

A macroeconomic model of banks' systemic risk taking

Jorge Abad
Banco de España

David Martinez-Miera
UC3M and CEPR

Javier Suarez
CEMFI and CEPR

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the views of the Banco de España or the Eurosystem.

4th CEMLA/Dallas Fed Financial Stability Workshop
San Antonio (TX), November 2025

Motivation

- Ben Bernanke defined **systemic risk** as “*developments or events that threaten the stability of the financial system as a whole and consequently the broader economy, not just that of one or two institutions.*”

Motivation

- Ben Bernanke defined **systemic risk** as “*developments or events that threaten the stability of the financial system as a whole and consequently the broader economy, not just that of one or two institutions.*”
- We develop a model where:
 - Systemic risk stems from banks' exposure to a common source of risk
 - These exposures result from endogenous (unobservable) risk-taking decisions by banks [distorted by high leverage, shaped by capital requirements]
- We examine:
 - Determination of systemic risk taking in dynamic general equilibrium
 - Impact on aggregate outcomes
 - Effectiveness & optimal design of capital requirements

This paper

- **Quantitative macro**: Banks' net worth dynamics drive credit and output fluctuations
- **Banking theory**: Banks make unobservable decisions regarding their exposure to rare but devastating, common shocks

This paper

- **Quantitative macro:** Banks' net worth dynamics drive credit and output fluctuations
- **Banking theory:** Banks make unobservable decisions regarding their exposure to rare but devastating, common shocks

→ **Novel implication:** Systemic risk taking is determined not just by static risk-shifting gains but also *scarce-bank-equity-preservation incentives*

- Only some banks decide to be “systemic”
- Systemic risk taking is maximal after long periods of calm

Policy analysis — Preview of the results

1. Capital requirements

- Reduce risk taking but also credit and output
- Optimal requirements do not reduce risk taking to zero

Policy analysis — Preview of the results

1. Capital requirements

- Reduce risk taking but also credit and output
- Optimal requirements do not reduce risk taking to zero

2. Deposit insurance

- Exacerbates systemic risk taking, but not the fundamental driver
- Capital requirements still useful in its absence
- Removing it is not welfare improving

Policy analysis — Preview of the results

1. Capital requirements

- Reduce risk taking but also credit and output
- Optimal requirements do not reduce risk taking to zero

2. Deposit insurance

- Exacerbates systemic risk taking, but not the fundamental driver
- Capital requirements still useful in its absence
- Removing it is not welfare improving

3. Cyclical adjustments

- Lowering requirements ex post increases risk taking incentives ex ante

Fit in the literature

- Net worth channel and aggregate fluctuations: Kiyotaki-Moore (97), Carlstrom-Fuerst (97), Bernanke-Gertler-Gilchrist (99)
- Financial intermediaries' net worth channel: Meh-Moran (10), Gertler-Karadi (11), He-Krishnamurthy (12), Brunnermeier-Sannikov (14), Nuño-Thomas (17)
- Bank capital requirements in macro: Van den Heuvel (08), Collard et al. (17), Malherbe (20), Begenau (20), Corbae-D'Erasco (21), Elenev et al. (21), Begenau-Landvoigt (22), Mendicino et al. (24)
 - Explicit consideration of systemic risk taking

Fit in the literature

- Net worth channel and aggregate fluctuations: Kiyotaki-Moore (97), Carlstrom-Fuerst (97), Bernanke-Gertler-Gilchrist (99)
- Financial intermediaries' net worth channel: Meh-Moran (10), Gertler-Karadi (11), He-Krishnamurthy (12), Brunnermeier-Sannikov (14), Nuño-Thomas (17)
- Bank capital requirements in macro: Van den Heuvel (08), Collard et al. (17), Malherbe (20), Begenau (20), Corbae-D'Erasco (21), Elenev et al. (21), Begenau-Landvoigt (22), Mendicino et al. (24)
 - Explicit consideration of systemic risk taking

Fit in the literature

- **Net worth channel and aggregate fluctuations:** Kiyotaki-Moore (97), Carlstrom-Fuerst (97), Bernanke-Gertler-Gilchrist (99)
- **Financial intermediaries' net worth channel:** Meh-Moran (10), Gertler-Karadi (11), He-Krishnamurthy (12), Brunnermeier-Sannikov (14), Nuño-Thomas (17)
- **Bank capital requirements in macro:** Van den Heuvel (08), Collard et al. (17), Malherbe (20), Begenau (20), Corbae-D'Erasco (21), Elenev et al. (21), Begenau-Landvoigt (22), Mendicino et al. (24)
 - Explicit consideration of systemic risk taking
- **Risk shifting:** Jensen-Meckling (76), Stiglitz-Weiss (81)
- **Moral hazard in banking:** Kakeen-Wallace (78), Keeley (1990), Holmstrom-Tirole (97), Hellmann et al. (2001), Repullo (2004)
 - Role of dynamic general equilibrium considerations and quantitative results

Outline

- Introduction
- The model
- Calibration
- Main results
- Concluding remarks

The model

- Infinite horizon, discrete time t ; single consumption good
 - Representative household: delegates bank equity investment to bankers
 - Two types of physical capital:
 - Bank dependent
 - Non bank dependent
 - Bankers allocate equity across a continuum of banks which choose between non-systemic & systemic investment mode
 - Final good producers
 - Government: runs deposit guarantee scheme (DGS) & sets capital requirements

Production environment

- Banks finance firms' investment in physical capital: a_{st} units of investment at t yield $\Delta_{t+1}(s_{jt})a_{st}$ units of capital at $t+1$ with gross returns R_{t+1}^b

Production environment

- Banks finance firms' investment in physical capital: a_{st} units of investment at t yield $\Delta_{t+1}(s_{jt})a_{st}$ units of capital at $t+1$ with gross returns R_{t+1}^b
- Two modes of bank-dependent investment ($s_{jt} = 0, 1$) that differ in their exposure to an aggregate binary *systemic shock* ξ_{t+1}

$$\Delta_{t+1}(s_{jt}) = \begin{cases} 1 + \mu s_{jt} & \text{if } \xi_{t+1} = 0, \\ 1 - \lambda s_{jt} & \text{if } \xi_{t+1} = 1, \end{cases}$$

with $\mu > 0$, $\lambda \in (0, 1]$, and $\text{Prob}(\xi_{t+1} = 1) = \pi \in (0, 1)$

Production environment

- Banks finance firms' investment in physical capital: a_{st} units of investment at t yield $\Delta_{t+1}(s_{jt})a_{st}$ units of capital at $t+1$ with gross returns R_{t+1}^b
- Two modes of bank-dependent investment ($s_{jt} = 0, 1$) that differ in their exposure to an aggregate binary *systemic shock* ξ_{t+1}

$$\Delta_{t+1}(s_{jt}) = \begin{cases} 1 + \mu s_{jt} & \text{if } \xi_{t+1} = 0, \\ 1 - \lambda s_{jt} & \text{if } \xi_{t+1} = 1, \end{cases}$$

with $\mu > 0$, $\lambda \in (0, 1]$, and $\text{Prob}(\xi_{t+1} = 1) = \pi \in (0, 1)$

- Systemic investment is inefficient: $(1 - \pi)(1 + \mu) + \pi(1 - \lambda) < 1$
...but may be attractive to shareholders of levered banks

Bankers

- Bankers manage HH investment in bank equity deciding on
 - Costly equity issuance ($m_{it} > 0$) or costless discretionary dividends ($m_{it} < 0$)
 - Fraction x_{it} of net worth to invest in equity of systemic banks
- They maximize PV of the net flow of dividends to HH

Bankers

- Bankers manage HH investment in bank equity deciding on
 - Costly equity issuance ($m_{it} > 0$) or costless discretionary dividends ($m_{it} < 0$)
 - Fraction x_{it} of net worth to invest in equity of systemic banks
- They maximize PV of the net flow of dividends to HH
- Key state variable is net worth resulting from previous period of operation:

$$n_{it+1}^b = \psi [(1 - x_{it}) R_{0t+1}^e + x_{it} R_{1t+1}^e] (n_{it}^b + m_{it})$$

R_{st+1}^e : gross equity returns under each mode s

ψ : exogenous equity retention ratio

Banks

- Balance sheet at t under investment mode s :

$$\text{Investment } (a_{st}) = \text{Deposits } (d_{st}) + \text{Equity } (e_{st})$$

subject to capital requirement $e_{st} \geq \gamma a_{st}$

Banks

- Balance sheet at t under investment mode s :

$$\text{Investment } (a_{st}) = \text{Deposits } (d_{st}) + \text{Equity } (e_{st})$$

subject to capital requirement $e_{st} \geq \gamma a_{st}$

- Deposits pay:

$$\tilde{R}_{st+1}^d d_{st} = \eta R_{st}^d d_{st} + (1 - \eta) \min\{R_{st}^d d_{st}, R_{t+1}^b \Delta_{t+1}(s) a_{st}\},$$

with R_{st}^d promised return and $\eta \in [0, 1]$ the fraction of deposits insured by the DGS

Banks

- Balance sheet at t under investment mode s :

$$\text{Investment } (a_{st}) = \text{Deposits } (d_{st}) + \text{Equity } (e_{st})$$

subject to capital requirement $e_{st} \geq \gamma a_{st}$

- Deposits pay:

$$\tilde{R}_{st+1}^d d_{st} = \eta R_{st}^d d_{st} + (1 - \eta) \min\{R_{st}^d d_{st}, R_{t+1}^b \Delta_{t+1}(s) a_{st}\},$$

with R_{st}^d promised return and $\eta \in [0, 1]$ the fraction of deposits insured by the DGS

- Equity pays:

$$R_{st+1}^e e_{st} = \max\{R_{t+1}^b \Delta_{t+1}(s) a_{st} - R_{st}^d d_{st}, 0\}$$

[limited liability: equity enjoys upside risk \rightarrow risk-taking incentives]

Equilibrium – Bankers' systemic risk-taking decision

- Bankers consider properly discounted equity returns under each investment mode
→ Marginal value of wealth under bankers' management satisfies

$$v_t = \mathbb{E}_t \max\{\Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{0t+1}^e, \Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{1t+1}^e, 1\}$$

Equilibrium – Bankers' systemic risk-taking decision

- Bankers consider properly discounted equity returns under each investment mode
→ Marginal value of wealth under bankers' management satisfies

$$v_t = \mathbb{E}_t \max\{\Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{0t+1}^e, \Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{1t+1}^e, 1\}$$

- Indifference between $s = 0$ and $s = 1$ requires

$$\mathbb{E}_t [\Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{0t+1}^e] = \mathbb{E}_t [\Lambda_{t+1}(1 - \psi + \psi v_{t+1})R_{1t+1}^e]$$

[→ any $x_t \in [0, 1]$ is compatible with optimization;
but only one is eventually compatible with equilibrium!]

Equilibrium – Regimes with and without full deposit insurance

- With full deposit insurance (or bailout expectation; $\eta = 1$), we have a pooling equilibrium:
 - Capital requirements are binding
 - All banks pay the same risk-free deposit rate

Equilibrium – Regimes with and without full deposit insurance

- With full deposit insurance (or bailout expectation; $\eta = 1$), we have a pooling equilibrium:
 - Capital requirements are binding
 - All banks pay the same risk-free deposit rate
- Without full deposit insurance ($\eta < 1$), we characterize a separating equilibrium:
 - Non-systemic banks commit to safe strategy by operating with (endogenous) capital ratio above the regulatory minimum
 - (Potentially risky) deposits are priced consistently with rational beliefs

Equilibrium – Regimes with and without full deposit insurance

- With full deposit insurance (or bailout expectation; $\eta = 1$), we have a pooling equilibrium:
 - Capital requirements are binding
 - All banks pay the same risk-free deposit rate
- Without full deposit insurance ($\eta < 1$), we characterize a separating equilibrium:
 - Non-systemic banks commit to safe strategy by operating with (endogenous) capital ratio above the regulatory minimum
 - (Potentially risky) deposits are priced consistently with rational beliefs
- We solve numerically for the equilibrium of the calibrated model using a global method

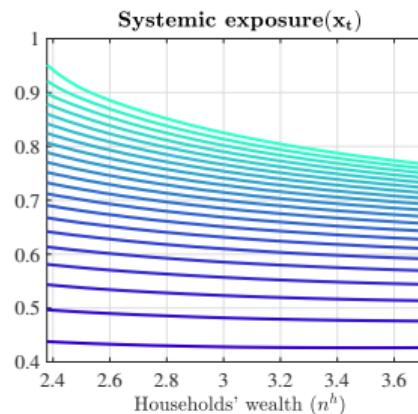
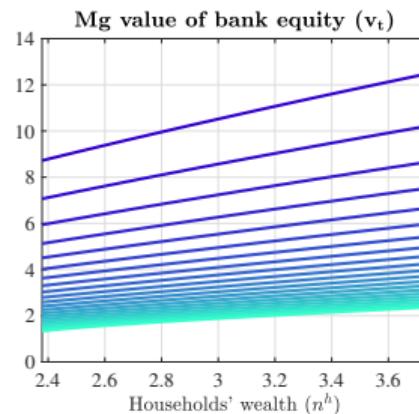
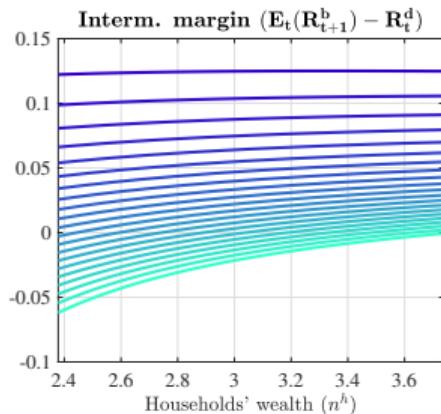
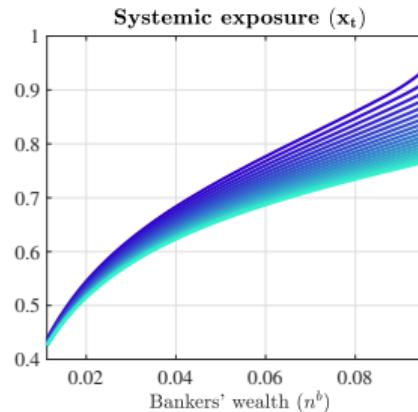
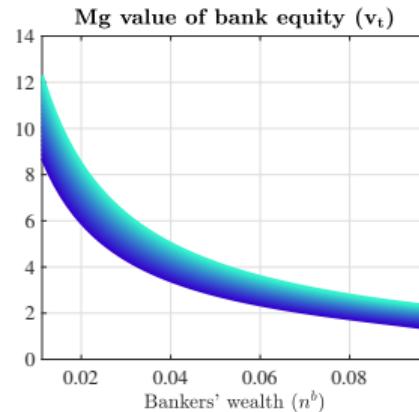
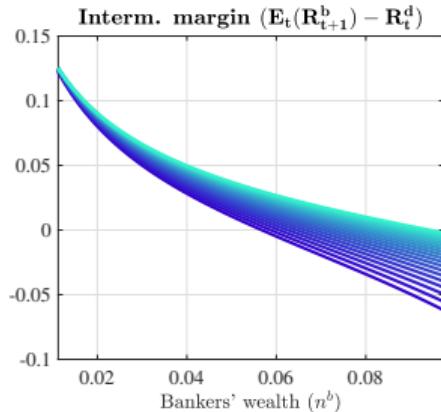
Calibration strategy

- Annual frequency
- Based on US economy in the years around the Global Financial Crisis
- Two steps / sets of parameters:
 - Pre-set parameters: (i) conventional values in the literature, or (ii) directly observable empirical counterparts
 - Calibrated parameters: simultaneous matching of key moments
- Importantly,
 - we use moments concerning the magnitude of banking crises
 - we follow the banking crises empirical literature in setting 4-year crisis event windows

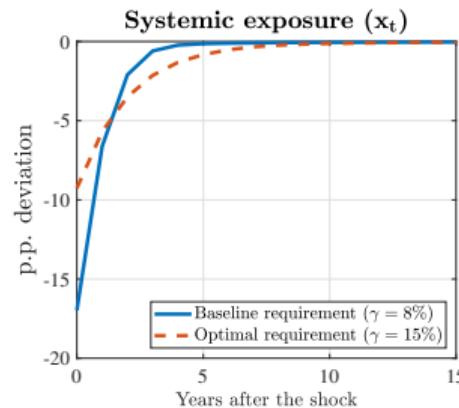
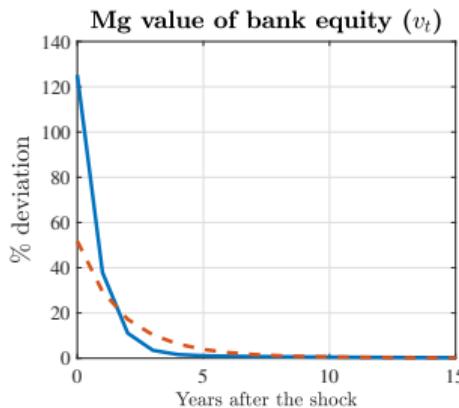
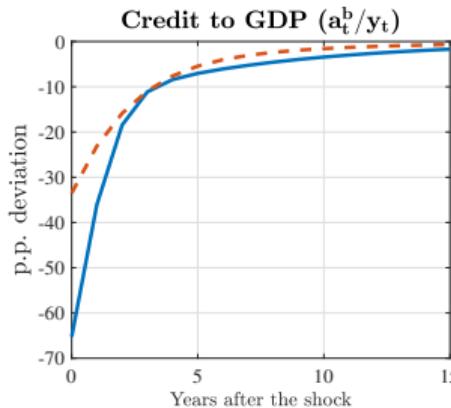
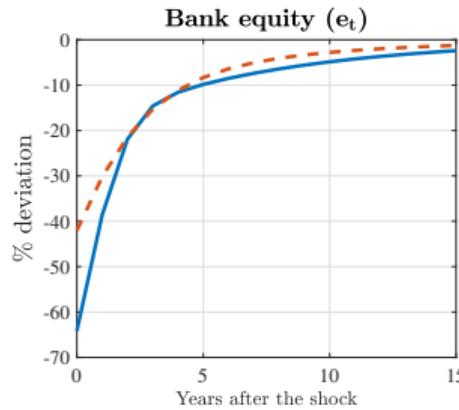
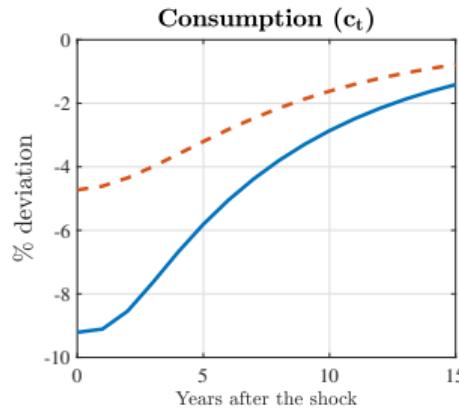
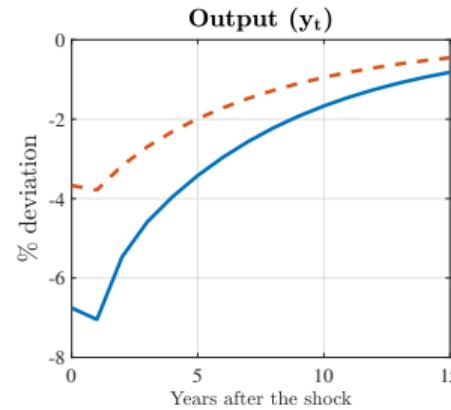
Calibration

Parameter		Value	Source/Target
Subjective discount rate	β	0.98	Standard
Output share of physical capital composite	α	0.3	Standard
Depreciation rate of physical capital	δ_h, δ_b	0.10	Standard
Probability of systemic event	π	0.04	Schularick&Taylor (2012)
Risk-taking losses	λ	0.615	BCBS (2004), Bennet&Unal (2015)
Capital requirement	γ	0.08	BCBS (2004)
Deposit insurance coverage	η	1	Full deposit insurance

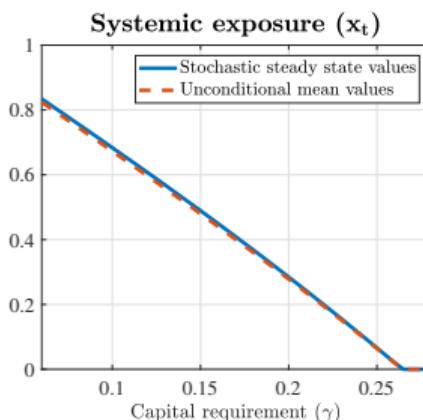
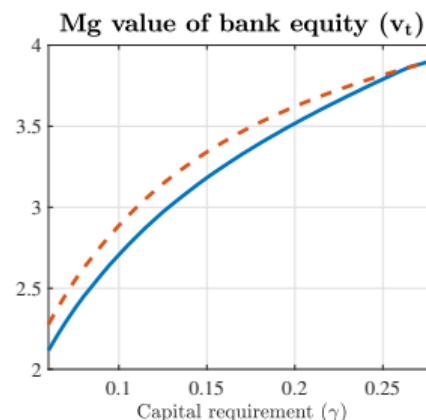
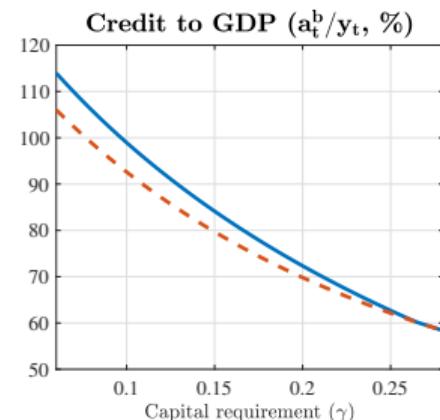
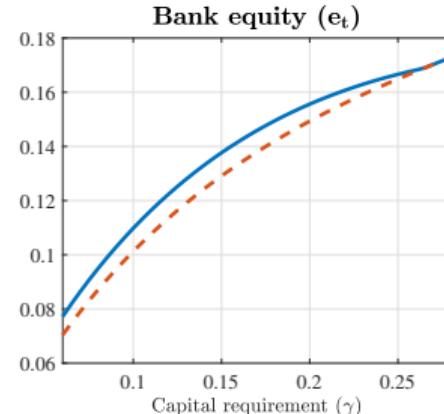
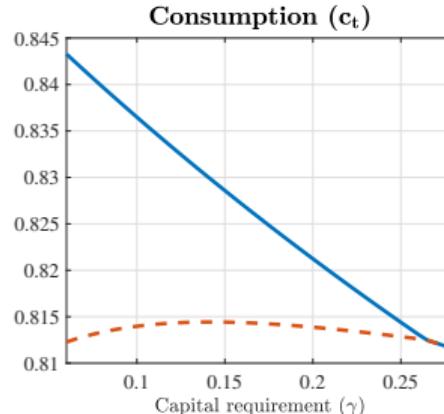
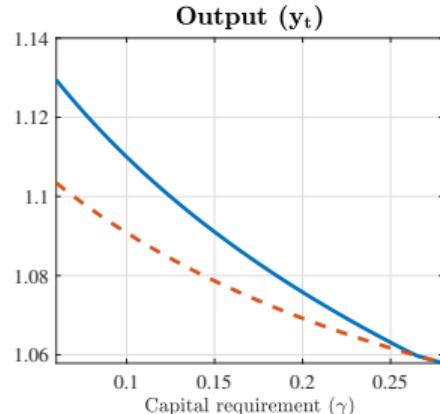
Calibration

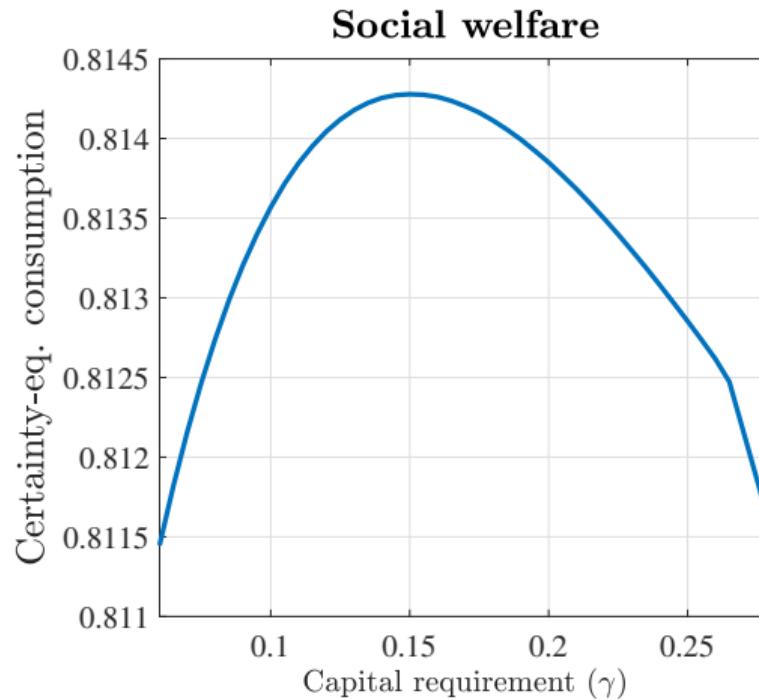






Parameter		Value	Source/Target
Subjective discount rate	β	0.98	Standard
Output share of physical capital composite	α	0.3	Standard
Depreciation rate of physical capital	δ_h, δ_b	0.10	Standard
Probability of systemic event	π	0.04	Schularick&Taylor (2012)
Risk-taking losses	λ	0.615	BCBS (2004), Bennet&Unal (2015)
Capital requirement	γ	0.08	BCBS (2004)
Deposit insurance coverage	η	1	Full deposit insurance
Risk-taking gains	μ	0.012	Crisis fall in credit/GDP ratio
Retained wealth-under-management	ψ	0.85	Return on bank equity
Non-bank-dependent share in capital	ϕ	0.53	Bank/non-bank ratio
Substitution parameter capital composite	σ	0.65	Crisis fall in bank/non-bank ratio
Equity issuance cost, scale parameter	κ_0	125	Bank equity issuance
Equity issuance cost, elasticity parameter	κ_1	10	Crisis bank equity issuance

Calibration — Targeted moments







Variable	Data	Model
Crisis fall in credit/GDP ratio (4-year average, % of SSS value)	30.3	30.9
Return on bank equity	12.44	12.97
Bank/non-bank ratio	69.9	69.9
Crisis fall in bank/non-bank ratio (4-year average, % of SSS value)	35.4	31.3
Bank equity issuance (% of pre-issuance equity)	4.61	4.14
Crisis bank equity issuance (4-year average, % of pre-issuance equity)	7.61	8.03

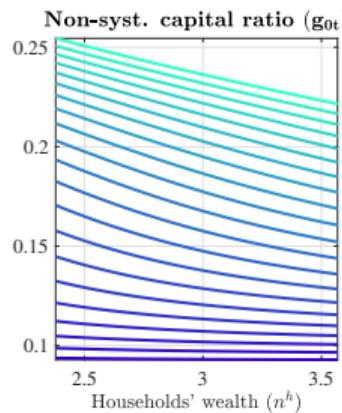
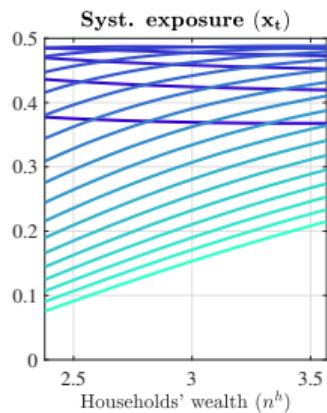
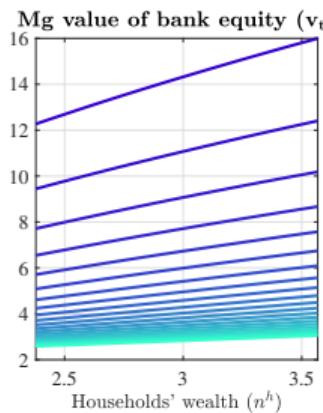
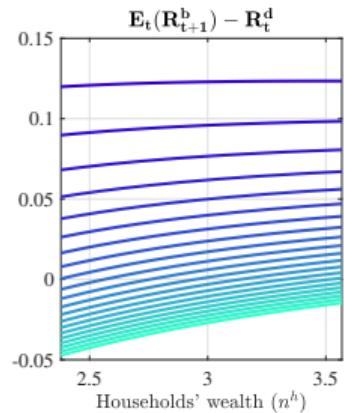
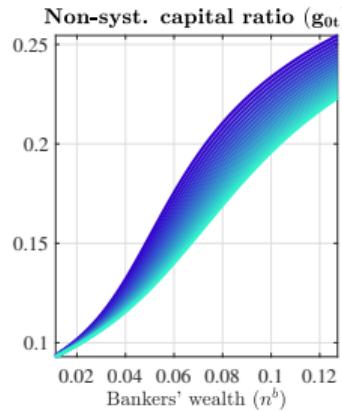
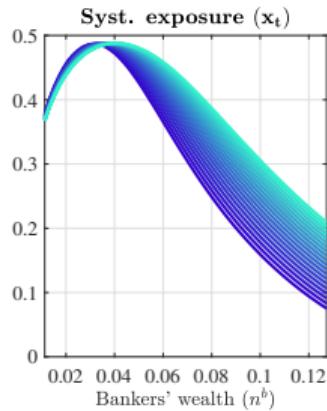
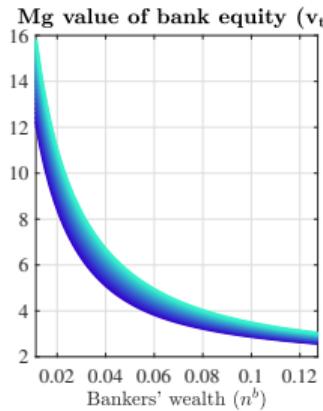
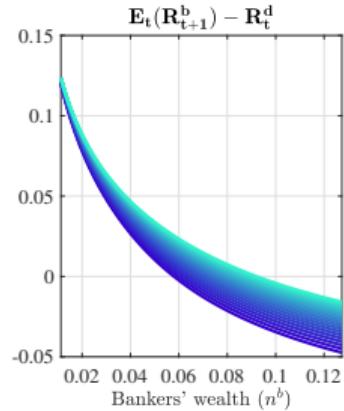
Stochastic steady state (SSS) values, in % (unless indicated). In model terms, moments with the label "crisis" are defined as the mean of the corresponding variable (or fall in a variable) in the four years following the realization of a systemic shock (relative to its SSS value).







Equilibrium systemic risk taking

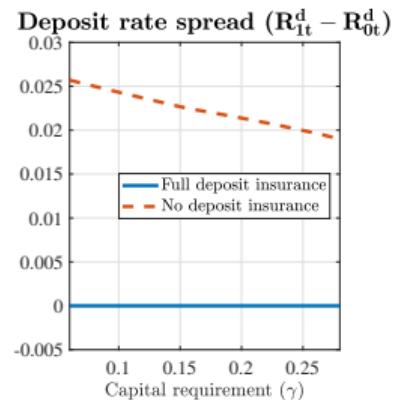
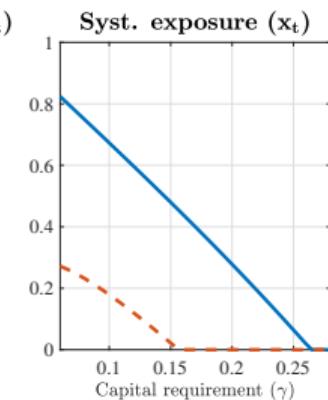
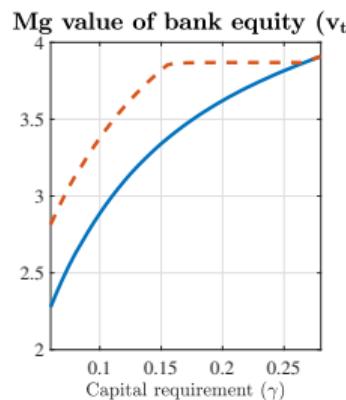
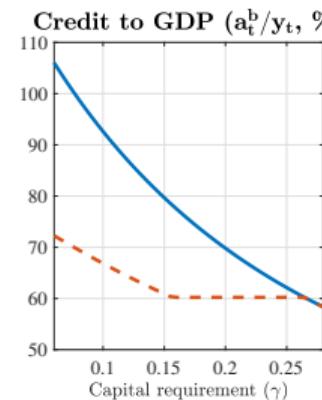
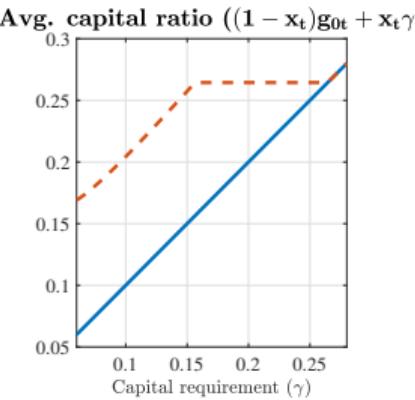
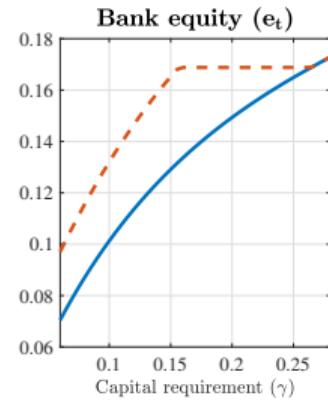
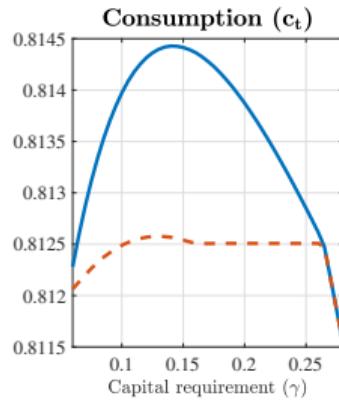
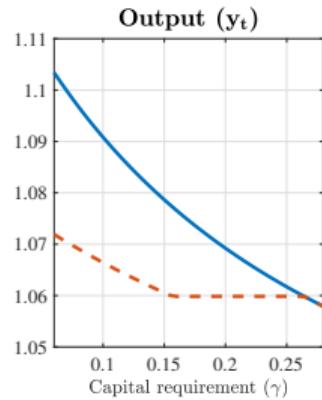

Endogenous responses to a systemic shock

Effects of capital requirements — selected endogenous variables

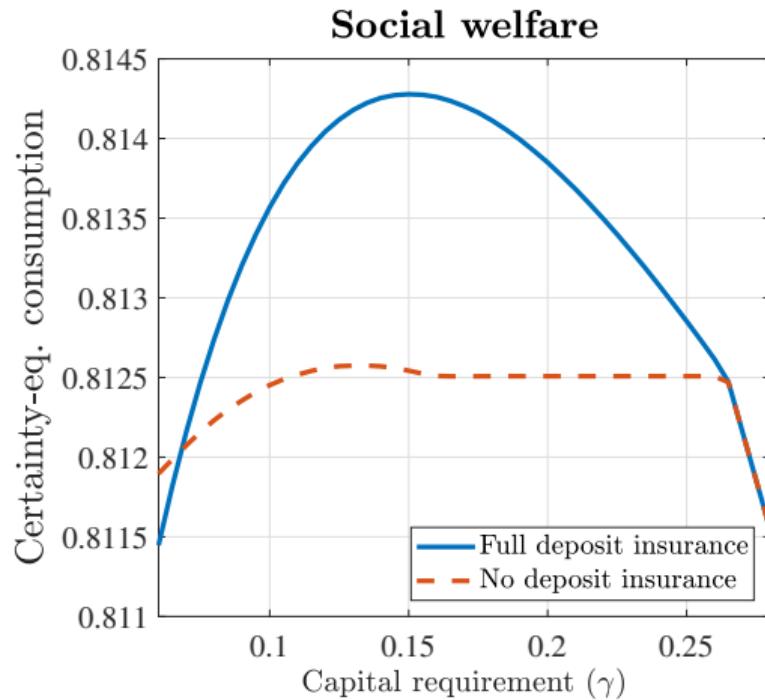
Effects of capital requirements — social welfare









The role of deposit insurance

- Without full deposit insurance, deposits are potentially **risky** and are priced accordingly
- Since systemic risk taking is **unobservable**, the deposit rate will be the same for all observationally-equivalent banks









The role of deposit insurance

- Without full deposit insurance, deposits are potentially **risky** and are priced accordingly
- Since systemic risk taking is **unobservable**, the deposit rate will be the same for all observationally-equivalent banks
- In the separating equilibrium:
 - **Non-systemic banks** commit to safe strategy by operating a voluntary **capital buffer** above the regulatory minimum and pay lower deposit rates
 - **Systemic banks** stick to the regulatory minimum and need to promise higher deposit rates


Systemic risk taking without deposit insurance

Effects of capital requirements with & without deposit insurance

Social welfare with & without deposit insurance

Concluding remarks

- We develop a model to understand the drivers of systemic risk taking at the macro level
- Combines elements in traditional banking and quantitative macro literature
 - Main ingredient: unobservable risk taking decisions
 - Static risk-shifting incentives vs. dynamic equity-preservation motives
 - Non-trivial welfare trade-offs: higher requirements reduce systemic risk but also activity

Concluding remarks

- We develop a model to understand the drivers of systemic risk taking at the macro level
- Combines elements in traditional banking and quantitative macro literature
 - Main ingredient: unobservable risk taking decisions
 - Static risk-shifting incentives vs. dynamic equity-preservation motives
 - Non-trivial welfare trade-offs: higher requirements reduce systemic risk but also activity
- Capital requirements also beneficial in the absence of deposit insurance
- Extensions (in the paper):
 - Counter-cyclical requirements carry modest welfare gains and can backfire
 - Starting point and speed of transition matters when introducing higher requirements