Financial frictions and optimal monetary policy in an open economy

Marcin Kolasa1 Giovanni Lombardo2

1National Bank of Poland
Warsaw School of Economics

2European Central Bank

Financial Frictions and Optimal Monetary Policy in an Open Economy
Federal Reserve Bank of Dallas – March 16-17 2012
Outline

• Motivation
• Model
• Calibration
• Optimal policy
• Results
 • Sticky prices and financial frictions
 • Debt denomination
 • Non tradable goods
• Conclusions
Motivation

- Optimal Ramsey monetary policy in open-economy DSGE models abstract from financial frictions: we fill this gap.
- Financial frictions in DSGE models: Bernanke et al. (1999); Kiyotaki and Moore (1997); Carlstrom and Fuerst (1997)
- Financial frictions and monetary policy - normative analysis:
 - Closed economy: Curdia and Woodford (2008); Carlstrom et al. (2009); Demirel (2009); De Fiore and Tristani (2009)
 - Open economy: Faia (2008); Gertler et al. (2007); Devereux et al. (2006); Elekdag and Tchakarov (2007), Davis and Huang (2011).
Motivation

- Optimal Ramsey monetary policy in open-economy DSGE models abstract from financial frictions: we fill this gap.
- Financial frictions in DSGE models: Bernanke et al. (1999); Kiyotaki and Moore (1997); Carlstrom and Fuerst (1997)
- Financial frictions and monetary policy - normative analysis:
 - Closed economy: Curdia and Woodford (2008); Carlstrom et al. (2009); Demirel (2009); De Fiore and Tristani (2009)
 - Open economy: Faia (2008); Gertler et al. (2007); Devereux et al. (2006); Elekdag and Tchakarov (2007), Davis and Huang (2011).
Motivation

- Optimal Ramsey monetary policy in open-economy DSGE models abstract from financial frictions: we fill this gap.

- Financial frictions in DSGE models: Bernanke et al. (1999); Kiyotaki and Moore (1997); Carlstrom and Fuerst (1997)

- Financial frictions and monetary policy - normative analysis:
 - Closed economy: Curdia and Woodford (2008); Carlstrom et al. (2009); Demirel (2009); De Fiore and Tristani (2009)
 - Open economy: Faia (2008); Gertler et al. (2007); Devereux et al. (2006); Elekdag and Tchakarov (2007), Davis and Huang (2011).
Motivation

- Optimal Ramsey monetary policy in open-economy DSGE models abstract from financial frictions: we fill this gap.

- Financial frictions in DSGE models: Bernanke et al. (1999); Kiyotaki and Moore (1997); Carlstrom and Fuerst (1997)

- Financial frictions and monetary policy - normative analysis:
 - Closed economy: Curdia and Woodford (2008); Carlstrom et al. (2009); Demirel (2009); De Fiore and Tristani (2009)
 - Open economy: Faia (2008); Gertler et al. (2007); Devereux et al. (2006); Elekdag and Tchakarov (2007), Davis and Huang (2011).
Motivation

- Optimal Ramsey monetary policy in open-economy DSGE models abstract from financial frictions: we fill this gap.
- Financial frictions in DSGE models: Bernanke et al. (1999); Kiyotaki and Moore (1997); Carlstrom and Fuerst (1997)
- Financial frictions and monetary policy - normative analysis:
 - Closed economy: Curdia and Woodford (2008); Carlstrom et al. (2009); Demirel (2009); De Fiore and Tristani (2009)
 - Open economy: Faia (2008); Gertler et al. (2007); Devereux et al. (2006); Elekdag and Tchakarov (2007), Davis and Huang (2011).
Our contribution and results

- **Our Paper:**
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- **Main findings:**
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

- **Our Paper:**
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- **Main findings:**
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

- **Our Paper:**
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- **Main findings:**
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

- Our Paper:
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- Main findings:
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

- **Our Paper:**
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- **Main findings:**
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

• Our Paper:
 • Highlight how openness affects the policy trade-offs under financial frictions
 – Exchange rate adjustment play an important role in the transmission mechanism
 • Compare “popular” policy regimes and assess their performance
 • No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

• Main findings:
 • PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 • Debt denomination affects optimal policy conduct.
 • Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

- **Our Paper:**
 - Highlight how openness affects the policy trade-offs under financial frictions
 - Exchange rate adjustment play an important role in the transmission mechanism
 - Compare “popular” policy regimes and assess their performance
 - No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

- **Main findings:**
 - PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 - Debt denomination affects optimal policy conduct.
 - Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

• Our Paper:
 • Highlight how openness affects the policy trade-offs under financial frictions
 – Exchange rate adjustment play an important role in the transmission mechanism
 • Compare “popular” policy regimes and assess their performance
 • No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

• Main findings:
 • PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 • Debt denomination affects optimal policy conduct.
 • Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Our contribution and results

• Our Paper:
 • Highlight how openness affects the policy trade-offs under financial frictions
 – Exchange rate adjustment play an important role in the transmission mechanism
 • Compare “popular” policy regimes and assess their performance
 • No analytical results; intuition developed by starting from the simple NK model and building it up towards the fully-fledged version

• Main findings:
 • PPI targeting excessively procyclical and costly, especially if some goods are nontradable
 • Debt denomination affects optimal policy conduct.
 • Financial frictions decrease attractiveness of all standard price targeting rules, but do not exacerbate costs of a monetary union
Fully-fledged model

- 2 countries
- 2 types of intermediate goods: tradables and nontradables
- Producer currency pricing: law of one price holds for tradable goods
- 3 types of final goods: consumption, investment and government spending
- Real and nominal rigidities:
 - Home bias
 - Monopolistic competition in goods markets
 - Sticky prices: Calvo
 - Investment adjustment costs
- Financial sector similar to Bernanke et al. (1999)
Financial sector

- Entrepreneurs:
 - Risk neutral
 - At the beginning of $t + 1$ buy capital from capital producers
 - Financing: net worth N_{t+1} and bank loan $B_{E,t+1}$:
 \[B_{E,t+1} = Q_{T,t+1}K_{t+1} - N_{t+1} \geq 0 \]
 - Idiosyncratic shock $a_{E,t+1}$, $\log a_{E} \sim N(0, \varepsilon_{e,t}\sigma_{E})$, after which capital equals $a_{E,t+1}K_{t+1}$
 - Rent capital services to firms, which gives rate of return:
 \[R_{E,t+1} = \frac{R_{K,t+1} + (1 - \tau)Q_{T,t+1}}{Q_{T,t}} \]
 - At the end of $t + 1$ repay loans or go bankrupt
Financial sector

- Idiosyncratic shocks observed by entrepreneurs, but not by banks
- Costly state verification problem
- In essence the model is extended by:
 - a premium as an increasing function of the leverage of the entrepreneur: In equilibrium have

\[E_t R_{E,t+1} = \chi \left(\frac{q_t K_{t+1}}{N_{t+1}} \right) R_t \]

- and a law of motion for the net-worth of the entrepreneur

\[N_{t+1} = \varepsilon_{\nu,t} \nu \left[R_{E,t} Q_{T,t-1} K_t - \phi \left(\frac{q_{t-1} K_t}{N_t} \right) R_{t-1} B_{E,t} \right] + T_{E,t} \]
Financial sector

- Idiosyncratic shocks observed by entrepreneurs, but not by banks
- Costly state verification problem
- In essence the model is extended by:
 - a premium as an increasing function of the leverage of the entrepreneur: In equilibrium have
 \[E_t R_{E,t+1} = \chi \left(\frac{q_t K_{t+1}}{N_{t+1}} \right) R_t \]
 - and a law of motion for the net-worth of the entrepreneur
 \[N_{t+1} = \epsilon_{\nu,t} \nu \left[R_{E,t} Q_{T,t-1} K_t - \phi \left(\frac{q_{t-1} K_t}{N_t} \right) R_{t-1} B_{E,t} \right] + T_{E,t} \]
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
 - Frictions: NAWM (Christoffel et al., 2008)
 - Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
 - Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
 - Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
 - Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration of the fully-fledged version of our model

- Based on euro area data, treating the rest of the world symmetrically (except for size and home bias)
- Steady-state: data averages
- Frictions: NAWM (Christoffel et al., 2008)
- Financial sector: Bernanke et al. (1999); Christiano et al. (2007)
- Shocks: productivity, preference, investment-specific, government spending, monetary policy, exit rate of entrepreneurs, riskiness
- Shocks calibrated to match moments of a standard set of macroaggregates and two financial variables:
 - Loans to firms
 - Spread on loans to firms
Calibration results

Standard deviations

<table>
<thead>
<tr>
<th>Variable</th>
<th>model</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.48</td>
<td>0.48</td>
</tr>
<tr>
<td>Investment</td>
<td>1.33</td>
<td>1.31</td>
</tr>
<tr>
<td>Government spending</td>
<td>1.61</td>
<td>1.60</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.30</td>
<td>0.36</td>
</tr>
<tr>
<td>Short-term interest rate</td>
<td>1.10</td>
<td>2.81</td>
</tr>
<tr>
<td>Entrepreneurs’ debt</td>
<td>1.40</td>
<td>1.53</td>
</tr>
<tr>
<td>External financing premium</td>
<td>0.52</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Calibration results

Autocorrelations

<table>
<thead>
<tr>
<th>Variable</th>
<th>model</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.34</td>
<td>0.24</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Investment</td>
<td>0.76</td>
<td>0.16</td>
</tr>
<tr>
<td>Government spending</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.65</td>
<td>0.70</td>
</tr>
<tr>
<td>Short-term interest rate</td>
<td>0.94</td>
<td>0.98</td>
</tr>
<tr>
<td>Entrepreneurs’ debt</td>
<td>0.51</td>
<td>0.18</td>
</tr>
<tr>
<td>External financing premium</td>
<td>0.91</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Calibration results

Correlations

<table>
<thead>
<tr>
<th>Variable</th>
<th>model</th>
<th>data</th>
</tr>
</thead>
<tbody>
<tr>
<td>with GDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption</td>
<td>0.72</td>
<td>0.65</td>
</tr>
<tr>
<td>Investment</td>
<td>0.45</td>
<td>0.80</td>
</tr>
<tr>
<td>Government spending</td>
<td>0.01</td>
<td>-0.21</td>
</tr>
<tr>
<td>Inflation</td>
<td>-0.36</td>
<td>-0.04</td>
</tr>
<tr>
<td>Short-term interest rate</td>
<td>-0.01</td>
<td>-0.04</td>
</tr>
<tr>
<td>Entrepreneurs’ debt</td>
<td>0.12</td>
<td>0.26</td>
</tr>
<tr>
<td>External financing premium</td>
<td>-0.13</td>
<td>-0.22</td>
</tr>
<tr>
<td>other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>External premium-investment</td>
<td>-0.21</td>
<td>-0.12</td>
</tr>
</tbody>
</table>
Optimal monetary policy

- **Optimality criterion**: households’ welfare
- **Optimum**: cooperative equilibrium under commitment in a timeless perspective (Woodford, 2003; Benigno and Benigno, 2006)
- **Welfare costs**: steady state consumption equivalent (in percent)
- **Numerical method**: second order approximation
- **Welfare costs presentation**:
 - relative to cooperative equilibrium
 - scaled by output variance
Optimal monetary policy

- Optimality criterion: households’ welfare
- Optimum: cooperative equilibrium under commitment in a timeless perspective (Woodford, 2003; Benigno and Benigno, 2006)
 - Welfare costs: steady state consumption equivalent (in percent)
 - Numerical method: second order approximation
 - Welfare costs presentation:
 - relative to cooperative equilibrium
 - scaled by output variance
Optimal monetary policy

- Optimality criterion: households’ welfare
- Optimum: cooperative equilibrium under commitment in a timeless perspective (Woodford, 2003; Benigno and Benigno, 2006)
- Welfare costs: steady state consumption equivalent (in per cent)
- Numerical method: second order approximation
- Welfare costs presentation:
 - relative to cooperative equilibrium
 - scaled by output variance
Optimal monetary policy

- Optimality criterion: households’ welfare
- Optimum: cooperative equilibrium under commitment in a timeless perspective (Woodford, 2003; Benigno and Benigno, 2006)
- Welfare costs: steady state consumption equivalent (in per cent)
- Numerical method: second order approximation
- Welfare costs presentation:
 - relative to cooperative equilibrium
 - scaled by output variance
Optimal monetary policy

- Optimality criterion: households’ welfare
- Optimum: cooperative equilibrium under commitment in a timeless perspective (Woodford, 2003; Benigno and Benigno, 2006)
- Welfare costs: steady state consumption equivalent (in per cent)
- Numerical method: second order approximation
- Welfare costs presentation:
 - relative to cooperative equilibrium
 - scaled by output variance
Monetary policy incentives

- **Efficiency wedges:**
 - Monopolistic competition (no subsidies available)
 - Price dispersion in sector $i = \{T, N\}$:
 \[
 \Delta_{i,t} = \int_{0}^{1} \left(\frac{P_{i,t}(z_{i})}{P_{i,t}} \right)^{-\phi_{i}} d z_{i}
 \]

- **External finance premium:**
 - Both in steady state and time varying
 \[
 \chi_{t} = \frac{E_{t} R_{E,t+1}}{R_{t}}
 \]

- Policy incentives related to open economy
Monetary policy incentives

- Efficiency wedges:
 - Monopolistic competition (no subsidies available)
 - Price dispersion in sector $i = \{T, N\}$:
 \[
 \Delta_{i,t} = \int_0^1 \left(\frac{P_{i,t}(z_i)}{P_{i,t}} \right)^{-\phi_i} dz_i
 \]

- External finance premium:
 - Both in steady state and time varying
 \[
 \chi_t = \frac{E_t R_{E,t+1}}{R_t}
 \]

- Policy incentives related to open economy
Monetary policy incentives

- Efficiency wedges:
 - Monopolistic competition (no subsidies available)
 - Price dispersion in sector $i = \{T, N\}$:
 \[
 \Delta_{i,t} = \int_0^1 \left(\frac{P_{i,t}(z_i)}{P_{i,t}} \right)^{-\phi_i} d\zeta_i
 \]

- External finance premium:
 - Both in steady state and time varying
 \[
 \chi_t = \frac{E_t R_{E,t+1}}{R_t}
 \]

- Policy incentives related to open economy
Monetary policy incentives

International allocation of capital and financial frictions

\[\beta E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \frac{R_t}{\Pi_{C,t+1}} \right\} = 1 \]

\[E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{\beta R_t}{\Pi_{C,t+1}} - \frac{\beta^* R_t^*}{\Pi^*_{C,t+1}} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0 \]
Monetary policy incentives

International allocation of capital and financial frictions

- $\beta E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \frac{R_t}{\Pi_{C,t+1}} \right\} = 1$

- $E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{\beta R_t}{\Pi_{C,t+1}} - \frac{\beta^* R^*_t}{\Pi^*_{C,t+1}} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0$
Monetary policy incentives

International allocation of capital and financial frictions

- \(\beta E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \frac{R_t}{\Pi_{C,t+1}} \right\} = 1 \)
- \(E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{\beta R_t}{\Pi_{C,t+1}} - \frac{\beta^* R_{t}^*}{\Pi_{C,t+1}^*} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0 \)
- \(E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{E_t R_{E,t+1}}{\chi_t \Pi_{C,t+1}} - \frac{E_t R_{E,t+1}^*}{\chi_t^* \Pi_{C,t+1}^*} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0. \)
Monetary policy incentives

International allocation of capital and financial frictions

\[\beta E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \frac{R_t}{\Pi_{C,t+1}} \right\} = 1 \]

\[E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{\beta R_t}{\Pi_{C,t+1}} - \frac{\beta^* R^*_t}{\Pi^*_{C,t+1}} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0 \]

\[E_t \left\{ \frac{\Lambda_{C,t+1}}{\Lambda_{C,t}} \left(\frac{E_t R_{E,t+1}}{\Pi_{C,t+1}} - \frac{E_t R^*_{E,t+1}}{\Pi^*_{C,t+1}} \frac{Q_{t+1}}{Q_t} \right) \right\} = 0 . \text{ No Fin. Frictions.} \]
Simple symmetric NK model with capital accumulation

<table>
<thead>
<tr>
<th>Flexible prices</th>
<th>All shocks</th>
<th>Home productivity</th>
<th>Foreign productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean premium</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>stdev premium</td>
<td>23.4</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>stdev PPI</td>
<td>0.8</td>
<td>0.7</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Simple symmetric NK model with capital accumulation

<table>
<thead>
<tr>
<th></th>
<th>Flexible prices</th>
<th>Sticky prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>All shocks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean premium</td>
<td>0.3</td>
<td>1.7</td>
</tr>
<tr>
<td>stdev premium</td>
<td>23.4</td>
<td>51.4</td>
</tr>
<tr>
<td>stdev PPI</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>Home productivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean premium</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>stdev premium</td>
<td>2.5</td>
<td>20.9</td>
</tr>
<tr>
<td>stdev PPI</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Foreign productivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean premium</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>stdev premium</td>
<td>2.5</td>
<td>6.4</td>
</tr>
<tr>
<td>stdev PPI</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Simple symmetric NK model with capital accumulation

- Under flexible prices, $\chi_{ss} \neq 0$: not optimal to erode steady-state premium
- Under flexible prices $\text{stdev}(\chi) \neq 0$: Capital would not respond optimally to shocks (capital proportional to net-worth – state variable)
- Under flexible prices $\chi_t = \chi^*_t$ in response to (asymmetric) productivity shocks: Expected return on capital equalized across countries like in IRBC.
 - Under sticky prices this is no longer true.
Simple symmetric NK model with capital accumulation

- Under flexible prices, $\chi_{ss} \neq 0$: not optimal to erode steady-state premium
- Under flexible prices $stdev(\chi) \neq 0$: Capital would not respond optimally to shocks (capital proportional to net-worth – state variable)
- Under flexible prices $\chi_t = \chi_t^*$ in response to (asymmetric) productivity shocks: Expected return on capital equalized across countries like in IRBC.
 - Under sticky prices this is no longer true.
Simple symmetric NK model with capital accumulation

- Under flexible prices, $\chi_{ss} \neq 0$: not optimal to erode steady-state premium
- Under flexible prices $stdev(\chi) \neq 0$: Capital would not respond optimally to shocks (capital proportional to net-worth – state variable)
- Under flexible prices $\chi_t = \chi_t^*$ in response to (asymmetric) productivity shocks: Expected return on capital equalized across countries like in IRBC.
 - Under sticky prices this is no longer true.
Nominal Debt, sticky prices and return equalization

- Under sticky prices the exchange rate works as shock absorber
- The exchange rate adjustment has asymmetric effects on CPIs and hence on real value of debt
- Premia cannot be equalized any longer across countries, and neither will the expected return on capital be equalized
- This wedge is specific to open economy
Nominal Debt, sticky prices and return equalization

- Under sticky prices the exchange rate works as shock absorber
- The exchange rate adjustment has asymmetric effects on CPIs and hence on real value of debt
- Premia cannot be equalized any longer across countries, and neither will the expected return on capital be equalized
- This wedge is specific to open economy
Nominal Debt, sticky prices and return equalization

- Under sticky prices the exchange rate works as shock absorber
- The exchange rate adjustment has asymmetric effects on CPIs and hence on real value of debt
- Premia cannot be equalized any longer across countries, and neither will the expected return on capital be equalized
- This wedge is specific to open economy
Nominal Debt, sticky prices and return equalization

- Under sticky prices the exchange rate works as shock absorber
- The exchange rate adjustment has asymmetric effects on CPIs and hence on real value of debt
- Premia cannot be equalized any longer across countries, and neither will the expected return on capital be equalized
- This wedge is specific to open economy
Nontradable goods

- With nontradable (sticky-price) goods the ability to use the exchange rate as shock absorber is hindered
 - E.g. a home productivity shock that calls for depreciation will upset the relative price of nontraded goods and foreign traded goods.

- The central bank has to trade-off:
 1. Steady-state distortions
 2. Relative price adjustments
 3. Movements in credit spreads
 4. Cross-country comovements in credit spreads
Nontradable goods

• With nontradable (sticky-price) goods the ability to use the exchange rate as shock absorber is hindered
 • E.g. a home productivity shock that calls for depreciation will upset the relative price of nontraded goods and foreign traded goods.

• The central bank has to trade-off:
 1. Steady-state distortions
 2. Relative price adjustments
 3. Movements in credit spreads
 4. cross-country comovements in credit spreads
Simple symmetric NK model with capital accumulation

Welfare costs

<table>
<thead>
<tr>
<th></th>
<th>PPI targ.</th>
<th>CPI targ.</th>
<th>Mon. union</th>
</tr>
</thead>
<tbody>
<tr>
<td>No financial frictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.000</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Productivity shocks</td>
<td>0.000</td>
<td>0.076</td>
<td>0.077</td>
</tr>
</tbody>
</table>
Simple symmetric NK model with capital accumulation

<table>
<thead>
<tr>
<th>Welfare costs</th>
<th>PPI targ.</th>
<th>CPI targ.</th>
<th>Mon. union</th>
</tr>
</thead>
<tbody>
<tr>
<td>No financial frictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.000</td>
<td>0.077</td>
<td>0.077</td>
</tr>
<tr>
<td>Productivity shocks</td>
<td>0.000</td>
<td>0.076</td>
<td>0.077</td>
</tr>
<tr>
<td>Financial frictions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.051</td>
<td>0.101</td>
<td>0.066</td>
</tr>
<tr>
<td>Productivity shocks</td>
<td>0.042</td>
<td>0.092</td>
<td>0.064</td>
</tr>
</tbody>
</table>
Simple symmetric NK model with capital accumulation and various frictions

Welfare costs of PPI targeting

Baseline 0.0000
Simple symmetric NK model with capital accumulation and various frictions

Welfare costs of PPI targeting

Baseline 0.0000
Home bias 0.0000
Simple symmetric NK model with capital accumulation and various frictions

Welfare costs of PPI targeting

Baseline 0.0000
Home bias 0.0000
Consumption habits 0.0007
Simple symmetric NK model with capital accumulation and various frictions

<table>
<thead>
<tr>
<th>Welfare costs of PPI targeting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
</tr>
<tr>
<td>Home bias</td>
</tr>
<tr>
<td>Consumption habits</td>
</tr>
<tr>
<td>Nontradable goods</td>
</tr>
</tbody>
</table>
Simple symmetric NK model with capital accumulation and various frictions

Welfare costs of PPI targeting

Baseline 0.0000
Home bias 0.0000
Consumption habits 0.0007
Nontradable goods 0.0034
Government 0.0001
Simple symmetric NK model with capital accumulation and various frictions

Welfare costs of PPI targeting

Baseline 0.0000
Home bias 0.0000
Consumption habits 0.0007
Nontradable goods 0.0034
Government 0.0001
Financial frictions 0.0509
Symmetric NK: home technology
1. PPI stability needs expansion: premia fall further
2. Implied depreciation widens the premium gap
3. Optimal policy tightens on impact: less depreciation
4. Union: premium-gap widens...
5. Union and flex prices imply equalization of premia
6. Union and sticky: needs to expand more to offset fall in PPI...
7. ...Home return goes down, foreign return goes up
8. Expansion in both countries is inconsistent with equalization of returns and premia
Symmetric NK: home NW shock
1. Except for tech shocks, for other shocks PEG better than PPI (diff 2 rows!)
2. NW shock acts like COST PUSH shock...
3. Need monetary tightening for price stability: yet contraction increases premia – trade off!
4. Optimal policy: some initial easing with swings of FX
5. Union: closer to optimal – more inflation reduces premium
6. Carlstrom et al.: initial tightening (overall easing) with larger premium...
7. ... richer model generate immediate easing.
Role of debt denomination

Welfare costs

Table 9. Welfare costs: the role of debt denomination

<table>
<thead>
<tr>
<th></th>
<th>PPI targ.</th>
<th>CPI targ.</th>
<th>Mon. union</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic currency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>debt denomination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.051</td>
<td>0.101</td>
<td>0.066</td>
</tr>
<tr>
<td>Productivity (H)</td>
<td>0.025</td>
<td>0.044</td>
<td>0.031</td>
</tr>
<tr>
<td>Productivity (F)</td>
<td>0.018</td>
<td>0.048</td>
<td>0.033</td>
</tr>
<tr>
<td>Foreign currency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>debt denomination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.061</td>
<td>0.105</td>
<td>0.071</td>
</tr>
<tr>
<td>Productivity (H)</td>
<td>0.000</td>
<td>0.055</td>
<td>0.041</td>
</tr>
<tr>
<td>Productivity (F)</td>
<td>0.055</td>
<td>0.044</td>
<td>0.029</td>
</tr>
</tbody>
</table>
1. Performance of PPI depends on source of shocks: Good (bad) for home (F) tech.
2. Equal shocks – ranking same as non-euroizes
3. Euroization: now depreciation offsets drop in premia
4. Euroization: optimal policy doesn’t need to tighten (similar to PPI targ.)
5. If shock is foreign, get appreciation under PPI targ.: premia drop further...
6. ...optimal policy need tightening
7. If large leverage and elastic premia, union is better.
Euroized debt

Home productivity shock

MK, GL: Financial frictions p. 24/28
Euroized debt

Foreign productivity shock

![Graphs showing the response of various economic indicators to a foreign productivity shock.](attachment:graphs.png)

- **Output (H)**
- **Ext. financing premium (H)**
- **Real interest rate (H)**
- **PPI inflation (H)**
- **CPI inflation (H)**
- **Exchange rate depreciation**

Optimal PPI targeting

Union

MK, GL: Financial frictions p. 25/28
Role of nontradable goods

Welfare costs

Table 10. Welfare costs: the role of nontradables

<table>
<thead>
<tr>
<th></th>
<th>PPI targ.</th>
<th>CPI targ.</th>
<th>Mon. union</th>
<th>ntPPI targ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No financial frictions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.003</td>
<td>0.068</td>
<td>0.124</td>
<td>0.042</td>
</tr>
<tr>
<td>Trad. productivity (H)</td>
<td>0.004</td>
<td>0.012</td>
<td>0.017</td>
<td>0.007</td>
</tr>
<tr>
<td>Nontrad. productivity (H)</td>
<td>0.003</td>
<td>0.019</td>
<td>0.044</td>
<td>0.004</td>
</tr>
<tr>
<td>Trad. productivity (F)</td>
<td>-0.002</td>
<td>0.030</td>
<td>0.037</td>
<td>0.020</td>
</tr>
<tr>
<td>Nontrad. productivity (F)</td>
<td>-0.001</td>
<td>0.006</td>
<td>0.025</td>
<td>0.012</td>
</tr>
<tr>
<td>Domestic currency debt denomination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.095</td>
<td>0.131</td>
<td>0.141</td>
<td>0.130</td>
</tr>
<tr>
<td>Trad. productivity (H)</td>
<td>0.042</td>
<td>0.018</td>
<td>0.015</td>
<td>0.008</td>
</tr>
<tr>
<td>Nontrad. productivity (H)</td>
<td>0.008</td>
<td>0.018</td>
<td>0.048</td>
<td>0.044</td>
</tr>
<tr>
<td>Trad. productivity (F)</td>
<td>0.005</td>
<td>0.039</td>
<td>0.032</td>
<td>0.013</td>
</tr>
<tr>
<td>Nontrad. productivity (F)</td>
<td>0.004</td>
<td>0.019</td>
<td>0.031</td>
<td>0.029</td>
</tr>
<tr>
<td>Foreign currency debt denomination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All shocks</td>
<td>0.117</td>
<td>0.130</td>
<td>0.131</td>
<td>0.158</td>
</tr>
<tr>
<td>Trad. productivity (H)</td>
<td>0.003</td>
<td>0.021</td>
<td>0.019</td>
<td>0.008</td>
</tr>
<tr>
<td>Nontrad. productivity (H)</td>
<td>0.005</td>
<td>0.021</td>
<td>0.052</td>
<td>0.003</td>
</tr>
<tr>
<td>Trad. productivity (F)</td>
<td>0.047</td>
<td>0.040</td>
<td>0.030</td>
<td>0.022</td>
</tr>
<tr>
<td>Nontrad. productivity (F)</td>
<td>0.036</td>
<td>0.023</td>
<td>0.025</td>
<td>0.101</td>
</tr>
</tbody>
</table>
Model with nontradables

Home tradable sector productivity shock

MK, GL: Financial frictions p. 27/28
1. x-country equalization of premia not optimal under NT shocks
2. Optimal FX movement drives premia apart (though still try stabilize them)
3. PPI targ.& NT suboptimal. Losses are magnified by financial frictions
4. NT prices less flexible
5. Keeping PPI stable needs more expansion since little help from exchange rate: premium drops even more
6. Union not so bad since FX not so key as with T only
7. Targeting NT-prices would go closer to optimal: not so much expansion.
8. EUROIZATION: now union is good only if $NT > 80\%$
9. Introducing other shocks makes NT-price stabilization worse than PPI targ.
Conclusions

- Financial frictions create trade-off between price stabilization and credit spread minimization
- PPI targeting over-expansionary: premia fall too much
- In open economy incentive to equalize premia
- Exchange rate interact with premia-related incentives
- Important welfare implications, especially with nontradables
- If debt denominated in foreign currency: performance of PPI targeting vs. monetary union depends on the relative variance of domestic and foreign shocks
- Financial frictions do not exacerbate costs of a monetary union