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Abstract 
The recently developed SADF and GSADF unit root tests of Phillips et al. (2011) and Phillips 
et al. (2015) have become popular in the literature for detecting exuberance in asset prices. In 
this paper, we examine through simulation experiments the effect of cross-sectional 
aggregation on the power properties of these tests. The simulation design considered is based 
on actual housing data for both U.S. metropolitan and international housing markets and thus 
allows us to draw conclusions for different levels of aggregation. Our findings suggest that 
aggregation lowers the power of both the SADF and GSADF tests. The effect, however, is 
much larger for the SADF test. We also provide evidence that tests based on panel data 
techniques, namely the panel GSADF test recently proposed by Pavlidis et al. (2015), can 
perform substantially better than univariate tests applied to aggregated series. 
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1. Introduction 

Mildly explosive behavior is modeled by an autoregressive process with a root that exceeds 

unity but remains within the vicinity of one and approaches unity as the sample size tends to 

infinity, as in Phillips and Magdalinos (2007a, 2007b) and Phillips and Magdalinos (2012). The 

literature refers to instances of mildly explosive behavior as periods of exuberance, a 

terminology which we henceforth also adopt in the paper. 

Mildly explosive behavior represents a small departure from martingale behavior, but it is 

consistent with the submartingale (explosive) property commonly used to define rational 

bubbles in the asset pricing literature. Diba and Grossman (1988a; 1988b) were among the first 

to argue within the standard asset pricing equation framework that, given a constant discount 

factor, the detection of such a departure in the data can be seen as evidence of non-

fundamental (bubble-like) behavior. 

Diba and Grossman (1988a; 1988b) are also among the seminal papers to propose the use of 

unit root and cointegration tests for detecting mildly explosive behavior. However, it is a well-

known fact that standard unit root tests have extremely low power in detecting episodes of 

explosive behavior in asset prices that end with a large drop. As has been shown by a number 

of studies, this type of nonlinear dynamics, which are consistent with the presence of 

periodically-collapsing bubbles in asset markets, can frequently lead to finding spurious 

stationarity even though the underlying asset price process is inherently explosive (Evans, 1991; 

Gurkaynak, 2008). 

To alleviate this problem, researchers have recently proposed recursive (right-tailed) unit root 

tests which, by utilizing subsamples of data, perform remarkably better in identifying periods of 

explosiveness (Homm and Breitung, 2012). These recursive unit root tests—namely the 

supremum ADF (SADF) and the Generalized SADF (GSADF)–have been widely employed for 

testing for speculative dynamics in asset prices over the last decade (Phillips and Yu (2011); 

Phillips et al., 2015). Perhaps their most popular application is in real estate markets.1 Following 

                                                           
1 Conventional testing methods for detecting evidence consistent with the presence of rational bubbles in the time 
series include unit root and cointegration tests (Diba and Grossman, 1988a; 1988b), variance bound tests (LeRoy 
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the housing boom of the early and mid-2000s and its subsequent market collapse leading to the 

2008 global recession, there has been a plethora of studies that test for explosive dynamics in 

real estate prices (e.g., Phillips and Yu, 2011; Pavlidis et al. 2015; Engsted et al. 2016; Yusupova 

et al. 2016). 

A common feature of all the above studies is that they employ house prices indices which are 

constructed by aggregating data across locations. A question of direct practical relevance to 

applied researchers is: what is the effect of the level of cross-sectional aggregation on the 

performance of recursive unit root tests? This question is particularly relevant for housing since 

there is substantial heterogeneity in the growth of housing prices across local/regional markets 

(e.g., house prices in San Francisco behave very differently than prices in Denver or Washington) 

and, even within the same market, there is great variation across locations so that aggregate and 

disaggregate series may behave very differently (see, e.g., Gyourko et al. 2006).2 

Although potentially important, the effect of cross-sectional aggregation on the power of unit 

root tests remains unexplored and often overlooked. The existing econometric literature has 

mainly focused on the role of temporal aggregation and sample frequency on the performance 

of standard unit root tests. For instance, Shiller and Perron (1985), Perron (1991), and Campbell 

and Perron (1991) find through Monte Carlo simulations that the power of unit root tests is 

mainly affected by the time span, and much less by sampling frequency. In line with this finding, 

Pierse and Snell (1995) show theoretically that the asymptotic local power of a unit root test is 

not dependent on sample frequency. However, Boswijk and Klaassen (2012) demonstrate that 

this result does not hold for time series that exhibit fat tails and volatility clustering. With regard 

to temporal aggregation, Choi (1992) illustrates that in finite samples aggregating subinterval 

data can also result in substantial power losses. 

                                                           
and Porter, 1981; Shiller, 1981), specification tests (West, 1987), and Chow and CUSUM-type tests (Homm and 
Breitung, 2012). 
2During the second half of the 20th century, house prices in the ten U.S. metropolitan areas with the highest growth 
rates (adjusted for inflation) increased by 2.2 to 3.5 percent. The increase in housing prices in the ten metropolitan 
areas with the lowest rates was more than three times smaller, between 0.5 and 1.1 percent. 
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In this paper, we examine the role of cross-sectional aggregation by conducting two large 

simulation experiments based on actual real house price data. The first experiment uses monthly 

real house price data from the S&P/Case-Shiller 10-City Composite Index for the 10 largest 

metropolitan areas in the U.S., deflated by their corresponding local CPI. The second experiment 

utilizes national-level, quarterly real house price index data for 23 mostly-advanced economies, 

deflated with the corresponding country’s PCE deflator, obtained from the Federal Reserve Bank 

of Dallas’ international house price database (Mack and Martínez-García, 2011). 

The main conclusion that emerges from our two simulation exercises is that aggregation lowers 

the power of both the SADF test of Phillips et al. (2011) and the GSADF test of Phillips et al. (2015). 

The decline is substantially larger for the SADF test than for the GSADF test, which provides an 

important reason to prefer the latter for detecting periods of exuberance in asset prices—

particularly whenever researchers have to rely on highly aggregated data. We also provide 

evidence that the panel GSADF recently proposed by Pavlidis et al. (2015) is preferable whenever 

disaggregated data is available. 

The structure of the remainder of the paper is as follows: Section 2 outlines the SADF test of 

Phillips and Yu (2011), the GSADF test of Phillips et al. (2015), and the panel GSADF test of Pavlidis 

et al. (2015). This section also discusses the potential role of aggregation on the power of the 

recursive (right-tailed) unit root tests. Section 3 defines our Monte Carlo simulation design, and 

presents results for the actual and the simulated data. Section 4 argues about the implications of 

our simulation analysis on the role of aggregation and about the practical implementation of 

these novel tests for monitoring the dynamics of asset prices. Section 5 concludes. 

 

2. Tests of Mildly Explosive Behavior 

Phillips and Magdalinos (2007a, 2007b) define a mildly explosive root using the following data-

generating process (DGP) for the observed time series: 

𝑦௧ = 𝛿்𝑦௧ିଵ + 𝜖௧, 𝜖௧~𝑖. 𝑖. 𝑑. (0, 𝜎ଶ),                                                (1) 
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with the intercept set at zero for simplicity, where 𝛿் = 1 +


்ഀ
, 𝛼 ∈ (0,1) and 𝑇 denotes the 

sample size. Whenever 𝑐 > 0, such a root is explosive and approaches unity at a rate slower 

than 𝑂(𝑇ିଵ) as 𝑇 → ∞.3 Subtracting 𝑦௧ିଵ from both sides, the process in (1) can be expressed 

as ∆𝑦௧ = 𝛽்𝑦௧ିଵ + 𝜖௧, 𝜖௧~𝑖. 𝑖. 𝑑. (0, 𝜎ଶ) where ∆ is the difference operator, and 𝛽் = 𝛿் − 1 is 

the corresponding coefficient to be tested. 

If serial correlation is a concern, a standard parametric autoregressive approach to deal with it 

consists in extending equation (1) to an AR(k+1) process (Said and Dickey, 1984). The approach 

is based on generalizing the process to be 𝜃ାଵ(𝐵)𝑦௧ = 𝜖௧, where 𝜃ାଵ(𝐵) = 1 − 𝜃ଵ𝐵 − ⋯ −

𝜃𝐵 − 𝜃ାଵ𝐵ାଵ defines the lag operator. A unit root in 𝜃ାଵ(𝐵) corresponds to 𝜃ାଵ(1) =

0. Then, testing for a unit root is more easily performed by rewriting the augmented regression 

model in the following form:4 

∆𝑦௧ = 𝛽்𝑦௧ିଵ + ∑ 𝜓Δ𝑦௧ି

ୀଵ + 𝜖௧, 𝜖௧~𝑖. 𝑖. 𝑑. (0, 𝜎ଶ),                                 (2) 

where 𝛽் = −𝜃ାଵ(1) and 𝜓ଵ = −(𝜃ଶ + 𝜃ଷ + ⋯ + 𝜃 + 𝜃ାଵ), 𝜓ଶ = −(𝜃ଷ + ⋯ + 𝜃 +

𝜃ାଵ), … , 𝜓 = −(𝜃ାଵ). 

The procedure studied in the paper for detecting mildly explosive behavior consists in 

recursively applying the Augmented Dickey-Fuller (ADF) test for the null of a unit root against 

the alternative of a mildly explosive root (the right tail of the distribution) based on the 

specification in (2): 

First, our statistical toolkit for the detection of periods of mildly explosive behavior includes: 

the supremum ADF (SADF) of Phillips et al. (2011) and the generalized SADF (GSADF) of Phillips 

                                                           
3 Phillips and Magdalinos (2007a, 2007b) and Phillips and Magdalinos (2012) provide a large-sample asymptotic 
theory for this class of mildly explosive processes that enables econometric inference, unlike what occurs for 
purely explosive processes. Autoregressive processes with a purely explosive root, 𝑦௧ = 𝛿𝑦௧ିଵ + 𝜖௧ ,
𝜖௧~𝑁𝐼𝐷(0, 𝜎ଶ), |𝛿| > 1, were first discussed by White (1958) and Anderson (1959). Assuming a zero initial 
condition for 𝑦௧ , an asymptotic Cauchy limit distribution theory for the OLS/ML estimator exists. However, the 
asymptotic distribution of the estimator is ultimately dependent on the distributional assumptions imposed on the 
innovations (Anderson, 1959)—the imposed Gaussianity of the errors cannot be relaxed without changing the 
asymptotic distribution. Hence, there is no general framework for asymptotic inference on purely explosive 
processes. 
4 The ADF approach generalizes the Dickey and Fuller (1979) test by parametrically removing the structural 
autocorrelation in the time series, but otherwise implements the same testing procedure. 
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et al. (2015), together with the novel panel GSADF test of Pavlidis et al. (2015). The GSADF test 

was designed to overcome the SADF’s lack of power in identifying multiple episodes of 

periodically-collapsing mildly explosive behavior within sample. Whenever disaggregated data 

is available, the panel GSADF test offers a more flexible and powerful alternative than the 

univariate GSADF test. This is because the panel GSADF test explicitly models the cross-

sectional dependencies and heterogeneity present in the constituent series that are otherwise 

muddled together in the aggregated series. However, whenever disaggregated data is not 

available, we find that the GDSAF test tends to outperform the SADF test in terms of power 

thanks to the more flexible ‘recursive’ specification used in the implementation of the ADF 

regression equation (which we dissect further in the remainder of this section). 

Second, some notation is required to describe the recursive implementation of the SADF and 

GSADF tests. We can think of the full sample as being normalized on the interval [0,1] (i.e., 

divided by the total number of observations 𝑇). We denote 𝑟ଵ and 𝑟ଶ as the corresponding 

fractions of the sample which define the beginning and end of a given subsample such that 

0 ≤ 𝑟ଵ < 𝑟ଶ ≤ 1. We denote by 𝑟௪ = 𝑟ଶ − 𝑟ଵ the window size of the regression estimation, 

while 𝑟 is the fixed initial window required by the econometrician such that the subsample 

ending in 𝑟ଶ satisfies that 𝑟ଶ ∈ [𝑟, 1] (i.e., 𝑟 is the minimum window size required by the 

econometrician). 

Finally, the empirical specification used for testing is the following recursive formulation of the 

ADF auxiliary regression equation: 

Δ𝑦௧ = 𝑎భ,మ
+ 𝛽భ,మ

𝑦௧ିଵ + ∑ 𝜓భ,మ


Δ𝑦௧ି


ୀଵ + 𝜖௧, 𝜖௧~𝑖. 𝑖. 𝑑. ൫0, 𝜎భ,మ

ଶ ൯,                  (3) 

where 𝑦௧ denotes the generic time series tested for explosiveness, Δ𝑦௧ for 𝑗 = 1, … , 𝑘  are the 

differenced lags of the time series, and 𝜖௧ is an i.i.d. error term. Furthermore, 𝑘 is the maximum 

number of lags included in the specification, while 𝑎భ,మ
, 𝛽భ,మ

, and 𝜓భ,మ


 for 𝑗 = 1, … , 𝑘 are 

the corresponding regression coefficients—the intercept, the autoregressive coefficient, and 

the coefficients of the lagged first differences—when estimated over the (normalized) 

subsample beginning in 𝑟ଵ and ending in 𝑟ଶ. 
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2.1 Standard Right-Tailed Augmented Dickey-Fuller (ADF) Test 

Setting 𝑟ଵ = 0 and 𝑟ଶ = 𝑟 = 1 yields the standard ADF test statistic over the full sample, 

𝐴𝐷𝐹
ଵ =

ఉబ,భ

௦..൫ఉబ,భ൯
. Under the I(1) null, the limit distribution of 𝐴𝐷𝐹

ଵ is given by 
∫ ௐ෩ ()ௗௐ෩ ()

భ
బ

ቀ∫ ௐ෩ ()మௗ
భ

బ
ቁ

భ
మ

, 

where 𝑊෩  is a demeaned Wiener process (Brownian motion). With this, we test the null 

hypothesis of a unit root in 𝑦௧, 𝐻: 𝛽,ଵ = 0, against the alternative of mildly explosive behavior, 

𝐻ଵ: 𝛽,ଵ > 0. Whenever 𝐴𝐷𝐹
ଵ exceeds the corresponding right-tailed critical value from its limit 

distribution, the unit root hypothesis is rejected in favor of the alternative of mildly explosive 

behavior. 

Evans (1991) shows through simulation methods that non-recursive unit root tests like 𝐴𝐷𝐹
ଵ 

(and cointegration tests as well) have low power and frequently cannot reject the null of no 

explosive behavior even when present in the data. Nonlinear dynamics, such as those displayed 

by mildly explosive processes, may lead the standard right-tailed ADF test to findings of 

spurious stationarity. Intuitively, this is the case because increases followed by downward 

corrections make the process appear mean-reverting and stationary in finite samples even 

when it is inherently not. 

 

2.2 Sup ADF (SADF) Test 

In order to deal with the effect of a collapse occurring within sample on the performance of the 

standard right-tailed ADF test (𝐴𝐷𝐹
ଵ), Phillips et al. (2011) proposes a recursive procedure 

based on the recursive estimation of the ADF regression equation in (3) on subsamples of the 

data. The approach uses a forward expanding estimation subsample with the end of the 

subsample 𝑟ଶ increasing from 𝑟 ∈ (0,1) (the fixed minimum size for the initial window) to one 

(the last available observation). The starting point of each estimation is kept fixed at 𝑟ଵ = 0, so 

the expanding window size of the regression (over the normalized sample) is simply given by 

𝑟௪ = 𝑟ଶ. Then, incrementing the window size 𝑟ଶ ∈ [𝑟, 1] with one additional observation at a 
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time, the recursive estimation of the ADF regression equation in (3) over the forward expanding 

subsample yields a sequence of 𝐴𝐷𝐹
మ =

ఉబ,ೝమ

௦..൫ఉబ,ೝమ൯
 statistics. 

The Phillips et al. (2011) test statistic, called sup ADF (SADF), is defined as the supremum value 

of the sequence of 𝐴𝐷𝐹
మ statistics expressed as follows: 

𝑆𝐴𝐷𝐹(𝑟) = ௦௨
మ∈[బ,ଵ]  𝐴𝐷𝐹

మ .                                                          (4) 

Under the I(1) null, the limit distribution of the 𝑆𝐴𝐷𝐹(𝑟) statistic is given by 

௦௨
మ∈[బ,ଵ]  

∫ ௐ෩ ()ௗௐ෩ ()
ೝమ

బ

ቀ∫ ௐ෩ ()మௗ
ೝమ

బ
ቁ

భ
మ

. Whenever 𝑆𝐴𝐷𝐹(𝑟) exceeds the corresponding right-tailed critical value 

from its limit distribution, the unit root hypothesis is rejected in favor of mildly explosive 

behavior. 

The rolling-window structure of the 𝑆𝐴𝐷𝐹(𝑟) test leads to improved power in detecting mildly 

explosive behavior relative to what can be achieved with the standard 𝐴𝐷𝐹
ଵ test alone. 

Furthermore, Homm and Breitung (2012) show through simulation experiments that the 

𝑆𝐴𝐷𝐹(𝑟) test generally outperforms alternative testing methods commonly used to detect a 

single structural break in the persistence of the process from I(1) to explosive as well. 

The alternative tests considered by Homm and Breitung (2012) aim to detect a permanent 

structural break in the persistence of the process and, as a consequence, perform well only 

when the series becomes explosive but never bursts in-sample. Intuitively, the 𝑆𝐴𝐷𝐹(𝑟) test 

performs better than those alternatives because it deals with series where at most one episode 

of explosiveness occurs and collapses in-sample. However, the 𝑆𝐴𝐷𝐹(𝑟) test power and its 

performance deteriorate in the presence of recurring (more than one) and periodically-

collapsing episodes of exuberance, as established in Phillips et al. (2015). 
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2.3 Generalized SADF (GSADF) Test 

Phillips et al. (2015) proposed another recursive (right-tailed) unit root test, the Generalized 

SADF (GSADF), covering a larger number of subsamples than the 𝑆𝐴𝐷𝐹(𝑟) test by relaxing the 

requirement that the starting point of the subsample 𝑟ଵ be kept fixed. This additional margin of 

flexibility on the estimation window of the 𝐺𝑆𝐴𝐷𝐹(𝑟) results in substantial power gains, 

consistent with multiple and periodically-collapsing episodes of explosiveness in the data (while 

the 𝑆𝐴𝐷𝐹(𝑟) test is only consistent with a single such episode in-sample). 

The GSADF approach builds on the forward expanding estimation subsample strategy of the 

SADF procedure, but instead allows the starting point of the subsample 𝑟ଵ to change. The initial 

window size 𝑟 satisfies that 𝑟 < 𝑟ଶ, while the expanding window size of the regression (over 

the normalized sample) is defined as 𝑟௪ = 𝑟ଶ − 𝑟ଵ. Incrementing the window size 𝑟ଶ ∈ [𝑟, 1] 

with one additional observation at a time over each starting point of the sample 𝑟ଵ ∈

[0, 𝑟ଶ − 𝑟], the recursive estimation of the ADF regression equation in (3) yields a sequence of 

𝐴𝐷𝐹భ

మ =
ఉೝభ,ೝమ

௦..൫ఉೝభ,ೝమ൯
 statistics. 

The Phillips et al. (2015) test statistic, called Generalized SADF (GSADF), is defined as the 

supremum value of the sequence of 𝐴𝐷𝐹భ

మ  statistics expressed as follows: 

𝐺𝑆𝐴𝐷𝐹(𝑟) = ௦௨
భ∈[,మିబ] ቄ ௦௨

మ∈[బ,ଵ] 𝐴𝐷𝐹భ

మቅ.                                            (5) 

Under the I(1) null, the limit distribution of the 𝐺𝑆𝐴𝐷𝐹(𝑟) statistic is given by 

௦௨
భ∈[,మିబ],మ∈[బ,ଵ]  

⎩
⎨

⎧భ

మ
ೢ ൣௐ(మ)మିௐ(భ)మିೢ ൧ି∫ ௐ()ௗ[ௐ(మ)ିௐ(భ)]

ೝమ
ೝభ

ೢ

భ
మ ൜ೢ ∫ ௐ()మௗ

ೝమ
ೝభ

ିቂ∫ ௐ()ௗ
ೝమ

ೝభ
ቃ

మ
ൠ

భ
మ

⎭
⎬

⎫
. Whenever 𝐺𝑆𝐴𝐷𝐹(𝑟) 

exceeds the corresponding right-tailed critical value from its limit distribution, the unit root 

hypothesis is rejected in favor of mildly explosive behavior. The rolling-window structure of the 

𝐺𝑆𝐴𝐷𝐹(𝑟) test leads to improved power in detecting recurring episodes of mildly explosive 

behavior relative to what can be achieved with the standard 𝐴𝐷𝐹
ଵ test and with the 𝑆𝐴𝐷𝐹(𝑟) 

test. 
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2.4 Panel GSADF Test 

Pavlidis et al. (2015) developed an extension of the GSADF test procedure for heterogeneous 

panels based on the panel data techniques developed by Im et al. (2003). Consider the panel 

version of the ADF regression equation in (3): 

 Δ𝑦௧
௦ = 𝛼భ,మ

௦ + 𝛽భ,మ
௦ 𝑦௧ିଵ

௦ + ∑ 𝜓భ,మ

௦,
Δ𝑦௧ି

௦
ୀଵ + 𝜖௧

௦, 𝜖௧
௦~𝑖. 𝑖. 𝑑. ൫0, 𝜎ොభ,మ

ଶ ൯,                 (6) 

where 𝑠 = 1, … , 𝑁 indexes the 𝑁 constituent time series to be tested {𝑦௧
௦}௦ୀଵ

ே , and the 

aggregated series 𝑦௧ is a linear combination of those disaggregated series. The procedure then 

tests the null hypothesis of a unit root in all 𝑁 disaggregated series {𝑦௧
௦}௦ୀଵ

ே , 𝐻: 𝛽భ,మ
௦ = 0, ∀𝑠, 

against the alternative of mildly explosive behavior, 𝐻ଵ: 𝛽భ,మ
௦ > 0 for at least one 𝑠. 

Let 𝐴𝐷𝐹భ

௦,మ =
ఉೝభ,ೝమ

ೞ

௦..൫ఉೝభ,ೝమ
ೞ ൯

 denote the test statistic for a given series 𝑠 over the subsample 

beginning in 𝑟ଵ and ending in 𝑟ଶ. Over the sequence of 𝐴𝐷𝐹భ

௦,మ for all possible 𝑟ଵ and 𝑟ଶ, we 

define the Backward SADF (BSADF) as 𝐵𝑆𝐴𝐷𝐹మ
௦ (𝑟) = ௦௨

భ∈[,మିబ] ቄ ௦௨
మ∈[బ,ଵ] 𝐴𝐷𝐹భ

௦,మቅ. The panel 

BSADF statistic can now be defined by taking the average at each time period of the BSADF 

statistics of each constituent series 𝑠 as follows: 𝑃𝑎𝑛𝑒𝑙 𝐵𝐺𝑆𝐴𝐷𝐹మ
(𝑟) =

ଵ

ே
∑ 𝐵𝑆𝐴𝐷𝐹మ

௦ (𝑟)ே
௦ୀଵ . 

Then, the definition of the panel GSADF test statistic follows naturally as the supremum of the 

panel BSADF, i.e., 

𝑃𝑎𝑛𝑒𝑙 𝐺𝑆𝐴𝐷𝐹(𝑟) = ௦௨
మ∈[బ,ଵ] ൛𝑃𝑎𝑛𝑒𝑙 𝐵𝐺𝑆𝐴𝐷𝐹మ

(𝑟)ൟ.                                  (7) 

The distribution of panel unit root tests based on mean unit root statistics is not invariant to 

cross-sectional dependence of the error terms. To deal with that, the procedure of Pavlidis et 

al. (2015) adopts a sieve bootstrap approach that is designed specifically to allow for cross-

sectional error dependence. If the panel GSADF statistic is larger than the corresponding critical 

value, we reject the null hypothesis of a unit root in favor of a mildly explosive process. 

The specification of the alternative hypothesis proposed by Pavlidis et al. (2015) allows for the 

coefficients 𝛽భ,మ
௦  to vary across each of the constituent time series and, in that sense, is a more 

flexible alternative for testing than the homogenous alternative hypothesis. Hence, the test 
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specification better captures cases in which the aggregated data inherits its explosiveness from 

some (but not all) of its constituent series. Furthermore, while the univariate GSADF test on 

aggregated data imposes a linear restriction on the 𝐻 and 𝐻ଵ hypothesis being tested, the 

panel GSADF approach tests the null that all constituent series are I(1) directly against the 

alternative that at least one displays mildly explosive behavior.5 Not surprisingly due to the 

additional flexibility of the framework that incorporates all relevant cross-sectional information 

for testing (not just the time series information), we find that such a panel statistic when data is 

available to implement it performs better in terms of power than a simple univariate GSADF 

test on the series that aggregates all constituent series. 

 

2.5 Power Loss Due to Aggregation 

Time series that display boom-bust episodes, like real house prices, display two important 

properties: First, they are nonlinear (because they burst) and, second, they are explosive during 

their boom phase. The reader is referred to Blanchard and Watson (1982), Diba and Grossman 

(1988a; 1988b), and Evans (1991) for theoretical DGPs consistent with the fundamental asset 

pricing equation that display such nonlinear and explosive dynamics (in the presence of rational 

bubbles). 

Regarding the first property, the effects of aggregating nonlinear processes (or linear with 

nonlinear processes) are, in general, unknown, as discussed in Granger and Lee (1999). This 

                                                           
5 As an illustration of the specification of the panel and univariate GSADF testing hypothesis, consider a simple 
arithmetic mean aggregator where the 𝑁 disaggregated series are {𝑦௧

௦}௦ୀଵ
ே . Therefore, the aggregated series is 

given by 𝑦௧ =
ଵ

ே
∑ 𝑦௧

௦ே
௦ୀଵ . The null hypothesis of a unit root in 𝑦௧  for any subsample can be expressed as 𝐻: 𝛽భ,మ

=
ଵ

ே
∑ 𝛽భ,మ

௦ே
௦ୀଵ = 0, while the null hypothesis of a unit root in all disaggregated series {𝑦௧

௦}௦ୀଵ
ே  imposes the stricter 

requirement that 𝐻: 𝛽భ,మ
௦ = 0, ∀𝑠. In turn, the alternative of mildly explosive behavior in 𝑦௧  for any subsample is 

expressed as 𝐻ଵ: 𝛽భ,మ
=

ଵ

ே
∑ 𝛽భ,మ

௦ே
௦ୀଵ > 0, while the alternative hypothesis tested on disaggregated data {𝑦௧

௦}௦ୀଵ
ே  

simply requires that 𝐻ଵ: 𝛽భ,మ
௦ > 0 for some (but not necessarily all) of the constituent series 𝑠. If we reject the null 

with the panel GSADF test when it is false, then it must be the case that 𝛽భ,మ
=

ଵ

ே
∑ 𝛽భ,మ

௦ே
௦ୀଵ > 0 is true and 

accordingly we should reject the null with the univariate GSADF test on aggregated data as well. However, in 
comparing the two univariate and panel GSADF tests, we often find that the ability or power of the panel test to 
detect mildly explosive behavior if such behavior truly occurs in the sample (rejecting the null when it is incorrect) 
tends to be higher than that of the univariate GSADF test. 
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implies that, even if we knew the true DGP for each individual constituent series, we may still 

not be able to infer the exact DGP for the aggregate index constructed from those constituent 

series. 

We can, nevertheless, draw inferences about the integration properties of an aggregated series 

by exploiting the second property of periodically-collapsing episodes of exuberance (i.e., of 

mildly explosive dynamics). It is well known that the combination of explosive processes with 

other explosive, unit root, and/or stationary processes results in an explosive process.6 This 

point is particularly important for unit root testing procedures because it implies that as long as 

one of the constituent series—any one of the constituent real house price indices in our 

illustrations, for example—is explosive, so will be the aggregate series. 

However, we argue that aggregation affects the performance of the (right-tailed) unit root tests 

to detect mildly explosive behavior. We often find that the empirical evidence to detect 

explosiveness is a lot stronger if we can test it directly on the affected constituent series than if 

one has to make inferences on the basis of an observed aggregate series that mixes it with 

other constituent series that do not display similar patterns of explosiveness. 

We evaluate the performance of the (right-tailed) unit root tests discussed in this section on the 

basis of their statistical power. The power of a test is defined by the probability with which the 

test correctly rejects the null hypothesis (𝐻) when the alternative hypothesis (𝐻ଵ) is true—in 

our case, that determines the ability of the test to detect deviations from unit root behavior 

whenever the data actually displays mildly explosive behavior. As the power of the test 

increases, the probability of a Type II error (a false negative) declines under the alternative 

hypothesis. 

Along this metric, our simulation findings reveal that the power of the (right-tailed) unit root 

ADF test improves when we exploit the recursive nature of the SADF specification of Phillips 

                                                           
6 In theory, the combination of explosive processes can be stationary or I(1) if the processes under consideration 
are co-explosive (see, e.g., Nielsen, 2010). Therefore, the effect of an upward explosive period in one of the 
constituent series could offset the effect of a simultaneous downward explosive period in another constituent 
series of the aggregate. Although theoretically possible, this scenario seems unlikely from a practical point of view 
in most conventional applications (a knife-edge case). 
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and Yu (2011) and especially that of the GSADF specification of Phillips et al. (2015). Simply put, 

the power loss due to aggregation worsens the already low power problem of the standard 

(right-tailed) unit root test. The recursive nature of the SADF and GSADF tests improves the 

power and, accordingly, gives these tests a better chance at detecting exuberance in the 

aggregate series. The panel GSADF test applied to disaggregated data introduces a much richer 

specification that captures the heterogeneity and cross-sectional dependencies of the 

constituent series and further improves the power of the GSADF approach.7 

To understand this, we recognize that the statistical power of the (right-tailed) unit root ADF 

test depends on a number of factors.8 First, we note that the recursive implementation of the 

SADF test and, particularly, the generalized recursive implementation of the GSADF test keep 

the full sample size invariant but lead to higher power. The recursive SADF and GSADF 

procedures lift the restriction of testing over the full sample and instead define their statistics in 

terms of the supremum of an ADF statistic sequence over many subsamples (including the full 

sample itself). Intuitively, the probability of rejecting the null when it is false (the power) should 

not be lower with the SADF/GSADF tests than the power of the (right-tailed) ADF test over the 

full sample as the performance of the (right-tailed) ADF test can always be achieved within the 

given sequence. 

Second, the magnitude of the deviation from unit root to mildly explosive behavior present in 

some of the disaggregated series data can become diluted due to aggregation. In turn, the 

smaller effect on the aggregate series lowers the power for any of the non-recursive and 

recursive (right-tailed) unit root ADF tests studied in the paper. In order to illustrate this point, 

consider a simple arithmetic mean aggregator where the 𝑁 disaggregated series are {𝑦௧
௦}௦ୀଵ

ே . 

                                                           
7 However, the practical implementation of panel testing is not always possible when aggregates exist but we lack 
the actual disaggregated data. 
8 The statistical significance is defined in terms of the probability of a Type I error (𝛼)—which is the probability of 
rejecting the null when the null is correct. Naturally, another factor that influences the power of a test is its 
statistical significance which is customarily set at 𝛼 = 5%. However, while increasing 𝛼 lowers the probability of a 
Type II error (𝛽) and therefore increases the power of the test, it also means accepting a higher risk of rejecting the 
null when the null is true (Type I error). 
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Therefore, the aggregated series is given by 𝑦௧ =
ଵ

ே
∑ 𝑦௧

௦ே
௦ୀଵ . Assume the following simple DGP 

for the constituent series (with only one of them displaying mildly explosive behavior): 

∆𝑦௧
௦ = 𝜖௧

௦, ∀𝑠 = 1, … , 𝑁 − 1,                                                        (8) 

∆𝑦௧
ே = 𝛽𝑦௧ିଵ

ே + 𝜖௧
ே, 

where 𝜖௧
௦~𝑖. 𝑖. 𝑑. (0, 𝜎௦,ଶ) for all 𝑠 = 1, … , 𝑁 with possibly cross-sectional dependence in the 

error terms, and where 𝛽 = 𝛿 − 1 is the coefficient to be tested. Hence, in this illustration, we 

see that the dynamics for the aggregate series can be expressed as: 

 ∆𝑦௧ = ቀ
௬షభ

ಿ

∑ ௬షభ
ೞಿ

ೞసభ
ቁ 𝛽𝑦௧ିଵ + 𝜖௧,                                                       (9) 

where 𝜖௧ =
ଵ

ே
∑ 𝜖௧

௦ே
௦ୀଵ  is the average error (whose distribution depends on the assumptions 

imposed on the errors for each series 𝑠). 

With this example we show that the aggregated series inherits the mildly explosive behavior of 

the constituent series 𝑠 = 𝑁, but we also see that the magnitude of the deviation from unit 

root behavior can get diluted in the aggregated series. In this case, we observe that the relative 

contribution of the constituent series 𝑠 = 𝑁 which displays mildly explosive behavior to the 

aggregate series weighs down the magnitude of the effect given by the coefficient 𝛽. Intuitively, 

the smaller effect incorporated into the aggregate series can lead to lower statistical power in 

finite samples. 

In this sense, we could achieve better performance by testing for mildly explosive behavior 

directly on the disaggregated series 𝑠 = 𝑁 or over the entire cross-section (along the lines of 

the panel GSADF of Pavlidis et al., 2015) than testing for it indirectly through the aggregated 

series. Needless to say, this is not an option when the disaggregated series are not available for 

testing. Hence, it remains an empirical question to quantify the extent of the power loss due to 

aggregation and the mitigation effects that can be obtained with the recursive SADF and GSADF 

procedures. The two simulation exercises applied to real house price data that we discuss in the 

remainder of the paper aim to answer formally those questions. 
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3. Simulation Experiments 

The empirical question of interest for the detection of periods of exuberance is: what is the 

effect of aggregation on the power of the SADF and GSADF tests in finite samples? To shed light 

on this issue, our Monte Carlo simulation procedure under the assumption of normality of the 

errors consists of the following steps: 

Step 1a. Fit sequentially to the corresponding real house price index the Augmented Dickey-

Fuller (ADF) regression equation: 

Δ𝑦௧ = 𝑎భ,మ
+ 𝛽భ,మ

𝑦௧ିଵ + ∑ 𝜓భ,మ


Δ𝑦௧ି


ୀଵ + 𝜖௧, 𝜖௧~𝑖. 𝑖. 𝑑. ൫0, 𝜎భ,మ

ଶ ൯,              (10) 

where 𝑟ଵ and 𝑟ଶ denote fractions of the total sample size that specify the starting and 

ending points of a subsample and satisfy the rule proposed by Phillips et al. (2015), 𝑟ଶ −

𝑟ଵ ≥ 0.01 + 1.8/√𝑇, and 𝑘 is the maximum number of lags. Obtain, for each time period t, 

the vector of estimated coefficients (𝑎ොభ,మ
, 𝛽መభ,మ

, 𝜓భ,మ


 , 𝑗 = 1, … , 𝑘) and the estimated 

variance of residuals (𝜎ොభ,మ
ଶ ) that correspond to the BSADF statistic. For further details on 

the BSADF, SADF, and GSADF statistics, see Phillips et al. (2015) and Pavlidis et al. (2015). 

 

Step 1b. Use the matrix of estimated coefficients and draw randomly from a normal 

distribution with mean zero and variance equal to the estimated error variance at each time 

period 𝑡 to generate artificial series from: 

Δ𝑦௧
௦ = 𝑎ොభ,మ

+ 𝛽መభ,మ
𝑦௧ିଵ

௦ + ∑ 𝜓భ,మ


Δ𝑦௧ି

௦
ୀଵ + 𝜖௧

௦, 𝜖௧
௦~𝑁൫0, 𝜎ොభ,మ

ଶ ൯.              (11) 

Note that, due to its sequential nature and the flexible window size, this procedure allows 

for very rich dynamics in the simulated constituent series that closely resemble the 

dynamics of the actual prices. 
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Step 2. Run the SADF, GSADF, and Panel GSADF tests on the artificial constituent series and 

obtain the corresponding test statistics. 

 

Step 3. Run the SADF and GSADF tests on the aggregate series (for simplicity, the aggregate 

is set equal to the average of the constituent simulated series) and obtain the 

corresponding test statistics. 

 

Step 4. Repeat steps (1b) to (3) a thousand times, and compute the power of each test as 

the number of times the value of the test statistic is greater than the 95% critical value. 

 

Technical Details: The computation of the SADF, GSADF, and panel GSADF test statistics 

requires the selection of the minimum window size 𝑟 and the maximum autoregressive lag 

length 𝑘. Regarding the minimum window size, we follow the rule of thumb of Phillips et al. 

(2015), 𝑟 = 0.01 +
ଵ.଼

√்
 where 𝑇 is the total number of observations. With respect to the 

autoregressive lag length 𝑘, we evaluate our results for the case where 𝑘 is equal to 4. Our 

findings do not appear very sensitive to the lag length specification. 

The implementation of the univariate test procedures also requires the limit distributions of the 

SADF, GSADF, and panel GSADF test statistics. These distributions are non-standard and depend 

on the minimum window size 𝑟. For the former two tests, finite-sample critical values are 

obtained through Monte Carlo simulations by generating 2000 replications of a driftless 

random walk process with 𝑁(0,1) errors. For the panel test, we set the number of bootstrap 

replications to 1000. 
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3.1 Aggregation from Local to National Real House Prices 

Our first Monte Carlo simulation exercise focuses on the U.S. housing market and its major 

metropolitan statistical areas. For the exercise, we use data on monthly house prices for the 

S&P/Case-Shiller 10-City Composite Home Price Index and its constituents, deflated by its 

corresponding local CPI. The sample covers the period from January 1987 to February 2016, 

giving a total of 350 observations. The data sources are S&P Dow Jones Indices and the Bureau 

of Labor Statistics. 

Table 1 reports the SADF and GSADF statistics for the actual S&P/Case-Shiller 10-City Composite 

Home Price Index and its constituents, as well as finite-sample critical values. According to the 

results, the null hypothesis of a unit root can be rejected at the 5% significance level for all 

metropolitan areas except for Los Angeles, for which the SADF statistic does not exceed its 

critical value. Thus, all series but one appear to exhibit exuberance during (at least) part of the 

sample period under consideration. Using the GSADF test, all series appear to display evidence 

of exuberance at the 1% significance level. Moreover, we observe that the estimated test 

statistics for the aggregated series fall inside the range of values for the constituent series. 

In accordance with the results for the actual series, the simulation results reported in Chart 1 

show that the power of the SADF and GSADF tests for the aggregate series lies between the 

lowest and highest power for the constituent series. This result implies that aggregation leads 

to power losses, since if there was no power loss then every time a test detected explosive 

dynamics in a constituent, it would also detect explosive dynamics in the aggregate. A striking 

contrast comes from looking at Boston for which the power of the SADF is 97 percent or Miami 

for which the power is 96 percent, while the power for the 10-city aggregate that includes them 

is merely 16 percent with the SADF test. By comparing the results for the two tests, the SADF 

and the GSADF tests, we observe that the GSADF test performs remarkably better than the 

SADF with very small power losses due to aggregation. In this application, the power achieved is 

somewhat lower but very close to that of the Panel GSADF test based on the disaggregated 

data. 
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Table 1. S&P/Case-Shiller 10-City Composite Home Price Index, Unit Root Test Results (Actual Data) 

Panel A: Test Statistics SADF GSADF Panel GSADF 
Boston 2.264*** 5.253***  
Chicago 2.719*** 4.946***  
Denver 1.748** 7.372***  
Las Vegas 4.791** 5.321***  
Los Angeles 1.098 3.803***  
Miami 4.703*** 5.987***  
Washington 1.793** 4.329***  
New York 1.520** 4.742***  
San Diego 1.959*** 3.740***  
San Francisco 2.493*** 3.947***  
   U.S. Composite 10 2.417*** 4.026***  
   Full Panel of 10 Cities   3.295*** 
Panel B: Critical Values SADF GSADF Panel GSADF 
90% 1.145 1.911 1.800 
95% 1.433 2.167 2.025 
99% 1.942 2.712 2.431 
Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance levels 
respectively. All results are for autoregressive lag length k=4. 
Sources: Standard & Poor's, Bureau of Labor Statistics, authors’ calculations. 
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3.2 Aggregation from National to International Real House Prices 

To provide further evidence on the effect of aggregation on the performance of both sequential 

unit root tests, in our second experiment, we repeat the same Monte Carlo simulation exercise 

using the cross-country real house price data from the Federal Reserve Bank of Dallas (Mack 

and Martínez-García, 2011). The database comes at quarterly frequency and covers 23 

countries between the first quarter of 1975 and the fourth quarter of 2015, deflated with the 

corresponding country PCE deflator.9 Table 2 reports the SADF and GSADF statistics for the 

actual aggregate real house price index and its constituent country indices, as well as the 

corresponding finite-sample critical values; and Chart 2 displays the simulation results. This 

                                                           
9 The national house price indices are those most consistent with the quarterly U.S. house price index for existing 
single-family houses produced by the Federal Housing Finance Agency. All data can be accessed publicly at: 
http://www.dallasfed.org/institute/houseprice/  
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Chart 1. S&P/Case-Shiller 10-City Composite Home Price Index, 
Simulation Results

Notes: The figure and table display the power of the SADF and GSADF tests. The nominal significance level is set at 5%. 
Sources: Standard & Poor's, Bureau of Labor Statistics, authors’ calculations.



19 
 

second set of results shows even more clearly than in the previous exercise the severe power 

loss of the SADF test due to aggregation, and the superior performance of the GSADF test over 

the SADF. However, it also points out that power losses relative to the panel GSADF test can be 

non-negligible even when using the more robust GSADF test. 

 

Table 2. Dallas Fed’s Real House Prices, Unit Root Test Results (Actual Data) 

Panel A: Test Statistics SADF GSADF Panel GSADF 
Australia 2.296*** 6.110***  
Belgium 0.904 3.450***  
Canada 0.699 4.061***  
Switzerland 1.848** 4.091***  
Germany -0.595 3.515***  
Denmark 1.279* 3.186***  
Spain 0.885 2.408**  
Finland 1.255* 2.357**  
France 1.065 2.055*  
U.K. 1.629** 3.143***  
Ireland 2.793*** 6.781***  
Italy -1.369 2.800***  
Japan 1.621** 5.013***  
S. Korea -0.541 -0.130  
Luxembourg 2.383*** 5.278***  
Netherlands -1.140 4.064***  
Norway 1.518** 2.533**  
New Zealand 1.911** 3.051***  
Sweden 1.125* 5.178***  
U.S. 1.686** 4.243***  
S. Africa -0.474 3.807***  
Croatia -0.002 2.244**  
Israel 0.936 1.849*  
   Aggregate -0.242 2.910***  
   Full Panel of 22 Countries   1.641*** 
Panel B: Critical Values SADF GSADF Panel GSADF 
90% 1.076 1.766 0.678 
95% 1.380 2.065 0.749 
99% 1.936 2.670 0.942 

Notes: *, **, and *** denote statistical significance at the 10, 5, and 1 percent significance levels 
respectively. All results are for autoregressive lag length k=4. 
Sources: Federal Reserve Bank of Dallas’ International House Price Database and authors’ calculations. 
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4. Implications for Detecting Explosiveness 

The empirical contribution of our paper is to examine the effect of cross-sectional aggregation 

on the performance of recursive (right-tailed) unit root tests—the SADF and GSADF tests, 

developed by Phillips and Yu (2011) and Phillips et al. (2015) respectively. Without loss of 

generality, we do so using available real house price data that is reported at different levels of 

aggregation across locations. We specifically investigate aggregation of local real house prices 

to national prices and aggregation of national real prices to international real prices. To the best 

of our knowledge, the role that aggregation plays on detecting periods of mildly explosive 

behavior in time series has not been examined in the literature. Furthermore, we explore the 

panel GSADF test proposed by Pavlidis et al. (2015) to exploit the cross-sectional variation in 

disaggregated data and to provide a benchmark to quantify the power loss associated with 

aggregation. 
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Chart 2. Dallas Fed's Real House Price Series,
Simulation Results

Notes: The figure and table display the power of the univariate SADF and GSADF tests and the panel GSADF. The stat. significance level is set at 5%. 
Sources: Federal Reserve Bank of Dallas’ International House Price Database and authors’ calculations.
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It is appropriate to note here that our findings are generally valid to applications based on any 

asset price index (or, for that matter, any time series) where the issue of aggregation may be 

pertinent in testing the occurrence of episodes of mildly explosive behavior. Given the wide use 

of aggregated indices, the issue of aggregation is a very important topic in financial 

econometrics with applications to the monitoring of asset markets (not just housing markets). 

The application to housing market data is particularly relevant for illustration purposes because 

housing is notoriously heterogeneous across many characteristics (including their location). It is 

also an interesting application in itself because of the significance of the housing cycle on broad 

real economic activity—the widespread boom-bust housing cycle that preceded the 2008-09 

global recession being a prime example of that. 

Asset prices in general, and real house prices in particular, are most likely characterized by a 

nonlinear DGP, displaying I(1) dynamics in some periods and explosive dynamics in others. 

Under such a scenario, the standard full-sample ADF model coefficient estimates are biased due 

to model-misspecification, and simulations based on those coefficients cannot replicate the 

behavior of actual house prices. However, the regression specification that we focus on is not 

the full-sample ADF but the more flexible recursive ADF regression specifications proposed by 

Phillips and Yu (2011) and Phillips et al. (2015). 

The beta estimates in the recursive ADF regression change over time, taking values in the 

stationary, I(1), and mildly explosive regions—these changes, in turn, can be detected to 

conventional significance levels with the SADF and GSADF tests proposed by the same authors. 

It is in this sense that this recursive ADF regressions are more flexible than the full-sample ADF 

regression, allowing our simulation exercise to better replicate very rich dynamics such as the 

ones displayed by real house prices. 

Our empirical investigation is then based on two real house price datasets that showcase at 

least two levels of aggregation across heterogeneous locations. First, we look at the 

construction of national house price indices that aggregate price data across a number of 

heterogeneous major statistical metropolitan areas of the U.S. Second, we also look at the 

construction of international real house price indices aggregating representative national 
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indices. Our analysis of the disaggregated housing data suggests that there is very strong 

evidence of exuberance within sample in both datasets. We find that by exploiting 

disaggregated data, we can more successfully detect the occurrence of such episodes of 

exuberance. 

More specifically, our findings reveal a decline in power of both the SADF and GSADF due to 

aggregation and very large differences in the performance of the two tests when applied to 

aggregated data. We argue that this may warrant increased utilization not only of 

disaggregated data but also of panel data techniques, such as the panel GSADF proposed by 

Pavlidis et al. (2015), whenever possible. Our findings also indicate that the GSADF test applied 

to aggregated data is substantially more powerful than the SADF test. Thus, we conclude that 

the GSADF test should be preferred to the SADF whenever the researcher is restricted to using 

aggregated data for detecting explosive behavior in time series. 

 

5. Concluding Remarks 

In this paper, we explore the relevance of aggregation for detecting periods of exuberance 

(mildly explosive) with two applications based on real house price data disaggregated by 

location. We find that by exploiting disaggregated data, we can more successfully identify such 

episodes. Therefore, we also recognize that the collection and analysis of locational data across 

different housing markets may be of crucial importance to monitoring housing market 

developments. We argue more generally that this may warrant increased utilization not only of 

disaggregated data but also of panel data techniques, such as the panel GSADF proposed by 

Pavlidis et al. (2015), whenever possible. 

Our findings indicate that the GSADF test applied to aggregated data is substantially more 

powerful than the SADF test and, even more so, than the standard (right-tailed) ADF test. Our 

findings suggest that the recursive implementation of the (right-tailed) unit root test is key to 

lessening the power loss associated with the use of aggregated data. Thus, the GSADF test 
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should be preferred to the SADF test (and especially to the standard ADF test) whenever the 

researcher is restricted to using aggregated data only. 
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Appendix. Supplementary Materials 

A. Recursive Implementation of the Tests: A Graphical Illustration 

In this paper we implement a number of right-tailed unit root tests designed to detect the 
presence of periods of mildly explosive behavior within sample. These tests include: 

1. ADF 

2. sup ADF (SADF), see Phillips et al. (2011) 

3. Generalized SADF (GSADF), see Phillips et al. (2015) 

4. Panel GSADF, see Pavlidis et al. (2015) 

These right-tailed unit root tests differ crucially on the recursion mechanism used in their 
implementation. In order to illustrate this, we need to review some notation first. The full 
sample of 𝑇 observations is normalized on the interval [0,1]. Here, we denote 𝑟ଵ and 𝑟ଶ as the 
corresponding fractions of the sample which define the beginning and end of a given subsample 
such that 0 ≤ 𝑟ଵ < 𝑟ଶ ≤ 1. We denote by 𝑟௪ = 𝑟ଶ − 𝑟ଵ the window size of the regression 
estimation, while 𝑟 is the required fixed initial window which satisfies that the subsample 
ending in 𝑟ଶ is such that 𝑟ଶ ∈ [𝑟, 1] (i.e., 𝑟 is the required minimum window size). 

The first test is a right-tailed version of the standard ADF unit root test. With the given notation 
for a generic recursive mechanism, the implementation of the ADF test can be represented 
graphically simply as follows: 

 

 

  

10 Sample interval

𝑟ଵ

𝑟௪ = 1
𝑟ଶ

Illustration of the ADF Procedure
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The SADF test is based on a proper recursion mechanism based of the ADF test statistics with 
an expanding window. The recursion mechanism goes as follows in this case: 

 

 

The SADF test suffers from a loss of power in the presence of multiple periodically-collapsing 
occurrances of mildly explosive behavior. As a prefered alternative, Phillips et al. (2015) suggest 
the GSADF test procedure which is a generalization of the SADF test that allows a more flexible 
recursion mechanism where the starting point 𝑟ଵ varies within the range [0, 𝑟ଶ−𝑟]. The same 
recursion mechanism is applied in the panel GSADF procedure of Pavlidis et al. (2015). Formally, 
the GSADF test recursion can be illustrated as follows: 
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The GSADF recursion mechanism adopts the following strategy: set 𝑟ଵ ∈ [0, 𝑟ଶ−𝑟] and 𝑟ଶ ∈
[𝑟, 1]; use [𝑟ଵ, 𝑟ଶ] as a moving window where 𝑟௪ = 𝑟ଶ − 𝑟ଵ is the corresponding window width 
for each subsample; and, then, vary 𝑟ଵ and 𝑟ଶ over the full sample. 

 

B. The Dataset of Real House Prices: Local and National Series 

We examine the role of cross-sectional aggregation by conducting two large simulation 
experiments. The first experiment uses monthly real house price data from the S&P/Case-
Shiller 10-City Composite Index for the 10 largest metropolitan areas in the U.S., deflated by 
their corresponding local CPI. The data is illustrated graphically here: 
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Notes: Monthly house prices for the S&P/Case-Shiller 10-City Composite Home Price Index and its 
constituents, deflated by its corresponding local CPI. The sample covers the period from January 1987 to 
February 2016.
Sources: S&P Dow Jones Indices; Bureau of Labor Statistics.
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The second experiment utilizes national-level, quarterly real house price index data for 23 
mostly-advanced economies, deflated with the corresponding country’s PCE deflator, obtained 
from the Federal Reserve Bank of Dallas’ international house price database (Mack and 
Martínez-García, 2011). The data is illustrated graphically here: 
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C. Mapping the Power Gains of the GSADF Test Procedure Over the SADF Test Procedure 

In accordance with the simulation results reported in Chart 1 for our first experiment based on 
real house prices for the major metropolitan statistical areas (MSAs) in the U.S., we summarize 
the power gains achieved by the GSADF test over the SADF test for each one of the constituent 
series in the following map: 

 

 

A striking contrast emerges from looking at Boston and Miami for which the power gain of the 
GSADF test is under 20 percent (0.2 in units) while the power gain exceeds 80 percent (0.8 in 
units) for Los Angeles (LA). By comparing the results for the two tests—the SADF and the GSADF 
tests—we observe that the GSADF test performs remarkably better than the SADF but with 
significant variation across MSAs. 
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In accordance with the simulation results reported in Chart 2 for our second experiment based 
on real house prices for the 23 countries covered by the Federal Reserve Bank of Dallas’ 
international house price database (Mack and Martínez-García, 2011), we summarize the 
power gains achieved by the GSADF test over the SADF test for each one of the constituent 
series in the following map: 

 

 

A striking contrast emerges from looking at Ireland (IE), South Korea (KR), and Norway (NO) for 
which the power gain of the GSADF test is under 20 percent (0.2 in units) while the power gain 
exceeds 80 percent (0.8 in units) for the Netherlands (NL). By comparing the results across 
tests, we confirm that the GSADF test performs much better than the SADF with national 
indexes, but still find significant variation in the realized gains across locations. 
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