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This online theory supplement has two sections. First section provides the complementary
lemmas needed for the proofs of the lemmas in Section A.2 of the paper. Second section

explains the algorithms used for implementing Lasso, Adaptive Lasso and Cross-validation.

Complementary Lemmas

Lemma S.1 Let z; be a martingale difference process with respect to Ff_ | = 0(z1—1, 2t—2, ),

and suppose that there exist some finite positive constants Cy and Cy, and s > 0 such that

sup Pr(|z;| > a) < Coexp(—Cia®), for all a > 0.
t

Let also 02, = B(2}|F; ) and 62, = T~ ST 0%, Suppose that (p = S(T?), for some
0<A<(s+1)/(s+2). Then for any 7 in the range 0 < m < 1, we have,

C(1—7)2¢2
Pe(IZE 51 > ) < o [5E].
if A > (s+1)/(s+2), then for some finite positive constant Cs,
Pr (IS0 2l > ¢r) <exp (~Cogi ™).

Proof. The results follow from Lemma A3 of Chudik et al. (2018) Online Theory Supple-

ment. ®
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Lemma S.2 Let

cp(n,8) = @ (1 - 2f(i,5)) , (S.1)

where ®71(.) is the inverse of standard normal distribution function, p (0 < p < 1) is the

nominal size of a test, and f(n,d) = cn® for some positive constants § and c. Moreover,
leta>0and 0 <b< 1. Then (I) cp(n,d) = O [ (5ln(n)] and (II) n®exp [—bc2(n, )] =
@(na72b5).

Proof. The results follow from Lemma 3 of Bailey et al. (2019) Supplementary Appendix

A =
Lemma S.3 Let x;, fort = 1,2,--- ,n, be random variables. Then for any constants m;,
fori=1,2,--- n, satisfying 0 < m; <1 and Y. m =1, we have

Pr(3oi lwi| > Co) < 320, Pr(las| > miCo),
where Cy is a finite positive constant.

Proof. The result follows from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.4 Let x, y and z be random variables. Then for any finite positive constants Cy,

C1, and Cy, we have
Pr(|lz| x [y| > Co) < Pr(|z[ > Co/Ch) + Pr(ly[ > C1),
and
Pr(jal x [y| x |2| > Co) < Pr(fa] > Co/(C1C3)) + Pr(ly| > C1) + Px(|z| > C).

Proof. The results follow from Lemma A1l of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.5 Let x be a random variable. Then for some finite constants B, and C, with
|B| > C >0, we have

Pr(lz + B| < C) < Pr(|z| > |B| - C).

Proof. The results follow from Lemma A12 of Chudik et al. (2018) Online Theory Supple-

ment. W
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Lemma S.6 Let xr to be a random variable. Then for a deterministic sequence, ar > 0,

with ap — 0 as T' — o0, there exists Ty > 0 such that for all T > Ty we have

1
Pr ( \/—x_T - 1‘ > aT> < Pr(lzr — 1| < ar).

Proof. The results follow from Lemma A13 of Chudik et al. (2018) Online Theory Supple-

ment. W

Lemma S.7 Consider random variables x; and z; with the exponentially bounded probability

tail distributions such that
81t1p Pr(|ay] > a) < Cyexp(—Cra’™), for all a > 0,
Sltlp Pr(|z:| > a) < Cyexp(—Cra™), for all o > 0,
where Cy, and C are some finite positive constants, s, > 0, and s, > 0 . Then
sup Pr(|zz] > a) < Cyexp(—Cia®/?), for all o > 0,
where s = min{s,, s, }.
Proof. By using Lemma S.4, for all o > 0,
Pr(|ziz| > a) < Pr(|ze] > o'/?) + Pr(|z| > o!/?)
So,
sgp Pr(|ziz:| > a) < Sltlp Pr(|ze| > a'/?) + sgp Pr(|z| > o!/?)

< Cpexp(—Cra**/?) 4+ Cyexp(—Cra=/?)
< Cpexp(—Cra*’?)

where s = min{s,,s.}. m

Lemma S.8 Let x, y and z be random variables. Then for some finite positive constants

Coy, and Cy, we have
Pr(|z] x [y| < Co) < Pr(lz| < Co/Ch) + Pr(ly| < Ch),

Proof. Define events 2 = {|z| x |y| < Co}, B = {|z] < Cy/C1} and € = {|y| < C;}. Then
2A € B UC. Therefore, Pr(2A) < Pr(B U ). But Pr(B U €) < Pr(MB) + Pr(€) and hence
Pr(A) <Pr(B) + Pr(¢). =m
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Lemma S.9 Let A and B be n X p and p X m matrices respectively, then
[ABlr < [[A[#[Bll2,
where ||.||r denotes the Frobenius norm and ||.||s denotes the spectral norm. Moreover,
|AB|[r < [|All2]B -
Proof.
|AB||% = tr(ABB'A’) = tr[A(BB')A’]
By result (12) at page 44 of Liitkepohl (1996),
tr[A(BB')A'] < Anax(BB')tr(AA’) = [|A|Z[|BIf3,
where A\yax(BB') is the largest eigenvalue of BB'. Therefore,
[AB| 7 < [[A[[£[IB][2-
Similarly,
|AB|7: = tr(B'A’AB) = t1[B'(A’A)B] < Anax(A'A)tr(B'B) = || A[3|B[7,
and hence
[ABlr < [[All2[[B]#-
u

Lemma S.10 Let z;; be a random variable fort=1,2,--- /N, and j =1,2,--- |N. Then,
for any dr > 0,

Pr(N=23°0, S0 |2i5] > dr) < N2sup, ; Pr(|zi;| > dr)
Proof. We know that N=237 | Zjvzl |2ij] < sup; ; |2i;]. Therefore,

Pr(N=23°0, 570 2] > dr) < Pr(sup,; |2;] > dr)
< Priul, UM, (2] > dr)] < 0, o0 Pr(|zi| > dr)
< N?sup, ; Pr(|z;| > dr).
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Lemma S.11 Consider two N x N nonsingular matrices A and B such that
B~ [l2]]A = Bl|r < 1.

Then

[B3IA ~ Bl
I~ [B1.[A B[

ATt =B p <
Proof. By Lemma S.9,
AT =B = [|[AT(B — A)B | < [A 2| B — Al p[IB]2

Note that

JA7 2 = [A" =B~ + B[, < A = B[}, + B[
<A™ =B e+ | B,

and therefore,

AT =B < (AT = B p+ [B72)[B = Allp[B™l2.
Hence,

IA™ =B |p(1 = [IB7Y|2[|B — Allr) < B2 B — Allr.

Since ||B7!|2]|B — Al|r < 1, we can further write,

IB~'[3|A — B||r
— |IB7Y[2]|]A = B||r

AT =B p < 1
]

Lemma S.12 Let 3 be an estimator of a N x N symmetric invertible matrix 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pr(|64; — 04| > dr) < exp(—=CoTd%), for any dr > 0,
i,

where 0;; and 6;; are the elements of 3 and 3 respectively. Then, for any by > 0,

- 0
Pr(|X =7 p>br) < N?exp [—C’ I ] +
. =) NSRS e + o)

T
N2 —Cy— .
e"p( °N2||2‘1|!%)
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Proof. Let Ay = {|Z7Y2]| £—Z||p <1} and By = {Hffl —37Y|F > br}, and note that
by Lemma S.11 if Ay holds we have

=318 = Sle
1= = € = S

~—1 _
I == <

Hence

TRIE - =
PI‘(BN’.AN) S Pr ( || Uﬁ” = HF > bT>
L= [IZ7 o)X — Z|r

=Pr||X—-X|F> — — 1
=0+ br)

1/2
o Y (64— Uij)2> . Therefore,

N 1/2
Pr(By|Ay) < P gl | > -
Byl Ay) < Pr (ZZ@J “ﬂ) PRECERCS

N
b2
=P Ai‘ — 05 2 > L
rlzz<g] 75) > TSR s + br)?

By Lemma S.10, we can further write,

b2
Pr(By|Ay) < N?su Pr{&i'—ai-2> T }
(BulAn) < NsupPr (0 = 04)" > (s =Ttis ], + br)?
br
= N?su Pr{&i-—ai‘ > ]
wp P19 = ol > s =L + )

< N2 exp |:_CO 1 2Tb%_1 ‘|
NAZZUE 2 + br)?
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Furthermore,

Pr(Ay) = Pr(| =[]~ | r > 1)
= Pr([|Z - Z[lr > [IZ7")

N N 1/2
= Pr (Z > (64— Uv:j)2> > [[=75T

i=1 j=1
:N N
=Pr > > (65— o) > [IZ715>
| i=1 j=1
< N?supPr {(ffi‘ —0y) > ;_]
ij T T N =T

1
< N?supPr [|6i- — o] > —_}
i TV NIETY,

T
< N? —Co———>
< e | "N zlnﬂ
Note that
Pr(By) = Pr(By|An) Pr(An) + Pr(By|AS) Pr(A%Y),
and since Pr(Ay) and Pr(By|.A% ) are less than equal to one, we have

Pr(By) < Pr(By|Ay) + Pr(A%).

Therefore,

Th? T
Pr(Byy) < Nexp | ~Co 10 vt |- o .
N E TR + br)? N

Lemma S.13 Let 3 be an estimator of a N x N symmetric invertible matriz 3. Suppose

that there exits a finite positive constant Cy, such that

sup Pr(|6;; — 0ij| > dr) < exp [—C’O(TdT)S/S”} , for any dr > 0,

1,J

where 0;; and 6;; are the elements of X and 3 respectively. Then, for any by > 0,

0
Ne/s+2|| S5/ F2 (|| S5 + by)s/s+2
Ts/s+2
N2 exp _CO .
( Ns/s+2||s7h||/+

S.7
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Proof. The proof is similar to the proof of Lemma S.12. =

Lemma S.14 Let {zy}l, fori = 1,2,--- N and {z;;}1, for j = 1,2,--- ,m be time-
series processes. Also let Fjj = 0(vi, Tig-1,---) fori=1,2,--- N, Fi, = 0(2js, 21, ")

forj=1,2,--- m, F = UL\ Fj, Ff = UL\ F},, and Fy = FF U F;. Define the projection

regression of Ty on zy = (211, 2o, -+, Zmy) QS

!/
Tip = 2y p + Vit

where WY, p = (Y11, Voips s Ymir) 18 the m X 1 vector of projection coefficients which is

-1
equal to [T‘l STLE (ztzg)] (TS B(zwq)]. Suppose, Blayzy — B(zgas)|Fia] =0
for all i,i" = 1,2,--- | N, Elzjizje — E(zjezje)|Fica] = 0 for all j,j' = 1,2,--- ,m, and
Elzjtxi — E(zjixi)|Fio1]) =0 for all j =1,2,--- ,;m and for alli=1,2,--- ,N . Then

E [vyvie — B(vavie) | Fi-1] = 0,
forall j,5'=1,2,--- /N,

E [virzje — B(viezje)| Feoa] = 0,
foralli=1,2,--- N andj=1,2,--- ., m, and

T3 B(vizy) =0,
foralli=1,2,--- N andj=1,2,--- ,m.

Proof.

B(vigva Fi1) = B(xazid Fi1) — B(ouzi| Fr1)Yy p—
B(zinzy|Fi1)0; 7 + ¥ 7 B(2e2| Fir 1) 1
= B(wyxin) — B(xuzi) Yy r — Blriz),; o+

@b; E(zz;) Yy = E(vavin).

E(Vitzjt|ft—1) = E(xitzjt|ﬂ—l) - E<Zgzjt|ﬂ—1)¢i,T
= E(zizjt) — E(Zézjt)q/’i,T = B(vizit).

T Bviz) =T Y Blaaz) — 1#;}1 ST E(z2)]
= Til Zle E(:(:itzt) — Til Zle E(I’Z’tzt) =0.

Lemma S.15 Let {z;}]_, fori=1,2,--- N and {z;:}]_; forj =1,2,--- ,m be time-series
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processes. Define the projection regression of iy on zy = (211, 22ty -+ 5 Zmt) S

!
Tit = Zﬂ/&',:ﬁ + Vi

where ¥, p = (V11 Yoz, s Ymir) 18 the m X 1 vector of projection coefficients which
-1

is equal to [T‘l ST E (ztz;)] [T B(zx)]. Suppose that only a finite number of

elements in v, r is different from zero for alli =1,2,--- | N and there exist sufficiently large

positive constants Cy and Cy, and s > 0 such that
(i) sup,, Pr(|z| > a) < Coexp(—Cira®), for all a >0, and
(i) sup;, Pr(|zy| > o) < Coexp(—Cia®), for all a > 0.
Then, there exist sufficiently large positive constants Cy and Cy, and s > 0 such that

sup Pr(|vy| > a) < Chexp(—Cha®), for all a > 0.
it

Proof. Without loss of generality assume that the first finite ¢ elements of v, ;- are different

from zero and write
Tip = 2521 ¢j@',Tth + Vig.
Now, note that
Pr(|val > @) < Pr (Joal + X4 02l > ).
and hence by Lemma S.3, for any 0 < m; <1, 7 =1,2,--- £+ 1 we have,

Pr(jval > a) < 30 Pr([¢rzil > mj0) + Pr(jeg| > mena)
¢ _
— ijl Pr (|zjt| > |¢ji,T| 17Tja) + Pr (|zy| > me1a0)

< Usup;, Pr(|z;| > |7 'n*a) + sup;, Pr (x| > 7*a) .

where o7 = sup; j{1;; r} and 7 = infjc1 5 .. ¢11{7m;}. Therefore, by the exponential decaying

probability tail assumptions for z;; and z;; we have
Pr(|vy| > a) < €Chexp(—Chia’) + Coexp(—Cha’),
and hence there exist sufficiently large positive constants Cy and 'y , and s > 0 such that

sup Pr(jvy| > a) < Coexp(—Cha®), for all a > 0.
it
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Lemma S.16 Let {z;}, fori = 1,2,--- |N and {z¢}_, for { = 1,2,--- ,m be time-

series processes and m = S(T). Also let F& = o(vi, vig1,-+-) fori=1,2,--- N, Ff =
o (2o, 2041, ) for 0 =1,2,--+ m, Ff = UN,F& Ff =UL, Fi, and F, = FFUF. Define
the projection regression of xix on zy = (z1t, 2at, =+ Zmt) QS

!
Tit = Zt¢i,T + Vit

where Y, p = (Vyi7, Yaig, s i)' 18 the m x 1 vector of projection coefficients which is
-1

equal to [T‘l EtT:l E (ztz;)} (71 23:1 E(zixi)]. Suppose, Blryxj — E(xyxj)|Fi_1] = 0
foralli,j=1,2,--- N, Blzuze—E(zpze)| Fio1]) =0 forall 0,0 =1,2,--- ;m, and E[zpxy—
E(zgzi)| Feo1] =0 for all € =1,2,--- ,m and for all i = 1,2,--- | N. Additionally, assume
that only a finite number of elements in ¥, is different from zero for all i = 1,2,--- | N

and there exist sufficiently large positive constants Cy and Cy, and s > 0 such that
(i) sup,; Pr(|ze| > o) < Coexp(—=Chra®), for all a >0, and
(ii) sup;; Pr(|zy| > a) < Coexp(—Cra®), for all a > 0.

Then, there exist some finite positive constants Cy, C and Co such that if d < A\ <
(s+2)/(s+4),

Pr(|x;M.x; — E(vjv;)| > (r) < exp(—=CoT™'(T) + exp(—C1T)

and if A > (s +2)/(s+4)
Mox. — (. v s /(s) G
Pr(lx;M.x; — E(vv;)| > (r) < exp(=Colp ") + exp(=CiT™?)

foralli,j=1,2,--- N, where v; = (vi1, Vig, -+ ,Vir)', Xi = (Tir, Tia, - -+, Tir)', and M, =
I- T_IZEA]Z_:Z’ with Z = (21,22, ,z7) and 3., = T ] (z,2}).
Proof.
Pr{xiM.x; — E(vjv;)| > (7] = Pr([[viM.v; — E(vv;)| > (7
= Pr [|V§Vj ~E(vjy)) - T"WZS 2, - T"WZ(S.. - 52 > CT]
where 3., = B[T~' Y. (:2})]. By Lemma S.3, we can further write

Prix;M.x; — E(viv))| > (7]
< Pr{lviy; — B(vjv;)| > miCr) + Pr(|T v ZE ] 2] > maCp)+

-

Pr |:|T_1V;Z(Ezzl - E;zl)Z/VjD > 7T3CT :
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where 0 < m; < 1 and Zle m; = 1. By Lemma S.9,
Pr(|T™WiZ3 2y > malr) < Pr(|ViZ| plIZ2 121 Z'v5]|r > m2(T),
and again by Lemma S.4, we have

Pr(|T"WZXE ' Z'v;| > maly)
< Pr(|Viz]r > (2215 m PGP T2) + Pr(| 2y e > 12205 P PGP T ),

Similarly, we can show that

Pr(TWZ( £.. — S20Z'v)| > m3(r)
A —1
< Pr(|viZl|Fl|E.. — S2IFIZv, ]l r > 73¢,T)
<Pr([S2) — B2 r > 07¢r) + Pr(WiZllr > 6 °TY?)

z

+ Pr(| 2| p > w328, °TY?)

where dr = ©(T) with 0 < o < .
Note that Pr(||Z'v||p > ¢) = Pr(|Z'vi|% > ) = Pr[>0 (O vizu)? > 2], where ¢

is a positive constant. So, by Lemma S.3, we have
Pr(||Z'vil|r > ¢) < 320, Pr(3 -, vieza)® > m™' ¢

Hence, Pr(|Z'vi|r > ¢) < S0, Pr(| o1, viezu| > m~'/%c). Also, by Lemma S.14 we have

Zle E(vitze) = 0 and hence we can further write
Pr([|Z'vi|lp > ¢) < 37, Pr{] Zthl[VitZ& — B(virzer)]| > m~"2c}.

Note that ||3.}||2 is equal to the largest eigenvalue of 3! and it is a finite positive constant.

So, there exists a positive constant C' > 0 such that,

Pr(|x;M.x; — E(viv;)| > (r)
< Pr{| X, vavj — Bvavy)]| > CT }+
Sy Pr{| Xy vivze — B(viza]| > CTY*A274/2 4
Sy Pr{ Y iz — B(vjizal| > CTY2H2-42) 4
S Pr{| o iz — B(vizal| > CTY?0/2-d2)
> i Pr{] Zthl[VjtZZt — B(vji20)| > CTV>/272 )4
Pr(|2) - 57 > 07'¢r)

z
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Let

kri(h,d) = ZPr{] Z Vizey — B(vize]| > OTY/2Hnr/2= d/2} for h = \, v,

{=1 t=1

and ¢ = 1,2,...,N. By Lemmas S.7, S.14, and S.15, we have v,v; — E(vyv;,) and vyzy —

E(vizi) are martingale difference processes with exponentially bounded probability tail,

5. So, depending on the value of exponentially bounded probability tail parameter, from

Lemma S.1, we know that either
wri (hd) < mexp [ © (T")]

or
ki (h,d) < mexp [_ o (Ts(1/2+h/2—d/2)/(s+2))] 7

for h = A\, a. Also, depending on the value of exponentially bounded probability tail para-
meter, from Lemmas S.12 and S.13 we have,

T(s—?g?T } N
m? SIS 2 + 077 ¢r)?

T
m? exp( Co 2—)
=203

(T(5_1C )s/s+2 N
ms/erZH E ”s/s+2(H2 |’2+5 CT)s/sH

) Ts/s+2
m“exp [ —C )
p Oms/8+2|‘2 |’S/S+2

Pr([S. — =2 e > 07'¢r)
[_ =) (Tmax{lf2d+2(/\fa),172d+)\7a,172d})}_i_

Pr(|$2 —EWM>5Cﬂ<mem[C7

or

Pr(|S.) — S e > 07'¢r) < m? eXp[ Co

Therefore,

< mexp
m exp[— © (T*727)],
or,
Pr(|S.. — =2 e > 07Cr)
< mexp|[— © (Tstmax{l=dtr-al=d})/(s+2)y)
m exp[— © (Ts(l—d)/(s—i-Q))]'
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Setting d < 1/2, a = 1/2, and A > d, we have all the terms going to zero as T' — oo and

there exist some finite positive constants C; and C5 such that
kri (A d) < exp (—ClTCQ) , ki (o, d) < exp (—C’lTCQ) )
and
Pr(|S.; — B lr > 07'Cr) < exp(~CiT®).
Hence, if d < XA < (s +2)/(s +4),
Pr(|x;M.x; — E(viv;)| > (7) < exp(—CoT () + exp(—C1T),
and if A > (s +2)/(s +4),

Pr(jx/M.x; — B(vw;)| > (7) < exp(—CoCil ™) + exp(—CiT%),

where Cy, C and C5 are some finite positive constants. m

Lasso, Adaptive Lasso and Cross-validation algorithms

This section explains how Lasso, K-fold cross-validation and Adaptive Lasso are implemented

in this paper. Let y = (y1,%2, - ,yr) be a T x 1 vector of target variable, and let Z =

(21,22, -+ ,2z7) be a T x m matrix of conditioning covariates where {z;, : ¢t = 1,2,--- T}
are m X 1 vectors and let X = (x1,Xa,--- ,x7) be a T'x N matrix of covariates in the active
set where {x; :t =1,2,--- ,T} are N x 1 vectors.

Lasso Procedure

1. Construct the filtered variables ¥ = M,y and X = M,X = (X10, X290, ---s XNo), Wwhere
Mz = IT — Z(Z’Z)_1Z’, and iio = (i’ﬂ, Z%ig, cee ;i'iTy-
2. Normalize each covariate X;o = (Tj1, Tin, -+, Tyr) by its by norm, such that

Sk

Xy = Xio/||Xio |2,

where ||.||a denotes the s norm of a vector. The corresponding matriz of normalized

covariates in the active set is now denoted by X*.

~

3. For a given value of ¢ > 0, find 4,(¢) = [11.(#); V2u (@), -+ s Vnva (@) such that

7:(p) = angmin { |5 — X313 + el |

x
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where ||.||1 denotes the ¢1 norm of a vector.
4. Divide 4:,(p) fori=1,2,--- N by {5 norm of the X;, to match the original scale of

X0, namely set

Yie(9) = Vin () /1Ko |2,

~

where Y, (©) = [F1:(©), You (©), -, Yne ()] denotes the vector of scaled coefficients.

~

5. Com]jute ’?z(@) = [&17;(@)7722(90)7 e 7&mz<90)], by ’?z((p) = (Z,Z)_lz,é(gp) where é(gp) =
y — XH.(0).

For a given set of values of ¢’s, say {¢; : j = 1,2,--- , h}, the optimal value of © is chosen

by K-fold cross-validation as described below.
K-fold Cross-validation

1. Create a T x 1 vector w = (1,2,--- | K,1,2,--- | K,---) where K is the number of
folds.

2. Let w* = (wi,ws, - ,w;) be a T x 1 vector generated by randomly permuting the

elements of w.

3. Group observations into K folds such that

g.={t:t€{1,2,--- T} and w} =k} fork=1,2,--- | K.

4. For a given value of ¢; and each fold k € {1,2,--- | K},

(a) Remove the observations related to fold k from the set of all observations.

(b) Given the value of ¢;, use the remaining observations to estimate the coefficients

of the model.

(c) Use the estimated coefficients to compute predicted values of the target variable
for the observations in fold k and hence compute mean square forecast error of

fold k denoted by MSFEy(p;).

5. Compute the average mean square forecast error for a given value of ¢; by

MSFE(p;) = ZMSFEk(goJ) /K.

k=1
6. Repeat steps 1 to 5 for all values of {@; :j =1,2,--+ ,h}.

S.14



7. Select p; with the lowest corresponding average mean square forecast error as the op-

timal value of p.

In this study, following Friedman et al. (2010), we consider a sequence of 100 values of
©’s decreasing from ¢, to ¢, on log scale where ¢, .. = max;—;2.. n {\Zthl f;‘tg]t|} and
Omin = 0.001¢, ... We use 10-fold cross-validation (K = 10) to find the optimal value of ¢.

Denote 4, = 9,(p,,) where ¢, is the optimal value of ¢ obtained by the K-fold cross-

validation. Given 4,, we implement Adaptive Lasso as described below.
Adaptive Lasso Procedure

1. Let S = {i : i € {1,2,--- ,N} and ¥;, # 0} and Xs be the T x s set of covari-
ates in the active set with 7, # 0 (from the Lasso step) where s = |S|. Addition-
ally, denote the corresponding s x 1 vector of mnon-zero Lasso coefficients by 4, s =
(Va5 Vozss > Vsas)-

Ak Ak

2. For a given value of v > 0, find 8, 5(4) = [51, 5(10), 83,5 (0), -+ 1 3g ()] such that

Ak

8, s(w) = argmin {|I§ — Xsdiag(3,.5)8 slI3 + 185l }
z,8

where diag(¥,s) is an s X s diagonal matriz with its diagonal elements given by the

corresponding elements of ¥, s-

3. Post multiply 3; s(¥) by diag(9,s) to match the original scale of Xs, such that

%

3z,s(¢) = diag(ﬁ’z,S)(sm,S(l/))‘

The coefficients of the covariates in the active set that belong to S¢ are set equal to

-

zero. In other words, 6, sc(1)) =0 for all ¢ > 0.

~ A~

4. Compute 8.(10) = [01(¥), 00 (¥), - -+, Oz (V)] Dy 8.(0) = (Z'Z) 1 Z'&(1)) where &(1p) =
y— X$3$,S(¢)'

As in the Lasso step, the optimal value 1 is set using 10-fold cross-validation as described

before.'?

10To implement Lasso, Adaptive Lasso and 10-fold cross-validation we take advantage of glmnet package
(Matlab version) available at http://web.stanford.edu/ hastie/glmnet_matlab/
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