Financial Stimulus and Microfinance Institutions in Emerging Markets

Carlos Burga Walter Cuba Eduardo Díaz Elmer Sánchez
PUC-Chile Central Reserve Bank of Peru Central Reserve Bank of Peru Central Reserve Bank of Peru

CEMLA/Dallas FED Financial Stability Workshop
December 1, 2023

The views expressed herein are those of the authors and do not necessarily reflect those of the Central Reserve Bank of Peru
Motivation

• Financial stimulus policies are usually implemented through the banking sector.
 • Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms.
• Financial stimulus policies are usually implemented through the banking sector
 • Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms
• Many countries have promoted the growth of microfinance institutions
 • Reach out small and young borrowers
• Financial stimulus policies are usually implemented through the banking sector
 • Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms

• Many countries have promoted the growth of microfinance institutions
 • Reach out small and young borrowers

• However, their participation in financial stimulus programs is still limited
 • High operational costs, less sophisticated institutions
Motivation

- Financial stimulus policies are usually implemented through the banking sector
 - Banks are heterogeneous in their portfolios: e.g., big banks attend bigger firms
- Many countries have promoted the growth of microfinance institutions
 - Reach out small and young borrowers
- However, their participation in financial stimulus programs is still limited
 - High operational costs, less sophisticated institutions
- Whether promoting the participation of MFIs is desirable or not is an empirical question

Target small firms with ↑ needs of ext. financing vs. ↑ leverage of opaque firms + ↓ screening incentives
 \[> 0 \quad \text{vs.} \quad < 0 \quad + \quad < 0 \]
This paper:

What are the effects of Loan Guarantee Programs (LGP) on financial stability?

What is the role of micro-finance institutions (MFIs) in shaping the aggregate effects of LGP?
This paper:
What are the effects of Loan Guarantee Programs (LGP) on financial stability?
What is the role of micro-finance institutions (MFIs) in shaping the aggregate effects of LGP?

Context & Empirical approach:
Reactiva Perú, a program of loan guarantees to help firms dealing with Covid-19 restrictions
- Program represented 8% of GDP, key role of MFIs in bancarization, detailed MFIs credit data and balance sheet information

Tracing the effects of loan guarantees on small firm lending in a diff-in-diff setting
- Bank shock \Rightarrow credit supply \Rightarrow firms’ delinquency rates

Mapping firm-level elasticities to allocation of loan guarantees across financial institutions
Empirical findings

Average effects:

• More treated banks expand credit supply relative to less treated ones after the program (1 SD ⇒ ↑ 7%), totally driven by LG, while normal loans decline (1 SD ⇒ ↓ 10%)

• Firms attached to highly treated banks increase total outstanding credit (1 SD ⇒ ↑ 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Heterogeneous effects and the role of MFIs:

• Smaller firms are more responsive in terms of delinquency

• Increasing credit by 10% reduces prob. of repayment delay in 5 ppts (vs. 1 ppts for larger firms)

• MFIs provide more guarantees to smaller firms: 52% of their LGP portfolio vs. 21% for big banks

• Limited participation: 52% of pre-Covid debt and 30% of guarantees

BoE: decline in delinquency 4 ppts without MFIs and 5 ppts with MFIs - key assumption: homogeneity within size-group
Empirical findings

Average effects:

• More treated banks expand credit supply relative to less treated ones after the program (1 SD ⇒ ↑ 7%), totally driven by LG, while normal loans decline (1 SD ⇒ ↓ 10%)

• Firms attached to highly treated banks increase total outstanding credit (1 SD ⇒ ↑ 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Heterogeneous effects and the role of MFIs:

• Smaller firms are more responsive in terms of delinquency
 - Increasing credit by 10% reduces prob. of repayment delay in 5ppts (vs. 1ppts for larger firms)

• MFIs provide more guarantees to smaller firms: 52% of their LGP portfolio vs. 21% for big banks

• Limited participation: 52% of pre-Covid debt and 30% of guarantees
Empirical findings

Average effects:

- More treated banks expand credit supply relative to less treated ones after the program (1 SD ⇒ ↑ 7%), totally driven by LG, while normal loans decline (1 SD ⇒ ↓ 10%)
- Firms attached to highly treated banks increase total outstanding credit (1 SD ⇒ ↑ 10%), reduce normal debt (25%), and are less likely to exhibit repayment delays (3 ppts)

Heterogeneous effects and the role of MFIs:

- Smaller firms are more responsive in terms of delinquency
 - Increasing credit by 10% reduces prob. of repayment delay in 5ppts (vs. 1ppts for larger firms)
- MFIs provide more guarantees to smaller firms: 52% of their LGP portfolio vs. 21% for big banks
- Limited participation: 52% of pre-Covid debt and 30% of guarantees

BoE: decline in delinquency 4ppts without MFIs and 5ppts with MFIs
- key assumption: homogeneity within size-group
Theoretical results

Building blocks:

• Bank profits depend on **firm characteristics** and **poaching probability**
 • cash-in-hand, initial debt

• Banks trade-off **client size** and **treatment effect**

• Two types of banks: Big banks and MFIs

• Calibrated model: **size-dependent** average treatment effect + Banks **distribution of clients**
Theoretical results

Building blocks:

- Bank profits depend on firm characteristics and poaching probability
 - cash-in-hand, initial debt

- Banks trade-off client size and treatment effect

- Two types of banks: Big banks and MFIs

- Calibrated model: size-dependent average treatment effect + Banks distribution of clients

Results and counterfactuals:

- Private allocation not necessarily optimal, depends on poaching & bank future profits from clients

- 30% gains from MFIs observed participation in terms of aggregate debt in default

- Negligible gains from further increasing MFIs’ participation
Literature

Loan guarantees

- **Heterogeneous effects on delinquency rates and optimality of credit allocation**

Financial stimulus in recessions

- **Role of micro-finance institutions in shaping the allocation loan guarantees and aggregate effect on financial stability**

Microfinance institutions in emerging markets

- **MFIs participation in a large scale program of guarantees in a global recession**
Data & Empirical Framework
Program of guarantees: Reactiva Perú

- Government guarantees on private bank loans \([\text{average} = 97\% , \text{median} = 98\%]\)
 - Stimulus equivalent to 29\% of pre-covid total credit and 8\% of GDP

- Allocated through **first-price auctions** where banks bid on interest rates

- Auctions for different **types of loans**
 - Loans to **micro-firms, small firms**, medium-size firms, large firms, corporations

- High **operational costs** limited MFIs from participating in the program

- The Central Bank launched **auctions only for MFIs**, increasing their participation
Program of guarantees: Reactiva Perú

- Government guarantees on private bank loans [average = 97% , median = 98%]
 - Stimulus equivalent to 29% of pre-covid total credit and 8% of GDP

- Allocated through first-price auctions where banks bid on interest rates

- Auctions for different types of loans
 - Loans to micro-firms, small firms, medium-size firms, large firms, corporations

- High operational costs limited MFIs from participating in the program

- The Central Bank launched auctions only for MFIs, increasing their participation

- **Data:**
 - Credit registry: Outstanding debt at the bank-firm level in 2019-2021
 - Covid-19 relief funds: Loan guarantees at the bank-firm level in 2020-2021
Bank level exposure

- Exploit differences in banks’ takeover of guarantees for each type of loan k

 \[
 \text{Treatment}_{bk} = \frac{\text{Share of Covid-19 Loans}_{bk} - \text{Share of Total Loans}_{bk,0}}{\text{Share of Covid-19 Loans}_{bk} + \text{Share of Total Loans}_{bk,0}}
 \]

- Focus: small and micro credit

Reimbursement shock (Granja et al., 2022)
Bank level exposure

• Exploit differences in banks’ takeover of guarantees for each type of loan k

$$Treatment_{bk} = \frac{\text{Share of Covid-19 Loans}_bk - \text{Share of Total Loans}_bk}{\text{Share of Covid-19 Loans}_bk + \text{Share of Total Loans}_bk}$$

• Focus: small and micro credit

Reimbursement shock (Granja et al., 2022)
Bank level exposure

• Exploit differences in banks’ takeover of guarantees for each type of loan k

$$\text{Treatment}_{bk} = \frac{\text{Share of Covid-19 Loans}_{bk} - \text{Share of Total Loans}_{bk,0}}{\text{Share of Covid-19 Loans}_{bk} + \text{Share of Total Loans}_{bk,0}}$$

• Focus: small and micro credit

Reimbursement shock (Granja et al., 2022)
Bank level exposure

- Exploit **differences in banks’ takeover of guarantees for each type of loan** k

 \[
 \text{Treatment}_{bk} = \frac{\text{Share of Covid-19 Loans}_{bk} - \text{Share of Total Loans}_{bk,0}}{\text{Share of Covid-19 Loans}_{bk} + \text{Share of Total Loans}_{bk,0}}
 \]

- Focus: small and micro credit

Reimbursement shock (Granja et al., 2022)
Empirical Results
Loan-level effects: Increasing total credit

\[\ln Y_{ibt} = \beta \times \text{Treatment}_b \times \text{Post}_t + \delta_{ib} + \delta_{q(b),t} + \delta_{it} + u_{ibt} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln_total_loans</td>
<td>ln_normal_loans</td>
<td></td>
</tr>
<tr>
<td>Treatment_b × Post_t</td>
<td>0.073***</td>
<td>-0.098***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Observations</td>
<td>19,387,365</td>
<td>18,927,164</td>
</tr>
<tr>
<td>Firm-bank FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm-MFI-time FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ban size-MFI-time FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Standard errors clustered at the bank-level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** p<0.01, ** p<0.05, * p<0.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Loan-level effects: Decline in normal loans

\[\ln Y_{ibt} = \beta \times \text{Treatment}_b \times \text{Post}_t + \delta_{ib} + \delta_{q(b),t} + \delta_{it} + \epsilon_{ibt} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln_total_loans</td>
<td>ln_normal_loans</td>
<td></td>
</tr>
<tr>
<td>Treatment_b\times\text{Post}_t</td>
<td>0.073***</td>
<td>-0.098***</td>
</tr>
<tr>
<td></td>
<td>(0.022)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>Observations</td>
<td>19,387,365</td>
<td>18,927,164</td>
</tr>
<tr>
<td>Firm-bank FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm-MFI-time FE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ban size-MFI-time FE</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Standard errors clustered at the bank-level

*** p<0.01, ** p<0.05, * p<0.1

The program increased total credit, partially crowding out the normal activity of banks
Firm-level effects: Total credit increases for better connected firms

\[\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln_{\text{total loans}})</td>
<td>0.098***</td>
<td>-0.245***</td>
<td>-0.031***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>(\ln_{\text{normal loans}})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln_{\text{delinq}})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Observations: 12,478,501, 12,324,192, 12,478,501
- Firm FE: ✓ ✓ ✓
- Firm size-Year FE: ✓ ✓ ✓
- Age-Year FE: ✓ ✓ ✓
- Industry-Year FE: ✓ ✓ ✓
- City-Year FE: ✓ ✓ ✓
- Risk-Year FE: ✓ ✓ ✓

Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1

The program expanded credit supply and reduced repayment delays.

- Need of external financing
- Risk-shifting / weak screening

![Graph showing the change in credit over time](image-url)
Firm-level effects: Decline in normal loans

\[\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ln_total_loans</td>
<td>ln_normal_loans</td>
<td>ln_delinq</td>
</tr>
<tr>
<td>Exposure_i x Post_t</td>
<td>0.098***</td>
<td>-0.245***</td>
<td>-0.031***</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,478,501</td>
<td>12,324,192</td>
<td>12,478,501</td>
</tr>
<tr>
<td>Firm FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm size-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Age-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industry-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>City-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Risk-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1
Firm-level effects: Better connected firms are less likely to delay in repayment

\[\ln Y_{it} = \theta \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + u_{it} \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln_total_loans</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln_normal_loans</td>
<td>0.098***</td>
<td>-0.245***</td>
<td>-0.031***</td>
</tr>
<tr>
<td>ln_delinq</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,478,501</td>
<td>12,324,192</td>
<td>12,478,501</td>
</tr>
<tr>
<td>Firm FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm size-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Age-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industry-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>City-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Risk-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Standard errors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clustered at the industry-level</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

The program expanded **credit supply** and reduced **repayment delays**
- Need of external financing >> risk-shifting / weak screening
Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

\[
\text{Delinquency}_{it} = \beta_2 \times \ln \text{Loans}_{it} + \delta_i + \delta_{x(i),t} + u_{1,it}
\]

\[
\ln \text{Loans}_{it} = \rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + v_{2,it}
\]
Heterogeneity and Allocation

Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

Delinquency\(_{it}\) = \(\beta_2 \times \ln \text{Loans}_{it} + \delta_i + \delta_{x(i),t} + u_{1,it}\)

\(\ln \text{Loans}_{it} = \rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + v_{2,it}\)

<table>
<thead>
<tr>
<th>Variable</th>
<th>All firms</th>
<th>Bottom Quintiles</th>
<th>Top Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td>In total loans</td>
<td>-0.317***</td>
<td>-0.521***</td>
<td>-0.143***</td>
</tr>
<tr>
<td></td>
<td>(0.030)</td>
<td>(0.024)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,478,501</td>
<td>9,548,762</td>
<td>2,929,739</td>
</tr>
<tr>
<td>Firm FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm size-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Age-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industry-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>City-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Standard errors clustered at the industry-level

*** p<0.01, ** p<0.05, * p<0.1
Heterogeneity and Allocation

Heterogeneity: Role of need of external financing. Are smaller firms more sensitive?

Delinquency, it = \beta_2 \times \ln \text{Loans}_{it} + \delta_i + \delta_{x(i),t} + \epsilon_{1, it}

\ln \text{Loans}_{it} = \rho_2 \times \text{Exposure}_i \times \text{Post}_t + \delta_i + \delta_{x(i),t} + \epsilon_{2, it}

Table: Regression Results

<table>
<thead>
<tr>
<th></th>
<th>All firms</th>
<th>Bottom Quintiles</th>
<th>Top Quintile</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln total loans</td>
<td>-0.317*** (0.030)</td>
<td>-0.521*** (0.024)</td>
<td>-0.143*** (0.010)</td>
</tr>
<tr>
<td>Observations</td>
<td>12,478,501</td>
<td>9,548,762</td>
<td>2,929,739</td>
</tr>
<tr>
<td>Firm FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Firm size-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Age-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Industry-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>City-Year FE</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Table: Financial Institution Distribution

<table>
<thead>
<tr>
<th>Financial institution</th>
<th>Type of client</th>
<th>Share of pre-Covid debt</th>
<th>Share of guarantees</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFI</td>
<td>Bottom Quintiles</td>
<td>.29</td>
<td>.52</td>
</tr>
<tr>
<td></td>
<td>Top Quintile</td>
<td>.71</td>
<td>.48</td>
</tr>
<tr>
<td>non-MFI</td>
<td>Bottom Quintiles</td>
<td>.09</td>
<td>.21</td>
</tr>
<tr>
<td></td>
<td>Top Quintile</td>
<td>.91</td>
<td>.79</td>
</tr>
</tbody>
</table>

MFIs represent 52% of pre-Covid loans but obtained 30% of LG

Table: Financial Institution Distribution

<table>
<thead>
<tr>
<th>Financial institution</th>
<th>Share of pre-Covid debt</th>
<th>Share of guarantees</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFI</td>
<td>.52</td>
<td>.30</td>
</tr>
<tr>
<td>non-MFI</td>
<td>.48</td>
<td>.70</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1
Model
• Bank k profits depend on firm j’s characteristics and poaching probability (ψ_C)
 • net cash ($\rho_j - b_j$), firm future profits ($\psi_F b_j$), prob. of survival ($\Phi_j(\varphi), \Phi_j(0)$), participation ($\ell^k_j, \varphi$)

$$
\Pi^k_j = \ell^k_j \left\{ \Phi_j(\varphi) \left(1 + \psi_F \right) + \left(1 - \Phi_j(\varphi) \right) \delta \right\} b_j \\
+ \left(1 - \ell^k_j \right) \left\{ \Phi_j(0) \left[(1 - \psi_C) \left(1 + \psi_F \right) + \psi_C \right] + \left(1 - \Phi_j(0) \right) \delta \right\} b_j \\
= \ell^k_j \Omega^k_j b_j + \Theta^k_j b_j
$$

where

$$
\Omega^k_j = T_j \left[(1 - \delta) + \psi_F \right] + \Phi_j(0) \psi_C \psi_F
$$
• Bank k profits depend on firm j’s characteristics and poaching probability (ψ_C)
 • net cash ($\rho_j - b_j$), firm future profits ($\psi_F b_j$), prob. of survival ($\Phi_j(\varphi), \Phi_j(0)$), participation ($\ell_j^k; \varphi$)

$$\Pi_j^k = \ell_j^k \{ \Phi_j(\varphi) (1 + \psi_F) + (1 - \Phi_j(\varphi)) \delta \} b_j$$

$$+ (1 - \ell_j^k) \{ \Phi_j(0) [(1 - \psi_C)(1 + \psi_F) + \psi_C] + (1 - \Phi_j(0)) \delta \} b_j = \ell_j^k \Omega_j^k b_j + \Theta_j^k b_j$$

where $\Omega_j^k = T_j [(1 - \delta) + \psi_F] + \Phi_j(0) \psi_C \psi_F$

• Banks trade-off: client size (b_j) vs. treatment effect ($T_j \equiv \Phi_j(\varphi) - \Phi_j(0)$)

$$\max_{\ell_j^k \in \{0,1\}} \int \ell_j^k \Omega_j^k b_j dG^k(\rho_j, b_j) \quad \text{s.t.: } \int \ell_j^k \varphi b_j dG^k(\rho_j, b_j) = \gamma_k M$$

• Firm survives iff $\rho_j - b_j + \ell_j \varphi b_j > \nu_j$ with $\nu \sim \tilde{\Phi}(.)$

• Size-dependent $T_j +$ distribution of clients G^k determines optimal participation of MFIs
Main results

Private allocation is not socially optimal

The diagram illustrates the relationship between cash-in-hand and debt across the range of possible allocations. The shaded areas represent different scenarios involving participation and non-participation of MFIs, with the blue area indicating a stronger aggregate effect when MFIs participate. The text highlights:

- 30% gains from MFIs observed participation in terms of aggregate debt in default
- Non-participation leads to 50% of debt saved by the program relative to constrained first best
- Negligible additional gains from increasing MFI's participation
Main results

Private allocation is not socially optimal

MFIs strengthen aggregate effects

- 30% gains from MFIs observed participation in terms of aggregate debt in default
- Non-participation leads to 50% of debt saved by the program relative to constrained first best
- Negligible additional gains from increasing MFI's participation
Main results

Private allocation is not socially optimal

• 30% gains from MFIs observed participation in terms of aggregate debt in default
 • Non-participation leads to 50% of debt saved by the program relative to constrained first best
• Negligible additional gains from increasing MFI’s participation

MFIs strengthen aggregate effects
Conclusions
Conclusions

- We estimate the financial effects of loan guarantee programs in emerging markets and study the role of MFIs in shaping the allocation and aggregate effects of such programs.
Conclusions

- We estimate the financial effects of loan guarantee programs in emerging markets and study the role of MFIs in shaping the allocation and aggregate effects of such programs.

- LGP increase credit and reduce delinquency with substantial heterogeneous effects.

- LGP increase credit and reduce delinquency with substantial heterogeneous effects.
Conclusions

- We estimate the financial effects of loan guarantee programs in emerging markets and study the role of MFIs in shaping the allocation and aggregate effects of such programs.

- LGP increase credit and reduce delinquency with substantial heterogeneous effects.

 * Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG.

 * BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs.
Conclusions

- We estimate the financial effects of loan guarantee programs in emerging markets and study the role of MFIs in shaping the allocation and aggregate effects of such programs.

- LGP increase credit and reduce delinquency with substantial heterogeneous effects:
 - Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG.
 - BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs.

- MFIs can lead to substantial aggregate gains by improving the allocation of LG.
Conclusions

- We estimate the financial effects of loan guarantee programs in emerging markets and study the role of MFIs in shaping the allocation and aggregate effects of such programs

- LGP increase credit and reduce delinquency with substantial heterogeneous effects
 - Decline in delinquency fifth times larger for smaller firms and MFIs play a key role distributing LG
 - BoE: decline in delinquency is 4ppts without MFIs and 5ppts with MFIs

- MFIs can lead to substantial aggregate gains by improving the allocation of LG
 - Model where banks trade-off treatment effect and client size, calibrated with micro-data
 - 30% gains from MFIs observed participation in terms of aggregate debt in default
 - Non-participation leads to 50% of debt saved by the program relative to constrained first best
 - Negligible additional gains from increasing MFI’s participation to the optimal level