A Static Capital Buffer is Hard to Beat
by Matthew Canzoneri, Behzad Diba, Luca Guerrieri, and Arsenii Mishin

discussion by N. Aaron Pancost

University of Texas at Austin McCombs School of Business

November 30, 2023
Motivation

Banks may be incentivized to take excessive risks

Deposit insurance subsidy: banks reap gains, FDIC pays for losses

Capital requirements are a useful policy tool

Big question: what is the optimal capital requirement?

This paper: what is the optimal time/state variation in capital requirements?

Basel III: should increase with credit/GDP ratio
Motivation

- Banks may be incentivized to take excessive risks
Motivation

- Banks may be incentivized to take excessive risks
 - Deposit insurance subsidy: banks reap gains, FDIC pays for losses
Motivation

- Banks may be incentivized to take excessive risks
 - Deposit insurance subsidy: banks reap gains, FDIC pays for losses
- Capital requirements are a useful policy tool
Motivation

- Banks may be incentivized to take excessive risks
 - Deposit insurance subsidy: banks reap gains, FDIC pays for losses
- Capital requirements are a useful policy tool
- Big question: what is the optimal capital requirement?
Motivation

- Banks may be incentivized to take excessive risks
 - Deposit insurance subsidy: banks reap gains, FDIC pays for losses
- Capital requirements are a useful policy tool
- Big question: what is the optimal capital requirement?
 - This paper: what is the optimal time/state variation in capital requirements?
Motivation

- Banks may be incentivized to take excessive risks
 - Deposit insurance subsidy: banks reap gains, FDIC pays for losses
- Capital requirements are a useful policy tool
- Big question: what is the optimal capital requirement?
 - This paper: what is the optimal time/state variation in capital requirements?
 - Basel III: should increase with credit/GDP ratio
What They Do

- Calibrate an RBC model with a rich banking sector
- Banks can lend to safe firms or risky firms
- Risky firms are negative-NPV, so they are ERT
- Banks endogenously choose ERT depending on state

Trade-off:
- Higher γ_t can eliminate ERT
- Cost: households like deposits (in their utility)

Model has an endogenous "cliff"
- Optimal policy is to set γ_t just high enough to avoid the cliff
What They Do

- Calibrate an RBC model with a rich banking sector
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT

Trade-off:
- Higher γ_t can eliminate ERT
- Cost: households like deposits (in their utility)

Model has an endogenous "cliff"
- Optimal policy is to set γ_t just high enough to avoid the cliff
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

Trade-off:
- Higher γ_t can eliminate ERT
- Cost: households like deposits

Model has an endogenous "cliff"
- Optimal policy is to set γ_t just high enough to avoid the cliff
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
 - Higher γ_t can eliminate ERT
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
 - Higher γ_t can eliminate ERT
 - Cost: households like deposits
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
 - Higher γ_t can eliminate ERT
 - Cost: households like deposits (in their utility)
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
 - Higher γ_t can eliminate ERT
 - Cost: households like deposits (in their utility)

- Model has an endogenous “cliff”
What They Do

- Calibrate an RBC model with a rich banking sector
 - Banks can lend to safe firms or risky firms
 - Risky firms are negative-NPV, so they are ERT
 - Banks endogenously choose ERT depending on state

- Trade-off:
 - Higher γ_t can eliminate ERT
 - Cost: households like deposits (in their utility)

- Model has an endogenous “cliff”
 - Optimal policy is to set γ_t just high enough to avoid the cliff
Results

ERT amplifies negative TFP shocks and turns good shocks (ISP) bad

Optimal Ramsey plan for γ_t can completely eliminate ERT

IRL regulators may not be able to set γ_t to precisely avoid the cliff

Examine simple policy rules, e.g. follow credit/GDP

Main result: optimal time-variation in γ_t is $\approx 15–30$ bps

Static $\gamma_t = \gamma$ is probably better
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
- Optimal Ramsey plan for γ_t can completely eliminate ERT
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
- Optimal Ramsey plan for γ_t can completely eliminate ERT
- IRL regulators may not be able to set γ_t to precisely avoid the cliff

Main result: optimal time-variation in γ_t is $\approx 15–30$ bps

Static $\gamma_t = \gamma$ is probably better
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
- Optimal Ramsey plan for γ_t can completely eliminate ERT
- IRL regulators may not be able to set γ_t to precisely avoid the cliff
 - Examine simple policy rules, e.g. follow credit/GDP
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
- Optimal Ramsey plan for γ_t can completely eliminate ERT
- IRL regulators may not be able to set γ_t to precisely avoid the cliff
 - Examine simple policy rules, e.g. follow credit/GDP
- Main result: optimal time-variation in γ_t is $\approx 15–30$ bps
Results

- ERT amplifies negative TFP shocks and turns good shocks (ISP) bad
- Optimal Ramsey plan for γ_t can completely eliminate ERT
- IRL regulators may not be able to set γ_t to precisely avoid the cliff
 - Examine simple policy rules, e.g. follow credit/GDP
- Main result: optimal time-variation in γ_t is $\approx 15–30$ bps
 - Static $\gamma_t = \gamma$ is probably better
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

- Contribution: particular "cliff" model of ERT

- Expected: evidence that this is how ERT looks in the data

- Pros:
 - Bank failures do come in waves
 - Reduction in bank loan spread \Rightarrow ERT episode
 - Lines up with intro motivation of "reach for yield"

- Cons:
 - Doesn't seem to be quite what Basel III has in mind.
Feedback (1): Motivating This Model of ERT

・ Logic of model is standard:
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

- Contribution: particular “cliff” model of ERT
Feedback (1): Motivating This Model of ERT

▶ Logic of model is standard:
 ▶ Trade-off between ERT and deposits-in-utility
 ▶ Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

▶ Contribution: particular “cliff” model of ERT

▶ Expected: evidence that this is how ERT looks in the data
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...
- Contribution: particular “cliff” model of ERT
- Expected: evidence that this is how ERT looks in the data
- Pros:
Logic of model is standard:
- Trade-off between ERT and deposits-in-utility
- Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

Contribution: particular “cliff” model of ERT

Expected: evidence that this is how ERT looks in the data

Pros:
- Bank failures do come in waves
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

- Contribution: particular “cliff” model of ERT

- Expected: evidence that this is how ERT looks in the data

- Pros:
 - Bank failures do come in waves
 - Reduction in bank loan spread \(\Rightarrow\) ERT episode
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...
- Contribution: particular “cliff” model of ERT
- Expected: evidence that this is how ERT looks in the data
- Pros:
 - Bank failures do come in waves
 - Reduction in bank loan spread \Rightarrow ERT episode
 - Lines up with intro motivation of “reach for yield”
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...
- Contribution: particular “cliff” model of ERT
- Expected: evidence that this is how ERT looks in the data
- Pros:
 - Bank failures do come in waves
 - Reduction in bank loan spread \Rightarrow ERT episode
 - Lines up with intro motivation of “reach for yield”
- Cons:
Feedback (1): Motivating This Model of ERT

- Logic of model is standard:
 - Trade-off between ERT and deposits-in-utility
 - Van den Heuvel, Begenau, Davydiuk, Pancost & Robatto, ...

- Contribution: particular “cliff” model of ERT

- Expected: evidence that this is how ERT looks in the data

- Pros:
 - Bank failures do come in waves
 - Reduction in bank loan spread \Rightarrow ERT episode
 - Lines up with intro motivation of “reach for yield”

- Cons:
 - Doesn’t seem to be quite what Basel III has in mind.
Feedback (2): Optimal Policy is Opposite of Basel III!

For TFP and ISP shocks, γ_t rises when credit/GDP falls!

One plan:

Make this the main result. Basel III is wrong!

Show convincing evidence that this is the best way to describe credit/GDP episodes

Another plan:

Modify ERT machinery to mimic what Basel III has in mind

e.g. Jorda-Schularick-Taylor story:

$\text{ERT} \Rightarrow \text{rise in credit/GDP, output, employment, investment}$

Good in short run but destructive in long run

Semi-exogenous ERT would be fine here

e.g. time variation in cost of ERT

Pancost & Robatto (2023): time-constant cost of ERT
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! IRFs
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls!
- One plan:

- Make this the main result.
- Show convincing evidence that this is the best way to describe credit/GDP episodes.
- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind.
 - e.g. Jorda-Schularick-Taylor story:
 - ERT \Rightarrow rise in credit/GDP, output, employment, investment
 - Good in short run but destructive in long run.
 - Semi-exogenous ERT would be fine here.
 - e.g. time variation in cost of ERT.
 - Pancost & Robatto (2023): time-constant cost of ERT.
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP *falls*! [IRFs]
- One plan:
 - Make this the main result.
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! [IRFs]
- One plan:
 - Make this the main result. Basel III is wrong!
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! (IRFs)

- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls!
- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
- Another plan:
Feedback (2): Optimal Policy is Opposite of Basel III!

▶ For TFP and ISP shocks, γ_t rises when credit/GDP falls!

▶ One plan:
 ▶ Make this the main result. Basel III is wrong!
 ▶ Show convincing evidence that this is the best way to describe credit/GDP episodes

▶ Another plan:
 ▶ Modify ERT machinery to mimic what Basel III has in mind
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! \(\text{IRF}_s\)
- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind
 - e.g. Jorda-Schularick-Taylor story:
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! IRFs
- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind
 - e.g. Jorda-Schularick-Taylor story:
 - ERT \implies rise in credit/GDP, output, employment, investment
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls!

- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes

- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind
 - e.g. Jorda-Schularick-Taylor story:
 - ERT \implies rise in credit/GDP, output, employment, investment
 - Good in short run but destructive in long run

IRFs
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls! [IRFs]
- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind
 - e.g. Jorda-Schularick-Taylor story:
 - ERT \Rightarrow rise in credit/GDP, output, employment, investment
 - Good in short run but destructive in long run
 - Semi-exogenous ERT would be fine here
Feedback (2): Optimal Policy is Opposite of Basel III!

▫️ For TFP and ISP shocks, γ_t rises when credit/GDP falls! IRFs
▫️ One plan:
 ▫️ Make this the main result. Basel III is wrong!
 ▫️ Show convincing evidence that this is the best way to describe credit/GDP episodes
▫️ Another plan:
 ▫️ Modify ERT machinery to mimic what Basel III has in mind
 ▫️ e.g. Jorda-Schularick-Taylor story:
 ▫️ ERT \implies rise in credit/GDP, output, employment, investment
 ▫️ Good in short run but destructive in long run
 ▫️ Semi-exogenous ERT would be fine here
 ▫️ e.g. time variation in cost of ERT
Feedback (2): Optimal Policy is Opposite of Basel III!

- For TFP and ISP shocks, γ_t rises when credit/GDP falls!
- IRFs
- One plan:
 - Make this the main result. Basel III is wrong!
 - Show convincing evidence that this is the best way to describe credit/GDP episodes
- Another plan:
 - Modify ERT machinery to mimic what Basel III has in mind
 - e.g. Jorda-Schularick-Taylor story:
 - ERT \implies rise in credit/GDP, output, employment, investment
 - Good in short run but destructive in long run
 - Semi-exogenous ERT would be fine here
 - e.g. time variation in cost of ERT
 - Pancost & Robatto (2023): time-constant cost of ERT
Feedback (3): Should Analyze Welfare

Paper: small variation in γ_t under optimal policy (15–30 bps).

But: massive effects on consumption and output.

IRFs

Welfare measures are standard in this literature

Consistent units across models

Optimally balances trade-offs

Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal

But welfare gain is massive!

Also: fixes section 7.2

Uses multiple measures to evaluate policies (R^2, freq of BRT episodes, level of deposits)

Households in the model can do this for you!
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output. IRFs

Welfare measures are standard in this literature, consistent units across models, optimally balances trade-offs. Davydiuk's JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal. But welfare gain is massive!

Also: fixes section 7.2. Uses multiple measures to evaluate policies (R^2, freq of BRT episodes, level of deposits). Households in the model can do this for you!
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: **massive** effects on consumption and output. [IRFs]
- Welfare measures are standard in this literature
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
 - Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: **massive** effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
 - Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal
 - But welfare gain is massive!
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: **massive** effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
 - Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal
 - But welfare gain is massive!
- Also: fixes section 7.2
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output. IRFs
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
 - Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal
 - But welfare gain is massive!
- Also: fixes section 7.2
 - Uses multiple measures to evaluate policies (R^2, freq of BRT episodes, level of deposits)
Feedback (3): Should Analyze Welfare

- Paper: small variation in γ_t under optimal policy (15–30 bps).
- But: massive effects on consumption and output.
- Welfare measures are standard in this literature
 - Consistent units across models
 - Optimally balances trade-offs
 - Davydiuk’s JMP also finds ≈ 10 bps $\Delta \gamma_t$ is optimal
 - But welfare gain is massive!
- Also: fixes section 7.2
 - Uses multiple measures to evaluate policies (R^2, freq of BRT episodes, level of deposits)
 - Households in the model can do this for you!
Feedback (4): Level of Capital Requirements

Model calibration:\n$\gamma^* \approx 10\%$ is roughly optimal.

Way too low!

Begenau (2020), Begenau & Landvoigt (2021): 12–16\%

Pancost & Robatto (2023): 22\%

Why? firm deposit demand responds very differently to γ_t shocks.

Cost of raising γ_t is also time/state varying!

All benefits from raising γ_t are state-dependent (the cliff).

= \Rightarrow a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t.

Very least: Sensitivity analysis with respect to this calibration target.
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16%
 - Pancost & Robatto (2023): 22%

Why? firm deposit demand responds very differently to γ_t shocks

Cost of raising γ_t is also time/state varying!

All benefits from raising γ_t are state-dependent (the cliff)

\Rightarrow a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t

Very least: Sensitivity analysis with respect to this calibration target.
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16\%
 - Pancost & Robatto (2023): 22\%

Why? firm deposit demand responds very differently to γ_t shocks
Cost of raising γ_t is also time/state varying!
All benefits from raising γ_t are state-dependent (the cliff)
\Rightarrow a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t

Very least: Sensitivity analysis with respect to this calibration target.
Feedback (4): Level of Capital Requirements

- Model calibration ⇒ $\gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16%
 - Pancost & Robatto (2023): 22%
 - Why? firm deposit demand responds very differently to γ_t shocks
 - Cost of raising γ_t is also time/state varying!
 - All benefits from raising γ are state-dependent (the cliff)
 - =⇒ a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16\%
 - Pancost & Robatto (2023): 22\%
 - Why? firm deposit demand responds very differently to γ_t shocks
 - Cost of raising γ_t is also time/state varying!
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16\%
 - Pancost & Robatto (2023): 22\%
 - Why? firm deposit demand responds very differently to γ_t shocks
 - Cost of raising γ_t is also time/state varying!
- All benefits from raising γ_t are state-dependent (the cliff)
Feedback (4): Level of Capital Requirements

- Model calibration $\Rightarrow \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenau (2020), Begenau & Landvoigt (2021): 12–16\%
 - Pancost & Robatto (2023): 22\%
 - Why? firm deposit demand responds very differently to γ_t shocks
 - Cost of raising γ_t is also time/state varying!
- All benefits from raising γ_t are state-dependent (the cliff)
 - \Rightarrow a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t
Feedback (4): Level of Capital Requirements

- Model calibration $\implies \gamma^* = 10\%$ is roughly optimal.
- Way too low!
 - Begenzau (2020), Begenzau & Landvoigt (2021): 12–16\%
 - Pancost & Robatto (2023): 22\%
 - Why? firm deposit demand responds very differently to γ_t shocks
 - Cost of raising γ_t is also time/state varying!
- All benefits from raising γ_t are state-dependent (the cliff)
 - \implies a calibration to $\gamma^* = 22\%$ would all show up in time-varying γ_t
- Very least: Sensitivity analysis with respect to this calibration target.
Feedback (5): Do We Already Have γ_t?

Historical-cost accounting $\Rightarrow \gamma_t$ already is time-varying!

Orama Ramcharan & Robatto (2023):

HCA is equivalent to mark-to-market with time-varying γ_t

Implied $\Delta \gamma_t$ is massive:

2010 Italian sovereign debt crisis \Rightarrow 24% reduction in γ_t

Recall $\gamma^* = 10\%$

(i.e. 240 bps, compared to model optimum of 30 bps)

Questions:

Does this already look like Basel III's suggestion?

Is it too much, e.g. do we need γ_t to undo HCA?
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\implies \gamma_t$ already is time-varying!
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting \iff γ_t already is time-varying!
- Orame Ramcharan & Robatto (2023):
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting \implies γ_t already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting \Rightarrow γ_t already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:

 2010 Italian sovereign debt crisis \Rightarrow 24% reduction in γ_t
 Recall $\gamma^* = 10\%$ (i.e. 240 bps, compared to model optimum of 30 bps)

Questions:
- Does this already look like Basel III's suggestion?
- Is it too much, e.g. do we need γ_t to undo HCA?
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\implies \gamma_t$ already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis \implies 24% reduction in γ_t
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\implies \gamma_t$ already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis \implies 24% reduction in γ_t
 - Recall $\gamma^* = 10\%$
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting \Rightarrow γ_t already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis \Rightarrow 24% reduction in γ_t
 - Recall $\gamma^* = 10$
 - (i.e. 240 bps, compared to model optimum of 30 bps)
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\implies \gamma_t$ already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis \implies 24% reduction in γ_t
 - Recall $\gamma^* = 10$
 - (i.e. 240 bps, compared to model optimum of 30 bps)
- Questions:
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\Rightarrow \gamma_t$ already *is* time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis \Rightarrow 24% reduction in γ_t
 - Recall $\gamma^* = 10$
 - (i.e. 240 bps, compared to model optimum of 30 bps)
- Questions:
 - Does this already look like Basel III’s suggestion?
Feedback (5): Do We Already Have γ_t?

- Historical-cost accounting $\implies \gamma_t$ already is time-varying!
- Orame Ramcharan & Robatto (2023):
 - HCA is equivalent to mark-to-market with time-varying γ_t
 - Implied $\Delta \gamma_t$ is massive:
 - 2010 Italian sovereign debt crisis $\implies 24\%$ reduction in γ_t
 - Recall $\gamma^* = 10\%$
 - (i.e. 240 bps, compared to model optimum of 30 bps)
- Questions:
 - Does this already look like Basel III’s suggestion?
 - Is it too much, e.g. do we need γ_t to undo HCA?
Section 8.1: "model is not suitable for a serious attempt to pin down the optimal steady-state value."

This is giving up.

If the model is not suitable for the static (first order) policy, why is it suitable for the dynamic (second order) policy?

Show how/whether results vary with ξ.
Section 8.1: “model is not suitable for a serious attempt to pin down the optimal steady-state value.”
Section 8.1: “model is not suitable for a serious attempt to pin down the optimal steady-state value.”

This is giving up.
Section 8.1: “model is not suitable for a serious attempt to pin down the optimal steady-state value.”

- This is giving up.
- If the model is not suitable for the static (first order) policy, why is it suitable for the dynamic (second order) policy?
Section 8.1: “model is not suitable for a serious attempt to pin down the optimal steady-state value.”

- This is giving up.
- If the model is not suitable for the static (first order) policy, why is it suitable for the dynamic (second order) policy?
- Show how/whether results vary with ξ.
More Little Stuff
More Little Stuff

- Description of when banks do ERT confusing

- More economics and less notation in the text would help.

- Intro motivation is about low interest rates; where is that here?

- Why not have a monetary policy shock?

- "Risk-taking episode" is a key feature of the model, but never defined.

- Three possible equilibria? all banks behave, all banks mis-behave, or banks randomize.

- Fine, but then a "RTE" is when they randomize, or when they all misbehave?

- Or is it that each bank is all-good or all-bad, but then an endogenous fraction μ_t are all bad?

- $\mu_t \in (0, 1)$ or $[0, 1]$?

- Just needs more explaining / clearer writing
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
 - Why not have a monetary policy shock?
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
 - Why not have a monetary policy shock?
- “Risk-taking episode” is a key feature of the model, but never defined.
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
 - Why not have a monetary policy shock?

- “Risk-taking episode” is a key feature of the model, but never defined.
 - Three possible equilibria? all banks behave, all banks mis-behave, or banks randomize.
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
 - Why not have a monetary policy shock?
- “Risk-taking episode” is a key feature of the model, but never defined.
 - Three possible equilibria? all banks behave, all banks mis-behave, or banks randomize.
 - Fine, but then a “RTE” is when they randomize, or when they all misbehave?
More Little Stuff

- Description of when banks do ERT confusing
 - More economics and less notation in the text would help.
 - Intro motivation is about low interest rates; where is that here?
 - Why not have a monetary policy shock?

- “Risk-taking episode” is a key feature of the model, but never defined.
 - Three possible equilibria? all banks behave, all banks mis-behave, or banks randomize.
 - Fine, but then a “RTE” is when they randomize, or when they all misbehave?
 - Or is it that each bank is all-good or all-bad, but then an endogenous fraction μ_t are all bad? $\mu_t \in (0, 1)$ or $[0, 1]$?
More Little Stuff

• Description of when banks do ERT confusing
 • More economics and less notation in the text would help.
 • Intro motivation is about low interest rates; where is that here?
 • Why not have a monetary policy shock?

• “Risk-taking episode” is a key feature of the model, but never defined.
 • Three possible equilibria? all banks behave, all banks mis-behave, or banks randomize.
 • Fine, but then a “RTE” is when they randomize, or when they all misbehave?
 • Or is it that each bank is all-good or all-bad, but then an endogenous fraction μ_t are all bad? $\mu_t \in (0,1)$ or $[0,1]$?
 • Just needs more explaining / clearer writing
Even More Little Stuff

Effect is not asymmetric, it's non-linear.

Small but negative shock to γ_t might be similar to the positive shock.

Positive shock to γ_t from the ERT state could jump us to the good state.

IRFs from the non-stochastic SS are not sufficient in a non-linear model!

Calibration is fine, but where are the check moments?

Model must also match features of the data that you were not targeting.

What is “estimated by SMM”? Tell me what data moment you match (simulated is fine).

Aaron Pancost (UT Austin) Static Capital Buffer November 2023 8 / 8
Effect is not asymmetric, it’s non-linear.
Effect is not asymmetric, it’s non-linear.
 - Small but negative shock to γ_t might be similar to the positive shock from the ERT state could jump us to the good state.

IRFs from the non-stochastic SS are not sufficient in a non-linear model!

Calibration is fine, but where are the check moments?

Model must also match features of the data that you were not targeting.

What is “estimated by SMM”? Tell me what data moment you match (simulated is fine).
Even More Little Stuff

- Effect is not asymmetric, it’s non-linear.
 - Small but negative shock to γ_t might be similar to the positive shock
 - Positive shock to γ_t from the ERT state could jump us to the good state
Effect is not asymmetric, it’s non-linear.

- Small but negative shock to γ_t might be similar to the positive shock
- Positive shock to γ_t from the ERT state could jump us to the good state
- IRFs from the non-stochastic SS are not sufficient in a non-linear model!
Effect is not asymmetric, it’s non-linear.
- Small but negative shock to γ_t might be similar to the positive shock
- Positive shock to γ_t from the ERT state could jump us to the good state
- IRFs from the non-stochastic SS are not sufficient in a non-linear model!

Calibration is fine, but where are the check moments?
Even More Little Stuff

- Effect is not asymmetric, it’s non-linear.
 - Small but negative shock to γ_t might be similar to the positive shock
 - Positive shock to γ_t from the ERT state could jump us to the good state
 - IRFs from the non-stochastic SS are not sufficient in a non-linear model!

- Calibration is fine, but where are the check moments?
 - Model must also match features of the data that you were not targeting
Even More Little Stuff

- Effect is not asymmetric, it’s non-linear.
 - Small but negative shock to γ_t might be similar to the positive shock
 - Positive shock to γ_t from the ERT state could jump us to the good state
 - IRFs from the non-stochastic SS are not sufficient in a non-linear model!

- Calibration is fine, but where are the check moments?
 - Model must also match features of the data that you were not targeting
 - What is “estimated by SMM”? Tell me what data moment you match (simulated is fine)
Negative TFP Shock

1. Total output

2. Bank capital requirement

3. Consumption

4. Credit/GDP ratio

5. Expected Equity Return Spread (risky-safe)

6. Total capital

7. Expected Safe Equity Return

8. Investment Price

Aaron Pancost (UT Austin) Static Capital Buffer November 2023 8 / 8
Positive Investment Shock

1. Total output

2. Bank capital requirement

3. Consumption

4. Credit/GDP ratio

5. Expected Equity Return Spread (risky-safe)

6. Total capital

7. Expected Safe Equity Return

8. Investment Price
Positive Volatility Shock

1. Total output
2. Bank capital requirement
3. Consumption
4. Credit/GDP ratio

1. Total output
2. Bank capital requirement
3. Consumption
4. Credit/GDP ratio