Discussion by Marios Zachariadis

University of Cyprus

Sep 2010
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.

 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.

 - BGM mix local and global shocks for US; BGW consider local shocks.

 - How different is price reaction to global as compared to local shocks?

 - Global shocks account for price persistence; half-lives for local macro shocks comparable or faster than for local or global micro shocks.

 - Is solution to micro-macro gap still satisfying in more general setting?
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.

How different is price reaction to global as compared to local shocks?

Global shocks account for price persistence; half-lives for local macro shocks comparable or faster than for local or global micro shocks.

Is solution to micro-macro gap still satisfying in more general setting?
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix *local* and *global* shocks for US; BGW consider *local* shocks.

How different is price reaction to *global* as compared to *local* shocks?

 - Global shocks account for price persistence; half-lives for local macro shocks comparable or faster than for local or global micro shocks.

Is solution to micro-macro gap still satisfying in more general setting?
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix local and global shocks for US; BGW consider local shocks.
 - How different is price reaction to global as compared to local shocks?
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix local and global shocks for US; BGW consider local shocks.
 - How different is price reaction to global as compared to local shocks?

Are prices flexible or sticky?

- It depends on the type of shock they are responding to.

 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix local and global shocks for US; BGW consider local shocks.
 - How different is price reaction to global as compared to local shocks?

 - global shocks account for price persistence;
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.
 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix local and global shocks for US; BGW consider local shocks.
 - How different is price reaction to global as compared to local shocks?
 - global shocks account for price persistence;
 - half-lives for local macro shocks comparable or faster than for local or global micro shocks.
Are prices flexible or sticky?

- It depends on the type of shock they are responding to.

 - Both papers allow for micro and macro shocks with different price persistence, that dominate in micro and macro prices respectively.
 - BGM mix *local* and *global* shocks for US; BGW consider *local* shocks.
 - How different is price reaction to *global* as compared to *local* shocks?

 - global shocks account for price persistence;
 - half-lives for local macro shocks comparable or faster than for local or global micro shocks.

- Is solution to micro-macro gap still satisfying in more general setting?
That aggregate real exchange rates appear more persistent than international relative micro prices, consistent with different types of shocks driving these.
Contribution

- That aggregate real exchange rates appear more persistent than intl relative micro prices, consistent with different types of shocks driving these.

- Adjustment processes towards LOP and PPP work through distinct mechanisms in the goods and foreign exchange markets respectively.

- Responses to volatile micro shocks dominant in micro data but cancel out in aggregate data where macro shocks dominate.

- Half-lives for micro prices in response to macro shocks resemble PPP persistence.

- Heterogeneity in adjustment speed across goods associated with macro shocks common across goods cancels out upon aggregation, so aggregation bias cannot explain the micro-macro gap to the extent to which heterogeneity in adjustment speeds is macro-related.
That aggregate real exchange rates appear more persistent than intl relative micro prices, consistent with different types of shocks driving these.

Adjustment processes towards LOP and PPP work through distinct mechanisms in the goods and foreign exchange markets respectively.

- responses to volatile micro shocks dominant in micro data but cancel out in aggregate data where macro shocks dominate.
Contribution

- That aggregate real exchange rates appear more persistent than international relative micro prices, consistent with different types of shocks driving these.
- Adjustment processes towards LOP and PPP work through distinct mechanisms in the goods and foreign exchange markets respectively.
 - Responses to volatile micro shocks dominant in micro data but cancel out in aggregate data where macro shocks dominate.
- Half-lives for micro prices in response to macro shocks resemble PPP persistence.
That aggregate real exchange rates appear more persistent than international relative micro prices, consistent with different types of shocks driving these.

Adjustment processes towards LOP and PPP work through distinct mechanisms in the goods and foreign exchange markets respectively.

- responses to volatile micro shocks dominant in micro data but cancel out in aggregate data where macro shocks dominate.

Half-lives for micro prices in response to macro shocks resemble PPP persistence.

Heterogeneity in adjustment speed across goods associated with macro shocks common across goods cancels out upon aggregation → aggregation bias cannot explain the micro-macro gap to the extent to which heterogeneity in adjustment speeds is macro-related.
Focus on bilateral prices b/w the US and 20 cities.
Specifics

- Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).
Specs

- Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).

- 2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q \), \(\Delta e \), \(\Delta p \):

\[q_{ij,t}^k \]: In response to idiosyncratic shocks, resembles \(p_{ij,t}^k \) dynamics. Goods price does most of the adjustment.

\[q_{ij,t} \]: In response to any shock resembles \(e_{ij,t} \) dynamics.

Half lives for \(q \) and \(q_{ij,t}^k \) similar in response to \(e \) or \(p \) shock; differ in response to \(p_{ij,t}^k \) shock (\(q_{ij,t}^k \) adjusts twice as fast.)

Variation in \(q_{ij,t}^k \) (\(q_{ij,t} \)) mainly due to \(p_{ij,t}^k \) (\(e_{ij,t} \)) shocks.

Estimation of \(q_{ij,t}^k \) or \(q_{ij,t} \) on good-specific and macro deviations shows response to aggregate deviations similar for \(q_{ij,t}^k \) and for \(q_{ij,t} \).
Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).

2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):

- for aggregate data, adjustment primarily via \(e_{ij,t} \)
Specs

- Focus on bilateral prices b/w the US and 20 cities.
- \(q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \) for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).
- 2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):
 - for aggregate data, adjustment primarily via \(e_{ij,t} \)
 - for goods, adjustment primarily via goods market.

\(q_k \): In response to idiosyncratic shocks, resembles \(p_d \) dynamics.
\(q \): In response to any shock resembles \(e \) dynamics.

Half lives for \(q \) and \(q_k \) similar in response to \(e \) or \(p \) shock; differ in response to \(p_k \) shock (\(q_k \) adjusts twice as fast.)

Variation in \(q_k \) mainly due to \(p_k \) (\(e \)) shocks.

Estimation of \(q_k \) or \(q \) on good-specific and macro deviations shows response to aggregate deviations similar for \(q_k \) and for \(q \).
Specifics

- Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \[q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k. \]

- 2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):
 - for aggregate data, adjustment primarily via \(e_{ij,t} \)
 - for goods, adjustment primarily via goods market.

- 3-variables vector ECM adding \(\Delta s \) in \(p_{ij,t} \):
Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \[q_{ij,t} = \sum_{k=1}^{K} q_{ij,t}^k. \]

2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):

- for aggregate data, adjustment primarily via \(e_{ij,t} \)
- for goods, adjustment primarily via goods market.

3-variables vector ECM adding \(\Delta s \) in \(p_{ij,t} \):

- \(q^k \): In response to idiosyncratic shocks, resembles \(p^k \) dynamics\(\Rightarrow\)
goods price does most of the adjustment.
Focus on bilateral prices b/w the US and 20 cities.

\[q^k_{ij,t} = e_{ij,t} + p^k_{ij,t} \text{ for 98 traded goods and aggregate } q_{ij,t} \equiv \sum_{k=1}^{K} q^k_{ij,t}. \]

2-equations ECM: Δs in \(e_{ij,t} \) and \(p^k_{ij,t} \) on lagged LOP deviations, lagged Δs in \(e_{ij,t} \) and \(p^k_{ij,t} \), and averaged \(q, \Delta e, \Delta p \):

- for aggregate data, adjustment primarily via \(e_{ij,t} \)
- for goods, adjustment primarily via goods market.

3-variables vector ECM adding Δs in \(p_{ij,t} \):

- \(q^k \): In response to idiosyncratic shocks, resembles \(p^k \) dynamics \(\rightarrow \) goods price does most of the adjustment.
- \(q \): In response to any shock resembles \(e \) dynamics \(\rightarrow \) \(e \) does.
Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \(q_{ij,t} = \sum_{k=1}^{K} q_{ij,t}^k. \)

2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):

- for aggregate data, adjustment primarily via \(e_{ij,t} \)
- for goods, adjustment primarily via goods market.

3-variables vector ECM adding \(\Delta s \) in \(p_{ij,t} \):

- \(q^k \): In response to idiosyncratic shocks, resembles \(p^k \) dynamics \(\Rightarrow \) goods price does most of the adjustment.
- \(q \): In response to any shock resembles \(e \) dynamics \(\Rightarrow \) \(e \) does.
- half lives for \(q \) and \(q^k \) similar in response to \(e \) or \(p \) shock; differ in response to \(p^k \) shock (\(q^k \) adjusts twice as fast.)
Specifics

- Focus on bilateral prices b/w the US and 20 cities.
- \(q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \) for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).
- 2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q, \Delta e, \Delta p \):
 - for aggregate data, adjustment primarily via \(e_{ij,t} \)
 - for goods, adjustment primarily via goods market.
- 3-variables vector ECM adding \(\Delta s \) in \(p_{ij,t} \):
 - \(q^k \): In response to idiosyncratic shocks, resembles \(p^k \) dynamics → goods price does most of the adjustment.
 - \(q \): In response to any shock resembles \(e \) dynamics → \(e \) does.
 - half lives for \(q \) and \(q^k \) similar in response to \(e \) or \(p \) shock; differ in response to \(p^k \) shock (\(q^k \) adjusts twice as fast.)
- Variation in \(q^k (q) \) mainly due to \(p^k (e) \) shocks.
Focus on bilateral prices b/w the US and 20 cities.

\[q_{ij,t}^k = e_{ij,t} + p_{ij,t}^k \] for 98 traded goods and aggregate \(q_{ij,t} \equiv \sum_{k=1}^{K} q_{ij,t}^k \).

2-equations ECM: \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \) on lagged LOP deviations, lagged \(\Delta s \) in \(e_{ij,t} \) and \(p_{ij,t}^k \), and averaged \(q \), \(\Delta e \), \(\Delta p \):
- for aggregate data, adjustment primarily via \(e_{ij,t} \)
- for goods, adjustment primarily via goods market.

3-variables vector ECM adding \(\Delta s \) in \(p_{ij,t} \):
- \(q^k \): In response to idiosyncratic shocks, resembles \(p^k \) dynamics \(\Rightarrow \) goods price does most of the adjustment.
- \(q \): In response to any shock resembles \(e \) dynamics \(\Rightarrow \) \(e \) does.
- half lives for \(q \) and \(q^k \) similar in response to \(e \) or \(p \) shock; differ in response to \(p^k \) shock (\(q^k \) adjusts twice as fast.)

Variation in \(q^k \) (\(q \)) mainly due to \(p^k \) (\(e \)) shocks.

Estimation of \(q^k \) or \(q \) on good-specific and macro deviations shows response to aggregate deviations similar for \(q^k \) and for \(q \).
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th></th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>Macro</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>Global</td>
<td>∞</td>
</tr>
</tbody>
</table>

What might explain different result in A&Z and BGW?

- Identification strategy.
- Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
- Use of mean group estimator;
- Sample of products;
- Sample of locations;
- Annual versus semi-annual frequency.
- Use of bilateral pairs relative to the US!
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th></th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td>micro</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>macro</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>local</td>
<td>3.05 yrs</td>
</tr>
<tr>
<td>global</td>
<td>∞</td>
</tr>
</tbody>
</table>

What might explain different result in A&Z and BGW?

- Identification strategy.
- Estimation uncertainty: 95% confidence intervals: 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
- Use of mean group estimator; sample of products; sample of locations; annual versus semi-annual frequency.
- Use of bilateral pairs relative to the US.
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.

 A&Z find comparable convergence for *local* macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
 - Identification strategy.
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th></th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>micro</td>
</tr>
<tr>
<td>local</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
 - Use of mean group estimator;
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.

- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?

 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
 - Use of mean group estimator;
 - sample of products;
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
 - Use of mean group estimator;
 - sample of products;
 - sample of locations;
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th>Persistence</th>
<th>micro</th>
<th>macro</th>
</tr>
</thead>
<tbody>
<tr>
<td>local</td>
<td>1.65 yrs</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
<td>∞</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?

 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8) 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
 - Use of mean group estimator;
 - sample of products;
 - sample of locations;
 - annual versus semi-annual frequency.
Comparison and suggestions

- Latter approach similar to A&Z in that it allows for idiosyncratic shocks as distinct from macro shocks.
- A&Z find comparable convergence for local macro and micro shocks:

<table>
<thead>
<tr>
<th></th>
<th>Persistence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>micro</td>
</tr>
<tr>
<td>local</td>
<td>1.65 yrs</td>
</tr>
<tr>
<td>global</td>
<td>3.05 yrs</td>
</tr>
</tbody>
</table>

- What might explain different result in A&Z and BGW?
 - Identification strategy.
 - Estimation uncertainty: 95% confidence intervals are (BGW Table 8)
 0.56 to 1.72 yrs for micro, 1.01 to 3.17 yrs for macro.
 - Use of mean group estimator;
 - sample of products;
 - sample of locations;
 - annual versus semi-annual frequency.
 - Use of bilateral pairs relative to the US →
<table>
<thead>
<tr>
<th>relative to:</th>
<th>mean group estimator, traded goods, 20 cities sample:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frequency:</td>
<td></td>
<td>semi-annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
</tr>
<tr>
<td>micro shock</td>
<td></td>
<td>0.89 ($\rho=0.678$)</td>
<td>1.90</td>
<td>1.90</td>
<td>1.92</td>
<td>1.89</td>
<td>1.90</td>
</tr>
<tr>
<td>macro shock</td>
<td></td>
<td>1.45 ($\rho=0.787$)</td>
<td>2.47</td>
<td>1.35</td>
<td>1.67</td>
<td>1.37</td>
<td>1.69</td>
</tr>
</tbody>
</table>
Comparison of half-lives in years with BGW Table 8 (disaggregated data)

<table>
<thead>
<tr>
<th></th>
<th>(1) BGW</th>
<th>(2) US</th>
<th>(3) GER</th>
<th>(4) JAP</th>
<th>(5) FRA</th>
<th>(6) Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>relative to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>frequency:</td>
<td>semi-annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
</tr>
<tr>
<td>micro shock</td>
<td>0.89 ($\rho=.678$)</td>
<td>1.90</td>
<td>1.90</td>
<td>1.92</td>
<td>1.89</td>
<td>1.90</td>
</tr>
<tr>
<td>macro shock</td>
<td>1.45 ($\rho=.787$)</td>
<td>2.47</td>
<td>1.35</td>
<td>1.67</td>
<td>1.37</td>
<td>1.69</td>
</tr>
</tbody>
</table>

- Using bilateral pairs relative to the US might introduce a more persistent US component:
Comparison of half-lives in years with BGW Table 8 (disaggregated data)

mean group estimator, traded goods, 20 cities sample:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A&Z</td>
</tr>
<tr>
<td>relative to:</td>
<td>US</td>
<td>US</td>
<td>GER</td>
<td>JAP</td>
<td>FRA</td>
<td>Mean</td>
</tr>
<tr>
<td>frequency:</td>
<td>semi-annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
</tr>
<tr>
<td>micro shock</td>
<td>0.89 ($\rho=.678$)</td>
<td>1.90</td>
<td>1.90</td>
<td>1.92</td>
<td>1.89</td>
<td>1.90</td>
</tr>
<tr>
<td>macro shock</td>
<td>1.45 ($\rho=.787$)</td>
<td>2.47</td>
<td>1.35</td>
<td>1.67</td>
<td>1.37</td>
<td>1.69</td>
</tr>
</tbody>
</table>

- Using bilateral pairs relative to the US might introduce a more persistent US component:

- Assuming common currency prices can be split into
 \[p_{it}^k = m_t + m_{it}^k + m_{it} + m_{it}^k \], then \(q_{ij,t}^k \) relative to US is
 \[p_{it}^k - p_{UST}^k = m_{it} - m_{UST} + (m_{it}^k - m_{UST}^k) \]
Comparison of half-lives in years with BGW Table 8 (disaggregated data)

mean group estimator, traded goods, 20 cities sample:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGW relative to:</td>
<td>US</td>
<td>US</td>
<td>GER</td>
<td>JAP</td>
<td>FRA</td>
<td>Mean</td>
</tr>
<tr>
<td>frequency:</td>
<td>semi-annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
<td>annual</td>
</tr>
<tr>
<td>micro shock</td>
<td>0.89 ($\rho=.678$)</td>
<td>1.90</td>
<td>1.90</td>
<td>1.92</td>
<td>1.89</td>
<td>1.90</td>
</tr>
<tr>
<td>macro shock</td>
<td>1.45 ($\rho=.787$)</td>
<td>2.47</td>
<td>1.35</td>
<td>1.67</td>
<td>1.37</td>
<td>1.69</td>
</tr>
</tbody>
</table>

- Using bilateral pairs relative to the US might introduce a more persistent US component:
 - Assuming common currency prices can be split into
 $$p^k_{it} = m_t + m^k_t + m_{it} + m^k_{it},$$
 then $q^k_{ij,t}$ relative to US is
 $$p^k_{it} - p^k_{UST} = m_{it} - m_{UST} + (m^k_{it} - m^k_{UST})$$
 - Check numeraire issue at semi-annual frequency.
Other points

- **Seasonality:**
Other points

- Seasonality:
 - induced volatility might lead to understating persistence.
Other points

- **Seasonality:**
 - Induced volatility might lead to understating persistence.
 - Bias would be stronger for micro shock persistence \(\Leftrightarrow\) (seasonality probably more good & country-specific than just country-specific.)
Other points

- **Seasonality:**
 - induced volatility might lead to understating persistence.
 - bias would be stronger for micro shock persistence \(\leftrightarrow \) (seasonality probably more good\&country-specific than just country-specific.)

- Explaining aggregates \((p_{ij,t} \text{ or } e_{ij,t}) \) with individual level RHS variables can introduce dependence across panel units. (What is \(e_{ij,t}^k \)?)
Other points

- **Seasonality:**
 - induced volatility might lead to understating persistence.
 - bias would be stronger for micro shock persistence \(\Leftarrow \) (seasonality probably more good\&country-specific than just country-specific.)

- Explaining aggregates \((p_{ij,t} \text{ or } e_{ij,t}) \) with individual level RHS variables can introduce dependence across panel units. (What is \(e_{ij,t}^k \)?)

- **Rational inattention interpretation.**
Other points

- Seasonality:
 - induced volatility might lead to understating persistence.
 - bias would be stronger for micro shock persistence \(\leftarrow \) (seasonality probably more good\&country-specific than just country-specific.)

- Explaining aggregates \((p_{ij,t} \text{ or } e_{ij,t})\) with individual level RHS variables can introduce dependence across panel units. (What is \(e_{ij,t}^k\)?)

- Rational inattention interpretation.

- Micro-macro gap in international relative prices not a regularity:
Other points

- **Seasonality:**
 - induced volatility might lead to understating persistence.
 - bias would be stronger for micro shock persistence (seasonality probably more good & country-specific than just country-specific.)

- Explaining aggregates ($p_{ij,t}$ or $e_{ij,t}$) with individual level RHS variables can introduce dependence across panel units. (What is $e_{ij,t}^k$?)

- Rational inattention interpretation.

- Micro-macro gap in international relative prices not a regularity:
 - appears in BGW at semi-annual frequency, and in Imbs et al. (2005);
Other points

- **Seasonality:**
 - induced volatility might lead to understating persistence.
 - bias would be stronger for micro shock persistence \(\Leftarrow\) (seasonality probably more good\&country-specific than just country-specific.)

- Explaining aggregates \((p_{ij,t} \text{ or } e_{ij,t})\) with individual level RHS variables can introduce dependence across panel units. (What is \(e_{ij,t}^k\)?)

- Rational inattention interpretation.

- Micro-macro gap in international relative prices not a regularity:
 - appears in BGW at semi-annual frequency, and in Imbs et al. (2005);
 - in general, might depend on location (C\&S 2008), period, and frequency under study.