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1. Introduction

In recent years, hedge funds have found it increasingly difficult to produce high returns. This makes
hedge fund selection a critical issue for investors. Selection is difficult because hedge funds are
heterogeneous using many distinctive strategies and investing in a variety of asset classes with vastly
different return characteristics. Various ways have been proposed to improve hedge fund selection; a
complete survey of those methods is beyond the scope of this paper. An investor could look at historical
hedge fund returns and try to forecast future returns based on macroeconomic conditions. For instance,
Jagannathan, Malakhov, and Novikov (2010) and Avramov, Barras, and Kosowski (2013) implement
conditional strategies to forecast returns using macroeconomic variables, and they find such strategies
generate very good performance.

Another more intuitive and easily implemented approach is to rank the funds based on certain risk
factors and to construct different portfolios of funds from the rankings of these factors (De Souza and
Gokcan, 2004; Pedersen, 2013; Molyboga, Beak, and Bilson, 2014). This approach has been employed to
test fundamental theories in asset pricing, to study pricing anomalies, and to identify profitable investment
strategies. The underlying premise is that the expected returns of an asset class are related to a certain factor,
and the asset group ranked highest with regard to that factor has the highest likelihood of outperforming
other groups. Using this framework, there is no forecasting equation, but the procedure can be casted as a
nonparametric estimator (Cattaneo, Crump, Farrell, and Schaumburg, 2016).

Our paper differs from both methods because we build cross-sectional models and select funds
based on forecasts of return from those models. It relies to some extent on models like the Fama-French-
Carhart (FFC hereafter) factor model (Carhart, 1997). Instead of forecasting returns of an individual fund
using macroeconomic variables, we focus on forecasting returns using characteristic factors using cross-
sectional methods. We treat forecasting as a supervised machine-learning problem and utilize both linear
and nonlinear machine-learning techniques to construct our forecasts of returns. Portfolios are formed
according to the rankings of the forecasted returns, and we find that these portfolios generate robust and
superior performance results across major hedge fund style categories. Our forecast methods deviate from
traditional econometric approaches and are more in line with the suggestions made in Varian (2014) who
argues that data analysis in statistics and econometrics can be divided into four categories: 1) prediction, 2)
summarization, 3) estimation, and 4) hypothesis testing. The machine-learning methods we employ are
mainly concerned with the first category: the accuracy of out-of-sample prediction.

The next section discusses the data used in the paper. Following that, we present our machine-
learning portfolio-based methodology and an alternative method using macroeconomic variables, which we
use as a benchmark for comparison. After that, we present a description of the factors used in our analysis,
and then we present the alternative machine-learning methods used in our analysis. Empirical results are
presented in the following section. The final section presents conclusions.

2. Hedge Fund Return Data

Hedge fund monthly return data come from the Hedge Fund Research, Inc. (HFR) database. There
are four major HFR styles: equity, event-driven, macro, and relative value. We evaluate individual funds in
the HFR database grouped within the four styles. The period for evaluating portfolio performance is January
1996 to December 2015. There are 7,324 live funds in the HFR database and 16,304 dead, or graveyard,
funds. There are considerable survivorship and backfill biases in the data. To mitigate those problems, we
combine both the live and graveyard databases as follows:



1. We combine the funds from both the graveyard and live database and sort them into equity, event-
driven, macro, and relative-value style classifications.

2. Ateach time t we find hedge funds with returns reported at that particular date. They are our live
funds at time t regardless of whether the reported returns come from the live or graveyard database.
That is, funds in the graveyard data that were live at time t are treated as live as of that date.

3. Our analytical method requires that each fund has a continuous reported history, which we set at
24 months. The 24-month requirement could be flexible but it has to be longer than the sum of
look-back period M and the look-forward period K.

4. Once we have built the forecast model at time t, the funds are sorted by their forecast returns for
the next K months into 10 groups with an equal number of funds in each group. We refer to these
as our “decile portfolios.”

5. We hold the equally weighted portfolios until time ¢ 4+ K. If a fund is dropped out of the database,
we assume the return for that portion of asset allocation to be 0 for the remaining part of the K
months.

Steps 1-5 greatly reduce unwanted survivorship and backfill biases. For example, for macro funds in
January 2000, there are only 74 funds in the live database, but adding funds from the graveyard there are
416 funds in the month. Of these, 294 of them had a continuous reporting history of no fewer than 24
months as of January 2000. So our model uses those 294 funds in that month. Step 5 gives us a more
conservative and realistic estimation of the portfolio returns as it would take time for an investor to reinvest
funds if a hedge fund has returned proceeds to investors.

The hedge fund indexes used in the paper are the four HFR “HFRI” style indexes (the HFR indexes
hereafter) for equity, event-driven, macro, and relative-value hedge funds published by Hedge Fund
Research, Inc.

3. Methodology

Portfolio sorting based on certain characteristics is an important tool in empirical finance. In
practice, a set of securities is typically ranked according to a risk factor under scrutiny over a certain look-
back window, and long and short positions in securities are taken based on the ranking. Numerous factors
have been studied in the academic research. Harvey, Liu, and Zhu (2016) have identified more than 200
such factors in the literature.

There are important issues with regard to factor-ranking procedures. One of these is the question
of whether the risk premium of a particular factor is stable over time. For instance, Fama and French (1992)
found that their value factor had a positive risk premium over the long term, but we find that the value
premium estimated as the annual return difference between the Russell 1000 Value Index and Russell 1000
Growth Index has been negative in all five-year rolling windows from 2009 to 2015.

A natural extension of the method is to include multiple risk factors in the portfolio formation
process, but this raises another issue. Typically, we may want to identify securities ranked in the top group
in all the risk factors. However, with a large number of factors, we run into the high-dimensional problem
that the securities/funds would be scattered sparsely in an N-dimensional space where N is the number of
factors we want to combine. It may be impractical to find enough securities in the top rankings of all the
factors to form a diversified portfolio. One can devise an ad hoc method where a composite score is used
to combine the factors into a ranking. However, there may be no statistical principle or financial theory
dictating how to form that composite score and build the best portfolio because the rank combination
approach ignores interactions between the factors. A study by Bali, Brown, Murray, and Tang (2016) on
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“lottery” stocks, i.e., stocks that have a high return in one day in the previous month, and high-beta stocks
illustrates the problem. High-beta stocks underperform low-beta stocks, and lottery stocks underperform
their counterparts. One would expect then that low-beta nonlottery stocks would offer the best performance.
However, Bali et al find out that high-beta nonlottery stocks outperform low-beta nonlottery stocks by about
0.6 percent per month when sorted by lottery and beta properties sequentially. Thus, an underlying
interaction between the factors plays a crucial role in determining performance.

Given these difficulties, it is useful to examine this approach from a machine-learning perspective.
Essentially, the approach described above falls into the realm of “unsupervised learning.” This is a type of
machine-learning algorithm used to draw inferences from data sets without access to the outcome response
to provide correct answers for each observation (Hastie, Tibshirani, and Friedman, 2009). It is difficult to
ascertain the correctness of the inferences drawn from the algorithms, and one typically relies on heuristic
argument to motivate the algorithm and evaluate the quality of results. In the case of factor-sorted cross-
sectional analysis, the heuristic argument is that the factor carries a significant positive risk premium in
either a statistical or economic sense. Then, if we cluster all the securities into similar groups based on their
rankings, we could effectively evaluate the risk premium hypothesis and the clustering algorithm
simultaneously. For most of the studies dealing with a single factor, the grouping by rank is just a one-
dimensional clustering algorithm where the distance between data points is the difference between their
ranks. The number of the clusters is fixed beforehand with equal number of members in each cluster. The
multi-factor case elevates the clustering problem into high dimensions. We can use readily available
clustering algorithms like K-means or hierarchical clustering to form the clusters/groups, and we can also
use methods like principal component analysis and independent component analysis to reduce the number
of dimensions to a manageable extent. However, after applying unsupervised learning techniques, we are
still facing the heuristic problem of finding the cluster with the best performers. The clustering algorithms
could only tell us how to group the securities based on their similarities in terms of the factors, and it may
be difficult to predefine which group is the leading group.

There is another branch in machine learning called “supervised learning,” which directly targets
the prediction of one or more responses for a given set of input or predictor variables. Regression is a
familiar, if simple, example of supervised learning, and we can use the FFC four-factor model to examine
how our fund selection machine-learning framework is related to more traditional cross-sectional studies.
Based on the four-factor model, a fund’s excess return can be decomposed into the excess return of four
factors: market return, value, size, and momentum as in the following equation:

Ry = a+ ByRu;t + BeRpt + BcRet + BwRw,t + & 1)

where R, is the monthly excess return of a particular fund, Ry, . is the monthly excess return of a market
index, Rg  is the monthly excess return of a portfolio that is long (short) high (low) book-to-market stocks,
R¢; is the monthly excess return of a portfolio that is long (short) small (large) capitalization stocks, and
Ry ¢ is the monthly excess return of a portfolio that is long the stocks with the highest returns (i.e., the
returns in the top three deciles) over the previous 12 months and short the stocks with the lowest returns
over the previous 12 months.

With a slight modification, we can transform equation (1) into a forecasting model for a fund’s
returns. In the forecast model, a fund’s return at time t + 1 can be expressed as a conditional expectation
E(RE,1|9Y) where RE, 4 is the return at time ¢ + 1 for fund i, and @} is all the information pertaining to fund
i at time t. Following Haugen and Baker (1996), the FFC four-factor model can be rewritten as:

E(R£+1|®£) =a+ .31€4,tRM,t + .Blii,tRB,t + .Bé,tRC,t + .Blél/,tRW,t 2)



where @t is the information represented by the fund-specific betas. The model can be estimated through
either a cross-sectional regression or a Fama-MacBeth process. Using this model at a point in time t across
the hedge funds in our database, we can generate cross-sectional return predictions for the funds in our
database and pick up the top performing funds.

Besides linear regression, there are many machine-learning techniques widely employed to
incorporate nonlinear effects to reduce forecast error by introducing bias and to utilize model averaging
methods. Our goal is to use alternative machine-learning methods to build a flexible framework that is
capable of combining the strengths of all the factors and to construct our dynamic forecast models without
relying on heuristic arguments to define the weights in the composite score. This holds the potential to
improve model performance and to build a general framework that could easily be modified to incorporate
new risk factors. Our method can be viewed as a supervised learning problem based on the following
equation:

E(R{tsk|0F) = fe (R Ri—y o Xi X ) @3)

where 1+ R, = T1/C,(1 + R, ) is the cumulative return for fund i from time t + 1 to ¢ + K and
fe(RLRE_y oo, xq ¢, Xz ) S the linear/nonlinear forecast function using the past returns (Rf, Ri_; ...) up
to time ¢ and quantitative factors (x! , x5 . ...) describing fund i at time ¢.

We use a rolling window to build our forecast model and evaluate its performance. Assuming a
look-back period of M and a look-forward period of K, at time t the machine-learning algorithm is applied
to the fund returns information fromt — M — K + 1 to t. The output variable is the cumulative return from
t — K + 1 to t while the input variables are only evaluated fromt — M — K + 1 to t — K in building each
model. Basically, we are constructing a supervised-learning model using past information to forecast the
future returns in the next K months. Applying the model on data from t — M + 1 to t, we have the forecast
of return for each fund. Based on the forecast, we rank the funds into 10 equal-sized groups to form 10
equally weighted portfolios, i.e., the decile portfolios, and hold the 10 portfolios for the next K months at
which time we rebalance. When rebalancing at the end of K months, we retrain the forecast model following
the same procedures and form a new set of 10 portfolios. We set M = 12 so that such a short window can
follow market dynamics more closely. K is set at 3, 6, and 12 months to simulate typical hedge fund
redemption restrictions. Doing so, we establish 10 out-of-sample dynamic portfolios. Following this
procedure, we only rebalance the portfolios every K months, generating for each trading strategy a single
time series of monthly returns. We generate this single time series of returns following the approach used
by Moskowitz, Ooi, and Pedersen (2010) in which the return at time ¢t measures the average return across
all portfolios at that time.

As a benchmark for comparison to our results, we use the macroeconomic hedge fund return
forecast model proposed by Avramov, Barras and Kosowski (2013) (the ABK model hereafter) to construct
decile portfolios. They constructed four univariate time-series models of illiquidity-adjusted hedge fund
returns regressed, respectively, on the VIX, hedge fund industry net dollar inflow, the dividend yield of the
S&P 500 index, and the yield differential between Moody’s BAA- and AAA-rated bonds. For each of the
four regressions, the conditional t-statistic, t(#; .+ (j)) is estimated for the predictor z; . separately at time
t as:

~ . i t4+10)
t(fyp1()) = =L @)

se(Uie+1())



where 1; .1 (j) is the conditional mean and se (ai“l(j))is the estimated standard error from the regression

equation of ; ;41 () = @; + Bi,jzj,t- Their indicator is the average of the four individual t(#i; ;14 (j)), and
their investment strategy is to hold the top decile of funds with the highest value of the indicator. In our
estimation of equation (4), we use a 24-month rolling window.

4. Risk Factors

Our risk factors include a variety of measures including cumulative monthly returns, Sharpe ratios,
skewness of returns, and kurtosis of returns. Hedge funds returns may exhibit strong serial correlation, and
Getmansky, Lo, and Makarov (2004) argue this is caused by illiquidity in asset markets rather than
unexploited profit opportunities. Thus, we include autocorrelation factors, which offer information about
the effect of a fund’s illiquidity on its future returns. We also use the ( ratio proposed by De Souza and
Gokecan (2004) as a risk factor. It is defined as:

Qratio = [ (1 = F(r)dr/[; F(r)dr (5)

where F(r) is the cumulative distribution function of the returns, a and b are lower and upper limits of the
range of return, and L is the target return threshold defining what is considered a gain versus a loss. We set
L = 0 inour study.

Additionally, we employ the current drawdown of a fund measured as the percentage difference
between the fund’s most recent monthly unit value and its trailing high watermark. We reason that this
factor could bear useful information; a fund may have incentive to increase portfolio risk if the fund is far
below the high watermark given that the 2-20 fee structure resembles an out-of-money call option for the
manager (Goetzmann, Ingersoll and Ross, 2003). The machine-learning algorithm determines dynamically
whether such action would be beneficial for the fund.

Sun, Wang, and Zhen (2016) found that funds that perform well in adverse market conditions tend
to be consistent winners over the long run. Thus, we include as a risk factor the average return of the fund
in months when its corresponding HFR style index experiences a loss.

Another useful factor is the t-statistic of a, which measures the “significance” of fund performance.
Molyboga, Beak, and Bilson (2014) propose to regress the return of a commodity trading advisor on its
corresponding benchmark and define the t-statistic of alpha as:

a

ta = std(a) (6)

A large positive value of t, indicates that the manager is able to generate positive alpha consistently over
time, while a large negative value of t, indicates consistently poor performance. They report the top
t, funds significantly outperform bottom t, funds out of sample. Following these ideas, we construct our
t, factor by regressing a fund’s returns on those of its corresponding style index and calculate its alpha and
the t-statistic from that regression.

With hedge fund data, we are limited in the types of factors we can employ. For instance, while we
can define risk factors for stocks based on book and market values, such measures do not exist for hedge
funds. In addition, there are gaps in hedge fund databases. For example, some funds do not update assets
under management regularly, and so we do not incorporate this into our set of risk factors. The candidate
factors on the right-hand side of equation (3) include some measures typically used to measure fund
characteristics and some which are atypical. All variables are converted to normalized deviations from the



mean. Exhibit 1 lists the factors used in our analysis. In the exhibit, the first nine factors are typical of those
used in factor analysis while the remaining eight factors are atypical:

Exhibit 1. Factors used in our analysis

Factor Symbol
1. One-month return R1
2. Two-month cumulative return R3
3. Six-month cumulative return R6
4. Nine-month cumulative return R9
5. 12-month average return R12
6. Sharpe ratio calculated from the past 12 months of returns SR
7. Standard deviation calculated from the past 12 months of returns SD
8. Skewness calculated from the past 12 months of returns Skew
9. Kurtosis calculated from the past 12 months of returns Kurt
10. Q ratio Omega
11. Lag 1 autocorrelations calculated from the past 12 months of returns ACF1
12. Lag 2 autocorrelations calculated from the past 12 months of returns ACF2
13. Lag 3 autocorrelations calculated from the past 12 months of returns ACF3
14. Fund alpha with respect to the corresponding HFR style index Alpha
15. Alpha t-statistic Alpha-t
16. Distance/drawdown from the high watermark in the past 12 months DD
17. Average return of the fund in months when HFR style index experienced a loss PerLoss

5. Machine-Learning Algorithms

Cross-Sectional OLS Regression

OLS regression for cross-sectional returns has a simple model structure as follows:

E(ngft+K|®tif) =at 211'21 Bjt xji,t

where the superscript i indicates the fund-specific factors.

The Lasso

()

The lasso method is an automatic model building system based on a shrinkage method that has

gained wide acceptance in the machine-learning field. The lasso method has found adherents in finance and
economics (see Welsch and Zhou, 2007; Bai and Ng, 2008; and Wang and Zhu, 2008). Lasso addresses
high-dimension problems by shrinking parameters that have been inflated in value by the effects of
multicollinearity. It shrinks parameters by a constant factor at the limit to zero such that variables are
eliminated from the initial equation. From a set of candidate variables, which may consist of all variables
in the dataset, it selects a subset for inclusion in an equation, making it an automatic model building system.
For example, for a linear regression y; = By + Zﬁ?:lﬁj *xij +&,0=1,23,..,n, the lasso estimate is
defined by:



plasso = arglgnin (i —Bo— 25.):1,3]- * xij)z (8)

subjectto X7_,|8;| < T

where T is a tuning, or penalty, parameter. By making T sufficiently small, some of the coefficients are
shrunk to exactly zero, which means that the lasso estimation method is also a variable selection method.
The penalty parameter T is adjusted in small increments to minimize cross-validated mean square error.
The lasso can also be written in the equivalent Lagrangian form (Hastie, Tibshirani, and Friedman, 2009).

'B"lasso — arglgnin(Z?zl(yi —Bo — 25,;1[3]- * xij)z + 12?=1|ﬁj|) )

The key motivation for lasso is the bias-variance tradeoff in mean squared error (MSE). For a fitted model
of (%), where fy(x) is the true value of f(x) at point x:

MSE[f ()] = E[f (%) — fo(x)]* = Variance[f (x)] + [E[f ()] — fo(x)]? (10)

By shrinking the estimator in lasso, Variance|f(x)] will be reduced. If the increase in bias, [E[f(x)] —

fo(x)], is relatively small, the forecast error could be reduced. In our study, the choice of the penalty
parameter T is based on 10-fold cross-validation estimation of mean square error.

Random Forest

Random forest (RF hereafter) is an ensemble method built on a classification and regression tree
(CART). The basic CART works by a recursive partitioning of the data that can be represented within a
basis function framework (Berk, 2008). The basis functions are indicator variables determined by the best
splits, which can be viewed as nonlinear and high-order functions of all the variables. It is a stagewise
process that breaks the data into smaller and smaller pieces. The goal is to construct subsets of the data so
that the values of the response variable in each subset fall within a narrow range. Defining the impurity of
node as the within-node sum of squares for the response variable i(7) = ¥.(y; — y(7))? at each split, the
best split is chosen to maximize the change of impurity:

ACs, 1) = i(7) —i(7y) — i(TR) (11)

where 7 represents the “parent node” and t; and 7 represent the two “daughter nodes.” Through the whole
process, each observation is placed in a terminal node and is then assigned the mean of that mode. The
basic CART is prone to over-fitting, and Breiman (2001) proposes to use an ensemble approach called
“random forest” to improve on the basic CART. Let N be the number of observations, and the following
steps are followed to build an RF model for quantitative response variable:

Take a random sample of size N with replacement from the data.

Take a random sample without replacement of the predictors.

Construct the first CART partition of the data.

Repeat step 2 for each subsequent split until the tree is as large as desired.
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5. Drop the out-of-bag data which were not selected in the first step down the tree. From these
observations, a mean is calculated for each terminal node and such means would serve as the
predicted values in the respective terminal nodes.

6. Repeat steps 1-5 a large number of times, e.g., we use 10,000 in our setup.

7. Using only the value assigned to each observation when that observation is not used to build the
tree; we take the average of those values among all the trees as the predicted outcome from this
random forest.

8. Variable importance can be computed using the shuffling approach. For a single tree, each time a
given variable is used to define a splitting of the data, the reduction in the purity is recorded. Once
the tree is complete, all the reductions are summed. The result is the error sum of squares reduction
contributed by each predictor. Those sums are then averaged over all the trees for each predictor.

There are three major tuning parameters: 1) the terminal node size for the single tree, 2) the number of trees,
and 3) the proportion of predictors to be sampled. We use a value of 5 for the terminal node size. We set
the number of trees at 10,000. The proportion of the predictors to be selected for each iteration is set at 1/3.

With a random sample of input variables, the predictions made by each of the trees are more
independent. As a result, averaging over a large number of independent trees can bring great improvement
in prediction accuracy. Because of this, a random forest is able to work with high-dimensional data. Where
predictors are highly correlated, one can use either one as the splitting variable. However, the two variables
would not split the data in exactly the same way given the hierarchical structure in the regression trees. The
two partitions might have large overlap while having unique content. If each of the two variables has an
opportunity to be selected without competing against each other, we are able to explore a richer feature
space. Overall, the predictor sampling and multiple tree averaging leads to shrink each predictor on the
fitted values.

Gradient Boosting Model

The strength of the random forest model comes from two things: 1) the fitting functions are very
flexible and can accommodate highly localized features of the data, and 2) averaging over the out-of-bag
observations reduces the risk of over-fitting. Boosting is an alternative way of dealing with the flexibility
issue. It gives observations responsible for highly localized features more weight in the fitting procedure.
After a large number of iterations, which gives relatively more weight for the difficult-to-fit observation,
one can combine the predictions from each iteration in a sensible way to reduce over-fitting. Basically it is
able to take a “weak” learning algorithm and gradually boost it into a “strong” learning algorithm. In this
paper, we will follow a specific approach called stochastic gradient boosting (GBM hereafter) to build our
forecast model. For N observations and p variables, our procedure is as follows:

1. Initialize the forecast function f,(x) such that the constant ¢ minimizes the loss function: f,(x) =
argmin Y.~ , L(y;, ¢). We use the quadratic loss function of mean square error in our setup.
Cc

2. Form = 1,2,...,M where M is the total number of iterations, we iterate over the steps 2a) to 2e)
as follows:
2a) Estimate the gradient for the N observations as:
_ Abur@)

Tim = —|[ I lr=f,,_, Which is just the forecast error of y; — f(x;) in our case.



2b) Randomly select without replacement W*p cases from the whole data set where W should be

smaller than the total number of observations.

2¢) Fit a regression tree with J,,, terminal nodes to the gradient obtained in 2a).

2d) For j=1,2,..., J,, we calculate the optional terminal node prediction as

Yim = argmin ineij L(yi, fm-1(x:) + v) where R;,,is the space defining the terminal node from
Y

step 2c).
2e) Using the same sampled data, we can update f,,(x) = frn_1(x) + v * ngl YimlI (X; € Rjpy)
where v is shrinkage parameter controlling the learning rate.

3. Obtain the final output f, (x).

It has been shown (Ridgeway, 1999) that all the procedures within the generalized linear model can
be properly boosted by the stochastic gradient model. The major tuning parameters of this algorithm include
the sample size, the shrinkage parameter, the depth of interaction among variables, the minimum number
of observations in each tree's terminal node, and the total number of iterations. We set the minimum number
of observations in the terminal node to be 1 and sample all of the observations employing a shrinkage
parameter of 0.02. We only optimize the interaction depth ranging from five to 15 based on five-fold cross-
validation with the total number of iterations capped at 1,000.

Deep Neural Network
The deep neural network (DNN hereafter) approach, which is also known as deep learning, is

composed of multiple levels of nonlinear operations. We employ feed-forward neural networks with
multiple hidden layers. The diagram below shows such a network:

Input Layer Hidden Layers Output Layer

The computing units in neural networks are called neurons. These are represented by the cells in the
diagram. The layer of cells on the left in the diagram is the input layer, and the cells within the input layer
are called input neurons. The output layer contains a single output neuron, which is the forecast of the
fund’s future returns. The middle layer is called a hidden layer.

Let lek denote the weight for the connection link from the k** neuron in the (I — 1)t" layer to the
j* neuron in the [*" layer. Similarly, let b} denote the bias of the j™* neuron in the I*" layer and a} denote

10



the activation/output of the j'* neuron in the I¢* layer. Mathematically, the neural network can be
represented as:

uj = Y wjai b and af = o(uj + b)) (12)
where ¢ is the activation function, which can take various forms such as:

lifu=0
Oifu<o
1
1+e~au
c) Tanh function: ¢(u) = tanh(u)

d) Rectifier function: ¢ (u) = max(0, u)

a) Threshold function: ¢ (u) = {

b) Sigmoid function: ¢ (u) = where « is the slope parameter

The parameters are usually calculated through a back-propagation algorithm by estimating the
partial derivatives of the loss function with respect to the weights and the biases. The loss function in our
analysis is the quadratic loss function of mean square error. A detailed explanation of the back-propagation
algorithm and its variations is beyond the scope of this paper, but Goodfellow, Bengio, and Courville (2016)
provide comprehensive descriptions of the algorithms. Adding more layers to the network, we have more
flexibility in approximating the true underlying response function, and in principle, we should have better
performance. Typically, if one trains DNNs using the standard stochastic gradient descent approach with
back-propagation, it is very unlikely that DNNs would have any advantage over simple shallow networks.
This lack of performance can be attributed to the vanishing gradient problem (Glorot and Bengio, 2010). It
arises from the intrinsic instability of the gradient descent approach in computing DNNs. The parameters
associated with early or later layers become fixed in value during the training process, and the effective
learning rate can differ by several magnitudes between layers. This intrinsic problem is part of the reason
DNN methods did not become popular until work by Hinton, Osindero, and Teh (2006). They introduced
Deep Belief Networks with a learning algorithm that greedily trains one layer at a time, exploiting an
unsupervised learning algorithm for each layer called a Restricted Boltzmann Machine. Since then, related
algorithms based on auto-encoders (Bengio, Lamblin, Popovici, and Larochelle, 2007) and other structures
have been proposed. We employ the rectifier activation function because the vanishing gradient problem is
less severe with it. The major tuning parameters are the number of layers and the number of neurons in each
layer, the learning rates controlling parameters, the regularization parameters that add stability and improve
generalization, the input drop-out ratio, which omits a fraction of the input features to improve
generalization, the early stopping criteria, and the number of epochs, which determines how many times
the dataset should be iterated.

There are many more tuning parameters in DNNSs than there are in the previously mentioned
machine-learning algorithms. We fix the learning rate to be 0.005 and stop the iterations early if the simple
moving average of length 5 of the MSE does not improve. We use grid search under five-fold cross-
validation with 100 epochs to choose the other tuning parameters as follows. We allow up to 10 layers with
10 neurons per layer in our DNN structures, the input dropout ratio is tuned to either 0.5 or 1, and the
regularization parameters range from 10 to 10,
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6. Empirical Results

We examine the performance of our hedge fund portfolios separately for each style.

Equity

Chart 1 shows the annual returns of our equity hedge fund portfolios ranked by the forecast from
different methods and grouped by decile with a three-, six- and 12-month rebalancing cycle. Decile portfolio
10 contains the 10 percent of funds ranked highest in terms of the forecasted return, decile portfolio 9

contains the next 10 percent, and so on. The detailed summary statistics for such portfolios can be found in
Appendix A.

Chart 1. Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts
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In general, the power of our machine-learning methods to select hedge funds with superior
performance weakens with longer rebalancing periods and vanishes or even reverses with annual
rebalancing. This is in agreement with the finding by Agarwal and Naik (2000) that persistence of return
among hedge fund managers is short-term in nature. The poor performance with 12-month rebalancing may
be due to this effect or because the factors in our analysis do not contain enough information to forecast
returns that far in the future. With a three-month rebalancing cycle, where all the models have the best
performance, the annual returns of the portfolios agree well with the decile rankings, which is a desirable
feature. We note that the performance of decile portfolio 10 using the ABK model is worse than that of
deciles 7-9, which means the t-statistic forecast of fund returns using macro variables is an inconsistent
indicator of future fund returns.

Chart 2 and Table 1 compare the performance of the best-performing portfolio from each algorithm
at a three-month rebalancing cycle with the HFR equity index to assess the benefit of our framework in
fund selection. All five machine algorithms generate higher annual returns than the index and the ABK
model, although some of them do not offer a better risk profile. This is understandable because the response
variable in our forecast framework is the future return, and our approach was designed only to maximize
returns. Among the five algorithms, DNN has the best total return. Its annual return of 15.95 percent is
more than 80 percent higher than that of the HFR equity index at 8.72 percent. The DNN algorithm
outperforms the RF and the GBM algorithms marginally despite its much more complicated structure. One
possible reason for this is that the number of observations is very limited; DNN operates much better with
larger samples.

Chart 2. The cumulative returns of the six best-performing equity hedge fund portfolios and the HFR equity
index
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Table 1. Monthly return statistics of the six best-performing equity hedge fund portfolios and the HFR
equity index

HFR ABK OLS Lasso RF GBM DNN
Annual Return (%) 8.72 11.89 12.39 14.72 15.86 15.63 15.95
Annual Volatility 9.13 10.15 13.66 14.37 13.94 13.03 13.95
Sharpe Ratio 0.66 0.92 0.74 0.85 0.94 0.98 0.95
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Skewness -0.32 -0.15

0.36 0.58 0.44 0.50 0.45
Excess Kurtosis 2.17 3.89 2.78 3.76 3.87 3.15 4.28
Max Drawdown (%) 30.57 25.16 19.63 30.28 24.45 28.51 21.43

Event-Driven

Chart 3 shows the annual returns of our event-driven hedge fund portfolios ranked in the same way.
The detailed summary statistics for the portfolios can be found in Appendix B.

Chart 3. Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts
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Analogous to the results with equity hedge fund, at short and medium rebalancing cycles, annual
returns generally agree with the forecast ranks for the machine-learning algorithms, while the decile
portfolio 10 in the ABK model still slightly lags deciles 6-8. In addition, the power to differentiate among
ranks generally becomes weaker at longer rebalancing cycles.

Chart 4 and Table 2 show the performance of the best-performing portfolio from each algorithm at
a three-month rebalancing cycle. All five machine algorithms generate higher annual returns than both the
index and the ABK model, although some of them do not generate a better risk profile. Among the five
algorithms, RF has the best total return. Its annual return of 14.90 percent is more than 70 percent higher
than that of the index at 8.66 percent. All of the machine-learning algorithms generate portfolios with less
negative skewness compared to the HFR event-driven index.

Chart 4. The cumulative returns of the six best-performing event-driven hedge fund portfolios and the HFR
event-driven index
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Table 2. Monthly return statistics of the six best-performing event-driven hedge fund portfolios and the
HFR event-driven index

HFR ABK OLS Lasso RF GBM DNN
Annual Return (%) 8.66 9.62 11.29 14.08 14.90 14.75 14.00
Annual Volatility 6.76 6.61 10.47 9.33 9.08 9.29 6.87
Sharpe Ratio 0.88 1.07 0.85 1.21 1.31 1.27 1.59
Skewness -1.34 -0.93 -0.31 -0.31 -0.03 -0.17 0.28
Excess Kurtosis 4.48 6.94 1.03 2.27 1.18 1.14 2.47
Max Drawdown (%) 24.78 23.04 2191 24.23 18.25 21.56 11.95

Macro

Chart 5 shows the annual returns of our macro fund portfolios ranked in the same way. The detailed
summary statistics for the portfolios can be found in Appendix C.
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Chart 5.

Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts
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Macro hedge funds behave very differently than equity and event-driven funds. The best portfolios
are formed at a medium six-month rebalancing cycle instead of a three-month cycle for the machine-
learning algorithms, and they are much more difficult to forecast compared to the other styles. Although
decile portfolio 10 at the six-month rebalancing scheme outperforms other deciles, there is little
differentiating power from decile 1 to decile 9.
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Chart 6 and Table 3 show the performance of the top-ranked portfolio from each machine-learning
algorithm at a six-month rebalancing cycle and the best-performing portfolio from ABK model at a three-
month rebalancing cycle. All five machine algorithms generate higher annual returns than both the index
and the ABK model, although none of them offer a better Sharpe ratio. Among the five algorithms, GBM

has the best total return. Its annual return of 11.42 percent is more than 70 percent higher than that of the
index at 6.67 percent.

Chart 6. The cumulative returns of the six best-performing macro hedge fund portfolios and the HFR macro
index
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Table 3. Monthly return statistics of the six best-performing macro hedge fund portfolios and the HFR
macro index

HFR ABK OLS Lasso RF GBM DNN
Annual Return (%) 6.67 8.47 9.87 10.78 11.23 11.42 11.32
Annual Volatility 5.97 3.91 11.15 11.33 11.63 11.64 11.68
Sharpe Ratio 0.69 1.50 0.69 0.75 0.77 0.78 0.77
Skewness 0.47 -0.20 0.07 0.09 0.16 0.15 0.16
Excess Kurtosis 0.82 0.94 1.38 1.79 0.94 0.88 0.91
Max Drawdown (%) 8.01 5.20 16.88 17.63 14.97 14.88 14.97

Relative Value

Chart 7 shows the annual returns of our relative-value fund portfolios ranked in the same way. The
detailed summary statistics for the portfolios can be found in Appendix D.
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Chart 7. Annual returns of the portfolios using ABK, OLS, Lasso, RF, GBM, and DNN forecasts
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Relative-value hedge funds are relatively easier to forecast. Forecasting power generally decreases
with forecast horizon. Meanwhile, machine learning still generates good results at 12-month rebalancing.
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Chart 8 and Table 4 show the performance of the best-performing portfolio from each algorithm at
a three-month rebalancing cycle. All five machine-learning algorithms generate higher annual returns than
the HFR relative value index and the ABK model. Most of them produce more than double the annual
return of the index. RF has the highest return. Its annual return of 17.74% percent is more than 130 percent
higher than that of the index at 7.61 percent.

Chart 8. The cumulative returns of the six best-performing relative-value hedge fund portfolios and the
HFR relative-value index

20

HFR
ABK
= 0OLS
= Lasso
= RF
GBM
DNN

Cumulative Return

() |

Jan-1996  Jan-1998  Jan-2000  Jan-2002  Jan-2004  Jan-2006  Jan-2008  Jan-2010  Jan-2012  Jan-2014

Table 4. Monthly return statistics of the six best-performing relative-value hedge fund portfolios and the
HFR relative value index

HFR ABK OLS Lasso RF GBM DNN
Annual Return (%) 7.61 9.45 13.56 16.63 17.74 16.78 17.59
Annual Volatility 4.31 2.50 8.74 7.49 7.21 7.09 7.12
Sharpe Ratio 1.16 2.69 1.28 1.79 1.99 1.90 2.00
Skewness -2.91 -1.00 -3.89 -1.02 -1.23 -1.18 -1.30
Excess Kurtosis 16.56 4.10 32.88 5.84 8.29 7.23 9.15
Max Drawdown (%) 18.03 4.92 28.02 15.52 17.62 15.64 17.39

Throughout our analysis of the four trading styles, the RF, GBM and DNN models are generally
the best, with very similar performance results, followed by the lasso, with OLS producing the worst results.
RF and GBM both incorporate model-averaging methods, which may give them an advantage in handling
inherently noisy data like hedge fund returns. DNN operates from another extreme by offering highly
flexible functions designed to extract local features in the data. However, despite its simplicity, the OLS-
based method still outperforms the style indexes consistently. That adds weight to our basic approach. As
we have seen throughout the empirical results, if predictive signals exist in a dataset, various models are
able to take advantage of such signals regardless of the techniques used in developing the model. Simple
models can, therefore, be effective, but the more versatile models coupled with specific domain knowledge
can produce much more accurate predictions and, thus, better portfolio performance. Such a framework can
be extended to incorporate additional risk factors and alternative definitions of the response variable.

In terms of fund-selection performance, we find the greatest improvement in relative-value funds
and the least improvement using macro funds. This could mean that there is more opportunity in the relative-
value sector for the successful application of our fund-selection methods.
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Although some of the machine-learning algorithms cannot provide straightforward information
about how each factor is related with fund performance, it would be beneficial to examine how a factor
contributes to performance. At each point in time, we trained the risk factor models using the RF approach
employing a six-month holding horizon for macro funds and a three-month holding horizon for the other
three styles. We then ranked the risk factors according to their variable importance, defined earlier, in the
corresponding risk factor model. The final score is the average of such ranks for the 240 months in our
study. There are 17 risk factors in our analysis, and Table 5 shows the outcome where we convert the ranks
so that the highest possible rank in the exhibit is 1, and the lowest possible rank is 17. Among the 17 input
variables, the higher-order moments and auto-correlation play the most important roles. The importance of
the past returns is relatively low.

Table 5. Variable importance rank for each fund category based on RF models

Equity  Event Driven Macro  Relative Value
R1 16 14 13 15
R3 15 15 16 17
R6 13 13 15 16
R9 12 12 12 14
R12 11 11 10 11
SR 3 6 7 6
SD 17 17 17 12
Skew 2 4 2 5
Kurt 1 1 1 1
Omega 4 8 6 9
ACF1 5 5 5 4
ACF2 8 3 4 2
ACF3 7 2 3 3
Alpha 6 9 8 8
Alpha.t 10 10 11 10
DD 9 7 9 7
PerfLoss 14 16 14 13

Finally, we use the factor model proposed by Fung-Hsieh (2004) to evaluate the alpha and the factor
loadings of our best machine-learning portfolios. They use seven factors: an equity-market factor measured
by the S&P 500 index monthly total return, a size-spread factor defined as the difference between the
Russell 2000 index monthly total return and the S&P 500 monthly total return, a bond-market factor defined
as the monthly change in the 10-year Treasury constant maturity yield, a credit-spread factor defined as the
monthly change in the Moody's BAA Yyield less the 10-year Treasury constant-maturity yield, and three
trend-following (TF) factors, one each for bond, currency, and commodity markets. Table 6 shows the
regression results for decile portfolio 10 for the four styles.
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Table 6. Regression of the decile portfolio 10 returns on Fung-Hsieh factors with p-values in parentheses

Factor OLS LASSO RF GBM DNN

Equity funds:
Intercept 0.0063 (0.359) 0.0114 (0.128) 0.0136 (0.062) 0.0123 (0.063) 0.0116 (0.111)
Equity Market 0.4793 (0.000) 0.4603 (0.000) 0.4074 (0.000) 0.4238 (0.000) 0.4169 (0.000)
Size Spread 0.3747 (0.000) 0.4250 (0.000) 0.4594 (0.000) 0.4078 (0.000) 0.4431 (0.000)
Bond Market 0.0105 (0.268) 0.0192 (0.062) 0.0164 (0.101) 0.0171 (0.060) 0.0188 (0.061)
Credit Spread 0.0002 (0.951) -0.0009 (0.739) -0.0014 (0.597) -0.0011 (0.672) -0.0006 (0.815)
Bond TF -0.0119 (0.426) 0.0012 (0.940) -0.0067 (0.673) -0.0057 (0.692) -0.0072 (0.649)
Currency TF 0.0118 (0.336) 0.0098 (0.462) 0.0068 (0.600) 0.0101 (0.391) 0.0068 (0.601)

Commodity TF
RZ

Event-Driven Funds:

Intercept
Equity Market
Size Spread
Bond Market
Credit Spread
Bond TF
Currency TF
Commodity TF
RZ

Macro Funds:
Intercept
Equity Market
Size Spread
Bond Market
Credit Spread
Bond TF
Currency TF
Commodity TF
RZ

Relative-Value Funds:

Intercept
Equity Market
Size Spread
Bond Market
Credit Spread
Bond TF
Currency TF
Commodity TF
RZ

0.0137 (0.363)
0.4094

0.0086 (0.087)
0.3734 (0.000)
0.2653 (0.000)
0.0133 (0.056)
-0.0009 (0.652)
-0.0090 (0.409)
0.0012 (0.898)
0.0023 (0.832)

0.4503

0.0059 (0.364)
0.2050 (0.000)
0.0455 (0.427)

-0.0063 (0.482)
0.0006 (0.790)
0.0331 (0.020)
0.0387 (0.001)
0.0467 (0.001)

0.1981

0.0118 (0.006)
0.2666 (0.000)
0.1712 (0.000)

-0.0024 (0.682)

-0.0013 (0.415)

-0.0136 (0.138)

-0.0096 (0.202)

-0.0153 (0.099)

0.4003

0.0034 (0.836)
0.3825

0.0115 (0.015)
0.3082 (0.000)
0.2138 (0.000)
0.0119 (0.069)
-0.0010 (0.589)
-0.0015 (0.886)
0.0030 (0.725)
-0.0120 (0.247)

0.3903

0.0077 (0.253)
0.1621 (0.001)
0.0736 (0.217)

-0.0044 (0.639)
0.0003 (0.901)
0.0311 (0.035)
0.0363 (0.003)
0.0448 (0.003)

0.1624

0.0076 (0.056)
0.2157 (0.000)
0.1312 (0.000)
0.0042 (0.446)
0.0014 (0.352)

-0.0194 (0.026)
0.0001 (0.989)

-0.0084 (0.337)

0.3201

0.0131 (0.409)
0.3772

0.0100 (0.033)
0.2873 (0.000)
0.1961 (0.000)
0.0129 (0.048)
-0.0002 (0.929)
-0.0157 (0.126)
0.0067 (0.427)
-0.0053 (0.609)

0.3692

0.0099 (0.151)
0.1627 (0.001)
0.0708 (0.245)
-0.0022 (0.820)
-0.0004 (0.886)
0.0331 (0.028)
0.0406 (0.001)
0.0476 (0.002)

0.1747

0.0150 (0.000)
0.2068 (0.000)
0.1287 (0.000)
0.0051 (0.332)
-0.0011 (0.431)
-0.0121 (0.145)
0.0013 (0.847)
-0.0132 (0.115)

0.3255

0.0138 (0.340)
0.4093

0.0121 (0.009)
0.3189 (0.000)
0.2075 (0.000)
0.0125 (0.048)
-0.0011 (0.526)
-0.0139 (0.164)
0.0086 (0.296)
-0.0101 (0.313)

0.4245

0.0097 (0.158)
0.1634 (0.001)
0.0705 (0.246)

-0.0019 (0.839)

-0.0002 (0.927)
0.0336 (0.025)
0.0407 (0.001)
0.0486 (0.001)

0.1778

0.0124 (0.001)
0.2178 (0.000)
0.1354 (0.000)
0.0037 (0.470)

-0.0004 (0.750)

-0.0134 (0.095)
0.0017 (0.801)

-0.0103 (0.205)

0.3513

0.0119 (0.455)
0.3775

0.0109 (0.003)
0.1871 (0.000)
0.1315 (0.000)
0.0114 (0.025)
-0.0006 (0.679)
-0.0224 (0.005)
0.0056 (0.389)
-0.0019 (0.817)

0.3324

0.0096 (0.166)
0.1681 (0.001)
0.0763 (0.210)

-0.0029 (0.761)

-0.0002 (0.928)
0.0331 (0.028)
0.0410 (0.001)
0.0483 (0.002)

0.1786

0.0151 (0.000)
0.1973 (0.000)
0.1381 (0.000)
0.0040 (0.446)
-0.0012 (0.400)
-0.0131 (0.113)
0.0014 (0.833)
-0.0127 (0.128)

0.3202

Except for macro hedge funds, most of the machine-learning algorithms have significant alpha of more
than 1 percent per month. The loadings on the equity-market and size-spread factors are all positive, which
implies that all the algorithms tend to generate long exposures to the equity market and exhibit a preference
for small cap companies. Although the loadings on the equity-market and size-spread factors are positive,
the coefficients are not large. Thus, it may be that the superior performance of the algorithms is not coming
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from overleveraging the two factors but rather from the algorithms. This is reinforced by the observation
that the R? in all the regressions are relatively small. The trend-following factors were significant only for
the macro hedge funds algorithms. That agrees with the fact that many macro funds employ trend-following
strategies.

7. Conclusion

We propose a supervised machine-learning approach to forecast hedge fund returns and select
hedge funds quantitatively. The framework is based on cross-sectional forecasts of hedge fund returns
utilizing a set of 17 factors. The approach allows the investor to identify funds that are likely to perform
well and to construct the corresponding portfolios. We find that our method is applicable across hedge fund
style categories. Focusing on factors constructed from characteristics idiosyncratic to individual funds, our
models offer distinctive perspectives when compared to models that are driven by macroeconomic
variables. Retrospectively, when benchmarked against a traditional factor model, our machine-learning
approach generates portfolios with large alphas. The relatively low explanatory power of the regressions
indicates that most of the performance of the algorithm-generated portfolios is due to success in identifying
funds likely to deliver good performance. Our approach is flexible enough to incorporate new developments
both in risk-factor research field and in the machine-learning field.
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Appendix A. Statistics of monthly returns of the equity hedge fund portfolios

Table Al. Statistics of monthly returns of ABK portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1.04 457 6.01 7.22 8.65 10.08 11.89 1135 1091 10.23
Ann Volatility 951 11.80 1158 10.92 1115 1072 1015 975 8.08 6.64
3-month Sharpe Ratio -0.09 0.24 0.36 0.48 0.59 0.73 0.92 0.91 1.02 1.14
Skewness -060 -0.75 -086 -099 -0.73 -028 -0.15 006 034 -0.14
Excess Kurtosis 194 372 326 374 351 298 389 407 315 0.98
Max Draw % 3153 3579 37.01 3439 3338 2954 2516 2431 1924 1324
Ann Return % 325 561 589 648 826 970 1098 10.14 920 8.72
Ann Volatility 8.69 10.98 10.80 10.73 10.70 10.37 10.00 9.32 8.02 6.69
6-month Sharpe Ratio 014 034 037 043 058 072 08 083 084 094
Skewness -033 -056 -078 -095 -0.73 -041 -022 -0.01 -0.09 -0.78
Excess Kurtosis 195 333 313 347 267 247 330 3.04 280 354
Max Draw % 2954 34777 3553 3460 3139 2838 2491 2410 2082 1471
Ann Return % 3.78 551 5.73 6.69 7.57 8.69 8.97 8.46 7.82 8.07
Ann Volatility 790 988 10.11 10.09 1023 994 982 9.16 801 6.70
12-month Sharpe Ratio 0.21 0.36 0.37 0.46 0.54 0.66 0.69 0.68 0.69 0.84
Skewness -041 -014 -075 -0.79 -060 -054 -057 -0.40 -0.11 -0.33
Excess Kurtosis 2.92 2.80 3.20 2.75 2.38 2.74 3.24 3.18 291 2.45
Max Draw % 2596 30.13 3145 3059 30.28 2823 27.82 26.69 21.46 16.20
Table A2. Statistics of monthly returns of OLS portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 275 548 643 784 829 881 937 1045 1066 12.39
Ann Volatility 16.30 11.84 1014 9.08 853 821 844 887 10.12 13.66
3-month  Sharpe Ratio 011 032 044 063 071 078 082 090 08 074
Skewness -143 -125 -122 -107 -085 -029 005 -0.09 012 0.36
Excess Kurtosis 7.82 5.89 4.82 4.85 4.30 1.05 2.18 2.54 3.77 2.78
Max Draw % 52.67 4245 3362 30.70 23.84 2405 2130 1573 1410 19.63
Ann Return % 518 653 727 796 762 833 847 9.02 998 1059
Ann Volatility 13.67 1041 9.42 8.54 8.32 8.30 8.07 8.78 10.32 13.31
6-month Sharpe Ratio 027 044 055 067 065 073 076 076 074 064
Skewness -084 -095 -112 -103 -08 -0.75 -0.36 -0.06 0.23 0.44
Excess Kurtosis 438 356 463 410 332 329 187 240 369 492
Max Draw % 4102 3244 2753 26.83 2491 2481 2296 2522 25.17 33.67
Ann Return % 5.77 6.48 6.99 7.47 7.40 7.24 7.15 7.29 7.57 7.48
Ann Volatility 8.20 7.23 7.31 7.28 7.76 8.42 9.12 9.96 1186 15.44
12-month Sharpe Ratio 0.44 0.58 0.64 0.71 0.66 0.60 0.55 0.52 0.48 0.39
Skewness 005 -020 -048 -056 -056 -0.76 -0.64 -0.66 -0.69 -0.49
Excess Kurtosis 2.12 2.28 4.50 3.70 351 3.62 2.80 2.49 2.95 2.66
Max Draw % 19.98 1855 1843 2045 2257 2646 2825 30.16 3561 47.21
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Table A3. Statistics of monthly returns of the lasso portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 146 587 602 646 744 815 985 1106 1162 14.72
Ann Volatility 16.06 1179 978 901 862 805 822 920 1024 14.37
3-month Sharpe Ratio 002 035 041 048 061 072 090 092 089 085
Skewness -151 -115 -1.46 -092 -096 -041 007 035 032 058
Excess Kurtosis 810 561 618 372 38 125 217 233 362 3.76
Max Draw % 4570 3499 3153 2806 26.87 2366 2079 18.86 22.11 30.28
Ann Return % 292 577 678 724 800 792 914 969 1115 1235
Ann Volatility 1380 1017 937 846 827 819 854 933 1069 13.99
6-month Sharpe Ratio 011 038 050 060 069 069 079 078 082 0.73
Skewness -1.15  -1.17 -125 -106 -065 -0.86 -030 -001 023 020
Excess Kurtosis 470 444 473 421 206 374 280 308 384 477
Max Draw % 47.70 3447 3170 27.99 2538 2410 2219 2307 2252 29.20
Ann Return % 668 7.02 782 747 731 680 696 678 699 6.84
Ann Volatility 893 748 710 748 779 831 927 1002 1188 1570
L-month Sharpe Ratio 050 063 077 069 065 056 052 047 044 035
Skewness 016 -025 -009 -055 -055 -090 -0.73 -073 -0.78 -0.65
Excess Kurtosis 234 254 165 388 353 445 340 272 305 3.30
Max Draw % 2577 1841 1767 2070 2198 26,12 2894 30.28 36.34 47.23
Table A4. Statistics of monthly returns of random forest portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1.09 478 53 717 71 864 1001 10.84 11.86 15.86
Ann Volatility 16.6 1152 1036 897 837 806 869 921 1078 13.94
3-month Sharpe Ratio 001 026 033 056 059 078 0.87 09 087 094
Skewness -161  -14 -151 -083 -0.89 -041 028 015 027 044
Excess Kurtosis 921 693 676 399 354 212 273 256 407 387
Max Draw % 49.39 41 3621 29.02 2618 2054 1676 17.88 19.68 24.45
Ann Return % 362 497 624 746 723 827 915 981 1124 1279
Ann Volatility 1446 1099 964 856 801 802 883 936 1101 137
6.month Sharpe Ratio 016 029 044 062 062 074 077 079 08 077
Skewness -1.18 -12 -132 -092 -091 -055 -025 -007 018 0.8
Excess Kurtosis 609 649 623 362 294 286 257 308 408 467
Max Draw % 48.34 3986 36.18 3069 2829 2409 2185 17.09 17.61 21.79
Ann Return % 649 753 742 698 729 766 6.8 7.2 695 651
Ann Volatility 9.09 807 767 763 7.96 842 9.02 992 1142 1444
Lo-month Sharpe Ratio 048 065 067 062 063 064 052 052 044 035
Skewness 01 -011 -057 -064 -062 -0.69 -075 -043 -058 -0.49
Excess Kurtosis 228 245 302 309 295 389 411 269 368 3.77
Max Draw % 2407 2236 2261 2405 2521 2546 27.83 27.66 33.19 39.08

26



Table A5. Statistics of monthly returns of gradient boosting portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 2.33 4.49 5.63 6.69 7.64 8.81 891 10.69 12.05 15.63
Ann Volatility 1576 11.64 10.19 9.08 8.35 8.11 8.42 9.53 10.38 13.03
3-month  Sharpe Ratio 008 024 036 051 065 079 077 086 091 098
Skewness -1.38 -167 -149 -105 -0.78 -0.33 0.10 0.12 0.68 0.50
Excess Kurtosis 7.50 8.32 6.94 4.07 2.34 2.26 2.38 3.04 5.47 3.15
Max Draw % 46.00 40.76 3287 29.89 25.06 19.14 1925 1943 20.44 2851
Ann Return % 4.06 5.46 6.66 8.02 8.10 7.91 9.09 959 1043 1164
Ann Volatility 13.77 10.66 9.11 8.42 8.07 8.26 8.72 959 1051 13.27
6-month Sharpe Ratio 0.19 0.34 0.50 0.68 0.72 0.68 0.77 0.76 0.77 0.71
Skewness -1.08 -132 -133 -074 -046 -068 -040 -0.05 -0.09 0.26
Excess Kurtosis 474 6.16 5.64 3.16 2.28 2.70 2.83 2.45 311 4.25
Max Draw % 4384 3795 3314 30.23 26.67 2593 2087 2130 17.19 2051
Ann Return % 7.07 7.30 7.59 7.63 7.66 7.03 7.09 6.30 6.67 6.58
Ann Volatility 9.64 8.44 7.73 7.86 7.83 7.94 8.71 9.82 11.12 13.90
12-month Sharpe Ratio 0.51 0.60 0.68 0.68 0.69 0.60 0.56 0.44 0.43 0.36
Skewness 0.06 -053 -029 -058 -059 -066 -051 -0.72 -0.78 -0.69
Excess Kurtosis 2.10 3.46 1.66 2.64 2.80 3.20 2.57 4.16 3.79 4.07
Max Draw % 26.60 2511 2216 2372 2384 2383 2591 2576 3253 38.48
Table A6. Statistics of monthly returns of deep neural network portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1.82 3.49 5.07 5.98 7.85 8.88 10.11 11.16 1243 1595
Ann Volatility 16.53 12.02 10.19 9.33 8.28 8.16 8.36 9.07 1040 13.95
3-month  Sharpe Ratio 005 015 031 042 067 080 091 095 094 095
Skewness -149 -142 -112 -107 -063 -0.25 -0.08 0.19 0.27 0.45
Excess Kurtosis 7.54 6.04 4.15 4.02 3.27 2.04 2.08 3.22 4.23 4.28
Max Draw % 4778 3955 3584 3097 2523 2313 19.71 19.33 1839 2143
Ann Return % 3.35 5.29 6.56 7.18 7.84 7.89 8.94 9.78 10.96 12.84
Ann Volatility 14.46 10.93 9.36 8.79 8.10 8.39 8.56 941 11.04 14.45
6-month Sharpe Ratio 0.14 0.32 0.48 0.57 0.69 0.67 0.77 0.79 0.78 0.74
Skewness -133 -131 -122 -103 -085 -069 -0.34 -0.02 0.14 0.32
Excess Kurtosis 7.24 6.54 5.49 3.84 3.07 3.95 3.12 3.06 4.14 5.46
Max Draw % 48.09 41.67 36.01 3214 2743 2495 19.60 1735 17.47 26.18
Ann Return % 7.59 7.44 7.68 7.61 6.98 6.69 6.28 7.25 6.73 6.51
Ann Volatility 9.80 8.38 7.95 7.76 7.81 8.10 8.85 9.79 11.07 14.73
12-month Sharpe Ratio 0.55 0.62 0.68 0.69 0.61 0.55 0.47 0.53 0.44 0.35
Skewness 0.08 -03 -027 -051 -073 -056 -059 -037 -069 -0.71
Excess Kurtosis 2.49 3.05 2.30 2.42 291 2.47 3.20 3.32 3.54 4.50
Max Draw % 24.12 23.66 2376 2280 2355 2358 2527 2793 3280 41.89
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Appendix B. Statistics of monthly returns of the event-driven fund portfolios

Table B1. Statistics of monthly returns of ABK portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 2.65 6.85 6.37 7.92 8.05 9.62 9.49 9.21 8.67 8.77
Ann Volatility 1016 984 854 736 706 661 558 542 405 425
3-month Sharpe Ratio 0.08 0.49 0.50 0.76 0.81 1.07 1.24 1.24 1.50 1.46
Skewness -1.16 -170 -147 -103 -117 -093 -116 -223 -135 -1.20
Excess Kurtosis 6.14 977 587 416 658 694 469 1087 345 440
Max Draw % 3520 3827 3418 2775 2769 23.04 2090 24.03 1197 10.50
Ann Return % 334 688 699 798 773 887 877 860 827 755
Ann Volatility 9.86 9.04 1.77 7.02 6.59 6.26 5.43 5.22 4.01 4.47
6-month Sharpe Ratio 0.15 0.53 0.61 0.80 0.81 1.02 1.15 1.17 143 1.14
Skewness -149 -183 -128 -103 -111 -124 -121 -196 -1.70 -2.25
Excess Kurtosis 782 943 489 342 463 675 453 872 552 1095
Max Draw % 35.67 36.33 3130 2730 26.37 20.83 2152 2291 1252 1321
Ann Return % 3.88 6.17 6.91 7.60 7.40 7.93 8.04 8.08 6.74 7.39
Ann Volatility 831 825 723 685 622 590 522 505 420 431
12-month Sharpe Ratio 0.22 0.49 0.64 0.77 0.81 0.93 1.07 111 1.03 1.14
Skewness -069 -165 -141 -124 -133 -116 -1.08 -138 -184 -191
Excess Kurtosis 469 881 589 492 513 495 313 576 634 792
Max Draw % 29.53 3453 29.77 2864 23.09 2139 2022 2025 1579 15.07
Table B2. Statistics of monthly returns of OLS portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 787 693 563 614 639 689 830 877 1056 11.29
Ann Volatility 11.47 7.76 5.97 5.91 5,51 5.11 5.34 5.77 6.66 10.47
3-month  Sharpe Ratio 052 062 057 066 074 08 1.09 109 119 085
Skewness -165 -313 -229 -287 -206 -155 -135 -1.07 -035 -0.31
Excess Kurtosis 11.13 18.16 10.29 15.80 8.48 5.10 5.04 3.29 2.15 1.03
Max Draw % 4324 3516 28.74 2505 2516 2287 1950 18.65 15.87 21.91
Ann Return % 832 736 690 696 703 645 712 790 849 10.87
Ann Volatility 11.06 6.48 5.93 5.72 5.13 5.32 531 5.57 6.71 9.73
6-month Sharpe Ratio 057 078 077 081 09 077 089 098 091 0.88
Skewness -056 -147 -197 -214 -178 -228 -202 -150 -156 -1.04
Excess Kurtosis 5.12 6.22 8.84 9.74 7.26 10.13 8.43 6.27 6.10 452
Max Draw % 38.03 30.84 2856 29.09 2441 2260 2215 1921 19.76 19.95
Ann Return % 834 642 701 676 660 607 660 605 753 863
Ann Volatility 1026 649 555 537 534 486 473 530 567 862
12-month Sharpe Ratio 0.60 0.64 0.84 0.82 0.80 0.76 0.89 0.70 0.91 0.74
Skewness -006 -126 -149 -159 -187 -154 -169 -200 -197 -1.49
Excess Kurtosis 2.33 6.62 6.80 6.83 8.05 5.57 6.15 9.72 8.77 7.65
Max Draw % 3588 29.37 27.08 2496 2588 1834 1830 1753 19.54 21.00
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Table B3. Statistics of monthly returns of the lasso portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 436 526 606 621 690 799 784 979 1051 14.08
Ann Volatility 13.29 7.53 6.85 6.34 5.25 5.34 5.49 5.29 6.48 9.33
3-month Sharpe Ratio 022 042 057 063 08 104 099 135 121 121
Skewness -154 -216 -294 -278 -193 -152 -150 -040 0.02 -0.31
Excess Kurtosis 9.81 1193 16.31 14.78 7.11 6.03 6.66 1.12 2.63 2.27
Max Draw % 4425 2772 3128 30.84 2187 20.78 2412 1346 16.46 24.23
Ann Return % 5.63 5.62 5.84 6.92 6.49 7.26 8.40 8.72 10.15 1252
Ann Volatility 12.37 6.71 6.19 5.79 5.46 4.84 5.09 5.62 6.14 9.18
6-month Sharpe Ratio 032 051 058 079 076 100 116 111 123 1.08
Skewness -192 -178 -237 -188 -247 -149 -133 -136 -106 -0.70
Excess Kurtosis ~ 13.07 834 1236 771 1163 438 377 393 322 163
Max Draw % 4756 3199 3246 2732 2750 1845 1737 1869 13.85 19.63
Ann Return % 931 718 624 723 639 628 651 652 676 751
Ann Volatility 10.07 6.49 5.36 5.48 493 5.05 531 5.62 6.12 8.84
12-month Sharpe Ratio 070 075 073 08 08 078 078 075 073 061
Skewness 012 -115 -130 -189 -171 -192 -164 -175 -137 -115
Excess Kurtosis 6.54 9.15 570 10.28 6.36 7.82 5.73 7.58 4.72 3.17
Max Draw % 34.07 2941 2550 2651 2342 2315 19.15 1829 20.29 19.22
Table B4. Statistics of monthly returns of random forest portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 431 3.94 5.29 5.97 6.53 8.16 9.11 948 1127 14.90
Ann Volatility 1334 817 629 598 549 536 579 58 659 9.08
3-month  Sharpe Ratio 021 024 049 062 076 106 114 118 129 131
Skewness -156 -3.34 -280 -241 -224 -148 -081 -0.74 0.11 -0.03
Excess Kurtosis 11.15 2152 1416 11.18 9.16 4.54 2.78 2.56 1.72 1.18
Max Draw % 46.15 36.77 27.38 27.86 2528 20.82 2024 16.63 1322 1825
Ann Return % 510 589 582 626 666 783 777 816 9.96 1425
Ann Volatility 11.47 6.79 6.39 5.76 5.47 5.56 5.37 5.80 6.30 8.95
6-month Sharpe Ratio 029 054 056 069 079 097 099 098 117 1.27
Skewness -162 -161 -222 -232 -248 -152 -122 -119 -0.88 -0.42
Excess Kurtosis 12.73 885 1244 1020 1181 5.26 3.35 3.06 1.94 0.58
Max Draw % 4394 30.11 3096 28.22 26.63 2268 1943 19.75 1490 15.10
Ann Return % 8.41 7.21 6.41 6.74 6.71 6.53 5.70 5.92 7.11 9.14
Ann Volatility 922 594 560 531 533 533 569 555 660 898
12-month Sharpe Ratio 0.67 0.81 0.73 0.82 0.82 0.78 0.60 0.65 0.73 0.77
Skewness -037 -089 -142 -152 -178 -176 -194 -168 -182 -111
Excess Kurtosis 9.83 6.75 8.72 6.77 7.16 6.62 7.90 5.76 8.74 3.25
Max Draw % 35.77 27.03 2727 2349 2260 2203 2492 2283 1794 20.44
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Table B5. Statistics of monthly returns of gradient boosting portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 427 390 565 605 683 806 901 923 1123 1475
Ann Volatility 1271 779 599 595 625 524 551 568 656 929
3-month Sharpe Ratio 021 024 057 064 073 107 118 117 129 127
Skewness -112  -369 -214 -278 277 -l164 -107 -067 006 -0.17
Excess Kurtosis 803 2535 1058 1524 1487 638 302 222 157 114
Max Draw % 42,02 3387 2586 27.73 29.13 2247 1996 17.27 1549 2156
Ann Return % 545 579 633 566 701 787 776 892 10.05 12.83
Ann Volatility 1092 653 594 603 533 554 544 587 643 894
6-month Sharpe Ratio 033 054 068 057 087 098 098 109 116 1.14
Skewness -151 -1.68 -258 -271 -168 -1.24 -146 -099 -0.80 -0.74
Excess Kurtosis 974 921 1290 1515 6.66 464 495 340 188 155
Max Draw % 4158 3044 2886 3186 26.66 2130 19.40 1556 17.29 17.47
Ann Return % 860 701 658 615 665 644 614 699 678 8.64
Ann Volatility 922 570 538 506 501 516 575 552 675 9.6
L-month Sharpe Ratio 069 08L 079 075 085 079 067 084 067 071
Skewness -037 -097 -157 -174 -151 -176 -211 -145 -183 -1.08
Excess Kurtosis 798 677 961 892 619 622 915 454 886 267
Max Draw % 34.09 2668 2536 2282 2224 2245 2176 2055 20.09 22.12
Table B6. Statistics of monthly returns of deep neural network portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 482 455 582 644 663 756 851 933 1155 14.00
Ann Volatility 1193 794 695 646 622 631 541 543 596 6.87
3-month Sharpe Ratio 026 031 052 065 070 083 111 125 147 159
Skewness -141  -209 -1.90 -204 -1.90 -209 -091 -0.84 -059 0.28
Excess Kurtosis 827 1129 836 1042 790 917 231 291 258 247
Max Draw % 4408 3527 3026 3003 2633 2618 1930 1757 1417 11.95
Ann Return % 488 654 617 673 726 716 820 9.00 977 1211
Ann Volatility 1066 7.05 642 613 58 575 530 575 600 834
6.month Sharpe Ratio 029 061 061 072 084 083 108 113 120 1.13
Skewness -1.85 -246 -197 -198 -218 -1.62 -141 -113 -115 -0.37
Excess Kurtosis ~ 16.23 1433 1050 9.05 1045 545 432 292 289 0.36
Max Draw % 4593 3251 29.90 27.96 2427 2427 1747 1784 1360 16.52
Ann Return % 839 654 609 669 663 664 698 712 688 818
Ann Volatility 739 608 538 522 543 526 532 577 639 911
Lo-month Sharpe Ratio 081 070 070 083 079 08l 08 08 072 066
Skewness 052 -159 -155 -173 -1.84 -159 -145 -162 -147 -1.33
Excess Kurtosis 696 944 723 741 826 569 464 579 524 445
Max Draw % 27.87 2827 2551 2359 2448 2291 2105 21.68 21.81 2144
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Appendix C. Statistics of monthly returns of the macro fund portfolios

Table C1. Statistics of monthly returns of ABK portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 491 8.48 6.51 7.52 7.55 7.35 6.64 6.46 6.05 8.47
Ann Volatility 742 878 922 911 906 881 776 677 548 3091
3-month Sharpe Ratio 036 070 047 058 059 058 057 061 067 150
Skewness 09 09 073 038 029 029 004 008 004 -0.20
Excess Kurtosis 4.30 2.14 2.13 0.39 0.36 0.54 0.19 0.58 0.06 0.94
Max Draw % 2149 1230 921 1027 10.72 11.03 10.14 8.37 7.14 5.20
Ann Return % 4.77 741 6.55 7.32 7.42 7.19 6.82 6.03 6.11 8.05
Ann Volatility 667 841 889 865 856 843 747 633 506 3.70
6-month Sharpe Ratio 038 061 049 059 060 059 061 058 073 148
Skewness 1.02 0.95 0.53 0.42 0.33 0.28 0.05 0.12 0.01 -0.17
Excess Kurtosis 347 230 126 059 044 036 052 028 002 095
Max Draw % 17.17 9.44 9.10 10.04 9.72 1324 9.55 8.91 6.53 4.44
Ann Return % 475 625 597 679 647 626 643 558 630 7.06
Ann Volatility 594 767 809 811 812 803 693 6.04 488 371
12-month Sharpe Ratio 041 052 046 056 052 050 059 054 080 1.23
Skewness 118 076 041 047 023 024 020 005 013 -0.01
Excess Kurtosis 3.10 2.18 1.03 1.04 0.75 0.66 0.37 033 -0.12 0.96
Max Draw % 926 801 1135 998 1012 11.04 984 783 516 515
Table C2. Statistics of monthly returns of OLS portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1125 810 710 732 632 677 6.02 551 550 6.46
Ann Volatility 10.72 7.61 6.91 6.10 5.61 6.16 6.58 7.30 8.76 1185
3-month Sharpe Ratio 080 074 068 080 070 071 056 045 039 0.39
Skewness 171 108 094 073 046 047 018 014 016 0.09
Excess Kurtosis 10.11 3.70 242 124 111 0.68 0.73 0.39 112 141
Max Draw % 1516 7.16 640 645 585 6.95 1015 10.81 15.84 18.60
Ann Return % 6.93 6.28 6.03 6.23 6.49 6.22 6.67 7.09 7.51 9.87
Ann Volatility 8.37 6.81 6.45 571 5.95 6.14 6.32 7.56 8.18 11.15
6-month Sharpe Ratio 056 058 057 067 069 063 068 063 064 0.69
Skewness 073 064 064 050 063 031 039 022 029 0.07
Excess Kurtosis 332 297 260 112 124 059 025 037 058 138
Max Draw % 8.06 6.99 8.25 6.82 8.54 7.41 7.30 8.84 8.86 16.88
Ann Return % 6.57 5.76 5.66 5.55 5.62 5.50 591 6.42 6.40 8.46
Ann Volatility 7.07 5.27 511 4.98 5.34 5.72 6.43 6.95 8.14 11.19
12-month Sharpe Ratio 060 064 064 064 061 055 056 059 051 057
Skewness 030 052 047 08 065 058 028 004 005 -0.06
Excess Kurtosis 0.89 1.56 122 1.85 1.63 1.60 0.77 0.56 0.81 1.29
Max Draw % 1123 838 659 640 557 732 9.01 9.73 1230 1843

31



Table C3. Statistics of monthly returns of the lasso portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 930 77 722 703 545 570 533 601 670 9.82
Ann Volatility 10.60 7.88 6.77 6.38 5.91 5.89 6.61 7.08 8.74 1191
3-month Sharpe Ratio 066 068 071 073 053 057 046 053 052 064
Skewness 125 097 060 061 052 020 024 018 0.03 0.26
Excess Kurtosis 6.56 3.01 2.27 157 0.88 0.52 1.00 1.07 143 1.86
Max Draw % 1210 710 798 696 626 836 10.16 10.68 13.67 14.48
Ann Return % 7.47 6.36 5.82 6.05 6.50 5.87 6.63 6.24 751 10.78
Ann Volatility 879 667 622 574 592 600 688 766 846 11.33
6-month Sharpe Ratio 059 060 056 064 069 059 062 052 062 0.75
Skewness 075 074 071 049 050 028 038 017 017 0.09
Excess Kurtosis 427 268 295 096 066 044 068 088 107 1.79
Max Draw % 12.67 8.37 7.17 7.65 7.38 8.63 10.29 11.05 1094 17.63
Ann Return % 6.88 5.94 5.93 5.90 5.53 5.61 6.13 5.63 6.55 7.74
Ann Volatility 6.90 5.74 5.50 5.52 5.22 5.62 6.22 7.04 7.82 11.09
12-month Sharpe Ratio 066 062 065 064 061 058 061 048 055 052
Skewness 016 039 063 058 053 054 037 010 011 -0.06
Excess Kurtosis 2.26 2.45 2.47 1.69 1.50 1.34 0.81 1.17 0.79 1.12
Max Draw % 11.04 942 707 656 562 7.05 923 9.88 13.89 1848
Table C4. Statistics of monthly returns of random forest portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 10.03 8.14 7.64 6.42 6.05 6.11 6.07 4.66 7.05 8.20
Ann Volatility 1056 730 622 597 594 622 681 737 864 11.88
3-month Sharpe Ratio 072 078 083 068 062 061 055 034 056 052
Skewness 119 104 082 065 015 043 024 -006 -017 0.14
Excess Kurtosis 3.71 2.65 221 1.70 1.17 0.26 0.98 131 1.53 1.32
Max Draw % 13.40 7.61 5.83 7.06 6.23 8.75 11.29 953 13.18 13.49
Ann Return % 741 613 556 579 583 668 656 719 7.02 11.23
Ann Volatility 7.42 6.42 6.01 5.97 6.14 6.41 6.82 7.35 8.05 11.63
6-month Sharpe Ratio 068 059 054 058 057 067 062 066 059 0.77
Skewness 065 084 070 037 024 040 031 033 007 0.16
Excess Kurtosis 1.86 2.67 2.02 0.91 0.38 0.80 0.48 0.73 0.43 0.94
Max Draw % 8.73 6.12 7.23 6.85 7.57 7.81 10.32 9.71 1141 1497
Ann Return % 6.96 5.57 5.43 5.77 5.50 5.72 5.66 6.24 6.28 8.80
Ann Volatility 673 533 536 542 535 573 620 707 808 1057
12-month Sharpe Ratio 068 060 058 063 059 059 054 056 050 0.63
Skewness 049 033 041 059 035 028 031 010 010 0.20
Excess Kurtosis 216 158 130 134 049 084 110 080 137 1.26
Max Draw % 8.76 6.49 6.04 5.93 6.31 790 1040 1292 1442 1417
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Table C5. Statistics of monthly returns of gradient boosting portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1085 750 715 716 630 643 596 570 560 7.71
Ann Volatility 1040 720 684 624 623 624 675 749 854 1177
3-month Sharpe Ratio 080 071 069 076 063 065 054 046 041 049
Skewness 115 081 105 08 041 032 026 018 -010 0.19
Excess Kurtosis 484 276 313 247 091 052 109 1.04 102 184
Max Draw % 1054 7.84 567 560 665 7.66 973 1149 1241 1544
Ann Return % 751 58 583 584 583 651 648 718 691 1142
Ann Volatility 746 642 601 609 624 623 683 727 800 11.64
6-month Sharpe Ratio 069 055 058 058 056 067 061 066 058 0.78
Skewness 071 062 076 041 026 034 035 033 008 015
Excess Kurtosis 192 225 191 103 058 067 059 070 042 088
Max Draw % 893 622 691 750 823 7.09 1092 962 1115 14.88
Ann Return % 665 555 598 606 603 561 58 598 634 7.84
Ann Volatility 6.40 562 525 569 584 606 622 68 7.78 1091
L2-month Sharpe Ratio 067 057 068 065 063 054 057 054 053 053
Skewness 040 038 061 068 060 025 022 022 011 -0.07
Excess Kurtosis 142 250 220 188 157 085 051 094 085 1.08
Max Draw % 976 811 696 670 707 915 855 1029 1114 17.90
Table C6. Statistics of monthly returns of deep neural network portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 1039 795 692 653 601 58 612 514 666 876
Ann Volatility 1080 779 695 623 584 606 658 728 871 1157
3-month Sharpe Ratio 073 071 066 067 063 058 058 040 051 058
Skewness 148 110 055 062 039 035 020 003 001 031
Excess Kurtosis 663 346 163 129 047 062 063 116 159 213
Max Draw % 1163 775 671 575 725 827 1029 1226 1273 1505
Ann Return % 784 595 541 58 606 619 657 707 7.08 11.32
Ann Volatility 756 622 597 618 621 619 676 743 799 1168
6-month Sharpe Ratio 072 058 052 058 060 062 063 064 060 077
Skewness 078 069 045 039 027 041 032 025 013 0.16
Excess Kurtosis 231 206 158 081 076 079 075 052 057 091
Max Draw % 824 676 730 736 639 853 1027 948 1078 14.97
Ann Return % 636 594 567 567 535 568 594 619 7.09 801
Ann Volatility 688 608 568 550 540 58 620 7.00 7.77 10.60
L2-month Sharpe Ratio 059 059 058 060 056 057 058 056 062 056
Skewness 027 068 060 077 053 056 020 009 007 -021
Excess Kurtosis 216 338 250 219 108 131 093 08 098 0093
Max Draw % 1190 970 795 557 605 755 992 992 1299 1843
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Appendix D. Statistics of monthly returns of the relative-value fund portfolios

Table D1. Statistics of monthly returns of ABK portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 038 338 537 710 843 938 863 898 945 829
Ann Volatility 703 735 694 581 558 489 466 298 250 244
3-month Sharpe Ratio -025 017 046 083 108 140 133 213 269 234
Skewness -347 -231 -319 -350 -333 -275 -406 -201 -1.00 -2.99
Excess Kurtosis 2263 1338 2416 2579 2856 21.46 28.29 8.24 410 18.18
Max Draw % 36.78 3328 3391 2731 2345 1877 2156 874 492  6.69
Ann Return % 1.54 3.69 5.57 6.71 7.91 8.53 8.29 8.51 8.30 7.66
Ann Volatility 6.21 6.68 6.47 5.74 5.27 4.55 421 3.22 2.55 2.37
6-month Sharpe Ratio -010 023 052 077 104 132 138 185 223 215
Skewness -348 -284 -340 -327 -267 -220 -358 -264 -185 -242
Excess Kurtosis ~ 23.65 17.88 2523 2397 20.05 14.06 23.68 13.11 711 11.18
Max Draw % 32.73 3252 3299 2726 2147 16.82 18.63 11.52 6.58 5.68
Ann Return % 243 387 554 59 696 753 771 743 683 6.87
Ann Volatility 5.28 5.62 5.59 5.53 491 4.45 4.12 3.58 2.81 2.40
12-month Sharpe Ratio 004 029 059 067 093 114 128 139 155 182
Skewness -335 -206 -303 -314 -236 -232 -340 -315 -345 -2.72
Excess Kurtosis 2283 1115 1894 21.73 1598 1466 23.70 17.10 21.15 1465
Max Draw % 2771 2745 2789 2517 1931 1782 17.60 14.72 10.84 7.52
Table D2. Statistics of monthly returns of OLS portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 312 479 520 587 587 648 781 805 940 1356
Ann Volatility 7.18 451 4.16 3.83 3.97 4.23 3.84 5.19 5.61 8.74
3-month Sharpe Ratio 014 055 069 091 088 098 139 110 124 128
Skewness -188 -236 -262 -248 -338 -495 -326 -418 -352 -3.89
Excess Kurtosis 1403 1459 1461 1272 2227 4439 2566 3421 2554 32.88
Max Draw % 3287 2251 2190 18.01 19.04 1880 1450 2056 1757 28.02
Ann Return % 4.32 4.25 4.57 5.15 5.79 6.56 7.05 8.44 9.13 13.60
Ann Volatility 6.76 493 485 440 445 389 398 386 464 621
Sharpe Ratio 0.32 0.40 0.48 0.65 0.79 1.07 1.16 152 141 171
6-month Skewness -3.12 413 -482 -486 -530 -322 -276 -149 -159 -0.47
Excess Kurtosis 1881 27.48 36.39 38.01 4513 2242 1815 7.45 9.21 2.50
Max Draw % 3230 25.88 26.71 2336 2349 16,71 1541 1125 13.69 10.75
Ann Return % 6.31 5.24 5.84 5.42 5.39 5.77 5.10 6.69 6.41 8.72
Ann Volatility 6.37 494 4.24 431 3.74 3.69 4.01 3.70 3.78 6.66
12-month Sharpe Ratio 063 059 08 072 081 092 069 115 105 0.96
Skewness -1.46 -282 -250 -445 -364 -422 -401 -244 -177 -2.79
Excess Kurtosis 11.13 19.88 18.00 3848 26.88 3458 27.04 11.92 6.89 1411
Max Draw % 2052 2157 1783 2120 1858 17.86 19.22 1598 1393 2454
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Table D3. Statistics of monthly returns of the lasso portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % -022 351 435 455 584 715 829 923 11.38 16.63
Ann Volatility 8.67 5.14 4.82 4.64 4.18 3.65 3.91 4.10 4.70 7.49
3-month Sharpe Ratio -026 025 044 049 084 129 148 160 182 179
Skewness -351 -403 -512 -474 -500 -3.03 -261 -061 -031 -1.02
Excess Kurtosis 2324 30.26 4571 36.18 4095 21.65 16.05 6.69 4.05 5.84
Max Draw % 46.27 29.16 2498 23.77 2211 1547 1512 11.12 6.81 15.52
Ann Return % 2.26 4.17 494 5.12 5.67 6.58 7.62 8.61 9.26 14.71
Ann Volatility 770 544 531 465 418 393 356 362 424 6.06
6-month Sharpe Ratio 003 036 051 062 080 106 143 166 156 191
Skewness -400 -489 -589 -559 -404 -319 -206 -131 -114 -0.58
Excess Kurtosis ~ 30.26 42.06 5350 48.83 2956 21.16 985 376 319 170
Max Draw % 3844 29.09 2838 2501 2160 17.15 1242 9.73 8.62 8.80
Ann Return % 4.85 551 5.29 5.05 5.62 5.49 6.12 7.08 6.77 9.17
Ann Volatility 6.99 4.88 4.56 4.19 3.96 3.72 3.67 3.44 3.85 5.87
12-month Sharpe Ratio 038 065 066 065 083 084 101 134 113 114
Skewness -183 -279 -414 -359 -401 -369 -276 -218 -220 -2.25
Excess Kurtosis 1462 2273 3721 28.71 3147 26.36 16.46 9.88 9.57 9.52
Max Draw % 30.13 2412 2429 2281 1856 17.18 1348 10.83 1334 17.79
Table D4. Statistics of monthly returns of random forest portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % -0.78 2.17 3.22 4.79 5.74 7.65 8.28 10.01 12.05 17.74
Ann Volatility 802 628 590 506 412 357 384 399 445 721
3-month Sharpe Ratio -0.36 000 018 051 082 144 149 183 205 199
Skewness -275 -659 -669 -547 -352 -279 -146 -101 -013 -1.23
Excess Kurtosis ~ 17.49 6755 6825 49.26 2381 1824 6.17 882 496 829
Max Draw % 4248 3282 30.76 2496 2092 14.13 1044 10.16 482 17.62
Ann Return % 2.45 4.34 5.04 551 5.83 6.43 6.78 8.36 940 14.76
Ann Volatility 7.93 5.77 5.37 4.68 4.17 3.84 3.44 3.64 4.20 6.03
6-month Sharpe Ratio 005 037 052 069 084 105 126 159 162 193
Skewness -351 -444 -438 -481 -369 -277 -258 -169 -143 -1.05
Excess Kurtosis 32.78 39.62 4020 4161 26.35 1436 13.12 4.60 3.53 351
Max Draw % 39.81 3139 2869 2555 19.02 1555 1284 874 7.77 10.52
Ann Return % 4.86 4.96 5.40 5.74 5.54 5.93 5.95 6.18 7.12 9.32
Ann Volatility 566 508 448 423 394 392 377 366 388 654
12-month Sharpe Ratio 046 054 069 080 081 091 095 103 120 1.06
Skewness -136 -482 -375 -322 -321 -314 -315 -214 -179 -2.79
Excess Kurtosis 1434 4580 3133 2537 2141 1868 20.11 7.78 6.30 14.76
Max Draw % 2188 2291 2080 2020 1936 20.28 16.03 1477 1044 25.25
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Table D5. Statistics of monthly returns of gradient boosting portfolios

Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % 061 246 403 492 550 678 835 964 1181 16.78
Ann Volatility 800 618 501 475 455 423 361 371 449 7.9
3-month Sharpe Ratio -018 005 036 056 070 104 161 1.87 199 190
Skewness -2.84 -490 -517 610 -475 -415 -187 -040 -059 -1.18
Excess Kurtosis ~ 20.33  41.09 4436 6001 3995 3275 989 500 396 7.23
Max Draw % 41.27 3296 27.03 2338 2229 1960 1304 852 6.10 15.64
Ann Return % 215 48 501 530 610 654 765 883 960 13.03
Ann Volatility 832 588 519 463 393 384 342 358 428 589
6-month Sharpe Ratio 002 045 054 065 095 108 150 173 162 173
Skewness -340 -465 -529 -459 -417 -289 -211 -141 -148 -152
Excess Kurtosis ~ 32.14 4312 47.47 3996 3246 1643 731 315 424 525
Max Draw % 4098 30.14 27.83 2449 2017 1673 1039 651 754 13.96
Ann Return % 521 534 535 542 617 554 569 673 692 863
Ann Volatility 577 476 448 393 402 406 3.68 367 368 6.56
L2-month Sharpe Ratio 051 064 068 078 095 079 090 117 121 096
Skewness -1.78 -2.92 -398 -295 -366 -3.47 -308 -231 -176 -3.01
Excess Kurtosis ~ 14.31 2645 3351 21.09 2706 2238 1733 940 6.38 1643
Max Draw % 2270 2031 21.08 1822 1883 2149 1810 13.44 1248 2475
Table D6. Statistics of monthly returns of deep neural network portfolios
Rebalance  Decile Portfolio 1 2 3 4 5 6 7 8 9 10
Ann Return % -0.70 227 364 455 543 770 859 938 1245 1759
Ann Volatility 811 637 581 508 402 372 365 417 445 712
3-month Sharpe Ratio 035 002 025 046 077 140 164 162 213 200
Skewness 292 -618 -619 -580 -358 -265 -1.33 -137 -0.08 -1.30
Excess Kurtosis ~ 19.71 6091 5869 5406 2390 1788 656 975 485 9.15
Max Draw % 43.72 3293 3015 2677 19.02 13.88 10.92 1089 4.89 17.39
Ann Return % 218 475 468 583 563 638 7.04 811 978 1449
Ann Volatility 802 567 561 440 442 364 356 350 416 6.14
6-month Sharpe Ratio 002 045 044 08 075 1.09 128 159 171 186
Skewness -354 -376 -528 -399 -417 -285 -250 -172 -147 -1.19
Excess Kurtosis ~ 32.06 3362 49.92 3258 3325 1398 1234 441 400 4.02
Max Draw % 4089 28.88 30.67 22.83 2279 1418 1267 872 728 11.62
Ann Return % 499 515 519 562 552 605 591 678 664 913
Ann Volatility 583 471 456 432 408 377 370 355 398 653
L2-month Sharpe Ratio 047 061 063 076 078 097 095 122 106 103
Skewness -1.48 -423 -388 -362 -352 -274 -301 -210 -212 -2.60
Excess Kurtosis ~ 14.99 37.98 3393 2771 2439 1568 1825 7.84 803 1293
Max Draw % 2283 2053 2083 20.81 2100 17.78 1811 1226 12.67 25.00
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