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partamento de Estabilidad Financiera del Banco de la Reptblica para evaluar la vul-
nerabilidad financiera de las firmas no financieras colombianas. El modelo apoya el
Reporte de Estabilidad Financiera semestral del Banco de la Reptublica y aporta al
disefio de politicas al identificar firmas expuestas al riesgo crediticio en condiciones
macroecondmicas adversas. El modelo propuesto integra tres componentes: un marco
dindmico de simulacién de balances; un conjunto de modelos de machine learning para
estimar probabilidades de incumplimiento crediticio; y un médulo final que identifica
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1 Introduction

This paper presents a stress test model for Colombian firms, the analytical tool used by
the Financial Stability Department of the Banco de la Reptblica (Central Bank of Colombia)
to perform its financial vulnerability analysis of the Colombian non-financial corporate
sector. The results of the firm’s stress test model are typically presented in the Central
Bank’s biannual Financial Stability Report and serve as a key input for the financial stability
assessment of the corporate sector, one of the main debtors of the financial system.

Following the 2008 global financial crisis, stress test models have been increasingly
used in financial institutions to prospectively assess whether they have enough buffers
to absorb severe shocks to the economy and financial system (Dent et al. 2016). This has
enabled policymakers to design plans to accommodate buffers to such unexpected and
extreme shocks. In this way, stress test models are not forecasting tools since their main
aim is to quantify the financial system’s resilience to extreme and improbable scenarios

under restrictive behavioral assumptions.

The unprecedented COVID-19 crisis, characterized by supply and demand shocks and
high levels of uncertainty (Guerrieri et al. 2022, Kalemli-Ozcan et al. 2020), showed the
importance of complementing stress tests in financial institutions with more analytical
tools to assess the financial soundness of the non-financial private sector (corporate sector
hereafter) on a forward-looking basis. This necessity was twofold. First, the corporate
sector is critical from a financial stability standpoint, given the firm’s role in the credit
market (direct channel) and the whole economy (indirect channel). Second, the financial
information of the corporate sector tends to be less frequent than banks’ balance sheets.

The model proposed in this paper has three building blocks. First, following the
corporate stress test literature developed during the pandemic, we develop a dynamic
balance sheet simulation framework based on accounting behavioral rules and econometric
analysis. This block simulates the main accounts of firms” balance sheets, conditional on
the firms’ initial characteristics and a macroeconomic scenario (GDP growth, financial
conditions, and the level of interest rates). The second block comprises a suite of machine
learning models (ML) that enable us to predict the credit default probability of firms based
on key financial and activity indicators. Finally, the third block combines the first two to
define firms at credit risk. This final block is an input for banks’ stress test models, where
banks’ idiosyncratic credit risk can be assessed. In fact, this final block is an input for the
stress test model used by the Central Bank of Colombia (see Gamba et al. 2017).



The dynamic balance sheet simulation model provides an accounting micro and macro-
consistent tool to evaluate the firms’ exposure to the risks identified in a macroeconomic
scenario and the most recent exposure of the financial statements to these firms. Moreover,
the model provides prospective information about the financial situation of firms, which is
key given the low frequency of this information. However, as explored in Section 4, the
results must be read with caution since the model can be acid because it does not consider
strategic behavior of the firms, such as prepaying debt, reducing size, renegotiating debt,
etc. In fact, the model is based on the historical correlations observed in the data on a set

of restrictive behavioral assumptions.

Estimated ML models indicate that extreme gradient boosting techniques are superior
to logistic and random forest in out-of-sample performance metrics tailored to reduce
default misclassification. However, simpler logistic models remain competitive. When ML
models are applied to stress test scenarios based on the dynamic balance sheet simulation
model, the identified defaulting firms are those whose operations are most likely to be

affected according to the dynamic balance sheet simulation.

The rest of this paper proceeds as follows. Section 2 presents a review of the literature.
Section 3 presents the data that we use for the model. Section 4 presents the dynamic
balance sheet simulation framework and illustrates its results based on the stressed macroe-
conomic scenario presented in Banco de la Reptblica’s Financial Stability Report from the
second half of 2024. Section 5 elaborates on the ML set of models used for credit default
predictions and presents their performance. Section 6 integrates the results of the last two
sections with an application to the stress test scenario presented in the 2024-II Financial
Stability Report. In particular, it describes the financial features of firms that would be
predicted in default in a stressed scenario.

2 Literature Review

According to Borio et al. (2014), stress testing originated in engineering to assess the
stability of an object while facing adverse conditions. In finance, top-down stress test
models, where national supervisors and central banks model banks’ financial resilience on
a system-wide basis, can be traced back to the late 1990s with the launch of the Financial
Sector Assessment Program by the IMF and the World Bank (Dent et al. 2016).! However,

!Before top-down stress test models, stress test models were carried out mainly from a bottom-up basis,
where individual banks usually simulated the effect of market volatility in their investment holdings and
their solvency (Dent et al. 2016). In contrast, top-down models are conducted by authorities (central banks,
financial supervisors) and make use of the same behavioral model for all financial institutions and a common
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as mentioned in Section 1, it was only until the 2008 global financial crisis that financial
stability authorities around the world increased the use of stress test models to assess
tinancial institutions’ liquidity and solvency soundness to design plans to accommodate
buffers to unexpected shocks prospectively. Examples of stress test modeling frameworks
in different jurisdictions can be found in Anand et al. (2014), Burrows et al. (2012), Cabrera
et al. (2012), Gamba et al. (2017), and Farmer et al. (2020).

In general, these models consist of macroeconomic adverse scenario design, the impact
of such scenario on financial risks, and the impact of these risks on banks. Normally, stress
test models rely on restrictive assumptions about the behavior of banks, such as mechanical
rules of thumbs (Borio et al. 2014). In this way, as mentioned in Section 1, stress test models
are not forecasting tools since their main aim is to quantify the financial system’s resilience

to extreme and improbable scenarios under restrictive behavioral assumptions.

As mentioned, the unprecedented COVID-19 crisis, characterized by supply and de-
mand shocks and high levels of uncertainty (Guerrieri et al. 2022, Kalemli-Ozcan et al.
2020), highlighted the need to complement stress tests on financial institutions with more
analytical tools to assess the financial soundness of the corporate sector in a forward-
looking manner. This necessity was twofold. First, the corporate sector is critical from a
financial stability standpoint, given the firm’s role in the credit market (direct channel) and
the whole economy (indirect channel). Second, the financial information of the corporate
sector tends to be less frequent than banks” balance sheets.

In this way, several studies proposed analytical stress testing frameworks for the
corporate sector during the pandemic. To simulate the financial variables of firms, works
by Carletti et al. (2020), Demmou et al. (2021), Caceres et al. (2020) and Tressel & Ding
(2021) elaborate on accounting-consistent frameworks for the main balance sheet accounts
and profit and loss (P&L) items. These frameworks can depend on exogenous income
shocks —e.g., at the sectoral level- (Carletti et al. 2020, Demmou et al. 2021) or can be
complemented with firm-level regressions that relate macroeconomic variables to key
financial and activity performance variables such as sales growth or leverage (Caceres et al.
2020, Tressel & Ding 2021). To build the financial simulation analysis of the corporate stress
testing tool proposed in this paper, we closely follow the most comprehensive approach
of Tressel & Ding (2021). However, we also consider sector heterogeneity components in

regressions similar to Caceres et al. (2020).

This paper is also related to the default corporate finance literature. Since the seminal

macroeconomic scenario.



paper by Altman (1968), a prominent literature on firm failure has been developed. See,
e.g., Bottazzi et al. (2011), Traczynski (2017), Cathcart et al. (2020), and Modina et al. (2023).
In this branch of the literature, discriminant analysis and Logistic or Probit regressions
were initially emphasized (for a review, see Ciampi & Gordini 2013 and Siggelkow &
Fernandez 2024). Recently, studies have implemented ML methods to study corporate
default. Altman et al. (1994) compare neural networks to linear discriminant analysis and
tind no high gains from the first approach. Ciampi & Gordini (2013) implement artificial
neural networks to predict credit risk for small Italian companies and find that these
models outperform traditional models. Xia et al. (2017) compare extreme gradient boosting
(XGBoost) to other ML and traditional models. The authors find that the XGBoost-based
sequential ensemble model with Bayesian hyper-parameter optimization improves credit
scoring accuracy. Interestingly, the authors also find that simpler, traditional Logistic
models remain competitive. Siggelkow & Fernandez (2024) show that random forests (RF)

models enhance credit-risk evaluation for SMEs by improving prediction accuracy.

The models for firms’ credit default we propose in the section 5 of the corporate
stress test are inspired by these preview works. Given that some previous research has
shown that traditional models as Logistic regressions remain competitive, we compare
these simpler models with a set of data-driven ML approaches that use a wide range of
covariates and specifications. In particular, we compare two families of models: i) Logit
models and ii) tree-based methods such as RF and XGBoost. In total, we run seven models

(tive Logit and two tree-based models) and compare their performance metrics.

In summary, our paper builds on the recent literature on corporate stress tests devel-
oped during the pandemic. Moreover, it complements these models and their applications
with ML models to predict credit default.

3 Data

We use data from three data sources to construct the dynamic balance sheet simulation
framework and the battery of ML models. First, we employ annual financial information
of firms that report their financial statements to the Colombian Superintendence of Com-
panies and the Financial Superintendence. This dataset contains information from 1999 to
2023, comprising 517,850 observations and 66,166 firms. This set of information serves as
the primary input for the dynamic balance sheet simulation model presented in Section 4.
From these data, we utilize the main balance and P&L accounts (see Table 1) to construct



various financial and activity performance indicators that measure dimensions such as
profitability, leverage, debt burden, size, and size growth.

Table 1: Firm financial variables

Variables Notes

Sector

Total Assets

Cash and equivalents

Short-term financial liabilities

Long-term financial liabilities

Total liabilities

Equity

Operating income or sales

Operating expense or costs

Other operating income

Other operating profits or losses

Profit from operating activities

Financial income

Financial costs Interest expenses before 2015
Profit before taxes

Taxes

Total profits

Trade and other current receivables

Other current financial assets Short-term investments in cash definition (equation 5).
Current provisions for employee Short-Term accrued payrolls in cash definition (equation 5)
Trade and other current payables

Other current non-financial liabilities

Other non-current financial assets

Issued capital

Notes: Balance and P&L accounts taken from annual financial information of firms.
Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and
Financial Superintendence.

Second, we merge the firm’s annual data with the Colombian credit registry, which is
reported by credit institutions to the Colombian Financial Superintendence. This dataset
provides information about firms” delinquency days in a given year from 2005, allowing us
to define credit default status as being one or more months past due. This merged dataset
is the main input for the set of ML models developed in Section 5. Finally, we utilize
macroeconomic information provided by the National Statistics Office and an aggregate
boom credit measure calculated by the Financial Stability Department of the Central Bank
of Colombia.

Figure 1 presents, for selected sectors, time series of average sales growth for firms with
available annual financial information and aggregate GDP growth. It also displays the

results of linear regressions of sectoral average growth of sales on aggregate GDP (b values



in each panel).? According to this figure, there is a heterogeneous relationship between
GDP growth and average sales by sector. On the other hand, Figure 2 presents the yearly
average of firms’ financial leverage and the aggregate credit boom indicator. This figure
displays a positive relationship between financial leverage and the credit boom indicator.
These data movements motivate the regression set-up used for dynamic balance sheet
simulation developed in Section 4, where sectoral heterogeneities are taken into account,

and the relationship between micro leverage and macro credit dynamics is modeled.

The merged dataset used for the set of ML models to predict default one period ahead
includes lagged financial information from various indicators. Consequently, the dataset
employed in the models begins in 2006 to account for the one-period lag. Figure 3 displays
the annual percentage of firms in default since 2006 for the dataset employed to develop ML
models. Interestingly, defaulting firms increased in 2008 and 2020, periods characterized
by economic distress. Moreover, for the whole period, the proportion of firms in default
relative to the total sample is 13.4%, indicating a highly imbalanced dataset. Section 5
discusses the implications of this imbalance and the strategies implemented to address it.

2Formally, for each sector s, the time series of average log change in sales is regressed on aggregate GDP
growth following the formula A lnSaless; = as + b, - GDP; + vy, where A In Sales,; refers to average log
change in sales in sector s and year ¢, and GDP; to aggregate GDP growth, and v, to the error term.
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Figure 1: Average sales growth for selected sectors and aggregate GDP growth
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Figure 2: Average financial leverage and aggregate credit boom indicator
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Notes: Yearly average of firms’ financial leverage and aggregate credit boom indicator. Source: Authors’ elaboration based on data from

the Colombian Superintendence of Companies and Financial Superintendence.

Figure 3: Percentage of firms in default by year
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data from the Colombian Superintendence of Companies and Financial Superintendence.

4 Dynamic balance sheet simulation framework

Based on the data described in section 3, this part presents the balance sheet simulation

framework. First, we describe the accounting rules used to simulate the main financial
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accounts and P&L items of firms. Secondly, we outline the regression analysis aimed at
connecting macroeconomic aggregates to key financial indicators. This regression analysis
is an input for the firm accounting model. Finally, we illustrate dynamic balance sheet
simulation results based on the stressed macroeconomic scenario presented in Banco de
la Reptuiblica’s Financial Stability Report from the second half of 2024. The framework
described in this section closely follows the work of Tressel & Ding (2021).

4.1 Accounting consistent behavioral rules

To produce the main firms’ financial variables in a consistent way, we use the following
accounting behavioral rules proposed by Tressel & Ding (2021). These rules are based on a
macroeconomic scenario and simulated sales and costs, which are constructed with the

regression analysis explained in the next section.

Define h = 0, ..., H as the balance sheet simulation periods, where h = 0 refers to the
initial point and H to the final point. To simulate total profits, financial costs are modeled

with the following equation:
FinancialCosts;, = FinancialDebt;;,_; - [i}’ + a - AMPR,], (1)

where a is the share of variable interest rate commercial loans (close to 80% for the case of
the Colombian banking sector), MPR;, refers to the monetary policy rate in the macroeco-
nomic scenario, and i¢]’ to the initial effective rate of financial debt, measured as financial

costs over financial liabilities.

With equation (1) and given values of sales and costs, profits before taxes can be

computed® and used in tax calculation according to the following equation:
Taxes;;, = ProfitsBeforeTaxes;, - 7 - 1[ProfitsBeforeTaxes;;, > 0], (2)

where 1[-] is the indicator function, and 7 the estatutory income tax rate for corporates.

With the above value of taxes, profits and —assuming that dividends are not distributed-

3Similar frameworks are developed by Caceres et al. (2020), Carletti et al. (2020), Demmou et al. (2021).
We opt for the framework proposed by Tressel & Ding (2021) since it connects a regression analysis with a
high-level, detailed accounting simulation.

*Interest income is assumed to be constant.



equity can be computed as follows:
Profits;;, = ProfitsBeforeTaxes;;, — Taxes;, 3)
Equity,, = Equity,, , + Profits;,. (4)
Following Tressel & Ding (2021), we define the initial net cash of a firm as:

Cash;y = Cash&Equivalents,, + Short-TermInvestments,, + AccountReceivables;,
—(Short-TermAccruedPayrolls,, + AccountPayables,,+
OtherShort-TermNon-FinancialLiabilites;y). (5)

With this definition, profits are accumulated in net cash. Moreover, if cash needs arise,

financial debt increases. The above is summarized in the following expressions:

Cash;;, = Cash;,_; + Profits;, (6)
FinancialDebt;;, = FinancialDebt;, ; — Cash;;, - 1[Cash;, < 0]. (7)
Finally, liabilities and assets are given by:
Liabilities;;, = Liabilities;;,_; + AFinancialDebt;,,, (8)
Assets;;, = Liabilities;, + Equity, . )

4.2 Regression analysis

The regression analysis aims to capture, at the firm level, the statistical relationship
between key macroeconomic and financial aggregates and firms’ financial indicators,
conditional on a rich set of initial firm characteristics. Moreover, the proposed models
capture a differential effect of the macroeconomic variables on firm financial indicators. In
this way, the regression analysis is an input for the previously described accounting rules.
Specifically, this regression analysis conditions the following variables to a macroeconomic
scenario: sales and cost growth and financial leverage. The above affects profits, equity,

and financial debt in the accounting model (see equations 3, 4, and 7).

More formally, following Tressel & Ding (2021), we run the following firm-level dy-
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namic OLS regressions
Yy = a - Yy_1 + 6 - CharFirmy_; + UM . Macro, + ¥F™ . Fin, + d, + vy, (10)

where 7 and t index the firm and year, Y;; refers to log change in sales or financial lever-
age, CharFirm;,_; to a vector of firms’ characteristics, Macro, to a set of macroeconomic
variables, Fin, to the credit boom indicator, d, to a sector fixed effect, and v;; to the error

term.

The initial firms’ characteristics (CharFirm;,_,) vector includes a measure of profitability
(ROA), indebtedness (financial leverage ratio), size (log of assets), turnover (sales-to-assets
ratio), and growth (log change in sales).” Moreover, the model controls for a dynamic
factor given by the lagged dependent variable (Yj;_,) to consider persistence or mean-
reversion if the outcome variable is a ratio or a growth rate, respectively. Finally, we allow
the coefficients of the macroeconomic variables UM to vary across economic sectors to
capture heterogeneities in the relationship between sectors and the aggregate economic

cycle.

The dependent variables considered in the model are the log change in sales and the
financial leverage ratio.® For the case of the macroeconomic and financial variables, GDP
growth and a credit boom indicator were selected after a careful regression analysis of
different candidates. In the end, the models used are i) the log change in sales as a function
of the credit boom and as a sectorally varying function of GDP growth, and ii) financial
leverage as a function of the credit boom. The selection of variables and models are in line
with those proposed by Tressel & Ding (2021)". However, in contrast to the models used
by Tressel & Ding (2021), we allow the effect of GDP on sales to vary depending on the

economic sector.

Finally, the following regression is used to measure the elasticity of costs with respect
to sales at the firm-sector level:

AlnCosts;; = o - AlnCosts;;_; + 6 - CharFirm;;,_; + ¥, - Aln Sales;; + v;;. (11)

Profits,,
Assets;,_;
®Notice from equation (7) that financial debt also has a simulated value based on accounting behavioral
rules. Therefore, in simulations, the average of projected values from regression and equation (7) are used.
’Similar to Tressel & Ding (2021), although dynamic OLS estimation may be subject to bias, the exclusion
of firm-level fixed effects from the specification (while including sector fixed effects) mitigates the potential
bias arising from the dynamic panel correlation between the lagged dependent variable and the fixed effect.

5In the regression analysis, ratios are measured with lagged denominators, e.g., ROA;; =
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In sum, the dynamic balance sheet simulation model offers a tool to evaluate the firms’
exposure to the risks identified in a macroeconomic scenario and the most recent exposure
of the financial statements to these firms. However, since the model is based on some
restrictive accounting behavioral rules and correlations observed in the data, its results
must be carefully read. In particular, the model does not account for strategic behaviors
such as prepaying debt, reducing debt size, or renegotiating debt, etc. When we present the
results, we discuss, based on an out-of-sample comparison exercise presented in Appendix

B, how the mentioned assumptions can affect results.

4.3 Results

We now present the results of the framework described above for dynamic balance
sheet simulation. This simulation is based on the accounting-consistent behavioral rules
and the results from the regression analysis presented earlier. To illustrate the balance
sheet simulation of firms, the results are based on the stressed macroeconomic scenario
presented in Chapter 3 of the Financial Stability Report published in the second half of 2024
by Banco de la Reptiblica. The macroeconomic scenario presented in this report examines
a hypothetical adverse macroeconomic scenario characterized by high-risk perception
and fiscal uncertainty. In this scenario, the Colombian peso would depreciate against
the U.S. dollar, leading to inflationary pressures and unanchored inflation expectations.
As a result, the monetary policy interest rate would rise, increasing the cost of debt, and
investment, consumption, and GDP would contract, negatively impacting credit demand
and employment. The 2023 observed financial data of firms serves as the starting point
of the exercise. From this point on, dynamic balance sheet simulation is conducted in a
two-year horizon.

Figure 4 displays the median simulated values of key financial variables under the
described stressed macroeconomic scenario. Specifically, this figure presents the observed
median values of firms up to 2023 (vertical blue dashed lines) and the simulated values two
years ahead, based on the methodology previously presented. Panels a, b, ¢, and d present,
respectively, the median log change of sales, interest-coverage-ratio (ICR) —defined as the
ratio between operating profits and financial costs—, ROA, and financial leverage. Some
plots include, for reference, observed key macroeconomic variables in red. According
to the results, and consistent with the macroeconomic scenario, firms would experience
financial pressures during the stress horizon. In particular, the median firm would exhibit
sales contractions (Figure 4, panel a). In line with this sales drop and the upward pressures

on the monetary policy interest rate in the stressed macroeconomic scenario, the ICR
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would decrease in the stress horizon (Figure 4, panel b). Moreover, ROA and financial
leverage would decrease and increase, respectively (Figure 4, panels c and d).

Appendix A shows the results of the regression analysis on which the dynamic simu-
lations are based. In general, regressions point to mean reversion and persistence effects
for growth variables and the financial leverage variable, respectively (lagged dependent
variable). When it comes to estimates of macroeconomic and financial variables, we find
that the credit boom indicator has a positive effect on sales growth and financial debt.
Regressions also capture sectoral heterogeneous cost-to-sales elasticities and correlations

between average sales growth and aggregate GDP growth.

As mentioned earlier, the dynamic balance sheet simulation model is designed as a
macro-micro consistent stress test tool to assess the financial resilience of corporations in
extreme and improbable scenarios, as well as under restrictive behavioral assumptions.
To assess the extent to which these assumptions affect the conclusions drawn from the
model, Appendix B presents an out-of-sample comparison exercise. In particular, dy-
namic balance sheet simulations starting from 2021 through periods 2022 and 2023 are
compared with observed data. According to the results, the model tends to accurately
estimate the distribution of operational profits and ROA. However, the model seems to
overestimate financial leverage ratios, as well as financial obligations and costs. As a result,

the proportion of firms with an ICR lower than one is also likely to be overestimated.®

8In the context of this study, the conservative bias observed in the out-of-sample results aligns with the
Basel IRB credit risk modeling guidelines. Moreover, it is consistent with best practices for evaluating the
impacts of stress scenario.
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Figure 4: Median simulated values of key financial variables under the stressed macroeco-
nomic scenario
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5 Machine learning models for credit default prediction

In this section, we present the set of ML models used to predict corporate credit
default. We begin by defining the classification problem, outlining the performance
metrics considered, and detailing the methods employed to optimize them in the context
of highly imbalanced data. Subsequently, we introduce the different sets of models used
and compare their performance based on the reference metric. Our primary focus is
on optimizing model performance rather than emphasizing economic interpretability.
However, in Section 6, we provide insights into the characteristics of firms classified as

defaulting based on their key financial variables.

5.1 Classification problem and model tuning

A classification problem aims to assign qualitative responses to an individual observa-
tion based on its observable characteristics. In our case study, the objective is to determine

whether a firm is in credit default (Y = 1) or not (Y = 0), based on its financial variables.

The variable of interest of firm  in year ¢ is defined as:
Y;; = Default;,,

where Default;, is equal to one if firm f is in default (30 or more past-due days) in any of

its credits during the year ¢ (0 otherwise).

The goal of the model is to find a function f(-) that predicts the default variable given a
set of observable characteristics. In particular, our models are based on a set of lagged firm-
level financial indicators (X;;_;), the lagged default variable (to capture default persistence),

and a set of firm sectoral dummies (S;):

A

}/;:t — f(Xit—la }/;;t—la Slt)

All variables included in the models, except those related to the economic sector, are
lagged by one period. Using lagged variables in the estimation ensures that the models
can predict default one period ahead. This is also the practice commonly followed in the
corporate finance literature (see the works cited in Section 2). The specific set of financial
indicators included in X;;_; are presented in Table 3 below.

The classification process embedded in f involves two interconnected steps. First, an
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estimation of the conditional probability must be performed. The probability of default is
calculated conditional on the observed characteristics previously described:

P(Kt =1 | Xit—17}/;'t—17 Sit)-

Second, a classification threshold 7" must be selected to assign to each observation a
predicted default category. Based on the estimated probability, a label is assigned to the
observation:

. 1 i P(Yy =1[ X4, Yi-1,Su) > T

it = .
0 if P(Yie=1]Xy,Yu-1,S%) <T

This approach systematically classifies firms into default and non-default states, pro-

viding a systematic assessment of credit risk.

Confusion matrix and performance metrics

To evaluate the performance of a classification model like the one described above,
the confusion matrix is used. This tool compares the model’s predictions with the actual
observed values in a dataset. The columns of this matrix represent the predicted values:
positives (Y = 1) and negatives (Y, = 0), while the rows correspond to the actual observed
data (Table 2). The usefulness of the confusion matrix lies in its ability to summarize the
model’s correct and incorrect classifications concisely. Specifically, it provides insights into
how well the model predicts positive values (true positives, TP) and negative values (true
negatives, TN). Similarly, the confusion matrix highlights the extent to which the model
misclassifies observations, indicating the number of false positives (FP) and false negatives
(EN). FP and FN are also referred to as Type I and Type II errors, respectively.

Table 2: Confusion matrix

Forecast
Negatives (Y;; = 0)  Positives (Vj; = 1)
Negatives (Y;; = 0) | True negatives (TN) False positives (FP)

Positives (Y;; = 1) | False negatives (FN) True positives (TP)

Observed

Based on the confusion matrix, the following performance metrics are usually used in

classification models:
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Correct Predictions TP + TN

A = =
CCUTACY = "Total Predictions TP + TN + EN + FP’ (12)
Precision — Correct Positive Predictions TP (13)
~ Total Positive Predictions = TP + FP’
Recall — Correct Positive Predictions B TP (14)

Total Positives TP + FN’

The most well-known metric for evaluating a classification model is accuracy (equation
12), which measures the proportion of correctly classified observations. However, in
contexts where the focus is on evaluating the model’s performance in a specific and
minority class, accuracy may not be a good measure of model performance. This is
particularly relevant in our case of credit default, as we face a highly imbalanced class
problem. In fact, as shown in Section 3, only 13.4% of the observations in the whole sample

correspond to firms in credit default.

In our study, we aim for a model that reduces the error of misclassifying a high-risk
firm as a non-defaulting firm. Therefore, we are more interested in precision (equation 13)
and recall (equation 14) metrics. Precision measures the proportion of correctly classified
defaulting firms over the total positive predictions, that is, the percentage of correctly
predicted defaulters. Recall, on the other hand, measures the proportion of true positives
over the total number of defaulting firms, meaning the percentage of correctly identified
defaulters within the total defaulting population. Precision and recall are class-specific
metrics, as they focus on quantifying model performance for a particular class that may
be of greater interest to researchers. It is important to note that maximizing precision
is equivalent to minimizing false positives, while maximizing recall is equivalent to

minimizing false negatives.

Based on the above, in each proposed model, our primary objective is to maximize the
F,-score, which combines precision and recall, giving greater weight to recall. In other
words, we place more importance on identifying truly defaulting firms while minimizing

false negatives. Formally, the F5-score is defined as:

Precision - Recall (1+2?)-TP
22 . Precision + Recall ~ (1 + 22)TP + 22 - FN + FP’

Fy=(1+2%) (15)
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Strategies to address class imbalance

As mentioned above, we are facing a classification problem with highly imbalanced
classes (13.4% of the observations correspond to firms in default). Class imbalance occurs
when the relative frequency of one class in the sample is significantly lower compared to
the remaining categories. This characteristic can reduce the effectiveness of classification
models, especially when the focus is on the minority class. The problem arises because
the model’s predictions may exhibit good overall performance metrics while being biased
toward the majority class, lacking the ability to correctly identify the minority class of

interest, such as the default class.

To address this issue, several complementary solutions can be employed by researchers
(Kuhn et al. 2013). In this research, we implement three main strategies. First, we follow
sampling methods to train models with a synthetic balanced sample. When dealing with
an imbalanced dataset, up-sampling and down-sampling techniques can be applied. The
tirst technique involves simulating or imputing additional observations in the sample to
improve balance between classes, whereas the second reduces the number of observations
to achieve such balance. In this paper, we utilize the Synthetic Minority Over-Sampling
Technique (SMOTE) to oversample the minority class, ensuring the training sample is
completely balanced. The SMOTE algorithm randomly selects an observation from the
minority class and, using the k-nearest neighbors (five in our application), creates a syn-
thetic point by randomly combining features between the selected point and its neighbors.
When categorical features are present, the technique imputes the most common category
among the neighbors.” It is important to highlight that SMOTE should only be applied
to the training sample, as the evaluation and test subsets must maintain the real data
distribution (see below the data partitioning strategy). Otherwise, model performance
evaluation would be overly optimistic and could reduce the model’s ability to classify new
data.

As a second strategy to address class imbalance, we make specific choices in the model’s
hyperparameter tuning strategy. In imbalanced contexts, the traditional accuracy metric
may fail to predict the minority class. Instead, an alternative approach to improve model
performance is to optimize different metrics, such as precision, recall, and the F,-scores,
which assign greater weight to the minority class. As mentioned before, we focus on the
Fy-score as the performance metric over which hyperparameters are estimated through a

tive-fold cross-validation procedure.

%If the categorical feature of the k neighbors is bimodal, one mode is randomly selected.

18



As a final strategy, we implement classification threshold tuning. As previously ex-
plained, classifying an observation into a given class depends not only on the estimated
conditional probability but also on the threshold at which classification into one category
or another occurs. By default, the threshold is set at 0.5; however, it can be adjusted to
enhance the model’s performance for the minority class and, consequently, improve the
F,-score. Under this approach, it is essential that tuning is performed using a dataset
independent of the training and test sets. Using training predictions could introduce an
optimistic bias in the model’s performance, whereas using the test sample would prevent
an impartial evaluation of model performance and limit the comparison between different
models. For this reason, an independent sample is used for the cutoff calibration. The data
partitioning strategy is explained below.

Data partitioning strategy

To address the classification problem using different models aimed at maximizing the
F,-score under the strategies to address the class imbalance previously described, it is
essential to randomly divide the sample into three mutually exclusive subsets while main-
taining approximately the same proportion of defaulting firms. This partitioning enables
model evaluation at different stages, ensuring its generalization ability and reducing the

risk of overfitting the training data. The original sample is divided as follows.

* Training set (75% of the data): This subset is used to estimate the model parameters
after applying the SMOTE technique. With this set, optimal hyperparameters through
a 5-fold cross-validation procedure are found with the goal of maximizing the F5-

score metric.

¢ Evaluation set (10% of the data): This subset is used to determine the optimal
decision threshold that maximizes the F-score after model training with the training
set.

¢ Test set (15% of the data): This subset is used to compare the performance of different
models based on the selected performance metric using data that was not used during
training or evaluation. This ensures a fair comparison across models based on the
F5-score.
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5.2 Set of machine learning models

Based on the practices for addressing class imbalance and the data partitioning strategy,
this section provides a brief description of the variables and the family of models used.
All models were estimated using five-fold cross-validation on the training sample, which
was adjusted using the SMOTE methodology. Once the hyperparameters maximizing
the metric of interest were identified, the optimal threshold was determined using the
evaluation sample. Finally, the performance of each model was compared by applying it

to the test sample.

Table 3: Firm-level variables used to predict default

Type of variables Variables
Default Dummy variable that takes the value of 1 if the firm is in default and 0 otherwise.
Economic sector Dummy variable that takes the value of 1 for the economic sector to which the firm belongs.

The 14 economic sectors considered are: 1) professional activities, 2) agriculture, 3) commerce, 4)
construction, 5) electricity, 6) financial, 7) hospitality, 8) information and communications, 9) real
estate, 10) manufacturing, 11) mining, 12) restaurants, 13) transportation, 14) others.

Operational profitability = Ratio of operating expenses to operating income
Ratio of operating income to assets
Operational ROA
Operating margin
Operational ROE

Profitability ROA
Net margin
ROE

Leverage Ratio of assets to equity
Ratio of financial obligations to assets

Financial burden Interest coverage ratio
Ratio of financial obligations to operating income

Size Log of assets
Log of sales

Growth Annual growth of operating expenses
Annual growth of operating income
Annual growth of financial obligations
Annual growth of equity
Annual growth of assets

Notes: Default and financial indicators are used with one lag. In ML models, ratios are measured with numerator and denominator

in the same period, e.g., ROA;; = Il)%rs(;fé:z”
it

handling values close to or equal to zero without definitional issues.
Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and Financial Superintendence.

. Growth variables were calculated using the arcsinh transformation, which allows

As explained above, a set of lagged financial indicators summarizing each firm’s
economic performance is used to predict default. In addition, the set of predictors includes
lagged default and sectoral dummies. Table 3 presents the set of predictors used, grouped
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Table 4: Description of ML models used to predict default

Model Features used to predict default ~ Hyperparameters grid Selected hyperparameters

Logit 1 Lagged default
Sector dummies
Lagged financial variables from
Table 3

Logit 2 Variables from Logit 1
Squared terms of lagged finan-
cial variables from Table 3

Logit 3 Variables from Logit 2
Interactions between lagged fi-
nancial variables from Table 3

A € {0,0.00001,0.00002, . ..,0.0001}U
Logit Lasso  Variables from Logit 3 {0.0001, 0.0003, 0.0005, . ..,0.001}U 0.00001
{0.001, 0.002,0.003, ...,1}

A € {0,0.00001, 0.00002, . ..,0.0001}U
{0.0001, 0.0003, 0.0005, . ..,0.001}U

Logit Ridge  Variables from Logit 3 0.684
{0.001,0.002,0.003, ..., 1}U
{1,1.5,2,...,100}
RF Lagged default min.node.size € {5, 10,15} min.node.size = 10
Sector dummies
Lagged financial variables from
Table 3
max_depth € {2,4,6} max_depth =4
t .1,0.1 ta=0.1
XGBoost Lagged default eta € {0.1,0.15} eta=0
Sector dummies gamma € {0, 0.025,0.005,0.0075,0.01,0.015}  gamma = 0.01
Lagged financial variables from  min_child_weight € {5, 10} min_child_weight = 10

Table 3

Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and Financial Superintendence.

by the type of information they provide. In total, a set of 35 features is considered (14
sectorial dummies, 19 lagged financial indicators, and the lagged default status). Based on
these variables, two families of models are estimated. These models are summarized in
Table 4, and we will describe them in what follows. Specifically, logistic regression models
are presented first, followed by classification tree-based methods. In total, we run seven

models (five logit and two tree-based methods) and compare their performance metrics.

Logit models

Logistic regression is widely used due to its simplicity, interpretability, computational
efficiency and robust performance, which can sometimes rival more complex models (Xia
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et al. 2017)."° For these reasons, this study adopts that approach and estimates five logit-
type models (Logit 1 to Logit Ridge in Table 4). Logit 1 to Logit 3 models are simple logistic
regressions where variables are included sequentially, resulting in more complex and
flexible models at each step. In particular, Logit 1 includes lagged default, economic sector
dummies and lagged financial variables from Table 3. Logit 2 extends this specification by
incorporating the squared terms of lagged financial variables. Logit 3 adds to Logit 2 the

interactions between lagged financial variables.

To mitigate overfitting in the presence of a large number of explanatory variables in
the previous models, Logit Lasso and Logit Ridge are employed based on the variables
selected for the most complex model from previous steps, i.e., Logit 3.!" These techniques
constrain excessive model fitting to the training data and enhance generalization to new
data, effectively balancing the bias-variance trade-off. The Lasso penalization reduces the
magnitude of the coefficients and, depending on the degree of penalization, can shrink
some of them to zero, effectively performing variable selection.'” On the other hand, Ridge
penalization also reduces the magnitude of the coefficients. Still, it does not shrink them
exactly to zero, retaining all variables in the model."” Since regularization is sensitive to
the scale of variables, all explanatory variables were standardized prior to analysis. Based

on this regularization, two additional models are defined.

For Lasso and Ridge models, the optimal degree of penalization is determined using
five-fold cross-validation, maximizing the F-score as the performance metric. Table 4
presents the grid search performed in the training sample over the penalization parameters

and the optimal values obtained in this process.

Tree-based classification models

Classification trees are methods in which the predictor space is segmented into non-
overlapping regions through a recursive binary splitting algorithm. That is, at each step,
one split is performed based on the most relevant variable in that step without considering
what the best tree would be. Specifically, starting from the previous divisions, additional

19Tn the logistic model, the inverse of the log-likelihood function J(f3) is minimized using the logistic
P11+ A+ Bz

TremsT 5= as a parameterization for the probability of default, where /3 is the

function hg(z1, ..., 2k) =

parameters vector.
1The Elastic-Net model, which incorporates both types of regularization, was also estimated. However,

it is excluded from the final set of models since, based on the hyperparameters that maximized the F»-score,

the model converged towards a Ridge regularization.

In this case, a penalization parameter A Y"_,[f;| is introduced in the optimization program, where

refers to the penalty parameter, 3; to the coefficients of the logistic function and p to the number of predictors.
In Ridge, penalization is conducted with the term A Y>¥_, 537
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non-overlapping regions are constructed iteratively based on the variable and the variable
cutoff that minimizes the cost function. In classification problems, the Gini criterion is
normally employed as the cost function. This process is recursively repeated, generating
a series of partitions in the predictor space. Ultimately, predictions are made based on
the most representative class within each region. Decision trees are appealing due to
their high interpretability, ease of explanation, and intuitive nature. However, due to
their high flexibility, they suffer from high variance, which can lead to overfitting and
poor performance on the test sample (James et al. 2013). To address these limitations,
RF and XGBoost methods are used. These models enhance performance by introducing
randomness into tree construction and combining multiple trees rather than relying solely

on a single one.

RF is based on constructing an ensemble of decision trees generated simultaneously.
Specifically, bootstrap sampling with replacement is used to create pseudo-samples for
estimating individual trees. In the estimation, we use 200 threes. In each tree, a random
subset of predictors is selected as potential candidates for determining the optimal data
partition at each iteration. Unlike bagging, which utilizes all explanatory variables, RF
randomly selects a subset of predictors at each split. This strategy aims to mitigate
overfitting by reducing the excessive influence of certain variables on the prediction. In our
estimations, we use a random subset of predictors at each split, equal to the square root
of the total number of predictors. For the estimation of the RF model for firm default, we
consider the following variables: lagged default, sectoral dummies, and lagged financial
variables (see Table 4).

To control the complexity of the model and mitigate overfitting, some hyper-parameters
can be adjusted, each affecting the structure of individual trees. The most relevant hyper-
parameters include: i) the rule used to select the best split at each node (splitrule) and
ii) the minimum terminal node size (min.node.size), which sets the minimum number
of observations required for a node to remain unsplit. For splitrule, the Gini index was
used as the decision criterion. The value of min.node.size was determined via five-fold
cross-validation, optimizing performance based on the F;-score metric (see Table 4 for the
hyperparameter search space and the results obtained).

Boosting is a tree-based learnizing algorithm that follows a slow, sequential learning
process, where trees are fitted iteratively such that each new tree learns from the prediction
errors of the previous step. In each iteration, a new decision tree is added to reduce resid-

uals, gradually improving the model’s performance in areas where it previously failed
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to generalize well. Unlike bagging and RF, boosting is sequential, meaning that the con-
struction of each tree depends on the previously grown trees. Among the algorithms that
utilize boosting, XGBoost stands out as it combines features from RF with the sequential
tree-building concept and then integrates the results of each tree. This method is widely
used in classification problems due to its computational efficiency. For its estimation, we

consider the same variables as those used in RFE.

To control model complexity and mitigate overfitting in XGBoost, several hyper-
parameters can be tuned, each influencing different aspects of the learning process. The
main hyperparameters considered in this study include: i) the maximum tree depth
(max_depth), which sets the maximum number of partitions within each tree, defining
its complexity; ii) the learning rate (eta), which controls the step size in each iteration,
where smaller values require more trees to converge, while larger values may lead to
overfitting; iii) the minimum reduction in the loss function (gamma), which imposes an
additional penalty to prevent the creation of multiple irrelevant terminal nodes and; iv)
the minimum size of terminal nodes (min_child_weight), which controls the minimum
number of observations required in a node before performing a split, directly affecting
tree complexity. To select the optimal values for these hyperparameters, we use five-fold
cross-validation, optimizing performance according to the Fy-score metric (see Table 4).
In addition, we set the number of boosting iterations (nrounds) to 200. The fraction of
predictors randomly sampled at each tree level (colsample_bytree) was set to 0.9, and the
proportion of the training data used in each iteration (subsample) was set to 0.8.

5.3 Results

This section presents the performance assessment of the classification models on the test
sample, employing the four previously introduced performance metrics, with particular
emphasis on the F,-score. The first part of Table 5 summarizes the results obtained for the
test sample when the classification threshold for predicting default is set at 0.5. Conversely,
the second part of Table 5 reports the results when the classification threshold is optimized

based on the evaluation sample.

Without adjusting the classification threshold, the XGBoost model achieves the best
performance, as indicated by the F,-score. The second-best performing model is Logit
2, which exhibits a performance similar to that of the Random Forest model, followed
by Logit 1. In contrast, the model with the lowest predictive capacity is Logit 3. This
lower performance suggests that, given the model’s complexity, it may be overfitting the
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training data, thereby significantly limiting its generalization ability to new data. This
observation aligns with the high accuracy value and, simultaneously, the low recall value,
indicating that a large proportion of firms are classified as non-defaulting when, in reality,
they defaulted. As a result, accuracy increases due to the class imbalance in the test sample,
which favors non-defaulting firms, while recall decreases due to a higher number of FN.
The behavior of the Logit Lasso model in these metrics is similar, which is consistent
with the near-zero value of the penalty hyperparameter. However, both Lasso and Ridge
exhibit improved performance, suggesting that the Logit 3 model may indeed have been
overfitted.

When employing the tuned classification threshold, the XGBoost model remains the
best-performing model according to the F,-score, closely followed by Logit 2. Although
the performance of Logit 3 and Lasso improved, their predictive capacity remains inferior
to that of the aforementioned models. Notably, the simplest model, Logit 1, achieves an F5-
score comparable to that of Logit 2. This result suggests that, despite incorporating fewer
explanatory variables, Logit 1 maintains a similar ability to generalize and predict defaults.
Given its superior performance in the test sample, the subsequent analysis focuses on the
detailed results of the XGBoost model.

Based on the confusion matrix, under the untuned threshold, the proportion of true
positives (TP) for the XGBoost model is 64.9%, while the true negative (TN) rate reaches
79.8% (Figure 5, panel a). When analyzing the confusion matrix with the tuned threshold,
the TP rate improves to 69.4%. This improvement is achieved because a lower threshold
results in a greater number of firms being classified as defaulting. However, this adjustment
also leads to a reduction in the TN rate (Figure 5, panel b). Conversely, as the threshold
increases beyond the tuned value, the proportion of true positives progressively declines
until no firm is classified as defaulting, causing the F,-score to converge to zero (Figure 6).
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Figure 5: Confusion Matrix of XGBoost
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Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and Financial Superintendence.
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Table 5: Out-of-sample model performance

Model Threshold - 0.5 Tuned threshold

Accuracy Recall Precision Fy-score| Threshold Accuracy Recall Precision Fs-score
Logit 1 0.800 0.612 0.355 0.535 0.480 0.783 0.641 0.337 0.543
Logit 2 0.783 0.635 0.336 0.539 0.460 0.740 0.688 0.297 0.545
Logit 3 0.832 0.531 0.403 0.499 0.360 0.704 0.710 0.270 0.535

Logit Lasso 0.835 0.555 0.413 0.520 0.390 0733  0.692 0.290 0.542
Logit Ridge 0.715 0.675 0.272 0.521 0.490 0.691 0.700 0.258 0.522
RF 0739 0.674 0.293 0.535 0.500 0739 0.674 0.293 0.535
XGBoost 0778 0.649 0.331 0.544 0.460 0.740 0.694 0.298 0.548

Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and Financial Superintendence.

Figure 6: F,-score in the evaluation subsample vs. threshold
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Source: Authors’ elaboration based on data from the Colombian Superintendence of Companies and Financial Superintendence.

6 Classification under a stressed scenario

This section integrates the results from sections 4 and 5. Specifically, it utilizes the
financial indicators of firms simulated under the methodology described in section 4 and
applies the ML models presented in section 5 to identify firms that may be classified as in

default under the given stress scenario. These identified firms are those whose operations
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would be most affected according to the dynamic balance sheet simulation. Therefore, the
individual identification of each defaulting firm becomes a valuable input for stress-testing
exercises such as the stress test model used by the Central Bank of Colombia (Gamba et al.
2017), where idiosyncratic shocks to borrowers are considered to assess the resilience of

credit institutions.

The results presented correspond to those obtained for the year 2025 using the XGBoost
model. In particular, this section presents boxplots comparing firms classified as in default
(1) versus those classified as not in default (0). When analyzing the distribution of firms
in terms of their financial leverage (measured as the ratio of financial obligations to total
assets), it is observed that firms classified as in default generally exhibit higher levels of
this indicator in the preceding period (Figure 7, panel a). Similarly, when examining the
interest coverage ratio (measured as the ratio of earnings before taxes to interest expenses),
tirms classified as in default tend to display lower coverage ratios in the previous period
compared to those that were not classified as in default (Figure 7, panel b). Regarding firms’
revenues, those with a lower probability of being classified as in default are generally those
that experienced higher growth in operational revenues in the previous period (Figure 7,
panel c). Finally, in terms of return on assets (ROA), firms that exhibited lower ROA in the
preceding period have a higher probability of being classified as in default (Figure 7, panel
d).

It is essential to note that while each variable offers valuable insights into the distribu-
tion of firms in default, the XGBoost model’s classification process considers all variables
jointly. Therefore, a firm with a negative or near-zero ROA is not necessarily classified as
in default. This is because, despite potentially having low profitability due to the nature
of its business, the firm may simultaneously exhibit robust financial leverage or interest
coverage indicators. Consequently, these results should be interpreted as illustrative and

analyzed holistically in conjunction with the additional variables.
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Figure 7: Financial indicators for firms classified in default (1) and not in default (0)
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A Regression Analysis

Table A1 presents the results of the regressions (10) and (11). Specifications include the
lagged outcome variable and a vector of lagged firm characteristics. Column 1 presents the
regression of sales growth as a function of the credit boom and sector x GDP interactions.
Financial leverage is modeled in column 2 as a function of the credit boom indicator.
Column 3 presents regressions of log change in costs as a function of sectorx A In Sales;,

interactions (see equation 11). Robust standard errors are in parenthesis.

Table Al: Regression analysis

1) (2 3

VARIABLES Log change of sales  Financial leverage = Log change of costs
Lagged dependent variable -0.07 *** 0.73 *** -0.49 ***
(0.00) (0.00) (0.01)
Lagged firm characteristics
Log change of sales -0.003 *** 0.38 ***
(0.00) (0.01)
Financial leverage 0.07 *** -0.02 *
(0.00) (0.01)
Sales-to-assets ratio 0.003 *** 0.005 *** -0.02 ***
(0.00) (0.00) (0.00)
ROA 0.08 *** -0.05 *** 0.29 ***
(0.01) (0.00) (0.02)
Log of assets 0.02 *** 0.002 *** 0.001 ***
(0.00) (0.00) (0.00)
Credit boom indicator 0.02 *** 0.002 ***
(0.00) (0.00)
Sector fixed effects Yes Yes No
Sector x GDP growth Yes No No
Sector x Log change of sales No No Yes
N 301,689 304,609 299,135
R2 0.03 0.59 0.31

Regression results from equation (10) and (11). Robust standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.

Results point to mean reversion and persistence effects for growth variables and fi-
nancial leverage variable, respectively (lagged dependent variable). Regarding lagged
tirm characteristics, we find that firms with larger assets, higher profitability, and higher
financial leverage and sales-to-assets ratio tend to grow more (Column 1). Sales growth
and ROA, on the other hand, correlate negatively with financial leverage (Column 2).
Finally, we find that sales-to-assets rate correlate negatively with the log change of costs
(Column 3).

When it comes to estimates of macro and financial variables, we find that there is a
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positive effect of the credit boom indicator on sales growth and financial debt. In particular,
an increase of 1SD in the boom indicator implies an increase of 0.14 percentage points in
the financial debt ratio. Figure A1 depicts sector xGDP-growth effects on sales growth
(panel a) and sectorxAlnSales;; (panel b). In general, regressions capture a sectoral
heterogeneous correlation between average sales growth and aggregate GDP growth
which is consistent with the co-movements observed in the historical data (see Section 3).
In particular, restaurants and accommodation, mining, construction, and manufacturing
sectors display a strong sales elasticity with respect to aggregate GDP. Regressions also
capture a heterogeneous cost-to-sales elasticity among sectors, where construction and
commerce show the highest elasticities.

Figure Al: Effects of GDP growth and sales growth accross sectors
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Authors’ calculations of Sectorx GDP-growth effects (Panel a, W2 in equation 10) and Sectorx A In Sales effects (Panel b, ¥ in
equation 11). Robust confidence intervals calculated at the 10% significance level.
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B Out-of-sample performance of the dynamic balance sheet simulation

This appendix presents an out-of-sample exercise to provide some insights about
possible biases presented in the dynamic balance sheet simulation model. In particular, we
run the dynamic balance sheet simulation starting in 2021 through periods 2022 and 2023
based on regression results until 2021 and macroeconomic variables observed in 2022 and
2023. The two-year horizon is chosen based on the commonly stress test horizons used by
Banco de la Reptblica. Based on these results, we compare the simulated distribution of
key financial variables with the actual 2022 and 2023 observed data.'*

Figure B1 shows the results. According to them, the model tends to correctly estimate
the distribution of operational profits and ROA (Figure B1, panel a and c). However, the
model seems to overestimate financial leverage ratios, as well as financial obligations and
costs for half firms (percentiles 25 and 50, Figure B1, panels b and d). As a result, the
proportion of firms with an ICR lower than one also tends to be overestimated, particularly
in 2022 (Figure B1, panel e).

4For sound comparisons, results are only presented for firms observed in 2021 and with a complete
vector of lagged firm characteristics, CharFirm;,_, at the starting point of the exercise.
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Figure B1: Out-of-sample results of the dynamic balance sheet simulation (2023-2024)
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C Threshold tuning in the evaluation sample

Figure C1: Threshold tuning
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0.36

Figure C1: Threshold tuning (continued)
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Figure C1: Threshold tuning (continued)
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D Confusion Matrix per model
Figure D1: Logit 1
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Figure D2: Logit 2
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Figure D3: Logit 3
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Figure D4: Logit 4
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Figure D5: Logit 5
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