Consumption Risk Sharing, the Real Exchange Rate, and Borders: Why Does the Exchange Rate Make Such a Difference?

By Mick Devereux and Viktoria Hnatkovska

Discussant: Jian Wang
Federal Reserve Bank of Dallas

September 2010
Summary of the paper

Comments
This paper studies the Backus-Smith puzzle

- Document the importance of the nominal exchange rate in the Backus-Smith puzzle
- Show standard international macro models fail to replicate this finding and why
- Propose a solution
This paper studies the Backus-Smith puzzle

- Document the importance of the nominal exchange rate in the Backus-Smith puzzle
- Show standard international macro models fail to replicate this finding and why
- Propose a solution
This paper studies the Backus-Smith puzzle
- Document the importance of the nominal exchange rate in the Backus-Smith puzzle
- Show standard international macro models fail to replicate this finding and why
- Propose a solution
This paper studies the Backus-Smith puzzle

- Document the importance of the nominal exchange rate in the Backus-Smith puzzle
- Show standard international macro models fail to replicate this finding and why
- Propose a solution
The Backus-Smith Puzzle

- The real exchange rate and cross-country relative consumption are perfectly correlated under risk sharing
 \[\sigma(c_t - c_t^*) = q_t \]
- Not true in the data
 - Backus and Smith (1993)
 - Kollmann (1995)
The real exchange rate and cross-country relative consumption are perfectly correlated under risk sharing:

\[\sigma(c_t - c_t^*) = q_t \]

Not true in the data:

- Backus and Smith (1993)
- Kollmann (1995)
Some Solutions to the Puzzle

- **Demand shocks**
 \[\sigma(c_t - c_t^*) = q_t + (\xi_t - \xi_t^*) \]

- **Supply shocks plus incomplete financial markets**
 - Non-tradable goods (Benigno and Thoenissen, 2008)
 - Wealth effect of productivity shocks (Corsetti, et al., 2008)
 - Investment specific shocks (Raffo, 2010)

- No role for price stickiness and the nominal exchange rate.
Some Solutions to the Puzzle

- **Demand shocks**
 \[\sigma(c_t - c_t^*) = q_t + (\xi_t - \xi_t^*) \]

- Supply shocks plus incomplete financial markets
 - Non-tradable goods (Benigno and Thoenissen, 2008)
 - Wealth effect of productivity shocks (Corsetti, et al., 2008)
 - Investment specific shocks (Raffo, 2010)

- No role for price stickiness and the nominal exchange rate.
Some Solutions to the Puzzle

- Demand shocks
 \[\sigma(c_t - c_t^*) = q_t + (\xi_t - \xi_t^*) \]

- Supply shocks plus incomplete financial markets
 - Non-tradable goods (Benigno and Thoenissen, 2008)
 - Wealth effect of productivity shocks (Corsetti, et al., 2008)
 - Investment specific shocks (Raffo, 2010)

- No role for price stickiness and the nominal exchange rate.
Some Solutions to the Puzzle

- **Demand shocks**
 \[\sigma(c_t - c_t^*) = q_t + (\xi_t - \xi_t^*) \]

- **Supply shocks plus incomplete financial markets**
 - Non-tradable goods (Benigno and Thoenissen, 2008)
 - Wealth effect of productivity shocks (Corsetti, et al., 2008)
 - Investment specific shocks (Raffo, 2010)

- No role for price stickiness and the nominal exchange rate.
Some Solutions to the Puzzle

- Demand shocks
 \[\sigma (c_t - c_t^*) = q_t + (\xi_t - \xi_t^*) \]
- Supply shocks plus incomplete financial markets
 - Non-tradable goods (Benigno and Thoenissen, 2008)
 - Wealth effect of productivity shocks (Corsetti, et al., 2008)
 - Investment specific shocks (Raffo, 2010)
- No role for price stickiness and the nominal exchange rate.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.
- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.

- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.

- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.

- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.

- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
Empirical findings in Devereux and Hnatkovska (2010)

- The nominal exchange rate is important for the Backus-Smith puzzle.
 - Significant evidence of risk-sharing within the country
 - Risk-sharing is poor across countries
 - Failure of cross-country risk-sharing is mostly from nominal exchange rate movements.

- Other evidence in the literature
 - Risk-sharing is worse for country-pairs with the more volatile nominal exchange rate.
 - Countries (regions) with fixed exchange rates show better consumption risk sharing.
A bare-bones model

 - Two countries and two shocks in each country
 - Calvo-style sticky prices
 - Monetary policy (Taylor) rules

- Analytical solution of the model

 \[\Delta c_t = \alpha_1 \Delta \varepsilon_t + \beta_1 \Delta a_t \]
 \[\tau_t = \alpha_2 \Delta \varepsilon_t + \beta_2 \Delta a_t \]

 \(\alpha_1 > 0 \) and \(\alpha_2 < 0 \) \(\Rightarrow \) \(\text{corr}(\Delta c_t, \tau_t) < 0 \) under demand shocks

 \(\beta_1 > 0 \) and \(\beta_2 > 0 \) \(\Rightarrow \) \(\text{corr}(\Delta c_t, \tau_t) > 0 \) under productivity shocks
A bare-bones model

 - Two countries and two shocks in each country
 - Calvo-style sticky prices
 - Monetary policy (Taylor) rules
- Analytical solution of the model
 - $\Delta c_t = \alpha_1 \Delta \epsilon_t + \beta_1 \Delta a_t$
 - $\tau_t = \alpha_2 \Delta \epsilon_t + \beta_2 \Delta a_t$
 - $\alpha_1 > 0$ and $\alpha_2 < 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) < 0$ under demand shocks
 - $\beta_1 > 0$ and $\beta_2 > 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) > 0$ under productivity shocks
A bare-bones model

 - Two countries and two shocks in each country
 - Calvo-style sticky prices
 - Monetary policy (Taylor) rules

- Analytical solution of the model

\[
\Delta c_t = \alpha_1 \Delta \varepsilon_t + \beta_1 \Delta a_t \\
\tau_t = \alpha_2 \Delta \varepsilon_t + \beta_2 \Delta a_t
\]

- \(\alpha_1 > 0 \) and \(\alpha_2 < 0 \) \(\Rightarrow \) \(\text{corr}(\Delta c_t, \tau_t)<0 \) under demand shocks
- \(\beta_1 > 0 \) and \(\beta_2 > 0 \) \(\Rightarrow \) \(\text{corr}(\Delta c_t, \tau_t)>0 \) under productivity shocks
A bare-bones model

- Two countries and two shocks in each country
- Calvo-style sticky prices
- Monetary policy (Taylor) rules

Analytical solution of the model
- $\Delta c_t = \alpha_1 \Delta \epsilon_t + \beta_1 \Delta a_t$
- $\tau_t = \alpha_2 \Delta \epsilon_t + \beta_2 \Delta a_t$
- $\alpha_1 > 0$ and $\alpha_2 < 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) < 0$ under demand shocks
- $\beta_1 > 0$ and $\beta_2 > 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) > 0$ under productivity shocks
A bare-bones model

 - Two countries and two shocks in each country
 - Calvo-style sticky prices
 - Monetary policy (Taylor) rules

- Analytical solution of the model
 \[\Delta c_t = \alpha_1 \Delta \varepsilon_t + \beta_1 \Delta a_t \]
 \[\tau_t = \alpha_2 \Delta \varepsilon_t + \beta_2 \Delta a_t \]
 \[\alpha_1 > 0 \text{ and } \alpha_2 < 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) < 0 \text{ under demand shocks} \]
 \[\beta_1 > 0 \text{ and } \beta_2 > 0 \Rightarrow \text{corr}(\Delta c_t, \tau_t) > 0 \text{ under productivity shocks} \]
What we learn from the bare-bones model

- $\text{corr}(\Delta c_t, \tau_t)$ depends on price stickiness
 - Price stickiness helps to replicate the Backus-Smith puzzle.

- The exchange rate peg does not change the sign of $\text{corr}(\Delta c_t, \tau_t)$.

- Woodford-style price setting can reconcile the data and model prediction.
What we learn from the bare-bones model

- $\text{corr}(\Delta c_t, \tau_t)$ depends on price stickiness
 - Price stickiness helps to replicate the Backus-Smith puzzle.
- The exchange rate peg does not change the sign of $\text{corr}(\Delta c_t, \tau_t)$.
- Woodford-style price setting can reconcile the data and model prediction.
What we learn from the bare-bones model

- $\text{corr}(\Delta c_t, \tau_t)$ depends on price stickiness
 - Price stickiness helps to replicate the Backus-Smith puzzle.
- The exchange rate peg does not change the sign of $\text{corr}(\Delta c_t, \tau_t)$.
- Woodford-style price setting can reconcile the data and model prediction.
A more general model

- Incomplete financial markets
- Nontradable goods (Benigno and Thoenissen, 2008)

What we learn from this model

- Results in the bare-bones model hold in the general model.
- Results hold even without demand shocks
A more general model

- Incomplete financial markets
- Nontradable goods (Benigno and Thoenissen, 2008)

What we learn from this model

- Results in the bare-bones model hold in the general model.
- Results hold even without demand shocks
Outline

1 Summary of the paper

2 Comments
Comment 1: Price stickiness

- Calvo- plus Woodford-style price stickiness

- Woodford-style price stickiness helps to reduce \(\text{corr}(\varepsilon_t - \varepsilon_t^*, RER_t) \) under the fixed exchange rate.
 - Under the exchange rate peg, \(RER_t \) does not respond to \(\varepsilon_t - \varepsilon_t^* \) on impact of the shock.

- Does this additional price stickiness make prices too sticky?

- Can we get the same result by simply increasing price stickiness parameter under Calvo price setting?
Comment 1: Price stickiness

- Calvo- plus Woodford-style price stickiness
- Woodford-style price stickiness helps to reduce $\text{corr}(\varepsilon_t - \varepsilon_t^*, RER_t)$ under the fixed exchange rate.
 - Under the exchange rate peg, RER_t does not respond to $\varepsilon_t - \varepsilon_t^*$ on impact of the shock.

Does this additional price stickiness make prices too sticky?

Can we get the same result by simply increasing price stickiness parameter under Calvo price setting?
Comment 1: Price stickiness

- Calvo- plus Woodford-style price stickiness
- Woodford-style price stickiness helps to reduce $\text{corr}(\varepsilon_t - \varepsilon_t^*, RER_t)$ under the fixed exchange rate.
 - Under the exchange rate peg, RER_t does not respond to $\varepsilon_t - \varepsilon_t^*$ on impact of the shock.
- Does this additional price stickiness make prices too sticky?
- Can we get the same result by simply increasing price stickiness parameter under Calvo price setting?
Comment 1: Price stickiness

- Calvo- plus Woodford-style price stickiness

Woodford-style price stickiness helps to reduce $\text{corr}(\varepsilon_t - \varepsilon_t^*, RER_t)$ under the fixed exchange rate.
 - Under the exchange rate peg, RER_t does not respond to $\varepsilon_t - \varepsilon_t^*$ on impact of the shock.

- Does this additional price stickiness make prices too sticky?

- Can we get the same result by simply increasing price stickiness parameter under Calvo price setting?
Comment 2: Why nontradable goods?

- Shortcomings for the explanation with nontradable goods
 - Negative correlation between the terms of trade and the real exchange rate
 - Real exchange rate volatility is mainly driven by the relative prices between tradable and nontradable goods
- Better alternative?
Comment 2: Why nontradable goods?

- Shortcomings for the explanation with nontradable goods
 - Negative correlation between the terms of trade and the real exchange rate
 - Real exchange rate volatility is mainly driven by the relative prices between tradable and nontradable goods
- Better alternative?
Comment 2: Why nontradable goods?

- Shortcomings for the explanation with nontradable goods
 - Negative correlation between the terms of trade and the real exchange rate
 - Real exchange rate volatility is mainly driven by the relative prices between tradable and nontradable goods

- Better alternative?
Comment 2: Why nontradable goods?

- Shortcomings for the explanation with nontradable goods
 - Negative correlation between the terms of trade and the real exchange rate
 - Real exchange rate volatility is mainly driven by the relative prices between tradable and nontradable goods
- Better alternative?
Corsetti et al., 2008

More consistent with the data

- The TOT and the RE are positively correlated.
- The RE volatility is mainly driven by the TOT.

The exchange rate peg could be sufficient to switch the sign of \(\text{corr}(\Delta c_t, \tau_t) \).
Corsetti et al., 2008

- More consistent with the data
 - The TOT and the RE are positively correlated.
 - The RE volatility is mainly driven by the TOT.
- The exchange rate peg could be sufficient to switch the sign of \(\text{corr}(\Delta c_t, \tau_t) \).
Corsetti et al., 2008

Low elasticity of substitution between home and foreign goods

- TOT deteriorates after a positive shock ⇒ negative wealth effect for the home country
- Strong negative wealth effect + home bias in consumption ⇒ demand for home goods declines
- To reach the equilibrium, the TOT improves after a positive productivity shock.
- Multiple equilibria
Corsetti et al., 2008

- Low elasticity of substitution between home and foreign goods
 - TOT deteriorates after a positive shock \(\Rightarrow \) negative wealth effect for the home country
 - Strong negative wealth effect + home bias in consumption \(\Rightarrow \) demand for home goods declines
- To reach the equilibrium, the TOT improves after a positive productivity shock.
- Multiple equilibria
Corsetti et al., 2008

- Low elasticity of substitution between home and foreign goods
 - TOT deteriorates after a positive shock \Rightarrow negative wealth effect for the home country
 - Strong negative wealth effect + home bias in consumption \Rightarrow demand for home goods declines
 - To reach the equilibrium, the TOT improves after a positive productivity shock.

- Multiple equilibria
Corsetti et al., 2008

- Low elasticity of substitution between home and foreign goods
 - TOT deteriorates after a positive shock \Rightarrow negative wealth effect for the home country
 - Strong negative wealth effect + home bias in consumption \Rightarrow demand for home goods declines
 - To reach the equilibrium, the TOT improves after a positive productivity shock.
- Multiple equilibria
Summary of the paper

Corsetti et al., 2008

- Low elasticity of substitution between home and foreign goods
 - TOT deteriorates after a positive shock \Rightarrow negative wealth effect for the home country
 - Strong negative wealth effect + home bias in consumption \Rightarrow demand for home goods declines
 - To reach the equilibrium, the TOT improves after a positive productivity shock.
 - Multiple equilibria
The effect of the exchange rate peg

- Under the exchange rate peg
 - The movement of the TOT will be restricted and therefore it dampens the wealth effect.
 - It can potentially switch the model from one equilibrium to another.
 - A DSGE example (Wang, 2010)
The effect of the exchange rate peg

- Under the exchange rate peg
 - The movement of the TOT will be restricted and therefore it dampens the wealth effect.
 - It can potentially switch the model from one equilibrium to another.
- A DSGE example (Wang, 2010)
The effect of the exchange rate peg

- Under the exchange rate peg
 - The movement of the TOT will be restricted and therefore it dampens the wealth effect.
 - It can potentially switch the model from one equilibrium to another.
 - A DSGE example (Wang, 2010)
A DSGE example (Wang, 2010)

Figure: IRFs to a positive TFP shock

[Flexible Exchange Rate]

[Fixed Exchange Rate]
Comment 3: Disconnection between the bare-bones and general models

- Need to report results with and without ex-ante pricing for the general model.
- More explanations to the results without demand shocks
 - Different channels to replicate the Backus-Smith puzzle
 - The bare-bones model only explains how demand shocks work.
Comment 3: Disconnection between the bare-bones and general models

- Need to report results with and without ex-ante pricing for the general model.
- More explanations to the results without demand shocks
 - Different channels to replicate the Backus-Smith puzzle
 - The bare-bones model only explains how demand shocks work.
Comment 3: Disconnection between the bare-bones and general models

- Need to report results with and without ex-ante pricing for the general model.
- More explanations to the results without demand shocks
 - Different channels to replicate the Backus-Smith puzzle
 - The bare-bones model only explains how demand shocks work.
Comment 3: Disconnection between the bare-bones and general models

- Need to report results with and without ex-ante pricing for the general model.
- More explanations to the results without demand shocks
 - Different channels to replicate the Backus-Smith puzzle
 - The bare-bones model only explains how demand shocks work.
What are policy implications?

- Should the central bank target exchange rate volatility to facilitate risk-sharing?
Additional comment

- What are policy implications?
 - Should the central bank target exchange rate volatility to facilitate risk-sharing?