Discussion of “Importers, Exporters, and Exchange Rate Disconnect” by Mary Amiti, Oleg Itskhoki, and Jozef Konings
Dallas Fed and Swiss National Bank Conference

Nicholas Li, University of Toronto

May 31, 2013
Great Paper!

- Link firm data to imports by source and exports by destination → share of imported inputs affects exchange rate pass-through to export prices
- Combine models of oligopolistic competition (Atkeson and Burstein (2008)) and endogenous choice of imported intermediate inputs (Halpern, Koren and Szeidl (2011))
- Theory and data imply high market share exporters also have higher share of imported inputs → both channels contribute equally to lower pass-through for large exporters
- Dominance of large exporters can explain low aggregate pass-through
Theory

- Oligopoly pricing: \(p_i = \frac{\sigma_i(S_i)}{\sigma_i(S_i) - 1} MC_i \) (\(MC_i \) in foreign currency)

- Pass-through of common cost-shifter \(\epsilon \): \[\frac{\partial p}{\partial \epsilon} \epsilon = \frac{1}{1 + \Gamma(S_i)} \frac{\partial MC_i}{\partial \epsilon} \frac{\epsilon}{\nu_i} \]

- Cost-shifter could be exchange rate, input/commodity price, wage rate, tax, etc.

- \(\Gamma(S_i) \) related to markup elasticity, rising in \(S_i \) for Atkeson and Burstein (2008) so high \(S_i \) \(\rightarrow \) low pass-through of \(MC \)

- \(\nu_i \): MC sensitivity to cost-shifter could vary with firm size/market share (\(S_i \))
 - Composition of inputs: imports, wages, materials, intangible/hard to measure marginal costs (distribution, marketing, inventories, capital)
 - Input sourcing: monopsony power, direct purchase from manufacturer vs. through wholesaler/distributor or retailer, long-term contracts

General insight: \(\text{cov}(S_i, \nu_i) \neq 0 \) confounds inference on market power and pass-through
Big exporters and importers

- Euro depreciation raises MC denominated in foreign currency and hence price
- MC sensitivity is lower when ρ_f, the share of imported intermediate inputs, is higher
- Source matters: Euro-zone imports close to domestic inputs with respect to ϵ, destination country inputs unaffected by ϵ (ideal hedge), other countries intermediate

Specific insight: $\text{cov}(S_f, \rho_f) > 0$ when imported inputs have cost-advantage (CES) but importer fixed cost per variety (Halpern, Koren and Szeidl (2011)).

Two channels reinforce each other to lower exchange-rate pass-through for large firms.
Production Cobb-Douglas in materials and labor:
\[Y_i = \Omega_i X_i^\phi L_i^{1-\phi} \]

Materials Cobb-Douglas in input types:
\[X_i = \exp \left\{ \int_0^1 \gamma_j \ln X_{i,j} \, dj \right\} \]

Types CES in foreign and domestic varieties
\[X_{i,j} = \left(Z_i^{\zeta/(1+\zeta)} + a_j^{1/(1+\zeta)} M_i^{\zeta/(1+\zeta)} \right)^{(1+\zeta)}/\zeta \]

Materials share of variable costs (\(\phi \)) should be constant across firms in a (HS4) sector, but \(\rho_f \) (imported share of variable costs) varies by firm.
Table: Table 2 in shares

<table>
<thead>
<tr>
<th></th>
<th>Exporter</th>
<th></th>
<th>Non-exporter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High ρ_f</td>
<td>Low ρ_f</td>
<td></td>
</tr>
<tr>
<td>Wages</td>
<td>0.113</td>
<td>0.144</td>
<td>0.194</td>
</tr>
<tr>
<td>Total materials</td>
<td>0.887</td>
<td>0.856</td>
<td>0.806</td>
</tr>
<tr>
<td>Domestic materials</td>
<td>0.463</td>
<td>0.650</td>
<td></td>
</tr>
<tr>
<td>Non-Euro imp. materials</td>
<td>0.179</td>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>Euro-zone imp. materials</td>
<td>0.245</td>
<td>0.191</td>
<td></td>
</tr>
</tbody>
</table>
Imported Input Shares

Interpretation:

- Consistent with elasticity of materials/labor > 1 (small firms with higher material cost use more labor) or non-homothetic production technology
- Table 4: material cost strongest correlate of non-Euro import intensity in firm cross-section
- Materials share must vary a lot by sector; does it vary within sector like ρ_f? (cannot tell from Tables 2 and 4)

Why this might matter:

- Domestic wage (in foreign currency) most sensitive to exchange rate shock; energy, raw materials, manufactured inputs (both imported and domestic) may be less responsive
- Robustness Table 7 (“Euro import intensity” placebo) and Table 8 (control for interaction of employment or TFP with exchange rate) help
- Is ρ_f the main factor driving this lower sensitivity of marginal costs or is it material costs? Could this explain why ρ_f remains significant even when including Δmc and S in Table 5?

Suggestion: include interaction with firm materials share as control (for 75% sub-sample where this is reported)
Main difference between high and low ρ_i firms is “domestic” materials vs. “non-Euro” materials (not “Euro” imported materials)

Not in the model, but consistent with higher importer fixed costs for non-Euro imports than Euro imports

Wholesale importers: a way around importer fixed costs?

Wholesale firms: 40% of exporter observations (dropped from main analysis)

Authors discuss measurement error in ρ_f and consequent attenuation bias

Convert Euro but especially non-Euro imports to “domestic” materials, cover fixed costs but add markups and other (marginal?) costs

Interpretation: is non-Euro import share effect really about vertical structure and “mode of importation”?

Quantitative importance: assess using these data or domestic production data

Model: market structure on import/input side (wholesaler=fixed import cost plus markup?)
Two channels of ρ_f are:

1. Sensitivity of import prices to exchange rate (import pass-through)
2. Correlation of export destination and import source exchange rates

Paper does this at the country level. Can do better?

- **Estimate pass-through into imported input prices by firm to get at monopsony power and long-term contracts**
- Firm variation in level of input prices for similar items might help with interpretation (“importer fixed cost” in the model = “quantity discount”?)
While average pass-through is quite high (80%)

- Bilateral exchange-rates plus sector-destination FE plus time FE give $R^2 = 0.057$
- Adding ρ_f, S_f,s,k,t and $\Delta mc_{f,t}$ raises this to $R^2 = 0.062$
- Much more variation explained by sector-destination-time ($R^2 = 0.344$) or firm-product-year plus destination ($R^2 = 0.487$) FE

General finding in literature: market structure variables only explain small fraction of variation in product/firm pass-through

- How much of pass-through variation is explained by ρ and S within vs. across sectors?
- **Allow pass-through to vary by sector, so only variation in ρ_f within sector drives differential pass-through**
- **Disaggregate by sector: heterogeneity in effect of ρ and S?**
Minor comments

- Is \(\rho_i \) a sufficient statistic? Do different margins of \(\rho_i \) matter (decomposition by number of types, number of countries per type, quantity per country per type)?
- What do the value cutoffs (for firms? import/export transactions?) do in terms of measurement error?
- Can use product and firm destination-sector-period market shares? Does destination market share matter controlling for firm (total export) market share (e.g. independent variation across markets)?
- Do intra-firm imports play any role in exchange-rate sensitivity?