written in the form of a Lagrangian (Hastie, Tibshirani, and Friedman [2009]): 
 

𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = argmin
𝛽𝛽

��(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�𝛽𝛽𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑝𝑝

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

� 

 
The term 𝜆𝜆 is a tuning parameter, and 𝜆𝜆∑ �𝛽𝛽𝑗𝑗�

𝑝𝑝
𝑗𝑗=1  penalizes nonzero 𝛽𝛽𝑗𝑗; 𝑗𝑗 = 1,2,3, … ,𝑝𝑝. The effect of the 

penalty is that some of the 𝛽𝛽𝑗𝑗 are shrunk to exactly zero eliminating variables, making the lasso an 
automatic system. The solutions to the Lagrangian are nonlinear, and there is no closed-form solution. 
The underlying idea of the lasso is that overall forecast error can be reduced by introducing some error 
due to bias. Tibshirani’s seminal 1996 paper on the lasso has been cited more than 14,000 times to date, 
and the lasso method has gained many adherents in the fields of economics and finance. 
 The paper focuses on two automatic model-building systems: the CTA system and the lasso. 
However, in the empirical results presented below, we also examine the forecasting performance of the 
elastic-net operator. The elastic-net operator is predicated on the idea that neither the lasso nor the ridge-
regression operator has a clear advantage over the other, and the elastic net is proposed as an operator 
that combines properties of both. The elastic-net operator can be written in the form of a Lagrangian: 
 

𝛽̂𝛽𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛𝑛𝑛𝑛𝑛 = argmin
𝛽𝛽

��(𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�𝛽𝛽𝑗𝑗 𝑥𝑥𝑖𝑖𝑖𝑖)2
𝑝𝑝

𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

+ 𝜆𝜆��(1 − 𝛼𝛼)�𝛽𝛽𝑗𝑗� + 𝛼𝛼𝛽𝛽2�
𝑝𝑝

𝑗𝑗=1

� 

 
The term 𝛼𝛼, like 𝜆𝜆, is a tuning parameter. For 𝛼𝛼 = 0, the expression above is the lasso. For 𝛼𝛼 = 1, it is the 
ridge-regression operator. The idea underlying the elastic net is that 𝛼𝛼 can be tuned between 0 and 1 to 
take advantage of the specific strengths of the two operators. 
 

Differences in Forecasting Models Produced by the CTA System and the Lasso 
 

The CTA system and the lasso obviously are based on very different concepts of automatic 
construction, and they produce forecasting models that are very different in structure. The forecasting 
equations produced by the CTA system in the initial phase of construction often have a characteristic 
appearance. The CTA system converts most time series to differences of logs. The regression equations 
may contain short distributed lags of the dependent variable and certain independent variables. 
Sometimes there are one or two independent variables in an equation with large t statistics in absolute 
value, which make immediate intuitive economic sense as determinants of the dependent variable. These 
key variables may appear as single variables or in the form of distributed lags. In addition, there are 
sometimes other independent variables with smaller t statistics that seem to serve as modifier variables, 
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i.e., independent variables that serve to modify the relationship between the dependent variable and the 
key independent variables. One or more seasonal dummy variables may be present in some equations. 
Less frequently, the equation contains the time-trend variable. Some equations contain independent 
variables that are difficult to rationalize in economic terms. Infrequently, equations contain only the 
intercept term. Where the dependent variable is in the form of differences of logarithms, such an equation 
means of course that the series is forecast to grow at a constant rate.  Estimation performed by the CTA 
system is OLS. However, residual autocorrelation and heteroskedasticity are generally absent in the 
equations. Conversion of time series to stationary form contributes to this effect. 

Exhibit 1 presents a selected example of an equation created by the CTA system. The dependent 
variable is single-unit housing starts. The sample period is January 2001 to December 2011, which is the 
initial sample period used in the out-of-sample forecasting results presented below. The equation has 18 
parameters, and it contains a short distributed lag of the dependent variable and a distributed lag of 
single-unit building permits. A housing start is defined as the excavation of the land for the construction 
of a new house. In most localities in the country, the right to excavate requires a building permit. A building 
permit can be used for months, varying with the locality, after it is obtained, which explains the distributed 
lag of building permits with positive coefficients. Once excavation takes place, the building permit cannot 
be used again, which explains the negative coefficients of the distributed lag of housing starts. The two 
sets of estimated coefficients sum to approximately 1.0 which is in agreement with our interpretation of 
their meaning. Thus, building permits seem to serve as the kind of key independent variable we described 
above, and the other independent variables in the equation seem to play the role of modifier variables to 
the key relationship between starts and permits. 
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Exhibit 1 
Housing Starts Equation Generated by the CTA System 
Dependent variable: 
BIC: 
Sample period: 
Observations/parameters: 

Δln(HSt) 
-6.058 
January 2001 to December 2011 
132/18 

Variable  Coefficient Standard Error 
Intercept = 1  0.00698 0.0041 
1. Δln(HSt-1) -0.62956 0.0716 
2. Δln(HSt-2) -0.48641 0.0818 
3. Δln(HSt-3) -0.22045 0.0720 
4. Δln(BPt )  0.58655 0.0824 
5. Δln(BPt-1)  0.74247 0.0962 
6. Δln(BPt-2)  0.40127 0.1105 
7. Δln(BPt-3)  0.34972 0.1044 
8. Δln(BPt-4)  0.21425 0.0908 
9. Δln(IPFABt)  1.47439 0.3870 
10. Δln(IPFABt-4) -1.36260 0.4527 
11. Δln(IPFABt-6) -1.09913 0.4779 
12. Δln(IPFABt-7)  1.63958 0.4204 
13. Δln(PPICFt-10)  0.56761 0.1113 
14. Δln(PCEONt)  1.45003 0.4770 
15. Δln(PCEONt-8) -1.69359 0.4771 
16. Δln(PCEONt-10) -1.19497 0.5021 
17. Δln(PCEONt-12) -1.02638 0.4331 
18. SEASONt-8 -0.03215 0.0117 
where: 
  HS = Housing starts: single unit 
  BP = Building permits: single unit  
  IPFAB = Industrial production: fabricated metal products 
  PPICF = Producer price index: crude foodstuffs and feedstuffs 
  PCEON = Personal consumption expenditures: other nondurable, chained dollars 
  SEASON = Seasonal binary variable = 1 in January, 0 otherwise 

 
Contrasted with equations created by the CTA system, lasso-generated equations using our data 

typically contain many more independent variables, and the independent variables often appear with 
relatively small estimated coefficients. Distributed lags are infrequent in lasso-generated equations using 
our data. The large number of independent variables in a lasso-generated equation can complicate 
economic interpretation. 

Exhibit 2 shows the lasso-generated equation for single-unit housing starts. The dependent 
variable appears on the right-hand side of the equation only once and with a one-period lag, and building 
permits appear only once as a contemporaneous independent variable. The coefficients of these two 
variables sum to about 0.43 rather than 1.0 as in the corresponding CTA equation. The equation contains 
39 parameters, which means that the lasso selects many more of the kind of independent variables that 
we refer to as modifier variables. 
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Exhibit 2 
Housing Starts Equation Generated by the Lasso 
Dependent variable: 
BIC: 
Sample period: 
Observations/parameters: 

Δln(HSt) 
-6.612 
January 2001 to December 2011 
132/39 

Variable Coefficient Standard Error 
1. Intercept = 1 -0.00767 0.0126 
2. Δln(HSt-1) -0.01998 0.0282 
3. Δln(BPt )  0.44830 0.1729 
4. Δln(IPCONt)  0.04572 0.2088 
5. Δln(IPMETt-10)  0.06107 0.0727 
6. Δln(IPMISt)  0.04405 0.1883 
7. Δln(UCMANt)  0.42591 0.1996 
8. Δln(PCMOTt-11)  0.02908 0.0414 
9. Δln(PCODURt-8) -0.65370 0.3050 
10. Δln(PCFINt-12) -0.00420 0.1077 
11. Δln(PCGASt-7)  0.10079 0.0705 
12. Δln(PCONONt-9)  0.56139 0.2905 
13. Δln(RIFOODt-5) -0.10519 0.3636 
14. Δln(NUTILt-2) -0.66224 1.1165 
15. Δln(NREt-3)  1.92980 1.3655 
16. Δln(EARNCOMt-11) -0.30676 0.3630 
17. Δln(DOLLARt-6) -0.27922 0.2301 
18. Δln(HOMENEt-5) -0.02092 0.0180 
19. Δln(HOMEPRIt-1)  0.01627 0.0536 
20. Δ(RSMOTt-11)        4.2284x10-7       8.110x10-7 
21. Δln(RSFURNt)  0.25011 0.2094 
22. Δln(RSGENt-3)  0.05796 0.1742 
23. Δln(WMACHt)  0.01709 0.0863 
24. Δln(WMISDURt-8) -0.14253  0.0710 
25. Δln(WDRUGt-12)  0.49080  0.2478 
26. Δln(WALCt-3)  0.00121  0.0611 
27. Δln(WALCt-11) -0.08150 0.1228 
28. Δln(WIALCt-7) -0.03995 0.1231 
29. Δln(MSMISDURt-3) -0.13634 0.0898 
30. Δln(MSFOODt-11) -0.11275 0.1541 
31. Δln(MSTEXTt-9)  0.03166 0.0798 
32. Δln(MNFABt-9)  0.02231 0.0375 
33. Δln(MICHEMt-3) -0.12628 0.1354 
34. Δln(IMAUTOt-4)  0.12048 0.0662 
35. Δln(IMOMERt-10)  0.02793 0.0447 
36. Δln(IMOMERt-11) -0.02097 0.0779 
37. Δln(ISCHARGEt-1) -0.00742 0.0171 
38. Δ(PHILCURt-7)  0.00051 0.0004 
39. Δ(PHILEMPt-11) -0.00025 0.0003 
where: 
  HS = Housing starts: single unit 
  BP = Building permits: single unit  
  IPCON = Industrial production: construction supplies 
  IPMET = Industrial production: primary metals 
  IPMIS = Industrial production: miscellaneous durable goods 
  UCMAN = Capacity utilization: manufacturing 



9 
 

  PCMOT = Personal consumption: motor vehicles, current dollars 
  PCODUR = Personal consumption: other durable goods, current dollars 
  PCFIN = Personal consumption: financial services, current dollars 
  PCGAS =  Personal consumption: gasoline and other energy, chained dollars 
  PCONON = Personal consumption: other nondurable good, chained dollars 
  RIFOOD = Retails inventories: food and beverage 
  NUTIL = Nonfarm payroll employment: utilities 
  NRE = Nonfarm payroll employment, real estate, rental, leasing 
  EARNCOM = Average hourly earnings: computer and electronic 
  DOLLAR = Nominal broad trade-weighted value of the dollar 
  HOMENE = New single-family houses sold: northeast 
  HOMEPRI = New single-family houses: mean sales price 
  RSMOT = Retail sales: motor vehicles 
  RSFURN = Retail sales: furniture and home furnishings 
  RSGEN = Retail sales: general merchandise 
  WMACH = Wholesale sales: machinery 
  WMISDUR =  Wholesale sales: miscellaneous durable goods 
  WDRUG = Wholesale sales: drugs 
  WALC = Wholesale sales: alcohol 
  WIALC = Wholesale inventories: alcohol 
  MSMISDUR =  Manufacturing shipments: miscellaneous durable goods 
  MSFOOD = Manufacturing shipments: food 
  MSTEXT = Manufacturing shipments: textile mills 
  MNFAB = Manufacturing new orders: fabricated metals products 
  MICHEM = Manufacturing inventories: basic chemicals 
  IMAUTO = Imports: retail auto 
  IMOMER = Imports: other merchandise 
  ISCHARGE = Imports services: charges of use of intellectual property 
  PHILCUR = Philadelphia Fed manufacturing business outlook: current delivery 
  PHILEMP = Philadelphia Fed manufacturing business outlook: current employment 

 
We noted above that C–T report that the performance of their system is substantially improved 

using BMA to combine the forecasts from the initial model with those from the two autoregressive 
schemes and that they argue that the success of applying BMA to their system in this way arises from the 
fact that the initial model and the two autoregressive schemes represent the data in very different ways. 
This raises two key issues. First, given that that application of BMA substantially improves the 
performance of the CTA system, can the performance of the lasso be improved using BMA to combine its 
forecasts with those of the two autoregressive schemes? Second, and perhaps more important, given the 
marked structural differences in the equations produced by the CTA system and lasso-generated 
equations, as exemplified in the exhibits above, can we use BMA to combine forecasts from these systems, 
i.e., the CTA system and the lasso, improving forecasting performance even further? We return to these 
issues in the section below where we examine and present forecasting results. 
 
OUT-OF-SAMPLE FORECASTS 
 

Forecasts are computed over the three-year period from January 2012 to December 2014. The 
U.S. and Canada sample periods start in January 2001. The France–Germany sample period starts in 
January 2002, a year later because of data availability issues. To compute forecasts, the stationary forms 
of the variables and the equations of each macroeconomic model are created using data for the sample 
periods from the respective start periods to December 2011. Out-of-sample forecasts of one to six months 
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ahead are computed for the six-month period January 2012 to June 2012, and the resulting root mean 
square errors (RMSEs) one to six months ahead are stored. Then, the sample period is lengthened one 
month to end in January 2012, and new stationary forms and equations are created with that sample. 
Out-of-sample forecasts of one to six months are computed for February 2012 to July 2012, and the RMSEs 
one to six months ahead are stored. The process is continued, extending the end month by one month 
and computing out-of-sample results. 
 

Alternative Yardsticks and Performance Measurement 
 
Alternative forecasting approaches are also computed as yardsticks for comparison with the 

system’s forecasts. In one of these, the forecast is set equal to the actual value in the last period before 
the forecast period begins. We refer to this as the naïve model. The naïve approach provides a very useful 
diagnostic in that it is a “flat” forecast, which means that, if the automatic system outperforms the naïve 
yardstick, the system is in a sense “getting right” the direction, up or down, of the time series in the 
forecast period. We also compute an AR(12) model for each variable in the database and use it as a 
benchmark, comparing its forecasts to those from the automatic system. AR models are often used as a 
benchmark comparison for tests of forecasting systems (Stock and Watson [2003], Diebold and Li [2006], 
Stock and Watson [2008], and Elliott and Timmermann [2013]). 

Let 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  denote the RMSE of variable 𝑖𝑖 for the forecast 𝑗𝑗 months ahead produced by an automatic 
system and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 denote the corresponding RMSE of a benchmark model such as the naïve model or the 
AR(12). In the empirical results presented below, we report the mean 𝐷𝐷𝑗𝑗 in forecast period 𝑗𝑗 of the ratios 
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖. 

 

𝐷𝐷𝑗𝑗 = �
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖

𝑛𝑛

𝑛𝑛

𝑖𝑖=1

;  𝑗𝑗 = 1,2,3, … ,6 

 
where 𝑛𝑛 = number of variables in the model. We use 𝐷𝐷𝑗𝑗 as a measure of forecasting performance. Using 
ratios of RMSEs in 𝐷𝐷𝑗𝑗 normalizes results so that RMSEs of individual series do not dominate performance 
measurement. 𝐷𝐷𝑗𝑗 > 1 indicates that the system is outperforming in an overall sense the benchmark 
model in forecast period 𝑗𝑗. We report 𝐷𝐷𝑗𝑗 separately for both the naïve and AR(12) benchmarks. In addition, 
in tests of forecasts generated by variations of the lasso system reported below, we report 𝐷𝐷𝑗𝑗 using the 
forecasts of the CTA system as the benchmark. 
 

Empirical Results 
 

Exhibit 3 presents the 𝐷𝐷𝑗𝑗 where we compare the forecasting performance of the CTA system to 
both the naïve and AR(12) benchmark models for forecasts of one to six months for the three databases. 
With the exception of the AR(12) benchmark for Canada in forecast period 1, all values of 𝐷𝐷𝑗𝑗 in the exhibit 
are greater than 1, which indicates that the CTA system outperforms both the naïve and AR benchmarks. 
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Exhibit 3 
The CTA System 

Months ahead 1 2 3 4 5 6 
U.S. database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.0838 1.1036 1.1216 1.1398 1.1504 1.1611 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0104 1.0157 1.0206 1.0245 1.0288 1.0315 
France–Germany database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2520 1.2862 1.2889 1.2857 1.2430 1.1585 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0492 1.1375 1.0901 1.0515 1.0534 1.0534 
Canada database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2412 1.2843 1.3405 1.3601 1.3453 1.3697 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 0.9948 1.0023 1.0104 1.0042 1.0017 1.0022 

 
Exhibit 4 shows the performance results for the lasso system. Here, the performance of the lasso 

is presented without the benefit of BMA which makes comparisons between its performance and that of 
the CTA system, which does employ BMA, ambiguous. Rather, we present the results to establish a 
starting point for the later application of BMA to the lasso. In this context, comparing the 𝐷𝐷𝑗𝑗 in Exhibit 4 
to those in Exhibit 3, we see that the CTA system, which benefits from BMA, outperforms the lasso, which 
in Exhibit 4 does not benefit from BMA, in each forecast period 1 to 6 for both the naïve and AR(12) 
benchmarks for all three databases with the single exception of the naïve benchmark in forecast period 1 
for the Canada database. Exhibit 4 also shows the performance of the lasso using the CTA system itself as 
the benchmark, and the 𝐷𝐷𝑗𝑗 for that comparison are all less than 1, another indication that the lasso 
without BMA underperforms the CTA system. 

Exhibit 4 also shows the p-values for the Wilcoxon signed rank test with continuity correction that 
compares the performance results of the two systems statistically. Briefly, the test is nonparametric and 
compares the ratios 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 series by series in each forecasting period 𝑗𝑗 for the lasso and the CTA 
system. For instance, the p-values listed under the heading “naïve benchmark 𝐷𝐷𝑗𝑗” in the table are 
computed from the 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 compared series by series where 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 are the RMSEs 

of the naïve benchmarks for series 𝑖𝑖 in period 𝑗𝑗, 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are the lasso-generated RMSEs, and 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 are 

the CTA RMSEs. The p-values listed under the heading “CTA benchmark 𝐷𝐷𝑗𝑗” compare the 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

from the lasso system series by series to 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 = 1 for the CTA system since the CTA RMSEs appear 

in both the numerator of the ratio as the benchmark 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 and in the denominator as the 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶, i.e., the 
RMSEs of the CTA system.  

The Wilcoxon test is an appropriate test because 1) the distributions of the 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 are 
bounded on the left at zero, which argues for a nonparametric test and 2) the proper comparison is 
between forecasts from pairs of equations for a given series. The p-values are interpreted in the usual 
sense that a p-value less than a critical value indicates a significant difference in performance between 
the two systems. 

For the U.S. and the France–Germany databases, the p-values in Exhibit 4 are each less than a 
critical value of 0.05—in fact, in the exhibit, they are each zero to the four decimal places shown—
indicating that the CTA system is statistically significantly better than the lasso system. Using the Canada 
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database, forecast performance results are significantly different in most forecast periods with some 
exceptions in forecast periods 2, 3, and 6. 

 

Exhibit 4 
The Lasso 

Months ahead 1 2 3 4 5 6 
U.S. database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.0361 1.0599 1.0722 1.0843 1.0950 1.1048 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 0.9755 0.9854 0.9891 0.9916 0.9970 0.9999 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  CTA benchmark 𝐷𝐷𝑗𝑗 0.9654 0.9695 0.9687 0.9674 0.9691 0.9694 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
France–Germany database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.1500 1.1643 1.1463 1.1507 1.1177 1.0615 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 0.9721 1.0466 0.9748 0.9522 0.9536 0.9640 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
  CTA benchmark 𝐷𝐷𝑗𝑗 0.9321 0.9161 0.8986 0.9098 0.9077 0.9173 
    p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
Canada database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2566 1.2795 1.3035 1.3105 1.2877 1.2911 
    p-value 0.0003 0.0489 0.0551 0.1177 0.1565 0.0940 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 0.9620 0.9763 0.9796 0.9775 0.9771 0.9655 
    p-value 0.0007 0.0900 0.0985 0.1679 0.3010 0.0784 
  CTA benchmark 𝐷𝐷𝑗𝑗 0.9720 0.9774 0.9724 0.9745 0.9747 0.9619 
    p-value 0.0007 0.0956 0.0985 0.1816 0.2910 0.0628 

 
The performance of the lasso can be improved by employing BMA to combine its forecasts with 

those of the two autoregressive schemes. Exhibit 5 shows the results. According to the 𝐷𝐷𝑗𝑗 reported in the 
exhibit, using U.S. data, this system outperforms the CTA system in absolute terms for the naïve and 
AR(12) benchmarks in each forecast period 1 to 6. With U.S. data, the p-values in the exhibit indicate that 
the performance of the lasso with BMA is statistically significantly better than that of the CTA system in 
forecast periods 1 and 2 for all three benchmarks, but performance results are not significantly different 
in periods 3 to 6. Using the France–Germany database, the performance of the lasso with BMA is worse 
in absolute terms than that of the CTA system in all periods for the naïve and AR(12) benchmarks. 
Compared to the CTA benchmark, the comparisons are mixed. The p-values are greater than a critical 
value of 0.05 in all forecast periods for all benchmarks, indicating that the lasso with BMA does not 
significantly outperform any benchmark. Using the Canada database, the performance of the lasso with 
BMA is better in each forecast period for all benchmarks, but the only significant result is for the AR(12) 
and CTA benchmarks in forecast period 5. 
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 Overall, then, comparing the performance of the CTA system, which is designed implicitly to use 
BMA, with that of the lasso combined using BMA with the two autoregressive schemes, the outcome is 
mixed across the three databases and three benchmarks. 
 

Exhibit 5 
BMA of the Lasso, AR(12), and AR(1) with appended seasonal binary variables 

Months ahead 1 2 3 4 5 6 
U.S. database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.0934 1.1127 1.1262 1.1394 1.1495 1.1600 
    p-value 0.0006 0.0321 0.5797 0.5910 0.5271 0.5563 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0197 1.0228 1.0235 1.0232 1.0268 1.0300 
    p-value 0.0002 0.0230 0.4916 0.7143 0.6016 0.6432 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0118 1.0092 1.0052 1.0013 1.0011 1.0023 
    p-value 0.0001 0.0105 0.3241 0.9105 0.7451 0.8146 
France–Germany database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2437 1.2629 1.2577 1.2618 1.2296 1.1555 
    p-value 0.6684 0.0559 0.2914 0.3969 0.5824 0.8806 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0474 1.1190 1.0747 1.0417 1.0451 1.0489 
    p-value 0.9745 0.0866 0.3506 0.4410 0.8254 0.7541 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0012 0.9901 0.9875 0.9942 0.9966 1.0000 
    p-value 0.8629 0.1330 0.3951 0.5846 0.9974 0.6225 
Canada database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2991 1.3269 1.3620 1.3773 1.3613 1.3788 
    p-value 0.2776 0.4374 0.9442 0.2976 0.1460 0.2585 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0034 1.0109 1.0139 1.0124 1.0170 1.0101 
    p-value 0.1839 0.1936 0.5655 0.1448 0.0379 0.2114 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0132 1.0136 1.0095 1.0125 1.0184 1.0102 
    p-value 0.1315 0.1792 0.5273 0.1315 0.0399 0.1701 

 
We can achieve better performance. Exhibit 6 shows the performance results where we use BMA 

in a two-step process. First, we use BMA to combine the forecasts from the CTA equations from the initial 
phase of construction with those of the lasso. Then, we use BMA to combine those forecasts with those 
of the AR(12) equations and the equations of the AR(1) with appended seasonal binaries. The exhibit 
shows the 𝐷𝐷𝑗𝑗 for this two-step BMA system and the p-values for the Wilcoxon test where again we 
compare the performance of the two-step BMA system with that of the CTA system. Using U.S. data, the 
performance of the two-step BMA system is better than that of the CTA system both in absolute terms 
and statistically for all benchmarks in each forecast period 1 to 6. Using the France–Germany database, 
the performance results of the forecasting system produced by the two-step BMA procedure and the CTA 
system are remarkably similar in absolute terms across all forecast periods for all benchmarks. 
Statistically, the p-values are all greater than a critical value of 0.05 for all benchmarks in all periods except 
for the naïve and CTA benchmarks in period 6, indicating that the difference in performance in the CTA 
system and the two-step system is in general not statistically significant. Using the Canada database, the 
two-step BMA system outperforms the CTA system in absolute terms in each forecast period 1 to 6 for all 
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benchmarks. The difference in performance is statistically significant in each forecast period for all 
benchmarks except in period 3. 
 

Exhibit 6 
Two-step BMA of the CTA System (initial phase), the Lasso, AR(12), and AR(1) with appended seasonal 
binary variables 
Months ahead 1 2 3 4 5 6 
U.S. database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.0985 1.1175 1.1340 1.1497 1.1607 1.1715 
    p-value 0.0000 0.0000 0.0000 0.0080 0.0189 0.0235 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0229 1.0261 1.0293 1.0308 1.0355 1.0385 
    p-value 0.0000 0.0000 0.0000 0.0077 0.0180 0.0258 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0149 1.0127 1.0111 1.0088 1.0093 1.0096 
    p-value 0.0000 0.0000 0.0000 0.0033 0.0078 0.0134 
France–Germany database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2572 1.2857 1.2839 1.2867 1.2475 1.1692 
    p-value 0.2220 0.6754 0.9872 0.5268 0.4564 0.0497 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0550 1.1316 1.0894 1.0557 1.0559 1.0593 
    p-value 0.1114 0.9109 0.8254 0.6180 0.3707 0.0512 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0071 1.0016 1.0003 1.0057 1.0044 1.0077 
    p-value 0.0670 0.9694 0.8279 0.5184 0.2828 0.0440 
Canada database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2789 1.3182 1.3635 1.3802 1.3622 1.3818 
    p-value 0.0103 0.0093 0.2176 0.0296 0.0078 0.0425 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0051 1.0136 1.0185 1.0150 1.0168 1.0130 
    p-value 0.0029 0.0017 0.0942 0.0074 0.0030 0.0269 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0130 1.0143 1.0116 1.0134 1.0171 1.0124 
    p-value 0.0020 0.0015 0.0900 0.0074 0.0027 0.0203 

 
Superior performance can also be achieved by substituting the forecasts of the elastic-net 

operator described above for those of the lasso in the two-step BMA scheme. Exhibit 7 shows the 
performance results where we do this, i.e., where we use BMA to combine the forecasts from the CTA 
equations from the initial phase of construction with those of the elastic net and then use BMA to combine 
those forecasts with those of the two autoregressive schemes. The 𝐷𝐷𝑗𝑗 in Exhibit 7, where we use the 
elastic net, are virtually the same in value item for item across databases, benchmarks, and forecast 
periods as those in Exhibit 6, where we use the lasso in the two-step BMA process. The p-values differ 
somewhat item by item between the two exhibits because they take into account the dispersion of the 
ratios 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖/𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 series by series. Still, in terms of their significance relative to a critical value of 0.05, there 
is virtually no difference in the results in the two exhibits. So, with our data, it makes no practical 
difference whether we employ the lasso or the elastic net in the two-step BMA scheme. 
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Exhibit 7 
Two-step BMA of the CTA System (initial phase), the Elastic Net, AR(12), and AR(1) with appended 
seasonal binary variables 
Months ahead 1 2 3 4 5 6 
U.S. database: 
  Naïve benchmark Dj 1.0980 1.1170 1.1335 1.1490 1.1600 1.1709 
    p-value 0.0000 0.0000 0.0000 0.0144 0.0305 0.0350 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0225 1.0256 1.0288 1.0302 1.0349 1.0380 
    p-value 0.0000 0.0000 0.0000 0.0133 0.0280 0.0390 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0146 1.0123 1.0107 1.0083 1.0089 1.0093 
    p-value 0.0000 0.0000 0.0000 0.0062 0.0133 0.0208 
France–Germany database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2554 1.2821 1.2795 1.2821 1.2441 1.1666 
    p-value 0.3707 0.3934 0.6661 0.7711 0.6453 0.0689 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0537 1.1278 1.0869 1.0530 1.0539 1.0573 
    p-value 0.1988 0.5737 0.7420 0.9109 0.6001 0.0665 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0055 0.9987 0.9974 1.0025 1.0020 1.0052 
    p-value 0.1673 0.6430 0.7565 0.8254 0.5102 0.0559 
Canada database: 
  Naïve benchmark 𝐷𝐷𝑗𝑗 1.2786 1.3184 1.3638 1.3780 1.3621 1.3820 
    p-value 0.0095 0.0047 0.2403 0.0291 0.0075 0.0396 
  AR(12) benchmark 𝐷𝐷𝑗𝑗 1.0049 1.0137 1.0186 1.0150 1.0168 1.0133 
    p-value 0.0031 0.0012 0.1092 0.0080 0.0027 0.0224 
  CTA benchmark 𝐷𝐷𝑗𝑗 1.0128 1.0144 1.0117 1.0134 1.0171 1.0125 
    p-value 0.0021 0.0011 0.0942 0.0075 0.0028 0.0181 

 
 
SUMMARY AND CONCLUSIONS 

 
Absent the need for human expertise, automatic systems can build forecasting models for very 

large datasets, and they can be employed to generate new ideas to improve existing models. Automatic 
systems offer policymakers the potential for improved policy analysis. Where forecasting models are 
based on economic theory, forecasting is complicated by the fact that 1) the structure of the economy 
changes over time complicating the formulation of economic theory, 2) economic theory is a highly 
simplified representation of reality which may ignore information useful in making forecasts, and 3) 
available data series used in building forecasting models are often poor representations of theoretical 
variables. Automatic systems seek to address these issues by eliminating economic theory, appealing 
instead directly to the data. The CTA system examined here takes that idea one step further, dispensing 
with the idea of basing an automatic model-building system on a theory of model selection and instead 
employing an empirical approach to constructing the automatic system. 

The CTA system outperforms the lasso in absolute terms, i.e., as measured by the 𝐷𝐷𝑗𝑗, for all 
benchmarks in each forecast period in each of the three datasets. Using both the U.S. database and the 
France–Germany database, performance results are significantly different, as measured by the p-values 



16 
 

for the Wilcoxon signed rank test, in each forecast period for all benchmarks. Using the Canada database, 
forecast performance results are significantly different in most forecast periods. 

Using BMA to combine the lasso with the two autoregressive schemes, the combined model 
generally performs better than the lasso in outright form. Using both the U.S. and Canada databases, the 
lasso combined with the autoregressive schemes outperforms the CTA system in absolute terms in each 
forecast period for all benchmarks, although performance is generally not statistically significantly 
different in terms of the p-values for either database. Using the France–Germany database, the lasso 
combined with the two autoregressive schemes underperforms the CTA system, but again the difference 
in performance is generally not statistically significant. 

Better results are obtained using BMA in a two-step process to combine the CTA system, the lasso, 
and the two autoregressive schemes. Using U.S. data, this system outperforms the CTA system both 
absolutely and statistically in each forecast period for all benchmarks. Using Canada data, the outcome is 
the same except that performance is not significantly different in forecast period 3 for any benchmark. 
Using the France–Germany database, this system produces performance results which are similar to that 
of the CTA system in absolute terms, and p-values generally exceed a critical value of 0.05. Substituting 
forecasts from the elastic net for those of the lasso in the two-step BMA scheme produces forecasting 
performance results which are practically the same. 
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APPENDIX 
 
Series in the Databases 
 

Exhibit A 
Types of Series in the Databases 

 U.S. France–
Germany Canada 

Total series 434  105  61  
Stock indexes and stock market indicators 12  1  1  
Short- and long-term interest rates 9  9  7  
Currency and money supply 3  5  3  
Exchange rate indexes 1  1  1  
Personal consumption expenditures current dollars 16      
Personal consumption expenditures constant dollars 16  1    
Retail sales 14  5  3  
Retail inventories 6      
Wholesale trade 18  2  1  
Wholesale inventories 18      
Manufacturers’ shipments/sales 21  3  3  
Manufacturers’ orders 7  1  1  
Manufacturers’ inventories 21    1  
Personal income 7      
Consumer price indexes 11  26  7  
Producer and industrial price indexes 10  7  2  
Commodity and metals prices 4      
Oil prices 2      
Industrial production indexes 41  23  4  
Capacity utilization indexes 3      
Nonfarm employment 49    15  
Agricultural employment     1  
Workweek hours 32      
Hourly earnings 31  1  1  
Unemployment and labor force 10  2  2  
Building permits, housing starts, and completions 10  3  2  
New home sales 4      
New home prices 3    1  
Construction spending 3      
Foreign trade: goods and services 15  3  3  
Motor vehicle unit sales and production 6  3  2  
Consumer sentiment surveys 4  4    
Business sentiment surveys 24  2    
Government outlays 3      
Business and personal loans   3    
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