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                  Abstract 
 
This paper considers the characterization via finite-order VARs of the solution of a large 
class of linear rational expectations (LRE) models. I propose a unified approach that uses 
a companion Sylvester equation to check the existence and uniqueness of a solution to 
the canonical (first-order) LRE model in finite-order VAR form and a quadratic matrix 
equation to characterize it decoupling the backward- and forward-looking aspects of the 
model. I also investigate the fundamentalness of the shocks recovered. Solving LRE 
models by this procedure is straightforward to implement, general in its applicability, 
efficient in the use of computational resources, and can be handled easily with standard 
matrix algebra. An application to the workhorse New Keynesian model with accompanying 
Matlab codes is provided to illustrate the practical implementation of the methodology. I 
argue that existing empirical evidence on the transmission mechanism of monetary policy 
shocks from structural VARs (when the specification is inconsistent with theory due to the  
identification restrictions, lag specification, etc.) should be taken with a grain of salt as it 
may not have a proper structural interpretation. 
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1 Introduction

The solution of linear or linearized rational expectations (LRE) models is an important part of modern

macroeconomics. They are widely used to study the propagation mechanism of economic shocks, for iden-

tification, and to provide economic evaluation of policy changes. Many rational expectations macro models

can be cast as a linear system of expectational difference equations. The linearity of the system may be

a feature of the model itself but often is simply achieved from the first-order approximation of a Dynamic

Stochastic General Equilibrium (DSGE) model. Either way, Blanchard and Kahn (1980) established the

conditions under which a solution to the LRE model exists and is unique (see, among others, the related

contributions of Broze et al. (1985), Broze et al. (1990), King and Watson (1998), Uhlig (1999), and Klein

(2000)).

Maximum likelihood and Bayesian estimation methods can be used on LRE models with a unique solution

to achieve a constrained fit of the data. However, the theory may fail in fitting the data satisfactorily because

of misspecification– the cross-equation restrictions imposed may be at odds with the true data-generating

process. Even under the null hypothesis that the LRE model is correctly specified, it may still be the case that

the theory suffers from weak identification problems (see Martínez-García et al. (2012) and Martínez-García

and Wynne (2014) on this point).

Structural VAR models in the spirit of Sims (1980) provide a framework with which to investigate and

organize the evidence on a set of observable variables that, in principle, is largely devoid of many of the

restrictions implied by theory (the LRE model) and in that way is more flexible to fit the data. The

work, among others, of Fernández-Villaverde et al. (2007), Ravenna (2007), and more recently Franchi and

Paruolo (2015) has shed new light on the mapping between the unique solution to the LRE model and a

corresponding VAR representation. To be more precise, this strand of the literature explores conditions

under which the unique solution of the LRE model– when it exists– can be properly represented in VAR

form, as this facilitates the recovery of structural shocks as well as empirical inference and validation when

the LRE model is brought to the data.

The structural shock innovations driving the LRE model cannot always be recovered even when a

VAR representation of the unique LRE solution can be obtained due to lack of fundamentalness. Non-

fundamentalness means that the observed variables do not contain enough information to recover the unob-

served structural shocks (Hansen and Sargent (1980)). An LRE model solution is said to be fundamental if

the structural moving average (MA) representation of the observed variables can be inverted. If the LRE

model solution is fundamental (assuming the LRE model itself is correctly specified), then the observed

variables have a VAR representation in the structural shocks– implying that the structural shocks can be

recovered by estimating a VAR with the observed variables and that their corresponding impulse response

functions can be correctly inferred.1

When the number of structural shocks is equal to the number of observables, the fundamentalness prop-

erty of the unique solution to the LRE model can be checked with the ‘poor man’s invertibility condition’

of Fernández-Villaverde et al. (2007). Fernández-Villaverde et al. (2007) show the conditions under which

1Even if the unique model solution has a VAR representation that is fundamental– in that it permits the exact recovery of
the structural shocks and the characterization of their corresponding impulse response functions– it is worth noting that this
does not ensure that the matrices of composite coeffi cients that describe the dynamics for the VAR form will uniquely identify
all the structural parameters of a well-specified LRE model. Therefore, policy evaluation and even model comparison are still
subject to the perils of identification failure noted by Martínez-García et al. (2012) and Martínez-García and Wynne (2014).
In any event, the treatment of weak/partial identification and even misspecification falls outside the scope of this paper.
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a VAR representation exists, while Ravenna (2007) describes the conditions that determine when such a

VAR representation of the unique LRE solution is of finite order. Otherwise the inverted structural vector

moving average (VMA) representation of the unique solution to the LRE model takes a VAR(∞) form and

that introduces a truncation error when cast as a finite-order structural VAR (Inoue and Kilian (2002)).

Franchi and Paruolo (2015) show that if the state-space representation of the LRE solution is minimal,

then both the ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007) and the finite-order

VAR conditions of Ravenna (2007) are necessary and suffi cient to ensure fundamentalness and the existence

of an exact finite-order VAR form for the solution of the LRE model. In their paper, Franchi and Paruolo

(2015) argue that when the state-space representation is non-minimal, the ‘poor man’s invertibility condition’

and the finite-order VAR conditions uncovered by Ravenna (2007) are not necessary.2

The main contribution of this paper with respect to the work of Fernández-Villaverde et al. (2007),

Ravenna (2007), and Franchi and Paruolo (2015) is the use of theory to characterize the finite-order VAR

form of the LRE model and determine the fundamentalness of the solution. While the preceding research

works from a generic linear state-space representation of the solution, I restrict myself to representations of

the solution that arise from theory– that is, from well-behaved LRE models. In other words, I derive my

results after imposing the cross-equation restrictions that arise from the theoretical model first. Therefore, my

approach derives the finite-order VAR representation of the solution and checks its existence and uniqueness

directly on the known primitives of the LRE model.

In this vein, I complement the existing literature by proposing an alternative approach for determining

existence and uniqueness and to characterize the solution in finite-order VAR form for a large class of LRE

models via a pair of companion matrix equations– a quadratic matrix equation and a Sylvester matrix

equation:

◦ First, LRE models that include backward-looking and forward-looking features with one or more lags
and leads can be reduced to the canonical form of an expectational first-order system of difference equations

without backward-looking terms. System reduction from the general form of the LRE model to the canonical

form is achieved by solving a companion quadratic matrix equation.

◦ Second, the well-known method of undetermined coeffi cients can be used to solve the canonical forward-
looking part of the LRE model. Conditions under which a finite-order VAR representation of the canonical

LRE model solution can be obtained and a simple (yet effi cient) algorithm to compute it can be derived

from a companion Sylvester matrix equation.

◦ Finally, the last step simply requires reversing the transformation of the system utilized in the first step
to decouple the backward- and forward-looking parts of the model in order to recover the exact representation

of the solution to the general form of the LRE model.

The initial step of system reduction involves the solution of a quadratic matrix equation (as indicated

before), but also permits generalizing the approach and the implementation proposed in this paper to cover a

wide range of LRE models (Binder and Pesaran (1995) and Binder and Pesaran (1997)). The key contribution

of the paper is that the characterization of the finite-order VAR solution of the forward-looking part of the

2The state-space form is called minimal if the dimension of the vector of forcing variables is as small as possible (Kailath
(1980)). Fundamentalness and the existence of a finite-order VAR representation of the LRE model solution that is non-
minimal can still be asserted by first transforming the state-space form to a minimal representation and then applying the
existing conditions. Franchi and Paruolo (2015) explore necessary and suffi cient conditions that are valid when the state-space
form is non-minimal based on the possibility of exploiting cancellations (as in related problems from systems theory), bypassing
the step of transforming the LRE model to its minimal state-space form first.
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canonical LRE model arises naturally from the solution of a Sylvester matrix equation. I propose a simple

approach based on this companion Sylvester equation to check for and identify unique LRE solutions in finite-

order VAR form and a simple algorithm to compute such solutions. The conditions that verify existence

and uniqueness of a finite-order VAR for the canonical LRE model solution also ensure the fundamentalness

of the solution. Those conditions are consistent with the ‘poor man’s invertibility condition’of Fernández-

Villaverde et al. (2007).

The tools proposed here are meant to be used by macroeconomists who deal with LRE models in their

theoretical or applied work and who need to determine if the observable (endogenous) variables in their LRE

model admit an exact finite-order VAR representation that is also fundamental. I illustrate the practical use

of this novel approach with the workhorse New Keynesian model– showing how the procedure can be used to

derive the finite-order VAR representation of the unique LRE model solution, to establish its existence and

uniqueness, and to make economically-relevant inferences about the New Keynesian transmission mechanism

to recover structural shocks and explore their propagation patterns. Moreover, I also contribute to the

ongoing debate on the assumptions needed to correctly recover theoretically-consistent monetary policy

shocks through structural VARs (Carlstrom et al. (2009)).

The rest of the paper proceeds as follows: Section 2 describes the system reduction method to decouple

the backward-looking and forward-looking parts of the general form LRE model and shows how to use the

method of undetermined coeffi cients to characterize the linear state-space form solution of the (canonical)

forward-looking part of the LRE model. This section also describes the mapping of the LRE model solution

into finite-order VAR form via a companion Sylvester equation and the conditions under which a unique

finite-order VAR solution can be attained from the companion Sylvester equation. Section 3 applies the

method to a policy-relevant illustration on the effects of monetary policy on inflation determination based

on the workhorse three-equation New Keynesian model with which I also illustrate the computational effi cacy

of the approach. Furthermore, I discuss the fundamentalness of the finite-order VAR solution and what it

means for the ongoing debate on the assumptions required to recover structural monetary shocks from VARs.

Section 4 discusses the implications of the workhorse New Keynesian model for our understanding of the

propagation of monetary policy shocks and highlights the estimation challenges for the identification of the

deep structural parameters of the model. Section 5 then concludes.

The Appendix provides additional technical details on the system reduction approach used in this paper

to isolate the forward-looking part of the LRE model in general form– including a generalized eigenvalue

problem algorithm to implement it. The Appendix also discusses in some detail the available algorithms and

methods for solving the companion quadratic matrix equation and the companion Sylvester matrix equation.

The procedure itself is easily cast in an algorithmic form, and a collection of Matlab implementation codes

is provided with the paper.3

3All codes for this paper are available in my website: https://sites.google.com/view/emgeconomics and can be downloaded
directly using the following link: https://drive.google.com/file/d/1ZZ-zCB8z9_RLLolEX4fMKKWXV8QG8-Er/view.
Users of the codes are asked to include a citation of this paper in their work. The Matlab programs and functions appear

free of errors, however I do appreciate all feedback, suggestions or corrections that you may have. While users are free to copy,
modify and use the code for their work, I do not assume any responsibility for any remaining errors or for how the codes may
be used or misused by users other than myself.
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2 Solving Linear Rational Expectations Models

The equilibrium relationships that describe the linear or linearized rational expectations (LRE) model are

given by theory. However, going from the structural relationships implied by the canonical LRE model to a

reduced-form solution requires explicit assumptions on how expectations are formed and on the stochastic

processes that describe the exogenous forcing variables. Under rational expectations, agents understand

the structure of the economy and formulate expectations optimally incorporating all available information.

Here, I consider the class of LRE models where expectations are fully rational and the exogenous forcing

variables are assumed to follow a finite-order VAR process.4 Under these assumptions, the reduced-form

solution of the LRE model can be mapped into a structural VAR representation for a set of the endogenous

variables of the model. That explains why VARs appear to fit the data well. The VAR representation of

the reduced-form solution also provides researchers with more bite to investigate the propagation of shocks

than the unrestricted VAR model does.

In this paper, I explore the connection between the reduced-form solution of the canonical LRE model

and structural (finite-order) VARs to bridge the gap between theoretical and applied work. A large class of

LRE models can be cast into a first-order expectational difference system of equations, featuring forward-

and backward-looking dynamics. The first-order expectational difference equations capture the structural

relationships between a set of m ≥ k endogenous variables Wt = (w1t, w2t, ..., wmt)
T and k ≥ 1 forcing

variables Xt = (x1t, x2t, ..., xkt)
T as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt, (1)

Xt = AXt−1 +Bεt, (2)

with k exogenous shock innovations εt = (ε1t, ε2t, ..., εkt)
T which are independent and identically distributed

(i.i.d.) with zero-mean and standard deviation of one.5 The structural relationships of the canonical first-

order LRE model given by (1) are completed with the standard (first-order) VAR(1) specification for the

vector of k forcing variables Xt in (2).6 The conforming matrices Φ1 and Φ2 in (1) are m×m square, Φ3 is

an m× k matrix, while A and B are both k × k square matrices.
The canonical first-order system in (1) − (2) can be further generalized to include LRE models with

more than one lead and one lag of the endogenous variables (Wt) and of the forcing variables (Xt) in the

specification, as explained in Broze et al. (1985) and Broze et al. (1990) (see also the Appendix). Hence,

the canonical first-order system given by (1)− (2) can be used to investigate a large class of LRE models.

4The idea of rational expectations can be traced to the seminal work by Muth (1961). Lucas (1976) and Sargent (1980) were
among the leading economists that rejected ad hoc assumptions on the formation of expectations and advocated the adoption
of rational expectations that became prevalent in modern macroeconomics since the 80s.

5 In practice, the literature often includes measurement errors as structural shock innovations in the vector εt as well.
6More generally, the full LRE model involvesm+p endogenous variables

(
WT
t , W̃

T
t

)T
where the remaining p ≥ 0 endogenous

variables given by the vector W̃t = (w̃1t, w̃2t, ..., w̃pt)
T can simply be expressed as functions of Wt and Xt. Here, the number

of endogenous variables in Wt is m and this is at least equal or higher than the number of exogenous shock innovations k. I
do not consider explicitly the case of partial recovery that arises when the number of endogenous variables that are observable
is smaller than the number of exogenous shock innovations k, though. The selection of the subset of m endogenous variables
included in the vector Wt which are observable can be significant, for instance, for the identification of the estimated structural
parameters, as noted in Martínez-García et al. (2012) and Martínez-García and Wynne (2014). These questions, however, go
beyond the scope of the current paper.
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2.1 Decoupling Backward- and Forward-Looking Terms

Building on Broze et al. (1985), Broze et al. (1990), and the more recent contributions of Binder and

Pesaran (1995) and Binder and Pesaran (1997), I propose a straightforward transformation that decouples

the canonical first-order LRE model in (1)− (2) in its backward- and forward-looking components to work

out its full solution by parts. For a given m ×m matrix Θ, the transformation of the vector Wt given by

Wt ≡ Zt + ΘWt−1 implies that the expectational difference system in (1) can be rewritten as:

Zt + ΘWt−1 = Φ1Wt−1 + Φ2Et [Zt+1 + ΘWt] + Φ3Xt

= Φ1Wt−1 + Φ2 [Et (Zt+1) + Θ (Zt + ΘWt−1)] + Φ3Xt, (3)

which becomes,

(Im − Φ2Θ)Zt = Φ2Et (Zt+1) +
(
Φ2Θ

2 −Θ + Φ1
)
Wt−1 + Φ3Xt. (4)

where Im is the (m×m) identity matrix. From here, this lemma follows:

Lemma 1 A system reduction that excludes the backward-looking terms in (1) can be attained by choosing

an m×m matrix Θ to satisfy that:

P (Θ) = Φ2Θ
2 −Θ + Φ1 = 0m, (5)

where 0m is an m×m matrix of zeroes. And, then, transforming the vector of m endogenous variables Wt

as Wt ≡ Zt + ΘWt−1.

The transformation described in Lemma 1 uncouples the solution of Wt into a backward-looking part,

Wtb ≡ ΘWt−1, and a forward-looking part, Wtf ≡ Zt, such that Wt ≡ Wtb + Wtf . Hence, one needs to

determine the matrix Θ solving the quadratic matrix equation in (5) in order to then be able to characterize

the backward-looking part of the solution and reduce the expectational difference system in (1)− (2) to its

purely forward-looking expectational difference part. Binder and Pesaran (1995) and Binder and Pesaran

(1997) establish the necessary and suffi cient conditions under which real-valued solutions for Θ satisfying the

quadratic matrix equation in (5) exist and provide an iterative algorithm to compute its stable solution.7

After decoupling the system, the vector of m transformed endogenous variables and states, Zt ≡ Wt −
ΘWt−1, must follow a first-order forward-looking expectational difference system of this form:

Γ0Zt = Γ1Et [Zt+1] + Γ2Xt, (6)

where Γ0 ≡ (Im − Φ2Θ) and Γ1 ≡ Φ2 are conforming m ×m matrices, and Γ2 ≡ Φ3 is the corresponding

m× k matrix. Furthermore, whenever Γ0 ≡ (Im − Φ2Θ) is nonsingular, the system in (6) can be rewritten

as:

Zt = FEt [Zt+1] +GXt, (7)

where F ≡ (Γ0)
−1

Γ1 = (Im − Φ2Θ)
−1

Φ2 is an m×m matrix and G ≡ (Γ0)
−1

Γ2 = (Im − Φ2Θ)
−1

Φ3 is an

m × k matrix. The invertibility of Γ0 ≡ (Im − Φ2Θ) required to go from (6) to (7) depends on the choice

7An alternative algorithm to characterize the stable solution Θ based on the generalized eigenvalue problem can be found
in the Appendix.

5



of the matrix Θ. Proposition 2 in Binder and Pesaran (1997) provides suffi cient conditions under which

Γ0 would be nonsingular and invertible. The Binder and Pesaran (1997) conditions are only suffi cient (not

necessary), but I find that most well-specified economic LRE models indeed produce a matrix Γ0 that is

nonsingular.

In the remainder of this paper, I take (7) as the relevant benchmark with which to describe the canonical

forward-looking part of the first-order LRE model.

2.2 The Finite-Order VAR Representation

Assuming that a solution to the forward-looking part of the canonical first-order LRE model given by (2)

and (7) exists and is unique, then it can be written in linear state-space form as follows:

Xt = AXt−1 +Bεt, (8)

Zt = CXt−1 +Dεt, (9)

where A, B, C, and D are conforming and real-valued matrices (A and B are k × k matrices while C and

D are m × k matrices, with m ≥ k ≥ 1). Equation (8) simply restates (2) describing the dynamics of the

vector of k forcing variables Xt, while (9) indicates that the k shock innovations εt and k lagged exogenous

forcing variables Xt−1 are mapped into the transformed m endogenous variables Zt in the solution to the

forward-looking part of the LRE model.

The following set of standard assumptions on the matrices A, B, C, and D are often considered:

Condition 1 The linear state-space representation in (8)− (9) depends on the conforming and real-valued

matrices A (k × k), B (k × k), C (m × k, m ≥ k), and D (m × k, m ≥ k) under a subset of the following

conditions:

(a) A (k × k) has all its eigenvalues inside the unit circle ensuring the stationarity of the stochastic

process for the k forcing variables (rank (A) = k) and is invertible. B (k×k) characterizes the corresponding
variance-covariance matrix

(
BTB

)
which is a symmetric and positive semi-definite matrix. Whenever B is

assumed to be positive definite, then it is also invertible.

(b) C (m × k, m ≥ k) is left invertible (rank (C) = k) so there is a k × m matrix C−1L such that

C−1L C = Ik.

(c) All eigenvalues of CAC−1L (m×m) are inside the unit circle.
(d) D (m × k, m ≥ k) is left invertible (rank (D) = k) so there is a k × m matrix D−1L such that

D−1L D = Ik.

(e) All eigenvalues of
(
A−BD−1L C

)
(k×k) are less than one in modulus (lie inside the unit circle)– the

‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007).

It follows from equation (8) that [Ik −AL]Xt = Bεt where Ik is a conforming identity matrix of dimension

k, and L is the lag operator. If the eigenvalues of A are less than one in modulus (as in part (a) of Condition

1), the solution of the LRE model in state-space form has a moving average (MA) representation. In that

case, Xt becomes a square summable polynomial given by Xt =
∑+∞

j=0
[A]

j
Bεt−j . This expression can be

shifted one period back and replaced into (9) to obtain Zt = C
∑+∞

j=0
[A]

j
Bεt−1−j + Dεt. Whenever the
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matrix D is left invertible (as in part (d) of Condition 1), replacing the vector εt in (8) using (9) gives:

[
Ik −

(
A−BD−1L C

)
L
]
Xt = BD−1L Zt. (10)

If the eigenvalues of
(
A−BD−1L C

)
are strictly less than one in modulus (as in part (e) of Condition 1), that

amounts to the ‘poor man’s invertibility condition’of Fernández-Villaverde et al. (2007). Then, the inverse

of the operator on the left-hand side of (10) implies that:

Xt =
∑+∞

j=0

[
A−BD−1L C

]j
BD−1L Zt−j , (11)

which means Xt is a square summable polynomial in L.

Shifting the expression in (11) back one period and replacing it into (9), I obtain that:

Zt = C
∑+∞

j=0

[
A−BD−1L C

]j
BD−1L Zt−1−j +Dεt, (12)

which takes the form of an infinite-order VAR (VAR(∞)). Inoue and Kilian (2002) show that this VAR(∞)

representation can be reasonably well-approximated by a finite-order structural VAR model. However,

imposing the restrictions that arise from theory on the matrices C and D, it is possible to go beyond the

approximation proposed by Inoue and Kilian (2002) establishing an exact finite-order VAR representation

for the solution to the first-order canonical LRE model– under mild assumptions contained among the ones

listed in Condition 1.

First, the dynamics of the vector of endogenous variables Zt can be represented in VARMA(1, 1) form.8

I take as given that the forcing variables are described by a well-behaved, stationary process as implied

by part (a) of Condition 1. In order to derive the VARMA(1, 1) representation, let me rewrite (8) as

Xt = AC−1L CXt−1+Bεt making use of part (b) of Condition 1. Then, I can replace (9) into the reformulated

equation (8) in order to obtain:

Xt = AC−1L (Zt −Dεt) +Bεt. (13)

I pre-multiply (13) with C and replace (9) into it shifted one period ahead, i.e., I derive:

Zt+1 −Dεt+1 = CXt = CAC−1L Zt +
(
CB − CAC−1L D

)
εt, (14)

so that a straightforward re-arranging of this expression gives a VARMA(1, 1) form for the vector of endoge-

nous variables Zt:

Zt = CAC−1L Zt−1 +Dεt +
(
CB − CAC−1L D

)
εt−1. (15)

This representation holds for any given set of conforming matrices A, B, C, and D that satisfies parts (a)

and (b) of Condition 1.

Second, while the VARMA(1, 1) in (15) is true for any pair of m× k matrices C and D that satisfy parts

(a)-(b) of Condition 1, theory imposes a set of structural relationships that relate the matrices C and D to

the known composite matrices F and G describing the forward-looking part of the canonical first-order LRE

model in (7) and to the known matrices A and B that describe the stochastic process of the forcing variables

in (8). I rely on the method of undetermined coeffi cients of Christiano (2002) in order to characterize the

8On the solution of LRE models in VAR form see, e.g., the contribution of Morris (2016).
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theoretically-implied cross-equation restrictions on C and D in (9).9

Step 1. Using (9) shifted one period ahead to replace Zt+1 in the purely forward-looking system given

in (7) implies that:

Zt = [FC +G]Xt (16)

= [FC +G]AXt−1 + [FC +G]Bεt, (17)

where the second equality arises from replacing out Xt using (8). The forward-looking LRE model solution

described by (9) is matched with (17) linking the unknown solution matrices C andD to the known composite

matrices that define the structural relationships imposed by the forward-looking part of the canonical first-

order LRE model and the stochastic process for the forcing variables (i.e., to F , G, A, and B). Matching

coeffi cients between (9) and (17), it follows that the conforming m × k matrices C and D must satisfy the

following pair of conditions:

C = [FC +G]A, (18)

D = [FC +G]B = CA−1B. (19)

Assuming the eigenvalues of A (k×k) are all inside the unit circle (and zero is not an eigenvalue) in line with
part (a) of Condition 1 ensures that the inverse matrix A−1 in (19) exists and is well-defined according to

the invertible matrix theorem (Strang (2016)). As a result, the existence and uniqueness of a solution to C

that satisfies (18) also pins down D through (19) guaranteeing the existence and uniqueness of the solution

to the forward-looking part of the LRE model given by the linear state-space representation in (8)− (9).

Hence, I find that solving the companion Sylvester matrix equation given by (18) to obtain C is enough

to characterize the relevant cross-equation restrictions for the full solution to the forward-looking part of the

LRE model given by (8)− (9)– whenever it holds that Γ0 ≡ (Im − Φ2Θ) is invertible.

Step 2. Using (8) and the invertibility of A (part (a) of Condition 1), I can write (8) as Xt−1 =

A−1 (Xt −Bεt). Replacing this expression into (9), it follows that:

Zt = CA−1Xt +
[
D − CA−1B

]
εt. (20)

The characterization of the matrix D implied by equation (19) means that the term related to the vector of

innovations εt must drop from (20). As a result, the vector of the transformed variables Zt can be written

as a simple linear mapping of the vector of exogenous forcing variables Xt where,

Zt = CA−1Xt, (21)

as long as the matrix C that solves the Sylvester equation in (18) exists and the matrix D is defined by

equation (19). Whenever C (m × k matrix) exists and is left invertible (part (b) of Condition 1), equation
(21) implies that Xt = AC−1L Zt given that A is already assumed to be invertible (part (b) of Condition 1).

9Another conventional approach is that of Blanchard and Kahn (1980), which also provides conditions to check the existence
and uniqueness of the solution. Broze et al. (1985), Broze et al. (1990), King and Watson (1998), Uhlig (1999), and Klein
(2000), among others, expand on it in order to characterize the solution in more general settings. Another popular solution
method applied to LRE models is the method of rational expectational errors advocated by Sims (2002) (see also Lubik and
Schorfheide (2003)).
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Shifting this expression one period back and replacing it into (9), and then replacing D with the expression

given in equation (19), I obtain the following VAR(1) specification for Zt:

Zt = CAC−1L Zt−1 + CA−1Bεt, (22)

which is stationary if all eigenvalues of CAC−1L are inside the unit circle (part (c) of Condition 1). However,

CA−1B is not necessarily positive semi-definite as a conventional variance-covariance matrix would be.

I find that the matrix D is related to the matrix C by (19) and that C can be characterized from the

solution to a companion Sylvester matrix equation given by (18) that depends on the known matrices (F ,
G) and (A, B). I derived the VARMA(1, 1) representation for Zt given by (15) assuming that parts (a)-(b)

of Condition 1 hold. Then, imposing the cross-equation restrictions that arise from theory (implied by (18)

and (19)) on (15), I can show that the more complex (and harder to estimate) VARMA(1, 1) dynamics of

the endogenous variables Zt can be further simplified to take the form of a simpler VAR(1) process– part (c)

of Condition 1, in turn, is added to ensure the stationarity of the autoregressive part of the VAR(1) process

in (22). In other words, if I impose the theoretical cross-equation restrictions implied by (18) and (19) on

(15), the MA part of the VARMA representation drops out and I obtain the exact same VAR(1) form given

by (22).

Under (19), the existence (and the properties) of the matrix D (m × k matrix) follow naturally from

the existence and properties of the matrix C that solves the companion Sylvester matrix equation given

by condition (18). For instance, given the assumptions made in part (a) and (b) of Condition 1 and the

cross-equation restrictions in equation (19), the matrix D would naturally be left invertible (with D−1L =

B−1AC−1L ). Hence, part (d) of Condition 1 is satisfied by construction. Furthermore, given that D−1L =

B−1AC−1L , it follows that
(
A−BD−1L C

)
= (A−A) = 0k. Hence, the ‘poor man’s invertibility condition’

which requires all the eigenvalues of
(
A−BD−1L C

)
to be strictly less than one in modulus (part (e) of

Condition 1) also holds by construction in this case.10 In summary, the characterization of the finite-order

VAR solution in (22) depends on parts (a)-(c) of Condition 1 and also on the invertibility of them×m matrix

Γ0 ≡ (Im − Φ2Θ), as indicated before. Moreover, parts (d) and (e) of Condition 1, which are employed to

derive the unconstrained VAR(∞) representation in (12), follow from those same conditions (parts (a)-(c)

of Condition 1).

Rewriting condition (18), the characterization of the finite-order VAR solution for the forward-looking

part of the canonical first-order LRE model given by (22) can be obtained under the following terms:

Lemma 2 If Γ0 ≡ (Im − Φ2Θ) is invertible and parts (a)-(c) of Condition 1 hold, a VAR(1) representa-

tion of the solution to the canonical first-order (purely forward-looking) expectational difference system of

equations in (7) can be obtained by solving a companion Sylvester matrix equation in C (m× k matrix):

FCA− C = H, (23)

10A similar case can be made for the conditions that Ravenna (2007) proposes to ensure the finite-order representation of
the solution to the LRE model. The key difference is that Fernández-Villaverde et al. (2007) and Ravenna (2007) work out
their conditions on the linear state-space representation in (8)− (9) generically, while I derive those conditions after imposing
the cross-equation restrictions that arise from the theoretical model. While (not surprisingly) my findings are consistent with
theirs, my approach derives the finite-order VAR form and checks its existence and uniqueness directly on the known primitives
of the model rather than on the matrices that generically describe the state-space representation of the solution to the LRE
model.
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or,

FC + C
(
−A−1

)
= HA−1 = −G, (24)

where

F ≡ (Im − Φ2Θ)
−1

Φ2, G ≡ (Im − Φ2Θ)
−1

Φ3, H ≡ −GA. (25)

If a matrix C that solves (24) exists and parts (a)-(c) of Condition 1 are also satisfied, then the VAR(1)

representation of the solution for the vector of endogenous variables Zt is given by (22).

The proof of this lemma follows directly from the derivation of conditions (18)− (19), as discussed above.

Step 3. The full solution of the canonical (first-order) form of the LRE model in (1)−(2) can be obtained

by combining its backward- and forward-looking parts. I.e., Wt ≡ Wtb + Wtf where the backward-looking

part, Wtb ≡ ΘWt−1, follows from the solution Θ (m ×m matrix) to the quadratic matrix equation in (5)

(as shown in Lemma 1) and the forward-looking part, Wtf ≡ Zt ≡ Wt − ΘWt−1, is characterized by the

solution C to the companion Sylvester matrix equation (as stated in Lemma 2) and obtained from the linear

state-space solution in (8) − (9) under the cross-equation restrictions on C (m × k matrix) and D (m × k
matrix) given by (18)− (19). The implication is that the full solution of the canonical first-order LRE model

in (1)− (2) is given by a VAR(2) process:

Corollary 1 Assume a matrix Θ (m×m matrix) which solves the companion quadratic matrix equation in

(5) exists. Assume that the matrix (Im − Φ2Θ) (m×m matrix) is invertible and parts (a)-(c) of Condition 1

hold. Assume the matrix C (m× k matrix) exists and is related to the known matrices implied by theory (A,
B, F , and G) through the companion Sylvester matrix equation in (24) and that matrix D (m × k matrix)
exists and is related to the theoretical restrictions via (19). Then, the VAR(2) representation of the first-order

canonical LRE model solution for the vector of endogenous variables Wt is given by:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt, (26)

where the corresponding m ×m composite coeffi cient matrices are Ψ1 ≡
(
Θ + CAC−1L

)
, Ψ2 ≡ −CAC−1L Θ,

and Ψ3 ≡ CA−1B.

The derivation of this corollary follows from: (a) the transformation of the endogenous variables which

implies that Zt = Wt−ΘWt−1; and (b) the VAR(1) representation for Zt implied under the terms of Lemma

2 (equation (22)). Corollary 1 means that Ψ3 is a linear transformation of the k× k matrix B (the variance-

covariance matrix of the stochastic process for the forcing variables) where the mapping is determined by

the m × k matrix CA−1 (which depends on the solution C to the companion Sylvester matrix equation in

(24)).

Going a step further, the k structural shock innovations in the vector εt can be recovered under cer-

tain additional conditions– making the finite-order VAR form implied by (26) consistent with fundamen-

talness (in the sense of Hansen and Sargent (1980)) under additional conditions. The canonical first-

order forward-looking LRE model solution in (22) can be re-written in terms of the innovations as εt =

B−1A
(
C−1L Zt −AC−1L Zt−1

)
given that A is invertible, B is positive definite (so it is invertible too)11 , and

C is left invertible (parts (a) and (b) of Condition 1 hold). Then, undoing the transformation of the variables

11Every variance-covariance matrix like B is positive semidefinite, but only positive definiteness implies invertibility.
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implied by Zt = Wt − ΘWt−1, I obtain the following expression for the structural shock innovations εt in

terms of the observable k endogenous variables Wt:

εt = B−1A
[
C−1L Wt −

(
C−1L Θ +AC−1L

)
Wt−1 +AC−1L ΘWt−2

]
. (27)

However, this expression does not necessarily imply that the shocks can be recovered uniquely nor the

VAR(2) representation in (26) is unique.

If the matrix C (m × k matrix) is left invertible (part (b) of Condition 1), then the left inverse matrix
C−1L (k ×m matrix) satisfies that C−1L C = Ik. From here it follows that C−1L has m× k unknown elements
while C−1L C = Ik imposes only k × k linear equation restrictions on those unknown elements for any given
matrix C. Given that, the linear of equations that characterize the left inverse C−1L can be viewed as an

underdetermined system (having either no solution– if C is not left invertible– or infinitely many– if C is

left invertible). A suffi cient condition to ensure that the VAR(2) solution in (26) is unique and the recovered

shock innovations from (27) are fundamental is to require that the number of endogenous variables that are

observable (m) be equal to the number of forcing variables and shock innovations (k). In other words, a

suffi cient condition for uniqueness of (26) and to ensure fundamentalness in the sense of Hansen and Sargent

(1980) is that m = k. That implies that the condition rank (C) = k (part (b) of Condition 1)) under m = k

would mean that the left inverse C−1L corresponds to the inverse of the square matrix C (which exists and

is unique).

Hence, the fundamentalness of the unique finite-order VAR solution can be summarized as follows:

Corollary 2 Assume the conditions of Corollary 1 hold such that the solution to the canonical first-order
LRE model in (1) − (2) has a VAR(2) representation given by (26). Then, if it is the case that m = k, the

VAR(2) representation given by (26) is unique, the vector of endogenous variables Wt is fundamental, and

the realization of the structural shock innovations εt can be recovered exactly (and uniquely)– except for the

first two observations due to the lags– using the expression in (27).

If Ψ3 ≡ CA−1B in (26) is such that ΨT
3 Ψ3 is positive semi-definite and symmetric, then ΨT

3 Ψ3 has also

a natural interpretation as a standard variance-covariance matrix. This holds true whenever m = k and

Ψ3 is therefore a k × k square (Golub and van Loan (1996)).12 Hence, the VAR(2) representation of the

first-order canonical LRE model solution for the vector of endogenous variables Wt can be re-written as:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + et, et ∼ iid (0,Ω) , (28)

where Ω ≡ ΨT
3 Ψ3.

The VAR(2) innovations et = Ψ3εt in (28) are simply a rotation of the structural shock innovations εt.

Corollary 2 implicitly relies on the idea that if a solution C to the companion Sylvester matrix equation in (24)

exists, this solution will be unique. Indeed, that is the case– I discuss the characterization and uniqueness of

the solution to the companion Sylvester matrix equation more extensively in the next subsection. Otherwise,

the proof of Corollary 2 follows directly from the simple algebraic manipulations of the finite-order VAR(2)

representation described above. I should note again that these results can be further generalized to richer

12To test whether ΨT3 Ψ3 has the property of being positive semi-definite (and symmetric) as a conventional variance-covariance
matrix, one can use the chol function in Matlab. If chol returns a second argument that is zero from [R, p] = chol

(
ΨT3 Ψ3

)
,

then the matrix is symmetric and– in this case– also positive definite.

11



LRE models including more than one lead and one lag of the endogenous and forcing variables as those

more general environments can be easily re-cast into the canonical first-order system in (1)− (2), as shown

in Broze et al. (1985) and Broze et al. (1990) (see also the Appendix).

2.3 The Companion Sylvester Matrix Equation

In this paper I show how to solve a large class of LRE models that can be cast into the canonical first-order

form given by (1)− (2) and I establish the conditions under which the LRE model solution admits a finite-

order VAR representation. The solution to the backward-looking part on which the canonical first-order

LRE model can be decoupled is well-studied in Binder and Pesaran (1995) and Binder and Pesaran (1997).

Therefore, here I focus on the characterization of the solution C to the companion Sylvester matrix equation

in (24) from which the matrix C (m× k matrix, m ≥ k) can be obtained.
Equation (24) proposes a companion Sylvester matrix equation– i.e., FC + C

(
−A−1

)
= −G with

F ≡ (Im − Φ2Θ)
−1

Φ2 ∈ Rm×m, A ∈ Rk×k, G ≡ (Im − Φ2Θ)
−1

Φ3 ∈ Rm×k given and C ∈ Rm×k to
be determined. The companion Sylvester matrix equation is well-known in stability and control theory and

its applications.13 Using the Kronecker (tensor) product notation and the properties of the vectorization

operator, vec, I can re-write the companion Sylvester’s matrix equation in its standard form as a linear

system of equations:

Avec (C) = vec (−G) , (29)

A :=
[
(Ik ⊗ F ) +

((
−A−1

)T ⊗ Im)] , (30)

where ⊗ denotes the Kronecker product.14 In this way, the companion Sylvester matrix equation is repre-
sented by a linear system of dimension (m · k) × (m · k) conformed by m · k equations in m · k unknowns
(where the unknowns correspond to the elements of the matrix C).

Having transformed the companion Sylvester matrix equation into the linear system given by (29)− (30),

well-known matrix algebra results suffi ce to determine the following criteria for the existence and uniqueness

of a solution C to the companion Sylvester matrix equation:

Proposition 1 Let F ∈ Rm×m, A ∈ Rk×k, G ∈ Rm×k. Then, it follows that:
(a) (Existence) The Sylvester equation in (24) has at least one solution C ∈ Rm×k if and only if

rank [A vec (−G)] = rank [A].

(b) (Uniqueness) The Sylvester equation in (24) has a unique solution C ∈ Rm×k if and only if rank [A] =

m · k. That is, the solution is unique if and only if A has full rank. Then, A is nonsingular and invertible
implying that the unique solution to the Sylvester matrix equation can be recovered as vec (C) = A−1vec (−G).

Proof. (a) Trivially it follows that rank [A vec (−G)] ≥ rank [A]. If there is a solution vec (C) =

[c1 c2 ... ck2 ]
T for the linear system given by (29)−(30), then

∑m·k

i=1
A∗ici = vec (−G) whereA∗1,A∗2, ...,A∗k2

denote the corresponding columns of the matrix A. Hence, vec (−G) is a linear combination of the columns

13Useful references on the characterization of the solution to the Sylvester matrix equation include Chapter 12 of Lancaster
and Tismenetsky (1985)„Horn and Johnson (1991), and Jiang and Wei (2003).
14The vectorization operation is linear, i.e. vec (αX + βY ) = αvec (X) + βvec (Y ) for any X,Y ∈ Ri×j and α, β ∈ R.

Proposition 4 in Chapter 12.2 of Lancaster and Tismenetsky (1985) shows that the vectorization operation is closely related to
the Kronecker product as follows: If X ∈ Ri×i, Y ∈ Ri×j , Z ∈ Rj×i, then vec (XY Z) =

(
ZT ⊗X

)
vec (Y ).
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of A and, as a result, the rank of the augmented matrix [A vec (−G)] cannot be different than the rank of

A– because for rank [A vec (−G)] > rank [A] to be true, vec (−G) needs to be linearly independent from

the columns of A and that contradicts the notion that vec (C) is a solution.

(b) If the square matrix A has full rank– and, therefore, is nonsigular and invertible– the linear system in
(29)− (30) has a unique solution given by vec (C) = A−1vec (−G). The converse statement follows naturally

as well. If the linear system has a unique solution, then A has full rank and is nonsingular. Otherwise, at
least one column in A is not linearly independent from the rest of the columns and can be written as a linear
combination of them. Hence, for any given solution vec (C) defined over the linearly independent columns,

another different solution exists including non-trivially the linearly dependent columns of A. The existence
of more than one solution then contradicts the uniqueness assumption.

Proposition 1 characterizes the solution C (m × k matrix, m ≥ k) to the companion Sylvester matrix

equation in (24) and, by extension, the solution to the forward-looking part of the canonical first-order LRE

model. The two rank conditions stated in this proposition depend solely on the properties of the matrices F ∈
Rm×m, A ∈ Rk×k, G ∈ Rm×k that describe the structural relationships of the LRE model. The uniqueness
rank condition implies a solution of the form vec (C) = A−1vec (−G) for the companion Sylvester matrix

equation and, naturally, that proves existence too. If the uniqueness rank condition is violated, the existence

rank condition determines whether there is no solution to the companion Sylvester matrix equation– if

rank [A vec (−G)] 6= rank [A]– or whether multiple solutions exist– if rank [A vec (−G)] = rank [A] < m·k.
In the latter case, it can be shown that the number of linearly independent solutions is determined by the

dimension of the kernel ofA. The characterization of the solution to the companion Sylvester matrix equation
whenever the uniqueness condition is violated can be found in Theorem 12.5.1, in Theorem 12.5.2, and in

Corollary 12.5.1 of Lancaster and Tismenetsky (1985).

Focusing on the case of interest for this paper where a solution to (24) exists and is unique, the full rank

condition on A can be expressed in terms of the eigenvalues of F and A as follows:

Proposition 2 Let F ∈ Rm×m, A ∈ Rk×k be given. Let λ1, ..., λm be the eigenvalues of F and µ1, ..., µk the

eigenvalues of A. Then, for any matrix G ∈ Rm×k, it follows that the companion Sylvester matrix equation
in (24) has a unique solution if and only if λiµj 6= 1 for all i = 1, ...,m and all j = 1, ..., k. In other words,

the companion Sylvester matrix equation has a unique solution C ∈ Rm×k if and only if the matrices F and

A−1 have no eigenvalues in common.

Proof. The eigenvalues of A−1 are the same as those of its transpose. Given that and the properties of
the Kronecker product, the eigenvalues of A :=

[
(Ik ⊗ F ) +

((
−A−1

)T ⊗ Im)] are simply the m ·k numbers
λi − 1

µj
for all i = 1, ...,m and all j = 1, ..., k. By Proposition 1, the existence and uniqueness of a solution

to the companion Sylvester matrix equation in (24) requires A to be nonsingular (and have full rank). The
matrix A is nonsingular if and only if all its eigenvalues are nonzero, i.e., if and only if λi − 1

µj
6= 0 for

all i = 1, ...,m and all j = 1, ..., k. Re-arranging the nonzero conditions on the eigenvalues, it follows that

λi 6= 1
µj
for all i = 1, ...,m and all j = 1, ..., k. Given that the eigenvalues of A−1 are 1

µ1
, ..., 1

µk
while those of

F are λ1, ..., λm, a unique solution is said to exist if and only if the matrices F and A−1 have no eigenvalues

in common.

According to Proposition 2, the companion Sylvester matrix equation has a unique solution C for each

matrix G if and only if F and A−1 have no eigenvalues in common. Alternatively, the Sylvester matrix

operator S : Rm×k → Rm×k can be defined as S (C) = FC + C
(
−A−1

)
, where F ∈ Rm×m and A ∈ Rk×k
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are given and C ∈ Rm×k is the solution to be recovered. Then, the Sylvester matrix equation in (24) can

simply be written as S (C) = −G for any given matrix G ∈ Rm×k. The m · k eigenvalues of the Sylvester
operator S (C) are λi − 1

µj
, for all i = 1, ...,m and all j = 1, ..., k, where λ1, ..., λm are the eigenvalues of F

and µ1, ..., µk are the eigenvalues of A.

Let vi be the right eigenvector of F associated with the eigenvalue λi such that Fvi = λivi for all

i = 1, ...,m. Let wj be the left eigenvector of A−1 associated with the corresponding eigenvalue 1
µj
such

that wTj A
−1 = 1

µj
wTj for all j = 1, ..., k. Then, for any i = 1, ...,m and any j = 1, ..., k, C = viw

T
j is an

eigenvector matrix of the Sylvester matrix operator S (C) associated with its eigenvalue λi − 1
µj
. It follows

from here that the Sylvester matrix operator can be expressed as:

S (C) = FC − CA−1 = F
(
viw

T
j

)
− viwTj A−1

= (Fvi)w
T
j − vi

(
wTj A

−1) = (λivi)w
T
j − vi

(
1

µj
wTj

)
=

(
λiµj − 1

µj

)
viw

T
j =

(
λiµj − 1

µj

)
C =

(
λi −

1

µj

)
C. (31)

Hence, the Sylvester matrix operator S (C) must be nonsingular whenever λi 6= 1
µj
for all i = 1, ...,m and

all j = 1, ..., k. In other words, S (C) is nonsingular if and only if the solution to the companion Sylvester

equation in (24) exists and is unique.

Imposing additional restrictions on the eigenvalues of F , an explicit form of the solution C for the

companion Sylvester matrix equation in (24) can be obtained as follows:

Proposition 3 Let F ∈ Rm×m, A ∈ Rk×k where λ1, ..., λm are the eigenvalues of F and µ1, ..., µk are the

eigenvalues of A. Then, for any matrix G ∈ Rm×k, it follows that the companion Sylvester matrix equation
in (24) has a unique solution whenever λiµj < 1 for all i = 1, ...,m and all j = 1, ..., k and this solution is

given by:

C =
∑∞

s=0
F s (GA)As. (32)

Proof. I define the following recursion: FCr−1 − CrA−1 = −G for iterations r = 1, 2, 3, ... with the

initial condition C0 = 0m×k where 0m×k is an m× k matrix of zeros. If this recursion converges as r goes to
infinity, then by construction the limit characterizes the solution of the companion Sylvester matrix equation,

i.e., lim
r→∞

Cr =
∑∞

s=0
F s (GA)As = C. The convergence condition is equivalent to lim

s→∞
F s (GA)As = 0.

It follows that any eigenvalue of F s (GA)As must be proportional to the s−power of the product between
the eigenvalues of F and A, i.e. (λiµi)

s for any i = 1, ...,m and any j = 1, ..., k. Hence, if all cross-products

between the eigenvalues of F and A are strictly less than one, the corresponding eigenvalues for F s (GA)As

must go to zero in the limit as s→∞ and this suffi ces to show that the recursion indeed converges (Lancaster

and Tismenetsky (1985), Chapter 12.3).

Proposition 3 implies that whenever the product of the spectral radii of the matrices A and F is strictly

less than one, a unique solution C exists that takes the special form of an infinite sum. Hence, this special

case permits the straightforward computation of the solution C to the companion Sylvester matrix equation

in (24) via a recursion on the convergent sequence suggested by the proof of Proposition 3. However, often

a numerical solution rather than one in closed-form form is all that is needed and that is what I use in this

paper (see Anderson et al. (1996) for a discussion of numerical methods with applications in economics).
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Even when a solution C ∈ Rm×k to the companion Sylvester matrix equation in (24) exists and is unique,

characterizing the solution to the forward-looking part of the LRE model with a finite-order VAR form as

in (22) requires C to have a left inverse C−1L (parts (a)-(c) of Condition 1). Proving the existence of C and

its uniqueness under the terms of Proposition 1 and Proposition 2 does not suffi ce to ensure C is also left

invertible. In fact, as indicated in the previous subsection, either there is no left inverse C−1L or there are

infinitely many matrices C−1L that satisfy the definition of left inverse for the matrix C whenever m > k.

The left inverse C−1L exists and is unique only when m = k and C is invertible (rank (C) = k) according

to the invertible matrix theorem (Strang (2016)). Hence, in summary, the following condition must hold in

order to ensure that the left inverse of C exists and is unique:

Condition 2 Assume the conditions stated in Proposition 1 and Proposition 2 on F ∈ Rm×m and A ∈ Rk×k

(where m ≥ k) are satisfied so that a unique solution C for the companion Sylvester matrix equation in (24)

exists. Then, for a given matrix G ∈ Rm×k, the solution C is said to have a unique left inverse if m = k

and rank (C) = k.

Condition 2 is straightforward and follows directly from the general terms of the invertible matrix theorem

(Strang (2016)). Results in stability and control theory connect the properties of the matrices F ∈ Rm×m,
A ∈ Rk×k, and G ∈ Rm×k to the invertibility of the unique solution C for the companion Sylvester matrix

equation on a related rank identity condition (see Lancaster and Tismenetsky (1985), Chapter 12.5, on

Roth’s removal theorem, and Lin and Wimmer (2011) on the rank identity condition). I leave for future

research the full exploration of those connections. The reason for this is purely practical. If a solution exists

and is unique according to the conditions stated in Proposition 1 and Proposition 2, then computing the

matrix C is all that is needed to describe the solution to the canonical forward-looking part of the first-order

LRE model given by the linear state-space representation in (8) − (9) under the theoretical cross-equation

restrictions implied by (18)− (19). Then, it is straightforward to check whether m = k and rank (C) = k for

the left inverse of C to exist and be unique (Condition 2). If that rank condition is satisfied, it follows that

a unique finite-order VAR representation for the canonical first-order LRE model exists given by equation

(26) (Corollary 1). In that case, the VAR specification also permits the recovery of the k structural shock

innovations underlying the model εt from the observed k data series inWt– fundamentalness holds according

to Corollary 2.

To wrap up, the methodological contribution of this paper is twofold: First, I propose a new approach

to characterize the solution to the forward-looking part of the LRE model in (8) − (9) from the solution

of a companion Sylvester equation in (24) and to obtain the backward-looking part of the LRE model

from the solution of a companion quadratic matrix equation in (5). Second, I derive testable conditions

under which a finite-order VAR representation is exact rather than an approximation for the solution to

the canonical first-order LRE model and the shock innovations recovered from the data are fundamental in

the sense of Hansen and Sargent (1980). The method is very effi cient at checking those conditions while

simultaneously deriving the corresponding finite-order VAR representation for the solution (when one such

solution exists). Moreover, the first-order canonical LRE model studied here can be further generalized to

much richer settings– as discussed elsewhere in the paper (see the Appendix).

15



3 The Workhorse New Keynesian Model

Popular identifying assumptions in structural VAR studies impose certain restrictions on how monetary

policy shocks (or other structural shocks for that matter) affect macroeconomic variables. The standard

Cholesky assumption, for instance, is known to severely distort the impulse response functions, and can

contribute to the so-called "price puzzle" and to obtain more muted responses of inflation and the output

gap in response to monetary policy shocks even when the true data-generating process is the New Keynesian

model (Carlstrom et al. (2009)).15

In this section, I adopt a simplified version of the model of Smets and Wouters (2003) that focuses on

the role of nominal rigidities in the goods market (price stickiness) and nests the specification studied by

Carlstrom et al. (2009). I impose the cross-equation restrictions that arise from theory– from this variant

of the workhorse New Keynesian model– bit by bit. And, at each step, I use the toolkit developed in the

paper in order to characterize the finite-order VAR representation of the solution. Doing so, I recover the

structural monetary policy shocks through the lens of the New Keynesian model without relying on purely

empirical identifying assumptions that are often misspecified and can distort our inferences. This application

illustrates the practical significance of mapping LRE solutions into finite-order VARs not just for theoretical,

but also for applied research. In the process, this exercise also contributes to deepen our understanding of

the propagation mechanism for monetary policy shocks and the dynamics of inflation in the workhorse New

Keynesian model.

A Univariate Model of Inflation: The Hybrid Phillips Curve. The hybrid Phillips curve with

backward- and forward-looking components, arises from the well-known Calvo (1983)-type model of price-

setting behavior with indexation developed by Yun (1996), features prominently in the New Keynesian

literature. The hybrid Phillips curve can be specified generically as:

πt = γfEt (πt+1) + γbπt−1 + et, (33)

where πt is the inflation rate, and Et (πt+1) is the expected inflation rate next period. The parameters

γf > 0 and γb ≥ 0 determine the sensitivity to inflation expectations (the forward-looking part) and to

lagged inflation (the backward-looking part) and satisfy that γf + γb ≤ 1. The variable et refers to the

exogenous real marginal cost which is assumed to evolve according to a given first-order autoregressive

process, i.e.,

et = ρeet−1 + σδδt, (34)

where δt is i.i.d. white noise with mean zero and variance of one. The persistence parameter −1 < ρe < 1 is

expected to be less than one in absolute value to ensure stationarity, while the parameter σδ > 0 pins down

the volatility of the real marginal cost shock et.

The simple inflation model given by the system in (33) − (34) consists of just one endogenous variable,

πt, and one forcing variable, et. Hence, it is not diffi cult to obtain a closed-form solution for inflation in

this case and to characterize it analytically in autoregressive form. Using the notation introduced in Section

2, the model-implied relationship between the vector of endogenous variables Wt = (πt) and the vector of

15The "price puzzle" refers to the paradoxical result that an empirically identified monetary shock leads to an increase in
inflation which seems counterintuitive based on theory.
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forcing variables Xt = (et) can be cast in the first-order form of the LRE model given by (1)− (2) with 1×1

composite matrices of the form Φ1 = (γb), Φ2 =
(
γf
)
, Φ3 = (1), A = (ρe) and B = (σδ).

I split the solution of the model given in (33)− (34) into a backward-looking part and a forward-looking

part. From the quadratic matrix equation (5) in Lemma 1 applied to this example, I find that the decoupling

depends on the roots of the following characteristic equation:

θ2 − 1

γf
θ +

γb
γf

= 0, (35)

i.e., θ1 ≡
1− 2
√
1−4γfγb
2γf

and θ2 ≡
1+ 2
√
1−4γfγb
2γf

. The solution Θ = (θ1) that permits splitting the backward-

and forward-looking parts of the model requires the existence of a stable eigenvalue that lies within the unit

circle, i.e., Θ exists if and only if |θ1| < 1. As can be easily seen, the existence of the solution Θ depends

solely on the parameters γf and γb. If such a solution exists, then the transformed endogenous variable

Zt ≡ Wt − ΘWt−1 = (π′t) takes the following form: π
′
t = πt − θ1πt−1 where θ1 is the corresponding stable

(real-valued) root of the quadratic equation.

As indicated by equation (6) before, the forward-looking part of the hybrid Phillips curve model for

Zt = (π′t) becomes:

Γ0π
′
t = Γ1Et

[
π′t+1

]
+ Γ2et, (36)

where Γ0 ≡
(
1− γfθ1

)
, Γ1 ≡

(
γf
)
, and Γ2 ≡ (1) are conforming 1 × 1 matrices, and the forcing variable

et remains untransformed. It follows from the properties of the roots of the quadratic equation in (35) that

1 − γfθ1 = γfθ2. Hence, so long as θ2 is different from zero, the 1 × 1 matrix Γ0 is invertible and the

canonical forward-looking part of the LRE model can be re-expressed as in equation (7), i.e.,

π′t = FEt
[
π′t+1

]
+Get, (37)

where F ≡
((
γfθ2

)−1
γf

)
=
(

(θ2)
−1
)
and G ≡

((
γfθ2

)−1)
. From the Blanchard and Kahn (1980)

conditions applied to the system in (34) and (37), it is straightforward to show that a solution to the

canonical LRE model exists and is unique if and only if |θ2| > 1.

All of this ultimately implies that the full-fledged LRE model in (33)− (34) can be split into a backward-

and a forward-looking part and solved uniquely if and only if the roots of the quadratic equation in (35)

satisfy that |θ1| < 1 and |θ2| > 1. Then, given equation (23) of Lemma 2, the companion Sylvester matrix

equation for this model is given by FCA−C = H where F =
(
1
θ2

)
, A = (ρe), and H ≡ −GA =

(
−
(

ρe
γfθ2

))
.

The solution to this matrix equation gives C =
(
1
γf

(
ρe

θ2−ρe

))
which is well-conditioned and invertible if and

only if ρe 6= 0 and θ2 6= ρe. Therefore, the closed-form solution of the canonical forward-looking part of the

LRE model under rational expectations maps the real marginal cost shocks into the transformed endogenous

variables as in equation (21) above and can be expressed as:

π′t = πt − θ1πt−1 =
1

γf

(
1

θ2 − ρe

)
et, (38)

which, together with the autoregressive process specification give in (34), fully describes the inflation dy-

namics implied by this univariate inflation model based on the hybrid Phillips curve.
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Finally, I can infer the dynamics of the transformed inflation rate in autoregressive form as in (22) in the

following form:

πt = (θ1 + ρe)πt−1 − ρeθ1πt−2 +
1

γf

(
1

θ2 − ρe

)
σδδt, (39)

where θ1 ≡
1− 2
√
1−4γfγb
2γf

and θ2 ≡
1+ 2
√
1−4γfγb
2γf

.16 From an economic point of view, this solution highlights

the importance of the backward-looking component of the hybrid Phillips curve to understand the dynamics

of inflation. The persistence of the inflation process is not solely determined by the persistence of the

exogenous real marginal cost shock, ρe, but it also depends on the root θ1 which is a composite of the

backward-looking and forward-looking coeffi cients of the hybrid Phillips curve (that is, a composite of γf and

γb). The persistence to a univariate innovation obtained as the sum of the autoregressive coeffi cients in (22)

implies that adding a backward-looking component through γb tends to increase the inflation persistence–

since ρe ≤ (1− θ1) ρe + θ1 ≤ 1 whenever it holds that γf > 0, γb ≥ 0, and γf + γb ≤ 1 (which implies that

0 ≤ θ1 ≤ 1). Similarly, inflation volatility is not solely determined by the volatility of the shock innovations,

σδ, but it depends on the root θ2 as well (a composite of γf and γb). Moreover, it follows that
1
γf

(
1

θ2−ρe

)
increases with γb if γf > 0, γb ≥ 0, γf + γb ≤ 1, and −1 < ρe < 1.

The closed-form solution of the univariate hybrid Phillips curve model in (39) shows that it is possible

to characterize the solution to an LRE model in finite-order autoregressive form. That, in turn, permits the

identification of the fundamental economic shock innovations, δt, forcing inflation in the univariate model.

Furthermore, this also enhances our understanding of the shock propagation mechanism and its effects– for

instance, a period of declining persistence and volatility on inflation such as the Great Moderation (Martínez-

García (2018)) can result from a downward shift in the backward-looking component of the hybrid Phillips

curve (a decline in γb).

A Bivariate Monetary Model of Inflation. The method proposed in this paper provides the tools to

generalize the logic behind the result in (39) to a richer setting with more than one endogenous and one

forcing variables. For that purpose, a first step is to augment the hybrid Phillips curve-based model given

by (33) and (34) by explicitly introducing a monetary policy rule in the determination of inflation. To be

more precise, I add the following variant of the Taylor (1993) rule with inertia, i.e.,

it = ρiit−1 + (1− ρi)ψππt + εmt , (40)

where the short-term (nominal) policy rate is denoted it and the policy inertia is modelled with the parameter

0 ≤ ρi < 1. The policy rule responds to deviations of inflation alone under the conventional Taylor principle

with the parameter ψπ set to ψπ > 1. Here, the associated monetary policy shock εmt follows an exogenously

given first-order autoregressive process of the following form:

εmt = ρmε
m
t−1 + σξξt, (41)

16Whenever the Phillips curve is purely forward-looking and γb = 0, I obtain that θ1 = 0 and inflation is directly described
by the first-order autoregressive in (39). Whenever γb > 0, the dynamics of inflation implied by (39) are easily captured
with a second-order autoregressive process as in (26). The characteristic quadratic equation associated with this second-order

autoregressive process is φ2 − (θ1 + ρe)φ − (−ρeθ1) = 0, with roots given by φ1 ≡ 1
2

(θ1 + ρe) − 1
2
2
√

(θ1 + ρe)
2 − 4ρeθ1 and

φ1 ≡ 1
2

(θ1 + ρe) + 1
2
2
√

(θ1 + ρe)
2 − 4ρeθ1. The properties of the roots of the characteristic quadratic equation imply that

φ1 + φ2 = (θ1 + ρe) and φ1φ2 = ρeθ1.
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where ξt is i.i.d. white noise with mean zero and variance of one, and uncorrelated at all leads and lags with

δt. The persistence parameter −1 < ρm < 1 is less than one in absolute value to ensure the stationarity of

the process, while the parameter σξ > 0 pins down the monetary shock volatility.

Then, I define the vector of endogenous variables as Wt = (πt, it)
T , the vector of forcing variables as

Xt = (et, ε
m
t )

T , and the vector of innovations as εt = (δt, ξt)
T . The bivariate monetary model of inflation

given by (33) and (40) in matrix form, i.e.,(
1 0

− (1− ρi)ψπ 1

)(
πt

it

)
=

(
γb 0

0 ρi

)(
πt−1

it−1

)
+

(
γf 0

0 0

)(
Et [πt+1]

Et [it+1]

)
+

(
1 0

0 1

)(
et

εmt

)
,

(42)

can be expressed in the form of (1) as follows:

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt, (43)

Φ1 =

(
γb 0

γb (1− ρi)ψπ ρi

)
, Φ2 =

(
γf 0

γf (1− ρi)ψπ 0

)
, Φ3 =

(
1 0

(1− ρi)ψπ 1

)
. (44)

The shock processes in (34) and (41) can be cast in the form indicated by the matrix equation (2) with

conforming matrices A and B given by:

A =

(
ρe 0

0 ρm

)
, B =

(
σδ 0

0 σξ

)
. (45)

This constitutes the first-order form of the bivariate monetary model of inflation (equations (1)− (2)).

In order to solve the model, I split its backward- and forward-looking parts as indicated in Lemma 1. To

solve the quadratic matrix equation in (5), I construct the following two companion matrices:

D =


1 0 −γb 0

0 1 −γb (1− ρi)ψπ −ρi
1 0 0 0

0 1 0 0

 , E =


γf 0 0 0

γf (1− ρi)ψπ 0 0 0

0 0 1 0

0 0 0 1

 , (46)

and solve the corresponding generalized eigenvalue problem (see the Appendix). Hence, I obtain the following

ordered matrix of generalized eigenvalues Q and their associated matrix of eigenvectors V :

Q =


θ1 0 0 0

0 ρi 0 0

0 0 θ2 0

0 0 0 ∞

 , V =


θ1−ρi

(1−ρi)ψπ
0 θ2−ρi

(1−ρi)ψπ
0

θ1 ρi θ2 1
θ1−ρi

(1−ρi)ψπθ1
0 θ2−ρi

(1−ρi)ψπθ2
0

1 1 1 0

 , (47)

where θ1 =
1− 2
√
1−4γfγb
2γf

and θ2 =
1+ 2
√
1−4γfγb
2γf

are defined exactly as in the univariate case before. The

matrices Q and V are already ordered so that the two stable eigenvalues come first.

From here it follows that Q1 =

(
θ1 0

0 ρi

)
and V 21 =

(
θ1−ρi

(1−ρi)ψπθ1
0

1 1

)
, so the companion quadratic
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matrix equation (equation (5)) has the following solution:

Θ = V 21Q1
(
V 21

)−1
=

(
θ1 0

(1− ρi)ψπθ1 ρi

)
, (48)

which is lower triangular. The solution Θ found in (48) permits splitting the backward- and forward-looking

parts of the bivariate model of inflation. To do so, the existence of two eigenvalues that are stable and lie

within the unit circle are required, i.e., |θ1| < 1 and |ρi| < 1 are required. By construction I already assume

that 0 < ρi < 1, so the solution Θ that I seek to characterize depends solely on whether the parameters γf
and γb imply also that |θ1| < 1. Then, the transformed endogenous variables Zt ≡ Wt − ΘWt−1 = (π′t, i

′
t)

take the following form: π′t = πt − θ1πt−1 and i′t = it − (1− ρi)ψπθ1πt−1 − ρiit−1, where θ1 is the same
stable root as in the univariate case. The transformed short-term interest rate i′t is adjusted with its own

lag as well as with lagged inflation. In turn, the adjustment for the inflation variable π′t is exactly the same

as in the univariate case.

The forward-looking part of the bivariate model of inflation can be expressed in the form of (6) as:

Γ0Zt = Γ1Et [Zt+1] + Γ2Xt, (49)

Γ0 ≡ (Ik − Φ2Θ) =

(
1− γfθ1 0

− (1− ρi)ψπγfθ1 1

)
=

(
γfθ2 0

− (1− ρi)ψπγfθ1 1

)
, (50)

Γ1 ≡ Φ2 =

(
γf 0

γf (1− ρi)ψπ 0

)
, Γ2 ≡ Φ3 =

(
1 0

(1− ρi)ψπ 1

)
. (51)

Whenever Γ0 is nonsingular, the system of structural relationships for the forward-looking part of the bi-

variate monetary model of inflation implied by (6) can be expressed in the form of (7) as:17

Zt = FEt [Zt+1] +GXt, (52)

F ≡ (Γ0)
−1

Γ1 =

(
1

θ2γf
0

θ1
θ2

(1− ρi)ψπ 1

)(
γf 0

γf (1− ρi)ψπ 0

)
=

(
1
θ2

0

(1− ρi)ψπ
(
1
θ2

)
0

)
, (53)

G ≡ (Γ0)
−1

Γ2 =

(
1

θ2γf
0

θ1
θ2

(1− ρi)ψπ 1

)(
1 0

(1− ρi)ψπ 1

)
=

 1
θ2γf

0

(1− ρi)ψπ
(

1
θ2γf

)
1

 . (54)

The solution of the bivariate model includes the matrices A and B in (45) corresponding to the bivariate

stochastic process for the forcing variables and the matrix equation in (9) to describe the mapping between

the lagged forcing variables and their innovations into the transformed endogenous variables in the solution of

the canonical LRE model. This, in turn, requires the conforming matrices C and D to satisfy the conditions

given by (18)− (19).

The matrices C and D are tied to the matrices F , H, and G that arise from the canonical form of the

17Notice that θ1 + θ2 =
1− 2
√
1−4γfγb
2γf

+
1+ 2
√
1−4γfγb
2γf

= 1
γf
.
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forward-looking part of the LRE model in (52) where F and G are given above in (53)− (54) and H is:18

H ≡ −GA = −

 1
θ2γf

0

(1− ρi)ψπ
(

1
θ2γf

)
1

( ρe 0

0 ρm

)
=

 − ρe
θ2γf

0

−ρeθ2
ψπ
γf

(1− ρi) −ρm

 . (55)

From Proposition 2, I check the existence and uniqueness of a solution C via the companion Sylvester matrix

equation in (23). I compute the eigenvalues of F (that is, λ1 = 1
θ2
, λ2 = 0) and the eigenvalues of A (that

is, µ1 = ρe, µ2 = ρm). Then, given that λiµj 6= 1, for all i, j = 1, 2 ensures a solution C to the companion

Sylvester matrix equation exists and is unique, I conclude that would be the case if and only if θ2 6= ρe and

θ2 6= ρm.

A straightforward manipulation of the 22 equations implied by the Sylvester matrix equation characterizes

the conforming matrices C and D as follows:

C =

 1
γf

(
1

θ2−ρe

)
ρe 0

ψπ (1− ρi) 1
γf

(
1

θ2−ρe

)
ρe ρm

 , D ≡ CA−1B =

 1
γf

(
1

θ2−ρe

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−ρe

)
σδ σξ

 . (56)

Checking Condition 2 is straightforward to see that rank (C) = 2 if and only if ρe 6= 0 and ρ 6= 0 since θ2 > 1

and by assumption γf > 0, γb > 0, and ψπ > 1 (the Taylor principle) must hold. All of this, in turn, implies

that there exists a unique matrix C that solves the companion Sylvester matrix equation in (23) and is also

invertible. Hence, the inverse of C is given as:

C−1 =

(
γf (θ2 − ρe) 1

ρe
0

−ψπ (1− ρi) 1
ρm

1
ρm

)
. (57)

Therefore, the forward-looking part of the bivariate inflation model has a VAR(1) representation in the form

of (22) which can be expressed as:

Zt = CAC−1Zt−1 + CA−1Bεt, (58)

where

CAC−1 =

(
ρe 0

(ρe − ρm)ψπ (1− ρi) ρm

)
, CA−1B =

 1
γf

(
1

θ2−ρe

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−ρe

)
σδ σξ

 . (59)

Then, the finite-order VAR solution of the full-fledged LRE model in (26) becomes:

Wt = Ψ1Wt−1 + Ψ2Wt−2 + Ψ3εt, (60)

18Computing the eigenvalues of H (which are −β ρe
θ2γf

and −ρ), I find them to be non-zero if and only if ρe 6= 0 and ρ 6= 0

since θ2 > 1 and given that by assumption γf , β > 0 and γb ≥ 0. Hence, the matrix H is nonsingular and invertible.
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where

Ψ1 ≡
(
Θ + CAC−1

)
=

(
ρe + θ1 0

ψπ (1− ρi) (ρe + θ1 − ρm) ρi + ρm

)
, (61)

Ψ2 ≡ −CAC−1Θ =

(
−ρeθ1 0

−ψπ (1− ρi) ρeθ1 −ρiρm

)
, (62)

Ψ3 ≡ CA−1B =

 1
γf

(
1

θ2−ρe

)
σδ 0

ψπ (1− ρi) 1
γf

(
1

θ2−ρe

)
σδ σξ

 , (63)

given that θ1 ≡
1− 2
√
1−4γfγb
2γf

and θ2 ≡
1+ 2
√
1−4γfγb
2γf

.

From an economic point of view, the solution of the bivariate monetary model of inflation presented here

shows that there are no spillovers from lagged interest rates into current inflation. Spillovers are only from

lagged inflation into the policy rate itself and in that case the policy parameter ψπ and the policy inertia ρi
determine the magnitude of the spillover– while the difference between the persistence in the real marginal

cost shocks (ρe) plus the root θ1 and the persistence in the monetary policy shocks (ρm) influences the sign of

the spillover. Hence, the policy parameter ψπ plays a key role in explaining the contribution of the monetary

policy shock innovation relative to that of the real marginal cost shock innovation (the only non-monetary

shock) in accounting for the fluctuations of the policy rate. In turn, current monetary policy shocks do not

contribute to explain any of the inflation fluctuations.

In other words, monetary policy has no effect on inflation determination in the bivariate LRE model given

by (33), (34), (40), and (41). In fact, the solution of inflation is exactly the same as that of the univariate

case and could have been derived separately since there are no linkages built into the model between the

dynamics of inflation and the policy rate. In other words, there is no endogenous transmission mechanism

linking monetary policy (or the monetary policy shocks) to inflation. In this context, a conventional zero-

restriction– similar to those imposed under a standard Cholesky identification assumption– can be used to

identify the structural shock innovations of the bivariate monetary model of inflation. This is because the

exogenous process for real marginal costs alone drives the dynamics of inflation via the hybrid Phillips curve.

The key insight for inflation and, more generally, for monetary policy is that richer dynamics– including the

possibility of transmission of shock innovations other than real marginal cost shocks onto inflation– depend

at least on how the real marginal cost is (partly) endogenized in the hybrid Phillips curve.

The Workhorse New Keynesian Model of Inflation. A further extension of the model that gives

monetary policy a distinct role in the determination of real marginal costs and inflation is required. To

do so, I follow the logic of the workhorse New Keynesian model of Smets and Wouters (2003) to partly

endogenize the real marginal costs and to connect them explicitly to monetary policy actions. For that

purpose, I adopt a simplified variant of Smets and Wouters (2003) that retains nominal rigidities in goods

markets (price stickiness) as the key modeling friction. I abstract from capital assuming a linear-in-labor

technology, I remove entirely all labor market frictions assuming perfectly competitive and flexible wage-

setting behavior, and I also exclude other ancillary features of the Smets and Wouters (2003) model such as
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government expenditure shocks.19 This workhorse model nests the one-equation and two-equation systems

presented earlier, but it also encompasses the three-equation set-up considered by Carlstrom et al. (2009)

(with the important addition of external additive habit formation on consumption).

Households maximize their lifetime discounted utility E0
∑+∞
t=0 β

tUt where 0 < β < 1 is the discount

factor, subject to a standard per-period budget constraint given by 1
1+it

Bt = Bt−1+Pt (Yt − Ct). Households
hold their financial wealth in the form of nominal bonds Bt whose net nominal rate of interest is it. Pt is the

price of final goods and aggregate final goods output Yt equates all income sources expressed in units of the

final good– including the labor income (Wt

Pt
Lt) where Wt are the nominal wages, but also all profits from

the final good producer and the intermediate goods firms. The instantaneous utility function Ut is separable

in consumption Ct relative to a stock of habit Ht and labor Lt, i.e., Ut ≡ εbt

[
(Ct−Ht)1−σc

1−σc − εlt
1+σl

L1+σlt

]
,

where σc > 0 determines the coeffi cient of relative risk aversion (inverse of the intertemporal elasticity of

substitution) and σl > 0 is the inverse of the Frisch elasticity of labor supply.

The instantaneous utility on consumption depends additively on an external habit stock Ht = hC̃t−1

which is proportional to the previous period aggregate consumption C̃t−1 with the constant of proportionality

set by the parameter 0 < h < 1.20 Moreover, εbt represents a shock to the discount rate that affects the

intertemporal substitution of households (preference shock) and εlt is a shock to the labor supply. They each

follow a first-order autoregressive process of the following form:

εbt = ρbε
b
t−1 + σζζt, (64)

εlt = ρlε
l
t−1 + σννt, (65)

where ζt and νt are assumed to be i.i.d. white noise with zero mean and variance of one, and uncorrelated

at all leads and lags with all other shocks. The persistence parameters −1 < ρb < 1 and −1 < ρl < 1 are less

than one in absolute value to ensure the stationarity of the process, while the volatility parameters σζ > 0

and σν > 0 pin down the preference shock volatility and the labor supply shock volatility.

There is a single final good used solely for household consumption, but a continuum of intermediate goods

over the unit interval indexed by j. The final-good sector is perfectly competitive while the production of

the intermediate goods takes place under monopolistic competition (a single producer for each intermediate

good) and standard Calvo (1983) price-setting behavior. The final good is produced using the intermediate

goods with the following technology: Yt =

[∫ 1
0

(
Y jt

) 1
1+λp

dj

]1+λp
where Y jt is the output of the intermediate

good of type j and 1 + λp ≡ θ
θ−1 is a transformation of the elasticity of substitution among intermediate

goods θ > 1. The cost minimization conditions in the final-good sector imply a demand for intermediate

19A related illustration extending the (closed-economy) workhorse New Keynesian model to a two-country setting can be
found in Duncan and Martínez-García (2015).
20External habits à la Campbell and Cochrane (1999) are extensively studied in Dennis (2009). Dennis (2009) explores the

case where the habit stock Ht obeys Ht = h
(
cDt−1C

1−D
t−1

)
with 0 < h < 1 and 0 ≤ D ≤ 1. When D = 0, the habit formation is

external to the household– it is of the "catching up with the Joneses" type used in Smets and Wouters (2003) and in this paper.
Because consumption must be greater than the habit stock, additive habits imply that there is a subsistence level below which
a household’s consumption cannot fall. In the case considered here the subsistence level is simply a fraction h of the previous
period aggregate consumption C̃t−1. Dennis (2009) studies also the case where habits enter into preferences multiplicatively
and establishes that when habit formation is external (i.e., when D = 0), additive habits encompass multiplicative habits up to
a log-linear approximation. When the habit formation is internal, it is always possible to parameterize a log-linearized model
with additive habits to replicate the multiplicative case. The interested reader is referred to Dennis (2009) for the more general
treatment of habits in the standard New Keynesian model.
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goods of the following form: Y jt =
(
P jt
Pt

)−( 1+λpλp

)
Yt. Moreover, perfect competition in the goods market

means that the final goods price Pt can be expressed as: Pt =

[∫ 1
0

(
P jt

)− 1
λp
dj

]−λp
where P jt is the price of

intermediate good j.

Each intermediate good j is produced using a linear in labor-in-labor technology: Y jt = εatL
j
t where,

for simplicity, I abstract from the fixed cost of production introduced in Smets and Wouters (2003). The

productivity shock εat follows a first-order autoregressive process of the following form:

εat = ρaε
a
t−1 + σδδt, (66)

where δt is i.i.d. white noise with mean zero and variance of one, and uncorrelated at all leads and lags

with all other shocks. The persistence parameter −1 < ρa < 1 is less than one in absolute value to ensure

stationarity, while the volatility parameter σδ > 0 pins down the volatility of the productivity shock. The

productivity shock is related to the real marginal cost shock specification in (34) (as it will become apparent

shortly).

The nominal per-period profits of intermediate firm j are given as Profitsjt =
(
P jt −MCt

)(
P jt
Pt

)− 1+λp
λp

Yt,

where the marginal cost MCt is independent of the intermediate good produced and equal to MCt = Wt

εat
.

As in Calvo (1983), intermediate firms are not allowed to reoptimize their prices every period. Fol-

lowing Smets and Wouters (2003), in each period, with probability 0 ≤ ξp < 1, the intermediate firm

cannot reoptimize its price and instead partial indexation is allowed whereby the parameter 0 ≤ γp ≤
1 regulates the pass-through from previous period inflation. With probability 1 − ξp, the intermediate

firm gets to reoptimize its price. Each reoptimizing intermediate firm at time t maximizes its current

and expected future profits under the set price using as discount factor the intertemporal marginal rate

of substitution of the owners-households: β
(
εbt+k(Ct+k−Ht+k)

1−σc

εbt(Ct−Ht)1−σc

)(
1

Pt+k

)
for any k > 0. The price-

setting behavior implied by profit maximization is characterized by the following first-order condition:

E0
∑+∞
i=0 β

iξipε
b
t+i (Ct+i −Ht+i)

1−σc Y jt

((
P̂ jt
Pt

)((Pt−1+i
Pt−1

)γp
Pt+i
Pt

)
− (1 + λp)

MCt+i
Pt+i

)
= 0, where P̂ jt is the opti-

mal price chosen by the reoptimizing intermediate firm j at time t. The definition of the price index Pt implies

the following law of motion for the final goods price: (Pt)
− 1
λp = ξp

(
Pt−1

(
Pt−1
Pt−2

)γp)− 1
λp

+
(
1− ξp

) (
P̂ jt

)− 1
λp ,

where 1 + λp defines the gross markup under monopolistic competition.

Finally, the nominal interest rate it is determined by a linear reaction function that describes monetary

policy decisions along the lines of Taylor (1993)– an extension of (40) − (41), as I will indicate shortly.

The final goods market is in equilibrium if aggregate production equals household consumption in every

period: Yt = Ct. Consistency requires that the aggregate consumption C̃t that sets the reference point for

the external habit stock equals household consumption in equilibrium: C̃t = Ct. The labor market clears

whenever the firms’demand for labor equals labor supply by the households at the prevailing wage rate:

Lt =
∫ 1
0
Ljtdj.

For the empirical exercise that follows, I log-linearize the first-order conditions and feasibility constraints

that characterize the solution to the workhorse New Keynesian model around the deterministic steady state,

as in Smets and Wouters (2003). The lower-case variables denote the log deviation from steady state of the

corresponding variable. Then, the linear rational expectations (LRE) approximation can be described as
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follows:

First, the model incorporates a dynamic Investment-Saving (IS) equation with external habit formation–

an equation that did not feature in the bivariate model before– given by:

yt =
1

1 + h
Et (yt+1) +

h

1 + h
yt−1 −

1− h
(1 + h)σc

(
it − Et (πt+1)− (1− ρb) εbt

)
, (67)

where the dynamics of the preference shock εbt given in (64) act as a shifter of the IS equation. Needless

to say, whenever h = 0, equation (67) collapses to the familiar time-separable dynamic IS equation without

habits– which is the specification used in Carlstrom et al. (2009) whose model is nested into the variant of

the New Keynesian model of Smets and Wouters (2003) that I explore here.

Second, the model augments the hybrid Phillips curve equation discussed earlier with an endogenous

component of the real marginal cost that is proportional to output yt and an exogenous component that is

related to the productivity shock εat and the labor supply shock ε
l
t, i.e.,

πt = γfEt (πt+1) + γbπt−1 + κ

[(
σl + σc

1

1− h

)
yt − σc

h

1− hyt−1 + εlt − (1 + σl) ε
a
t

]
, (68)

where γf ≡ β
1+βγp

> 0 and γb ≡
γp

1+βγp
≥ 0 satisfying γf +γb ≤ 1 determine the forward- and the backward-

looking parts as before. In line with the New Keynesian literature, the coeffi cient κ ≡ 1
1+βγp

(1−βξp)(1−ξp)
ξp

≥ 0

enters anew into (68) defining the slope of the hybrid Phillips curve equation on real marginal costs. The real

marginal cost et ≡
(
σl + σc

1
1−h

)
yt−σc h

1−hyt−1 is endogenous– a function of current and lagged output yt.

Abstracting from that endogenous component, the exogenous productivity shock process εat and the labor

supply shock εlt enter as shifters of the hybrid Phillips curve analogous to the role that the exogenous real

marginal cost process for et in (34) played in the previous one- and two-equation specifications of the model.

This exogenous component is generally referred as a cost-push shock (in this context, the cost-push shock is

simply a function of the labor supply shock εlt in (65) and of the productivity shock εat in (66)).

Finally, the workhorse model is completed with a standard Taylor (1993) rule with inertia– augmenting

the monetary policy rule in (40) allowing the policy rate it to respond to the output gap (yt − ynt ) as well

as to inflation πt– as follows:

it = ρiit−1 + (1− ρi)
[
ψππt + ψy (yt − ynt )

]
+ εmt , (69)

where the exogenous process for the monetary policy shock εmt is given as in (41). The corresponding policy

parameters satisfy that ψπ > 1 and ψy ≥ 0 and the policy inertia is modelled with the parameter 0 ≤ ρi < 1.

The output gap is defined as the deviation of actual output yt relative to its potential ynt . The potential

output ynt is the level of economic activity that would prevail absent all frictions (nominal rigidities).
21 A

standard log-linearization of the labor supply and labor demand equations around the steady state under

21As is conventional, monetary policy needs to be supplemented with an optimal labor subsidy to offset the markup 1 + λp
charged by intermediate firms under monopolistic competition ensuring the steady state of the model will be identical to the
frictionless one (derived under flexible prices and perfect competition). This labor subsidy is financed with a lump-sum tax
raised from households. However, this does not affect the short-run dynamics of the approximated model so I retain the Smets
and Wouters (2003) specification– which is not explicit about it– as is.
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flexible prices (ξp = 0) yields:

ynt =
σch

σl (1− h) + σc
ynt−1 +

(1− h) (1 + σl)

σl (1− h) + σc
εat −

(1− h)

σl (1− h) + σc
εlt, (70)

which is a function of the productivity shocks εat and the labor supply shocks ε
l
t.

Let me define the vector of endogenous variables as Wt = (yt, πt, it, y
n
t )
T , the forcing variables as Xt =(

εat , ε
b
t , ε

l
t, ε

m
t

)T
, and the vector of innovations as εt = (δt, ζt, νt, ξt)

T . The forward-looking part of the

three-equation New Keynesian model of inflation given by (67), (68), and (69) can be expressed as:

D0Wt = D1Wt−1 +D2Et [Wt+1] +D3Xt, (71)

D0 =


1 0

(
1−h

(1+h)σc

)
0

−κ
(
σl + σc

1−h

)
1 0 0

− (1− ρi)ψy − (1− ρi)ψπ 1 (1− ρi)ψy
0 0 0 1

 ,

D1 =


h
1+h 0 0 0

−κσc h
1−h γb 0 0

0 0 ρi 0

0 0 0 σch
σl(1−h)+σc

 , D2 =


1

1+h

(
1−h

(1+h)σc

)
0 0

0 γf 0 0

0 0 0 0

0 0 0 0

 ,

D3 =


0 1−h

(1+h)σc
(1− ρb) 0 0

−κ (1 + σl) 0 κ 0

0 0 0 1
(1−h)(1+σl)
σl(1−h)+σc 0 − (1−h)

σl(1−h)+σc 0

 ,

(72)

and re-written, whenever D0 is nonsingular, in the form of (1):

Wt = Φ1Wt−1 + Φ2Et [Wt+1] + Φ3Xt,

Φ1 ≡ (D0)
−1
D1, Φ2 ≡ (D0)

−1
D2, Φ3 ≡ (D0)

−1
D3, (73)

where

(D0)
−1

=


Φs

(
−(1−h)
(1+h)σc

)
(1−ρi)ψπΦs −

(
1−h

(1+h)σc

)
Φs

(
1−h

(1+h)σc

)
(1−ρi)ψyΦs

Φsκ
(
σl+

σc
1−h

) (
(1−h)(1−ρi)ψy

(1+h)σc
+1
)

Φs

(
−(σl(1−h)+σc)κ

(1+h)σc

)
Φs

(
(σl(1−h)+σc)κ(1−ρi)ψy

(1+h)σc

)
Φs

ΦsDκ (1−ρi) (1−ρi)ψπΦs Φs − (1−ρi)ψyΦs

0 0 0 1

 ,

Φs ≡ 1

1+(1−ρi)( 1−h
(1+h)σc

)(ψπ(σl+ σc
1−h )κ+ψy)

, Dκ ≡
(
ψy(1−h)+(σl(1−h)+σc)κψπ

1−h

)
.

(74)
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I.e.,

Φ1=


Φs

h(1+κ(1−ρi)ψπ)
1+h −Φs

(1−h)(1−ρi)ψπγb
(1+h)σc

−Φs
(1−h)ρi
(1+h)σc

Φs
h(1−h)(1−ρi)ψy

(1+h)(σc+(1−h)σl)

Φs
hκ((1−h)σl−hσc−(1−h)(1−ρi)ψy)

(1+h)(1−h) Φs
((1+h)σc+(1−h)(1−ρi)ψy)γb

(1+h)σc
−Φs

(σc+σl(1−h))(1−h)κρi
(1+h)σc

Φs
hκ(1−ρi)ψy

1+h

Φs
h(1−ρi)
(1+h)

(
Dκ−σc(1+h)κψπ1−h

)
Φs (1−ρi)ψπγb Φsρi −Φs

hσc(1−ρi)ψy
σc+(1−h)σl

0 0 0 hσc
σc+(1−h)σl

 ,

Φ2=Φs


1

1+h

(
1−h

(1+h)σc

) (
1− (1−ρi)ψπγf

)
0 0

1
1+h

(
σl+

σc
1−h

)
κ

(
σl+

σc
1−h

)
κ
(

1−h
(1+h)σc

)
+
(

1+ (1−ρi)
(

1−h
(1+h)σc

)
ψy

)
γf 0 0

1
1+h (1−ρi)

(
ψπ

(
σl+

σc
1−h

)
κ+ψy

)
(1−ρi)

((
1−h

(1+h)σc

)((
σl+

σc
1−h

)
κψπ+ψy

)
+ψπγf

)
0 0

0 0 0 0

 ,

Φ3=


Φs

Dκ(1−h)2(1+σl)(1−ρi)
(1+h)σc(σc+(1−h)σl) Φs

(
1−h

(1+h)σc

)
(1−ρb) −Φs

Dκ(1−h)(1−h)(1−ρi)
(1+h)σc(σc+(1−h)σl) −Φs

(
1−h

(1+h)σc

)
−κΦs (1+σl) Φs

(
σc+(1−h)σl
(1+h)σc

)
κ (1−ρb) Φsκ −Φs

(
(σc+(1−h)σl)κ

(1+h)σc

)
−Φs

Dκ(1−h)(1+σl)(1−ρi)
(σc+(1−h)σl) Φs

Dκ(1−h)(1−ρi)(1−ρb)
(1+h)σc

Φs
(1−ρi)Dκ(1−h)
(σc+(1−h)σl) Φs

(1−h)(1+σl)
σl(1−h)+σc 0 − (1−h)

σl(1−h)+σc 0

 .

(75)

The shock processes in (64), (65), (66), and (41) can be cast in the form indicated by the matrix equation

(8) with conforming matrices A and B given by:

A =


ρa 0 0 0

0 ρb 0 0

0 0 ρl 0

0 0 0 ρm

 , B =


σδ 0 0 0

0 σζ 0 0

0 0 σν 0

0 0 0 σξ

 . (76)

Then, the solution of the workhorse New Keynesian model can be derived following the procedure proposed

in this paper by solving a companion quadratic matrix equation and a companion Sylvester matrix equation.

The implementation of the procedure laid out in this paper with the workhorse New Keynesian model

articulated here has a finite-order VAR(2) representation given by (26) of the following form: Wt = Ψ1Wt−1+

Ψ2Wt−2 + Ψ3εt, on the four endogenous variables in Wt = (yt, πt, it, y
n
t )
T . The corresponding composite

coeffi cient matrices Ψ1 ≡
(
Θ + CAC−1

)
, Ψ2 ≡ −CAC−1Θ, and Ψ3 ≡ CA−1B have non-zero entries almost

everywhere– for standard parameterizations of the model. This is in contrast with the bivariate monetary

model discussed earlier where, for instance, there were no spillovers from lagged interest rates to current

inflation. Partly endogenizing the real marginal costs in relation to output and tying economic activity to

short-term interest rate movements through a dynamic IS equation is key for understanding how monetary

policy and monetary policy shocks influence the dynamics of inflation through the lens of New Keynesian

theory. From an economic perspective, the solution of the workhorse New Keynesian model shows that

monetary policy shocks can contribute to drive inflation fluctuations unlike in the bivariate version of the

model studied earlier.

The special case without habit formation also has an exact VAR(2) representation– analogous to that

recovered in Carlstrom et al. (2009). However, Carlstrom et al. (2009) consider only three distinct structural

shocks and can therefore work out their solution focusing solely on three endogenous variables (not including

output potential, ynt ) while the workhorse model I work with here requires y
n
t to be included in the vectorWt
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and to be observable. Given that the finite-order VAR(2) solution of the workhorse New Keynesian model

exists, under mild conditions one can identify and recover the structural monetary policy shock itself– as

well as all other fundamental economic shocks driving the economy– directly from the observable vector of

data Wt.

Therefore, I argue that empirical evidence which hinges upon Cholesky (and, in general, zero) restrictions

should be interpreted with great caution as it may not have a structural interpretation– as noted, among

others, by Carlstrom et al. (2009). I provide further discussion on the implications of the cross-equation

restrictions implied by theory for the estimation of and empirical inferences based on VARs in the next

section of the paper.

4 Some Lessons for Monetary VARs

In the remainder of the paper, I illustrate the solution of the workhorse New Keynesian model numerically

taking advantage of the set of Matlab codes and functions that implement the procedure described in the

paper.22 The emphasis is placed on recovering and interpreting the structural monetary policy shocks from

the data, through the lens of workhorse New Keynesian model. The finite-order VAR(2) in (26) can be

estimated with the cross-equations restrictions imposed by theory using Bayesian techniques or simply by

minimum distance (a related minimum distance estimation toolkit can be found in Jordà and Kozicki (2011)).

I do not attempt the full estimation of the workhorse model here– instead, I use the framework to further

understand the role of monetary policy and the propagation of monetary shocks adopting a conventional

parameterization based on the parameter estimates reported by Smets and Wouters (2003). In this sense, I

assume the parameters of the New Keynesian model specified for this illustration take the parameterization

presented in Table 1:

22 In terms of implementation, the solution of the canonical first-order LRE model requires solving a quadratic matrix equation
as in (5) and a companion Sylvester matrix equation as in (24). In the univariate and bivariate illustrations presented before, the
solution of the model can be obtained analytically with standard matrix algebra. However, the paper includes a straightforward
Matlab code implementation to compute numerically the solution of the workhorse New Keynesian model. I use those codes in
the rest of this section and make them available upon request.
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Table 1. Parameterization of the Workhorse New Keynesian Model

Structural Parameter Notation Value Source

Discount factor 0 < β < 1 0.990 Smets and Wouters (2003)

Degree of price stickiness 0 ≤ ξp< 1 0.905 Smets and Wouters (2003)

Degree of price indexation 0 ≤ γp≤ 1 0.472 Smets and Wouters (2003)

B Forward-looking weight on Phillips curve γf≡ β
1+βγp

0.675 Composite

B Backward-looking weight on Phillips curve γb≡
γp

1+βγp
0.322 Composite

B Slope of the Phillips curve κ ≡ (1−βξp)(1−ξp)
(1+βγp)ξp

0.007 Composite

Inverse intertemporal elasticity of substitution σc> 0 1.371 Smets and Wouters (2003)

Inverse of the Frisch elasticity of labor supply σl> 0 2.491 Smets and Wouters (2003)

External habit formation parameter 0 < h < 1 0.595 Smets and Wouters (2003)

Monetary Policy

Policy inertia 0 ≤ ρi< 1 0.958 Smets and Wouters (2003)

Response to inflation deviations ψπ> 1 1.688 Smets and Wouters (2003)

Response to output gap deviations ψy≥ 0 0.095 Smets and Wouters (2003)

Exogenous Shock Parameters

Persistence of the productivity shock −1 < ρa< 1 0.815 Smets and Wouters (2003)

Volatility of the productivity shock σδ> 0 0.345∗∗ Smets and Wouters (2003)

Persistence of the preference shock −1 < ρb< 1 0.842 Smets and Wouters (2003)

Volatility of the preference shock σζ> 0 0.089∗∗ Smets and Wouters (2003)

Persistence of the labor supply shock −1 < ρl< 1 0.891 Smets and Wouters (2003)

Volatility of the labor supply shock σν> 0 1.244∗∗ Smets and Wouters (2003)

Persistence of the monetary shock −1 < ρm< 1 0.750∗ Parameterized

Volatility of the monetary shock σξ> 0 0.001∗∗ Smets and Wouters (2003)

* Introduces persistence unlike the parameterization in Smets and Wouters (2003) ensuring also that the matrix A is invertible.

** The volatility parameters are chosen such that the standard deviation of each shock innovation recovered from the data is equal
to 1.

Given the parameterization of Table 1, the solution Θ to the companion quadratic matrix equation has its

roots inside the unit circle. Furthermore, the code also reports that the solution C to the companion Sylvester

matrix equation exists and is both unique and invertible. Therefore, the workhorse New Keynesian model

has a finite-order VAR(2) representation given by (26) where the corresponding coeffi cient matrices Ψ1 ≡(
Θ + CAC−1

)
, Ψ2 ≡ −CAC−1Θ, and Ψ3 ≡ CA−1B take the following form under the parameterization
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reported in Table 1:

Ψ1 =


1.5057 −0.5355 −3.2133 −0.0607

−0.0648 1.4821 0 0.0648

−0.0039 0.0576 1.7171 0.0043

0.5847 −1.9717 −5.4962 0.7552

 ,

Ψ2 =


−0.5253 0.2655 2.4934 0.0179

0.0222 −0.4768 0 −0.0222

0.0006 −0.0367 −0.7254 −0.0009

−0.2740 1.0036 4.2124 −0.1464

 ,

Ψ3 =


0.0282 0.0203 −0.0405 −0.0132

−0.0263 0.0048 0.0312 −0.0055

−0.0026 0.0004 0.0029 0.0006

0.2050 0 −0.2117 0

 ,

(77)

with non-zero entries almost everywhere.

The parameter values are chosen to illustrate the qualitative features of the workhorse New Keynesian

model and the performance of the algorithms for the solution of the companion quadratic matrix equation

and the companion Sylvester matrix equation. I use a laptop with Intel(R) Core(TM) i7 with 2.7GHz,

4 cores and 32GB of installed memory (RAM). The wall-clock time elapsed in computing and reporting

the numerical results given the defaults of the code is 10.3351 seconds (CPU time is: 0.0044187 seconds).

Using the iterative algorithm to compute the solution to the quadratic matrix equation and Matlab’s own

implementation of the Hessenberg-Schur algorithm for Lyapunov equations to speed up the computation,

the elapsed time barely fall to 9.3604 seconds (CPU time is: 0.0038391 seconds).23

What Does the Parameterized Workhorse Model Interpret the Observed Data? Mapping the

endogenous variables of the workhorse New Keynesian model to the observed data requires some additional

clarification– for this, I largely rely on the guidelines of Pfeifer (2015). Most business cycle models– like the

New Keynesian model– abstract from movements in the labor force and assume output (and, by analogy,

output potential) to be expressed in per-capita terms. Hence, the empirical counterpart to per-capita output

in the New Keynesian model is calculated as the ratio of U.S. Real GDP in millions of chained Dollars (from

the Bureau of Economic Analysis) over the U.S. civilian labor force 16-years and older in millions (from the

Bureau of Labor Statistics). Analogously, per-capita output potential is the ratio of U.S. Real Potential

GDP in millions of chained Dollars (from the Congressional Budget Offi ce) over the U.S. civilian labor force

16-years and older in millions (from the Bureau of Labor Statistics).

The price index used is the quarterly U.S. Consumer Price Index (CPI) for all urban consumers—all

items (from the Bureau of Labor Statistics). Finally, the short-term policy rate is constructed using the

effective Federal Funds rate (% p.a.) (from the Federal Reserve Board) but replacing the observations in

the aftermath of the 2008 recession when policy rates were constrained at the zero-lower bound with the

Wu-Xia Shadow Federal Funds rate (as reported by the Federal Reserve Bank of Atlanta). As customary,

I transform the per-capita output and the price index taking logs to make the log-transformed series scale

invariant. All four series are reported at quarterly frequency.

23The elapsed and CPU times reported here are average times over calculated with 10000 repeated draws of the parameterized
workhorse model.

30



The workhorse model laid out earlier does not explicitly incorporate trends and assumes the endogenous

variables to be stationary, so the empirical counterparts for the endogenous variables are filtered outside of

the model. A conventional way of getting the output and output potential series is by removing the trend

out of the per-capita series in logs applying a first-difference filter to the series. I apply the same filter

(first-differencing) to the price index as well in order to compute the corresponding measure of inflation.

Data in first differences still has non-zero mean average growth over the sample– accordingly, I demean the

first-differenced log-per-capita output, the first-differenced log-per-capita potential, and the first-differenced

price level. I also demean the short-term interest rate for the same reason– divided by 400 to express the

policy rate in the same units as the other variables.

The impact of monetary policy on the volatility, cyclicality and persistence of the endogenous variables

depends in nonlinear ways on the policy parameters, ψπ and ψy, that describe the systematic part of

the monetary policy rule. Here, I exploit the finite-order VAR(2) representation of the solution in (26)

in order to compute the theoretical moments of the workhorse New Keynesian model for the benchmark

parameterization of ψπ, but also for a range of values of the anti-inflation bias ψπ that goes from 1 (the

lower bound on the Taylor principle) up to 6. I summarize the key findings describing the business cycle

facts in the data since the onset of the Great Moderation period (1984:Q1 till 2017:Q4) and the implications

of the parameterized workhorse model in Table 2.

As can be seen in Table 2, the monetary policy parameter ψπ has a substantial impact over the business

cycle. Generally, a higher value of ψπ signals a stronger anti-inflation bias on the part of the central

bank and is associated with significant declines in inflation volatility according to the theoretical standard

deviations– albeit not for the output and the policy rate. As expected, output potential is completely

unaffected by the policy rule. Moreover, higher values of the policy parameter ψπ lead to a stronger negative

(contemporaneous) correlation between output and inflation and to a stronger positive (contemporaneous)

correlation between output and output potential– the latter partly reflects that in this context the higher

anti-inflation bias leads the economy closer to its frictionless counterpart (‘first best’). I also find a strong

negative comovement between output and the policy rate and a significant weakening of the persistence of

inflation as measured by its first-order autocorrelation.

31



Table 2. Key Business Cycle Moments at Different Degrees of Anti-Inflationary Bias

Std. Deviation Data ψπ = 1.688 ψπ = 1 ψπ = 3 ψπ = 6

Output 0.60 0.52 0.51 0.55 0.60

Inflation 0.50 0.08 0.09 0.07 0.05

Policy Rate 0.85 0.04 0.03 0.05 0.07

Potential 0.28 0.84 0.84 0.84 0.84

Contemporaneous Comovement

Output 1 1 1 1 1

Inflation 0.18 −0.14 −0.05 −0.21 −0.25

Policy Rate 0.06 −0.97 −0.97 −0.97 −0.97

Potential 0.40 0.86 0.84 0.89 0.93

First-Order Autocorrelation

Output 0.13 0.98 0.99 0.98 0.98

Inflation 0.33 0.83 0.84 0.82 0.79

Policy Rate 0.99 0.98 0.98 0.98 0.98

Potential 0.14 0.93 0.93 0.93 0.93

Note: This table summarizes the key theoretical business cycle moments of the workhorse New Keynesian model keeping
the parameterization invariant as in Table 1 except for the policy parameter ψπ .

Note: All data is demeaned, expressed in units and not annualized. The sample period covers from 1984:Q1 till 2017:Q4.
The empirical standard deviations are scaled by 100 for comparability.

When compared against the business cycle features obtained from the filtered data, the model predictions

tend to undershoot the volatility of inflation and the policy rate and overshoot the persistence of output

and inflation. The negative comovement between output and inflation and, notably, between output and the

policy rate is also inconsistent with the empirical evidence. Broadly speaking, these discrepancies between

the theoretical predictions and the empirical evidence suggest that the workhorse model may be insuffi cient

to capture the dynamics of inflation and their linkages to monetary policy actions. A richer environment

might be needed to incorporate those fully.

Furthermore, the findings in Table 2 also show how shifts in the patterns of endogenous volatility, cyclical-

ity, and persistence do not necessarily reflect changes in the underlying shock processes driving the dynamics

of the endogenous variables. In turn, they can simply be the result of changes in the monetary policy

regime altering the monetary policy transmission mechanism itself. I illustrate those potential changes in

the transmission mechanism in Figure 1 with the theoretical one-standard deviation impulse response func-

tions (IRFs) at different degrees of the anti-inflation bias ψπ. For starters, I observe that the paradoxical

empirical finding that a monetary shock could lead to an increase in inflation (the "price puzzle") seems

inconsistent with the predictions of the workhorse New Keynesian model. Interestingly, I also show that the

decline on inflation and on output resulting from a one-standard deviation positive (contractionary) shock to

monetary policy gets attenuated the higher the anti-inflation bias stance on monetary policy (↑ ψπ) becomes.
As expected, the policy rule has no influence on the dynamics of output potential. However, I note

that a higher anti-inflation bias stance on monetary policy (↑ ψπ) tends to dampen the endogenous output
response to preference and monetary policy shock innovations while it amplifies the response to productivity

and labor supply shock innovations. At the same time, the response of endogenous inflation to all types of

shocks is shown to become more muted as ψπ increases. Inflation and output move in the same direction in
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response to preference shocks and monetary policy shocks, but they move in opposite directions in response

to productivity shocks and labor supply shocks. Hence, changes in the contribution of the different shocks

can result in changes in the unconditional patterns of comovement predicted by the model suggesting that

the discrepancies between the model and the empirical evidence reported in Table 2 can be partly due to an

inconsistent mix of the different shocks implied by the parameterization in Table 1.

Figure 1. Theoretical IRFs at Different Degrees of Anti-Inflationary Bias
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Note: This figure displays the theoretical impulse response functions (IRFs) of the workhorse New Keynesian model
keeping the parameterization invariant as in Table 1 except for the policy parameter ψπ .

Furthermore, the findings in Figure 1 show that the transmission mechanism of structural shocks–

monetary policy shocks in particular– and their spillovers ultimately depend in nonlinear ways on the features

of the prevailing monetary policy regime. That is, they depend on the policy parameters of the Taylor

(1993) rule in the workhorse New Keynesian model as well as on other deep structural parameters related

to preferences, technology, etc.

However, understanding the propagation of structural shocks is only part of the task. Exactly recovering

the shock innovations when fundamental– in particular, monetary policy shocks in the New Keynesian

model– is also crucial to understand their contribution over the business cycle. Through the lens of the

workhorse New Keynesian model parameterized as in Table 1, the findings in Figure 2 illustrate this point

comparing the observed data on per-capita output growth, inflation, and the short-term policy rate against

model-consistent simulations for the monetary policy shock separately (where the structural shocks are

recovered from the observed data itself).
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Taking the observed data on per-capita output growth, per-capita output potential growth, inflation,

and the short-term policy rate as given, I use equation (27) from Corollary 2 to recover the structural

shocks for the workhorse New Keynesian model. Then, I simulate the endogenous variables feeding the

recovered structural monetary policy shock through the solution in (26) from Corollary 1 in order to assess

the monetary policy shock’s contribution to account for the observed data. The comparison between these

one-shock-only simulation and the actual observed data is plotted in Figure 2.

Figure 2. Contribution of the Monetary Policy Shock to the Observed U.S. Data
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Note: This figure displays the observed data on the output gap, inflation and the short-term interest rate vs. model-
consistent simulations of the corresponding variables based on the three-equation workhorse New Keynesian model
keeping the parameterization invariant as in Table 1. The simulations correspond to the endogenous variables generated
from the solution of the model feeding one of the structural shocks recovered at a time. The simulated series are modified
with the addition of the corresponding sample mean of the corresponding observed variables for comparability.

The time series on this data starts in 1968:Q3 and ends in 2017:Q4 covering the entire Great Modera-

tion period starting in 1984:Q1 as well as the 2008 recession and its aftermath (with conventional Federal

Funds Rate-based monetary policy stuck at the zero-lower bound). The sample mean is added to the model

simulations in Figure 2 to make them comparable with the observed data that contains a non-zero sample

mean– all series are reported in units (rather than percentages) and not annualized.24 The evidence reported

24The sample mean of first-differenced output per capita (in logs) is 0.0032, the sample average for first-differenced headline
CPI (in logs) is 0.0099, 0.0129 is the period average for the nominal short-term interest rate, and the average of first-differenced
output potential per capita (in logs) is 0.0033.
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shows– not surprisingly– that monetary policy shocks are an important driver helping us understand infla-

tion in the New Keynesian model. Moreover, monetary shocks play a significant role for per-capita output

growth but have little influence on the short-term interest rate– which is largely driven by non-monetary

policy shocks under the given parameterization in Table 1– and have no role on per-capita output potential

growth.

It is worth pointing out here that monetary shocks tend to generate more volatile output and inflation

series than what is observed in the data. This parameterized New Keynesian model attributes a expansionary

path to monetary policy in the aftermath of the 2008 recession (during the zero-lower bound episode until

around 2014) pushing inflation and output upwards. This is consistent with a significant body of the

theoretical literature that has built a narrative about the recent U.S. zero-lower bound experience partly

around the perceived accommodation provided by the implementation of a broad range of unconventional

monetary policy actions aimed at supporting the economy.

Some Final Thoughts on Estimation. The method proposed in this paper to solve LRE models makes

an important contribution to better understand the transmission mechanism, the role of structural economic

shocks and its mapping into finite-order VAR specifications– stylized ones like the workhorse New Keynesian

model explored here or richer ones (as indicated before)– that can be recast in the first-order canonical form

given by (1)− (2). The VAR(2) solution in (28) can be expressed in companion form as follows:

E (Wt |Wt−1,Wt−2) = ΠTXt, (78)

Xt =

[
Wt−1

Wt−2

]
, ΠT ≡

[
Ψ1 Ψ2

]
,

and θ =
(
vec (Ψ1)

T
, vec (Ψ2)

T
, vec (Ω)

T
)T

where Ω ≡ ΨT
3 Ψ3.

Assuming Gaussianity of the shock innovations, the log-likelihood function can be expressed as:

L (θ) = −nk
2

log (2π) +
n

2
log
∣∣Ω−1∣∣− 1

2

∑n

j=1

[(
Wj −ΠTXj

)T
Ω−1

(
Wj −ΠTXj

)]
. (79)

where k (= m) is the number of observable variables while n defines the number of observations of each

observable.25 The maximum likelihood estimates of Π and Ω are given by:

Π̂T =
[∑n

j=1
WjX

T
j

] [∑n

j=1
XjX

T
j

]−1
, (80)

Ω̂ =
1

T

∑n

j=1
êj ê

T
j , where êj = Wj − Π̂TXj . (81)

The maximum likelihood estimate Π̂ is the estimated coeffi cient vector from an OLS regression of Wt on

XT
t . The maximum likelihood estimates Π̂ and Ω̂, under standard conditions, will give consistent estimates

of the population parameters even if the true innovations are non-gaussian (Hamilton (1994)).

However, the challenge for model estimation is identification– the problem arises from the fact that the

solution of the LRE model involves a nonlinear mapping between the deep structural parameters of the model

and the elements in Π and Ω. This means that even if the reduced-form representation of the VAR(2) in (1)

25This is the log-likelihood function assuming Ω ≡ ΨT3 Ψ3 is positive definite and therefore invertible.
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can be easily estimated, identification of the deep structural parameters is not guaranteed. As an example,

let me recall the AR(2) representation of the one-equation model of inflation given in (39). Estimating

that AR(2) model by maximum likelihood, I obtain two reduced-form autoregressive coeffi cients and one

variance estimates with which to recover four structural parameters (i.e.,
(
γf , γb, ρe, σδ

)
). This poses an

under-identified system and, hence, at least one of the structural parameters cannot be recovered.

Assuming that σδ is known and equal to 1, I end up with a just identified system between the remaining

three deep structural parameters (i.e.,
(
γf , γb, ρe

)
) and the estimated reduced-form coeffi cients. Even in

this case, either multiple solutions or no solution could exist. For instance, if ρe = 0 the solution in (39)

reduces to πt =

(
1− 2
√
1−4γfγb
2γf

)
πt−1 +

 1

γf

(
1+ 2
√
1−4γfγb
2γf

)
 δt and if γb = 0 to πt = ρeπt−1 +

(
1

1−γfρe

)
δt.

Therefore, if our reduced-form estimates of the AR(2) model imply that the second lag of the autoregressive

is zero, I may not be able to distinguish between a solution where the exogenous real marginal cost shock

has no persistence but some form of price indexation (ρe = 0, γb 6= 0) or a solution where the exogenous real

marginal cost shock is persistent but there is no price indexation (ρe 6= 0, γb = 0). In turn, if the true model

is one with γb = 0 and σδ = 1, and I estimate the corresponding AR(1) process, I find that the first lag of

the reduced-form determines ρe exactly. However, the structural model solution implies that 0 < γf ≤ 1

and, therefore, the implied standard deviations go between 1 and 1
1−ρe

≥ 1 (assuming ρe ≥ 0). Hence, for

estimated values of the standard deviation obtained from the reduced-form that fall outside that range, no

solution exist that can recover simultaneously both structural parameters.

Going beyond maximum likelihood estimates, Bayesian techniques may be useful to incorporate additional

information through the priors that can lessen the identification problems. Minimum distance estimators such

as those proposed by Jordà and Kozicki (2011) can also be helpful– for instance, whenever a unique solution

for the deep structural parameters that maximizes the log-likelihood of the reduced-form representation

exists (as in my last example above). However, in general, structural parameter identification remains a

concern for estimation and the best approach to deal with it (at least partly) is likely to depend on the data

available and on the empirical question that the model is aimed to address. In any event, the treatment of

weak/partial identification and even misspecification falls outside the scope of this paper.

5 Concluding Remarks

I propose a straightforward approach to solve a large class of LRE models and show under mild conditions that

the corresponding solution– whenever one exists and is unique– can be represented in finite-order VAR form.

For this, I represent the LRE model in its first-order canonical form as a system of expectational first-order

difference equations. Then, I reduce the first-order form by splitting the backward-looking and forward-

looking parts of the model by transforming the endogenous variables with the solution to a companion

quadratic matrix equation. The forward-looking part on the transformed variables is solved through the

method of undetermined coeffi cients. The unique solution to the forward-looking part– when one exists–

can be described by means of a linear state-space form. Imposing the cross-equation restrictions that arise

from theory on the state-space representation, I show that solving a companion Sylvester matrix equation

suffi ces to: check the existence and uniqueness of the solution to the purely forward-looking part of the LRE

model and to also characterize the reduced-form solution of the transformed variables in finite-order VAR
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form. Finally, I undo the transformation of the variables obtaining the solution to the first-order canonical

LRE model in VAR form as well.

An important contribution of the paper is the derivation of conditions under which the finite-order

VAR solution of the canonical forward-looking LRE model via the well-known Sylvester matrix equation is

well-defined. The approach proposed here not only provides a way to decouple the canonical form of the

model from its first-order specification and to characterize the corresponding solution in finite-order VAR

form, but it also checks its properties– existence, uniqueness, and invertibility. Furthermore, the paper

also makes a contribution to the computational economics literature with the development of an integrated,

unified algorithm to solve numerically LRE models for which a unique finite-order VAR representation exists

(illustrated with an application based on the workhorse New Keynesian model).

Solving LRE models with a finite-order VAR representation by this method is straightforward to im-

plement, effi cient, and can be handled easily with standard matrix algebra and conventional computational

methods. The paper provides a number of functions for the solution of the companion quadratic matrix equa-

tion and the companion Sylvester matrix equation with an economically-relevant application to the study

of the transmission mechanism of monetary policy in the context of the workhorse New Keynesian model.

For this purpose, the paper showcases the procedure building up the workhorse New Keynesian model from

the hybrid Phillips curve upwards progressively incorporating monetary policy and a channel to endogenize

the real marginal costs that responds to policy actions (through the dynamic IS equation). This opens up

a feedback channel for monetary policy and for the monetary policy shocks to affect the determination of

inflation.

The paper analyzes the fundamental features of the workhorse New Keynesian model that permit the

propagation of monetary policy shocks to inflation and output– with particular attention to the role of the

systematic part of the monetary policy rule (which determines the response to inflation and output deviations

from their targets) and to the recovery of fundamental shocks (particularly the monetary policy shock). The

paper also shows how under the conditions that ensure the existence of a finite-order VAR representation

of the solution, the identification of fundamental shocks for empirical research– including the recovery of

monetary shocks– can be made tractable. However, the paper also shows that the identification of the deep

structural parameters of the model for estimation purposes remains a challenge.
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Appendix

A The General Form of the LRE Model

The general form of a large class of multivariate LRE models can be written as

Φ00Yt =
∑p

i=1
Φi0Yt−i +

∑p

i=0

∑n

j=1
ΦijEt−i (Yt+j−i) + Ωet, (82)

where Yt and et are the r×1 vectors of the endogenous and forcing variables of the LRE model, respectively.

The vector Yt collects the relevant subset r of endogenous variables and the r forcing variables of the LRE

model, while the vector et are the innovations corresponding to the exogenous forcing variables. The matrices

Φij for all i = 0, ..., p and j = 0, ..., n and Ω are all r × r conforming matrices, and Et (·) represents the
conditional expectations operator based on all current and lagged values of Yt and et.26 I assume that Φ00

in (82) is nonsingular and, without loss of generality, set it equal to the r × r identity matrix Ir.
As in Broze et al. (1985) and Broze et al. (1990), the more general form given by (82) can be rewritten

in more compact form as follows:

Nt = Φ∗1Nt−1 + Φ∗2Et [Nt+1] + Φ∗3ut, (83)

where

Nt =
(
UTt , U

T
t−1, ..., U

T
t−p+1

)T
, UTt =

(
Y Tt ,Et

(
Y Tt+1

)
, ...,Et

(
Y Tt+n

))T
,

ut =
(
uTt , 0

T
l×1, ..., 0

T
l×1
)T
, ut =

(
(Ωet)

T
, 0Tr×1, ..., 0

T
r×1

)T
,

Φ∗1 = −D−10 D1, Φ∗2 = −D−10 D1, Φ∗3 = D−10 .

Here, ut is a column-vector of dimension q = p (n+ 1) r and ut is a column-vector of dimension l = (n+ 1) r.

The q × q square matrices Di, i = −1, 0, 1 are defined as:

D−1 =


Ψ−1 0l ... 0l

0l 0l ... 0l
. . .

0l 0l ... 0l

 , D0 =


Ψ0 Ψ1 ... Ψp−1

0l Il ... 0l
. . .

0l 0l ... Il

 ,

D1 =


0l 0l ... 0l Ψp

−Il 0l ... 0l 0l
. . .

0l 0l ... −Il 0l

 ,

26 In case the processes have non-zero means, one should add a constant as well to the specification in (82).
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where Ψi, i = −1, 0, ..., p, are square matrices of dimension l given by:

Ψ−1 =


0r 0r ... 0r 0r

−Ir 0r ... 0r 0r
. . .

0r 0r ... −Ir 0r

 , Ψ0 =


Ir −Φ01 ... −Φ0n

0r Ir ... 0r
. . .

0r 0r ... Ir

 ,

Ψi =


−Φi0 −Φi1 ... −Φin

0r 0r ... 0r
. . .

0r 0r ... 0r

 for i = −1, 0, ..., p.

In the general form of the LRE model in (82), the endogenous variables are bundled together with the

forcing variables in the vector Yt. Naturally, the compact form derived in (83) inherits the same feature

and the column-vector Nt of dimension q = 2k combines k current and lagged forcing variables with k

current and lagged endogenous variables (where both forcing and endogenous variables have the same finite

lag order). Assume the vectors Nt and ut are re-ordered such that Nt =
(
WT
t , X

T
t

)T
, where Wt is the

vector of endogenous variables and Xt the vector of the forcing variables, and ut follows the same consistent

order. Then, the compact form in (83) can be rewritten as in the expectational difference system (1)− (2)

introduced in Section 2.

The compact system (1) − (2) used in the paper simply presents the compact solution in two block

sub-systems splitting the endogenous variables Wt which can be both backward-looking and forward-looking

from the exogenous forcing variables Xt which are only backward-looking but stochastic. Then, the compact

system (1)− (2) can be transformed into its canonical purely-forward looking form in (6) and (2) decoupling

the backward-looking and the forward-looking terms of the endogenous variables, as explained in Sub-

section 2.1. Whenever Γ0 ≡ (Ik − Φ2Θ) is nonsingular, the canonical system of structural relationships for

the endogenous variables implied by (6) can be rewritten as in (7). The resulting system of expectational

difference equations in terms of transformed variables contains only forward-looking terms.
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B Supplementary Materials

B.1 A Closed-Form Solution to the Quadratic Matrix Equation

The companion quadratic matrix equation in (5) can be solved for its (stable) real-valued solution Θ with

a straightforward iterative algorithm (Binder and Pesaran (1995) and Binder and Pesaran (1997)). Alter-

natively, the stable solution of the quadratic matrix equation in (5) can be found in closed-form from the

solution to a related generalized eigenvalue problem.

I construct a pair of 2m×2m companion matrix forms (D,E) where the m×m matrices Φ1 and Φ2 that

describe (5) enter as follows:

D =

[
Im −Φ1

Im 0m

]
, E =

[
Φ2 0m

0m Im

]
. (84)

The solution to the generalized eigenvalue problem for the matrix pair (D,E) is a set of 2m eigenvalues

qk and their corresponding eigenvectors vk such that Dvk = Evkqk. Assuming there are at least m stable

eigenvalues (those who are inside the unit circle), I can then order the eigenvalues and their corresponding

eigenvectors so that the m stable eigenvalues come first. I denote the diagonal matrix with the ordered

eigenvalues as Q and the matrix of corresponding eigenvectors as V .

Partitioning the ordered matrix of eigenvalues Q to collect the first m stable eigenvalues and the re-

maining ones into block matrices and partitioning the matrix of eigenvectors V accordingly, I can write

Q ≡
[
Q1 0m

0m Q2

]
and V ≡

[
V 11 V 12

V 21 V 22

]
where each block matrix is of dimension m×m. The generalized

eigenvalue problem can then be stated in matrix form as:[
Im −Φ1

Im 0m

][
V 11 V 12

V 21 V 22

]
=

[
Φ2 0m

0m Im

][
V 11 V 12

V 21 V 22

][
Q1 0m

0m Q2

]
, (85)

and from here it follows that:[
V 11 − Φ1V

21 V 12 − Φ1V
22

V 11 V 12

]
=

[
Φ2V

11 Φ2V
12

V 21 V 22

][
Q1 0m

0m Q2

]
=

[
Φ2V

11Q1 Φ2V
12Q2

V 21Q1 V 22Q2

]
. (86)

This block system implies that V 11 = V 21Q1 and V 11−Φ1V
21 = Φ2V

11Q1. Substituting the first expression

into the second one gives that V 21Q1−Φ1V
21 = Φ2V

21Q1Q1. Then, post-multiplying both sides by
(
V 21

)−1
and re-arranging, it follows that:

Φ2

(
V 21

(
Q1
)2 (

V 21
)−1)− (V 21Q1 (V 21)−1)+ Φ1 = 0m. (87)

Defining Θ to be Θ ≡ V 21Q1
(
V 21

)−1
gives Θ2 = V 21Q1

(
V 21

)−1
V 21Q1

(
V 21

)−1
= V 21

(
Q1
)2 (

V 21
)−1

.

Therefore, under this definition ofΘ, the matrix equation in (87) is observationally equivalent to the quadratic

matrix equation (5) introduced in Sub-section 2.1 for the purpose of decoupling the backward-looking and

forward-looking terms of the canonical first LRE model given by (1)−(2). Hence, this suffi ces to characterize

the solution of the quadratic matrix equation based on its m stable (real-valued) eigenvalues.

If such a real-valued solution of the quadratic matrix equation exists with all its eigenvalues inside the

unit circle, then it is straightforward to compute Θ (m × m matrix) by constructing the matrices D and
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E and finding the ordered solution to the corresponding generalized eigenvalue problem for the matrix pair

(D,E). The block matrix Q1 contains the m stable eigenvalues and the block matrix V 21 contains the

corresponding eigenvectors from the generalized eigenvalue problem after partitioning. Then, the solution

Θ for the quadratic matrix is simply Θ ≡ V 21Q1
(
V 21

)−1
. To check that this transformation Θ is valid, I

only need to verify that all the eigenvalues collected in Q1 are indeed inside the unit circle.27

B.2 Numerical Methods to Solve the Sylvester Matrix Equation

It follows from Proposition 1 that a unique solution C of the companion Sylvester matrix equation in (24)

exists if and only if the (m · k) × (m · k) square matrix A is invertible. If so, the unique solution takes the
form of a linear system with m ·k equations and m ·k unknowns given by vec (C) = A−1vec (−G) which can

be solved in O
(

(m · k)
3
)
operations. Although obtaining the solution in this way is straightforward, there

are algorithms and methods that can improve the effi ciency of the numerical computation of C.

(a) Schur’s Triangulation and Recursive Implementation. Step 1. The first step of the approach
is to implement the generalized Schur triangulation to re-write the companion Sylvester matrix equation in

(24). I find the real Schur decompositions F = UKUT ∈ Rm×m and A = V QV T ∈ Rk×k where m ≥ k. The
matrices U ∈ Rm×m and V ∈ Rk×k are unitary matrices of dimensions m and k , respectively, such that

UUT = UTU = Im and V V T = V TV = Ik. The matrices K ∈ Rm×m and Q ∈ Rk×k, referred to as the
corresponding Schur forms for F and A, respectively, are both upper triangular.28 The eigenvalues of F and

A are the diagonal entries of the (upper) triangular matrices K and Q, respectively. Hence, I can re-write

the companion Sylvester matrix equation in (24)– i.e., FC + C
(
−A−1

)
= −G as FCA − C = −GA with

F ∈ Rm×m, A ∈ Rk×k, and G ∈ Rm×k given and C ∈ Rm×k to be determined– as follows:

KYQ− Y = R, (88)

where Y = UTCV and R = −UTGAV .
Step 2. The second step of the approach is to solve the transformed Sylvester matrix equation in (88).

The transformed equation can be vectorized to obtain:

A :=
[(
QT ⊗K

)
− Im·k

]
, (89)

Avec (Y ) = vec (R) . (90)

Then, this can be solved directly by calculating the inverse of A and using standard matrix algebra to solve
the linear system vec (Y ) = A−1vec (R) for Y .

Step 3. The last step of the approach is to recover the solution C to the companion Sylvester matrix

equation in (24). For that, I simply undo Schur’s triangulation as follows C = UY V T .

27The accompanying codes provided with the paper include a Matlab function that implements the iterative solution of
Binder and Pesaran (1995) and Binder and Pesaran (1997) together with another Matlab function that obtains the solution
using alternatively the generalized eigenvalue problem algorithm described here. For a discussion of the quadratic matrix
equation and the iterative algorithm, the interested reader is also refered to Binder and Pesaran (1995) and Binder and Pesaran
(1997) and their accompanying Matlab codes: https://ideas.repec.org/c/dge/qmrbcd/73.html.
28Since K is similar to F , both have the same eigenvalues. Since Q is similar to A, their eigenvalues are the same too.
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Although this three-step approach works, the solution to the transformed system in (89) − (90) can be

further optimized under additional assumptions on the matrix F and, particularly, on the matrix A.

(a) The solution to the transformed Sylvester matrix equation given by (89) − (90) permits a more

effi cient recursive implementation, if A is diagonalizable. The diagonalization theorem indicates that the

k× k matrix A is diagonalizable if and only if A has k linearly independent eigenvectors (Strang (2016)). If
A is diagonalizable, then the matrix S of its eigenvectors is invertible and S−1AS = M = diag (µ1, ..., µk) is

the diagonal matrix of its eigenvalues. A suffi cient (but not necessary) condition for A to be diagonalizable is

that all its k eigenvalues be distinct.29 By the principal axis theorem, it follows that if A is a real matrix (i.e.,

all entries of A are real numbers) and symmetric (i.e., AT = A), then A is diagonalizable as well (Strang

(2016)). Hence, the additional assumption that A be a diagonalizable matrix does not appear to be too

restrictive in most practical applications– given that the stochastic process for the forcing variables is often

assumed symmetric– i.e., A is often posited as a real symmetric square matrix. Even when the symmetry

assumption is relaxed, generally the eigenvalues appear as distinct.

Assuming that the matrix A is diagonalizable, I can re-write the companion Sylvester matrix equation

in (24)– i.e., FCA− C = −GA– with the Schur triangulation of F as before but using the diagonalization

of A to obtain:

KŶM − Ŷ = R̂, (91)

where Ŷ = UTCS and R̂ = −UTGAS. Then, the transformed Sylvester matrix equation can be vectorized
as:

Â :=
[(
MT ⊗K

)
− Im·k

]
, (92)

Âvec
(
Ŷ
)

= vec
(
R̂
)
. (93)

The matricesMT and Im·k are diagonal, while K is an upper triangular matrix. As a result, it follows that Â
itself must be an upper triangular matrix. The resulting linear system can be solved directly by calculating

the inverse of Â and then using standard matrix algebra to solve vec
(
Ŷ
)

= A−1vec
(
R̂
)
for the unknown

matrix Ŷ . The inverse of an upper triangular matrix is also upper triangular. Hence, the diagonalization of

A reduces the number of calculations needed to compute the solution to the transformed Sylvester matrix

equation.

Moreover, the resulting linear system lends itself to a recursive implementation that does not require the

computation of the inverse of Â explicitly. Let me define Â = [âi,j ]
m·k
i,j=1 ∈ R(m·k)×(m·k) as well as the column-

vectors vec
(
Ŷ
)

= [ŷi]
m·k
i=1 and vec

(
R̂
)

= [r̂i]
m·k
i=1 . Then, for any given j = 1, ...,m·k, it holds true that âi,j = 0

for all i = 1, ...,m · k and i < j. It follows from here that âm·k,m·kŷm·k = r̂m·k pins down ŷm·k. Given ŷm·k,

the expression for ŷm·k−1 can be immediately obtained from âm·k−1,m·k−1ŷm·k−1+ âm·k−1,m·kŷm·k = r̂m·k−1.

Given ŷm·k and ŷm·k−1, the expression for ŷm·k−2 is derived from âm·k−2,m·k−2ŷm·k−2+âm·k−2,m·k−1ŷm·k−1+

âm·k−2,m·kŷm·k = r̂m·k−2. And so on and so forth. Then, once the matrix Ŷ is completed in this recursive

way, the last step of the procedure is to recover the solution C to the companion Sylvester matrix equation.

For that, I simply undo the transformation as follows C = UŶ S−1.

(b) The computation of the matrix C can be further improved whenever F and A are both diagonalizable

29A matrix A can be diagonalizable, yet have repeated eigenvalues. For example, the identity matrix Ik is diagonal (hence
diagonalizable), but has one eigenvalue repeated k times (i.e., µi = 1 for all i = 1, ..., k).
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matrices. The diagonalization theorem implies that the m×m square matrix F and the k× k matrix A are
both diagonalizable if and only these matrices have m and k linearly independent eigenvectors, respectively.

In other words, F and A are diagonalizable if and only if the rank of the matrix formed by the corresponding

eigenvectors is m and k, respectively. I also know that if both matrices are real-valued and symmetric, they

are also diagonalizable. Furthermore, if the eigenvalues of each matrix are distinct, this is suffi cient (albeit

not necessary) for each matrix to be diagonalizable. Assuming matrices F and A can be diagonalized– i.e.,

using F = TΛT−1 and A = SMS−1 where Λ = diag (λ1, ..., λm) and M = diag (µ1, ..., µk)– I obtain the

following transformation of the companion Sylvester matrix equation in (24):

(
TΛT−1

)
C
(
SMS−1

)
− C = −GA. (94)

Multiplying the left-hand side of this matrix equation by T−1 and the right-hand side by S, it follows that:

ΛT−1CSM − T−1CS = −T−1GAS. (95)

Let Ỹ = T−1CS and R̃ = −T−1GAS. Then, I find that:

ΛỸ M − Ỹ = R̃. (96)

Denoting the (i, j)-th entry of Ỹ as ỹij and the (i, j)-th entry of R̃ as r̃ij , the diagonalized Sylvester matrix

equation can be rewritten simple as:

λiµj ỹij − ỹij = r̃ij , ∀i = 1, ...,m, ∀j = 1, ..., k, (97)

which means that:

ỹij =
r̃ij

λiµj − 1
. (98)

Since the eigenvectors and eigenvalues of a diagonalizable matrix can be found with only O
(

2

√
(m · k)

3

)
operations, the diagonalized Sylvester matrix equation can be solved more effi ciently in this way. Then, the

matrix C can be immediately recovered undoing the transformation as C = T Ỹ S−1.

(b) Bartels-Stewart Approach and Hessenberg-Schur Algorithm. A related classical numerical

algorithm for solving the companion Sylvester matrix equation is the Bartels-Stewart algorithm which also

makes use of the Schur decompositions of F and A in order to obtain a more effi cient algorithm to compute

the solution C (Bartels and Stewart (1972)). Using a Schur decomposition as before, the companion Sylvester

matrix equation– i.e. FCA− C = −GA with F ∈ Rm×m, A ∈ Rk×k, and G ∈ Rm×k given and C ∈ Rm×k

to be determined– can be re-written as in equation (88). Let Qij denote a block of the upper triangular

matrix Q, and let Y and R be partitioned according to a column partitioning of Q. The key step is to exploit

these facts to decompose the transformed Sylvester matrix equation in (88) into smaller Sylvester matrix
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equations by blocks as follows:

KY1Q11 − Y1 = R1, (99)

KYjQjj − Yj = Rj −K
∑j−1

i=1
YjQij , ∀j = 2, ..., k. (100)

Each of the block equations in (99) − (100) takes the form of the transformed Sylvester matrix equation

in (88) given that the sum that appears on the right-hand side of (100) is recursively known, as indicated

above.30

An improved modification of the Bartels-Stewart algorithm, known as the Hessenberg-Schur algorithm,

was proposed in Golub et al. (1979). This algorithm uses the Hessenberg decomposition instead of the Schur

decomposition to transform the companion Sylvester matrix equation (Golub and van Loan (1996), Anderson

et al. (1996)). The Hessenberg decomposition implies F = UKUH and A = V QV H where U ∈ Rm×m and

V ∈ Rk×k are unitary matrices of dimension m and k, respectively. The matrices UH and V H denote the

corresponding conjugate transpose of those matrices and K ∈ Rm×m and Q ∈ Rk×k are the corresponding
Hessenberg matrices.

The Sylvester matrix equation is a special case of the Lyapunov equation. Hence, the dlyap function

in the Control Systems Toolbox in Matlab which solves the discrete-time Lyapunov equation can be used

to solve the companion Sylvester matrix equation in (24) as follows: C = dlyap (F,A,GA). This function

uses the SLICOT (Subroutine Library In COntrol Theory) library– with a routine that implements the

Hessenberg-Schur algorithm. Starting with R2014a, the matrix C can also be computed in Matlab directly

with the sylvester function as C = sylvester (F,−inv (A) ,−GA).31

(c) Doubling Algorithm. The doubling algorithm exploits the convergence result posited in Proposition

3 which establishes that, for any matrix G ∈ Rm×k, the companion Sylvester matrix equation in (24) has a

unique exact solution given by (32) whenever λiµj < 1 for all i = 1, ...,m and all j = 1, ..., k where λ1, ..., λm
are the eigenvalues of F and µ1, ..., µk are the eigenvalues of A. The doubling algorithm defines the following

sequence:
Λs+1 = ΛsΛs,

Ψs+1 = ΨsΨs,

Cs+1 = Cs + ΛsCsΨs,

(101)

where Λ0 = F , Ψ0 = A, and C0 = GA. This sequence converges to the solution C of the companion

Sylvester matrix equation as s→∞. By repeated substitution, it can be shown that each iteration doubles
the number of terms in the sum– hence the name of the algorithm– such that:

Cr =
∑2r−1

s=0
F s (GA)As, (102)

becomes arbitrarily close to the solution C =
∑∞

s=0
F s (GA)As as r gets arbitrarily large. Further discussion

of this algorithm and Matlab codes to implement it can be found, among others, in Anderson et al. (1996).

30 If from the Schur decomposition Q is a real matrix, then Qjj for all j = 1, 2, ..., k must be either a scalar or a 2× 2 matrix.
31Further details on standard implementation methods using Matlab can be found in Sima and Benner (2015).

For further references on the Matlab function dlyap, see: http://www.mathworks.com/help/control/ref/dlyap.html and
http://slicot.org/matlab-toolboxes/basic-control/basic-control-fortran-subroutines. For reference on the Matlab function
sylvester, see: http://www.mathworks.com/help/matlab/ref/sylvester.html.
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