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Even apart from the instability due to speculation, there is the instability due to the character-
istic of human nature that a large proportion of our positive activities depend on spontaneous
optimism rather than mathematical expectations, whether moral or hedonistic or economic.
Most, probably, of our decisions to do something positive, the full consequences of which will
be drawn out over many days to come, can only be taken as the result of animal spirits—a
spontaneous urge to action rather than inaction, and not as the outcome of a weighted average

of quantitative benefits multiplied by quantitative probabilities.

— John Maynard Keynes

1. Introduction

Human irrationality is a key driver of financial instability, contributing to asset price bubbles
and banking crises. History offers numerous examples, including Tulip Mania in the 17th cen-
tury, the South Sea Bubble, the dot-com boom, and the 2008 financial crisis. A well-established
body of research highlights the role of psychological and emotional factors, coined animal spirits
or irrational exuberance, in these periods of boom and bust (Angeletos et al., 2018; Grauwe, 2012;
Shiller, 2005).

Understanding the role of animal spirits in financial stability is already a challenge, given the
unpredictability of human behavior. Now, a new and unknown agent has entered the equation:
generative Al. Humans increasingly rely on Al for information gathering and decision-making,
whether as a co-pilot for human judgment or as an autonomous agent. As generative Al is
reshaping workflows across institutions and individuals, the question arises: What could be
the impact of Al on financial stability, particularly in a world where Al is used more and more
in lieu of human decision makers at times driven by irrational tendencies?

Two competing hypotheses emerge. On the one hand, Al is fundamentally algorithmic and
grounded in logic and rational decision-making. If Al-guided decisions replace human intu-
ition, the result could be a reduction in the influence of animal spirits, leading to more stable

financial markets. On the other hand, generative AI models, such as large language models



(LLMs), are trained on vast amounts of data, sourced from both rigorous materials, such as
academic research, and the chaotic discourse of social media platforms such as Twitter (X) and
Reddit. Consequently, Al may inherit and even amplify human biases and irrational tendencies
(Hayes et al., 2024; Jiang et al., 2023; Koralus & Wang-Mascianica, 2023; Zhu & Griffiths, 2024).
Moreover, many Al models undergo reinforcement learning from human feedback (see Wang
et al., 2024 for a survey), optimizing for engagement and persuasion rather than pure rational-
ity. This suggests that instead of mitigating instability, Al could exacerbate financial turbulence
driven by animal spirits. Finally, Danielsson and Uthemann (2024) argue that Al adoption will
likely cause more intense future crises due to Al’s ability to respond quickly to shocks. The net
effect of Al’s involvement in financial decision-making is therefore unclear.

This paper explores these competing perspectives, examining the implications of the expand-
ing role of Al in economic decision-making for financial stability. We conduct laboratory-style
experiments using LLMs to replicate classic studies on herd behavior in investment decisions.
Herd behavior—where investors ignore private signals and mimic others, driving prices away
from fundamental values—is a well-documented form of irrationality that can cause asset price
bubbles (Galariotis et al., 2016; Hsieh et al., 2020).

We focus on the experiment by Cipriani and Guarino (2009), which investigates herd be-
havior among 32 financial market professionals through a controlled laboratory setting. This
setting contrasts with other studies of herd behavior, which typically conduct experiments on
undergraduate students, e.g., Cipriani and Guarino (2005) and Drehmann et al. (2005). Given
the research question, analyzing the behavior of financial professionals is essential, as their
actions—not those of students—shape real-world market dynamics and impact the stability of
the financial system.

We replicate these experiments in an Al laboratory, closely following the original experimen-
tal design, and compare the human results from Cipriani and Guarino (2009) with those of Al
agents. The Al laboratory consists of LLMs, which we prompt using instructions that mirror
those given to financial professionals in the human study. To generalize our results as much as

possible, we use three different LLMsll and average the results across models.

! These LLMs are: Anthropic’s Claude 3.5 Sonnet, Meta’s Llama 3 70B parameter model, and Amazon’s Nova Pro



Our results show that Al agents demonstrate significantly more rational trading behavior
compared to human participants. Across different parameterizations of the experiment, Al
agents made rational decisions between 56-92% of the time, substantially exceeding the 46-51%
range observed in human participants. The Al laboratory also exhibited fewer informational
cascades, which occurred between 0-5% of the Al decisions, compared to around 20% for hu-
mans. Notably, when cascade trading did occur in Al agents, it was solely contrarian rather
than herding behavior. In addition, we show that Al agents do not make erroneous decisions,
which contrasts with the results of the experiments conducted with human participants. We
interpret these results as early indications that a future where investors are more impacted by
advice generated by LLMs can potentially involve fewer asset price bubbles arising from herd
behavior. However, studying the rationals provided by LLMs alongside the trading decisions
reveals that Al agents” decision-making processes fail to fully account for the accumulation of
private information in asset pricing, leading to occasional suboptimal choices.

We then explore variations of the experiment to examine whether different conditions lead
to stronger evidence of herd behavior. Unlike the original study, scaling up and modifying
parameters is both cost-effective and efficient with LLMs. First, to make the Al laboratory as
realistic as possible, we include persona descriptions in the prompts, endowing Al agents with
behavioral profiles such as “human”, “professional trader”, “robo-advisor”, and “rational.” We
also explore giving the Al agents personal characteristics such as gender, age, job role, tenure,
and education. These characteristics are drawn from the distribution of characteristics from the
human participants of the original study. Surprisingly, we do not find these profiles to impact
the results: the Al agents continue to make highly rational decisions regardless of their imposed
profile.

Second, we test the impact of changing the payoffs. The baseline model uses the same payoff
structure as offered to the human experiments. By scaling the payoffs up and down (from zero
to millions GBP), we show that Al agents do not change their decisions based on monetary
payoff. After all, LLMs, unlike humans, are designed to provide accurate responses rather than

respond to monetary incentives.

model.



Third, we test the impact of re-labeling the signals that participants receive during the ex-
periment. In the original experiment, a “blue” signal represents a high probability of a high
asset value, whereas a “white” signal represents a high probability of a low asset value. Using
“green” and “red” signals yield similar results as the baseline experiment. However, reverting
the labeling such that “red” (“green”) signals a high probability of a high (low) asset value,
which is counterintuitive given human conditioning, the LLMs generate very few rational re-
sponses. Al agents are therefore not algorithmic rational, following a well-defined set of rules,
but has inherited some elements of human intuition and bias. This finding is consistent with
a growing literature showing that LLMs can replicate human errors and biases (Argyle et al.,
2023; Bybee, 2023; Hansen et al., 2025).

Finally, we expand the length of the experiment by increasing the number of independent
sessions and the number of trading periods in each session. Our main conclusions continue to
hold in these longer versions of the experiment.

Our results suggest that Al agents exhibit less herd behavior than human financial profes-
sionals, a finding with significant implications for future financial stability as Al gains traction
in market decision-making. The reduced tendency to herd could potentially lead to less ex-
treme market movements and fewer asset price bubbles, contributing to greater overall finan-
cial market stability. However, the introduction of Al agents could fundamentally alter market
dynamics in ways that are not yet fully understood, underscoring the need for continued re-
search and adaptive regulatory approaches to maintain financial stability in an Al-augmented
financial landscape.

We proceed as follows. Section B reviews the literature. Section E outlines the theoretical
model that underpins the experimental design. Section @ describes the human laboratory in
which the experiment was conducted in Cipriani and Guarino (2009), and how we adopt this
setting with LLMs. Section E present the results and Section B discusses their implications.

Conclusions follow in Section B



2. Literature

This work contributes to the growing literature on the behavior of LLMs. While our study
focuses on herd behavior and financial stability, other works have examined other types of be-
havior and departures from rationality. Chen et al. (2023) studies the economic rationality of
GPT models by conducting revealed preference experiments, where models are prompted to
make decisions under budget constraints. Similar to our results, although in a different aspect
of the term rationality, the authors conclude that Al agents tend to exhibit more rational behav-
ior than humans. del Rio-Chanona et al. (2025) focus on laboratory experiments related to price
expectations and deviations from rational expectations. They emphasize the importance of the
interactions of different Al agents and retaining memory across time periods; both elements
that we include into our Al laboratory setting as well. While they conclude that LLMs are not
strictly rational in their expectation formation, they find that LLMs generate less variability in
their responses compared with humans. Similar patterns are observed in our results. Dou et
al. (2025) conduct simulated experiments with Q-learning algorithms to prove the existence of
Al collusion, where “autonomous, self-interested reinforcement learning algorithms indepen-
dently learn to coordinate their trading in a way that secures supra-competitive profits, without
explicit agreements, communication, or pre-programmed intent.”

While these studies, like ours, mainly emphasize differences between the behaviors of hu-
mans and Al agents, an emerging literature focus on their similarities and argue that LLMs
can be used to simulate human outcomes. For example, Horton, 2023 argues that LLMs can
give human-like responses and suggests that they can be used conduct pilot experiments to cal-
ibrate experimental designs before testing on human beings. And Hansen et al., 2025 shows
that LLMs can be used to simulate economic surveys. This strand of research is in line with our
findings from changing the labels of the signals: LLMs are not strictly rational entities and do
feature human and irrational traits. Characterizing the exact distinction between humans and

Al remains an open question.



3. Experimental design

This section presents the model and theoretical predictions outlined in Cipriani and Guarino

(2009). The model is based on Avery and Zemsky (1998).

3.1. Theoretical model

The model describes a financial market with one risky asset and discrete trading periods in-
dexed by t = {1,2,...}. During any trading period, there is a p probability of an information
event, which changes the fundamental value of the asset in either direction. Some traders may
receive a private signal on the value change, while others do not. The model characterizes differ-
ent types of trading behaviors based on whether informed traders act according to their private
signal (rational behavior) or ignore their signals (cascade behavior).

The asset’s fundamental value belongs to the discrete set v € {0, 50, 100}. Specifically, if there
is no information event (with probability 1 — p), the value is equal to its unconditional expected
value, i.e., v = 50. An information event (occurring with probability p) pushes the value to zero
or 100, with the following probability distribution: Pr (v = 0) = Pr (v = 100) = 0.5. The asset
trades at a price p, which is set by the market maker according to Bayesian updating as we detail
below.

Traders act sequentially with only one trader randomly chosen to trade in each trading period.
In each period ¢, the chosen trader chooses an action x;, which is to buy one unit of the asset (z; =
buy), sell one unit of the asset (z; = sell), or not trade (z; = no trade). If there is no information
event, all traders are uninformed noise traders, who trade based on exogenous probabilities, i.e.,
Pr (z; = sell) = Pr (z; = buy) = Pr (z; = no trade) = 1/3. In the case of an information event,
the chosen trader is informed with probability 1 (and a noise trader with probability 1 — p).
An informed trader receives a signal s; € {white, blue}, which is tied to the asset value in the

following way:
Pr (s = white | v = 100) = Pr (s; = blue | v = 0) = 0.7. (1)

That is, a white signal can be interpreted as a good signal, indicating that the information event

resulted in a high asset value, whereas a blue signal is bad in the sense that it increases the



probability of a zero asset value. In addition to the signal s;, an informed trader also observes
the trading history h:, and therefore forms beliefs about the asset value based on the conditional
expected value given s; and hs: E(v|s¢, ht). The realized payoff is equal to v — p if the trader
chooses to buy the asset, p — v if the trader chooses to sell, and zero if the trader chooses not
to trade. We assume that the informed trader is risk-neutral and seeks to maximize expected
payoff given s, hy.

A market maker facilitates exchanges with the traders and sets the price of the asset given the
history of trades for periods up to t — 1, hy = {x1,z2,...,24-1} for t > 1. hy = (). Specifically,
the price is the determined as the expected asset value given h:: py = E (v | ht).E In the first
trading period, with no trading history, the price is equal to its unconditional expected value:
p1 = 3100 = 50. Att > 1, the price is given by the expected asset value conditional on the
history of trades:

p = 100 Pr (v = 100|h;) + 0 Pr (v = 0|h;) = 100, )

where ¢; = Pr (v = 100|h;) is determined using Bayesian upda’cing:H

qt =Pr (’U = 100‘$t_1, ht—l) (3)
_q ) (0.7p1+ (1 — pp)3) 1 .
(et =b) 1070 + (1= p) ) g1 + (03pp+ (1 — pp)3) (1 = ge1)
L ) (0.3pp + (1 — p)3) g1 N (4)
(=) V0300 + (1 — p) 1) g1 + (0.7pp+ (1 — pp)E) (1 = 1)

1 (z¢—1=no trade) qt—1-
3.2. Theoretical predictions

This section presents the theoretical predictions for how informed traders act according to the

model. Informed traders make decisions by comparing the price of the asset to the expected

2 There is only one asset price, i.e., the model assumes a zero bid-ask spread. This assumption was imposed by
Cipriani and Guarino (2009) to simplify the laboratory experiment.

? The term (1— ppu) % represents the probability a buy or sell comes from a noise trader, who buys, sells, and chooses
not to trade with equal probability. The term pp is the probability that a trader is informed, given by the probability

that an information event occurred (p) times the probability that a trader is informed given an informed event (u).



value given the signal and trading history:

buy if pr <E(v|st,he)
Ty = o sell if py>E(v|sg,hy) - ()
indifferent if p; =E (v|s¢, ht)

When indifferent, traders may buy, sell, or not trade; their payoff will be the same regardless of

their action. Their expected value is given for each signal as follows:

E (v|s; = white, hy) = 100 [ 0.76; ] ©
= ) = 0.7¢f +0.3(1— )|’
0.3¢f
(v]s¢ ue, hy) [0.3%* +0.7(1 — qt*)] ?

where ¢ = Pr (v = 100|z; — 1, h4—1, p = 1), which can be computed from (@) above. For the in-
formed trader, the relevant probability of the high asset value conditional on the trading history
sets p = 1 because the informed trader, by definition, knows with certainty that an information
event occurred. The discrepancy between ¢, the probability of a high asset value from the per-
spective of the market maker, and ¢, the corresponding probability from the perspective of an
informed trader, can lead to optimal information cascades.

The model characterizes different types of behavior of informed traders, defined as follows:

Rational: The informed trader chooses to buy upon receiving a white (good) signal and

sell upon received a blue (bad) signal.

Partial rational: The informed trader follows rational behavior upon receiving one signal
and to not trade upon receiving the other signal, e.g., buy upon receiving a white (good)

signal and no trade upon received a blue (bad) signal.

Cascade trading: The informed trader chooses the same trading action (buy or sell) regard-
less of the private signal. If the trader chooses to buy (sell) when the trading history is
dominated by buy-actions (sell-actions), i.e., act following the majority action of previous
traders, the trader engages in herd behavior. If the trader chooses to buy (sell) when the
trading history is dominated by sell-actions (buy-actions), i.e., acting against the majority

of previous traders, the trader engages in contrarian behavior.



Cascade no trading: The informed trader chooses not to trade regardless of the private sig-

nal.

Error: The informed trader chooses to buy upon receiving a blue (bad) signal and sell upon

receiving a white (good) signal.

The last type of behavior is always sub-optimal and is interpreted as an error if observed. How-
ever, it can be optimal for traders to engage in cascade behavior, depending on the parameter-
izations of the model. The laboratory experiments in Cipriani and Guarino (2009) follow two
different parameterizations of the model, referred to as treatments.

In the first treatment (Treatment I), there is no uncertainty about whether an information

event occurs, i.e., p = 1. In addition, all traders are informed, i.e., © = 1. Hence, ¢; = ¢}, and it

follows that:
. O.7qt
E = white, h;) = 100 > 100¢g; =
and
E(v|s; = blue, hy) = 100 0-34t < 100q; = p;.

0.3g: +0.7(1 — ¢)
Hence, regardless of the history of trades, a trader’s expected value given their private signal
is always on the same side of the market price as their signal. Therefore, it is always optimal
for traders to follow their private signals. As a result, each trade reveals new information, con-
tinuously updating the market price. This prevents the formation of information cascades, as
traders never have an incentive to ignore their private information in favor of following the
actions of others.

In the second treatment (Treatment II), there is uncertainty both about whether an informa-
tion event occurs and the proportion of informed traders. Cipriani and Guarino (2009) set
p = 0.15 and p = 0.95, i.e., an information event occurs with 15% probability and the prob-
ability that a trader receives a private signal on the information event is a slightly smaller than
one.

With event uncertainty, it can be optimal for traders to engage in cascade behavior. The reason

is that there is information asymmetry between informed traders and the market maker. Upon
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receiving a private signal, the informed trader knows with certainty that an information event
has occurred and that the history of trades comes from an informed trader with probability ;1 =
0.95. In contrast, not knowing whether an information event has occurred, the market maker
believes that the traders are informed with probability py = 0.15-0.95 = 0.14. This asymmetry
leads the market maker to update the asset price more conservatively than informed traders
update their beliefs. After a sequence of buy orders, the gap between traders’ expectations and
the market price can widen. Eventually, a trader’s expectation may exceed the market price
even with a contradictory signal: E(v|s; = white, h;) > E(v|s; = blue, ht) > p:. At this point,
the trader will ignore their private information and follow the herd A However, because the
market maker updates his expectation by less than the informed traders, it will never be the
case that, after a history of buys, the expectation of a trader will be below the price for both
signal realizations, i.e., ps > E(v|s; = white, ht) > E(v|s; = blue, h¢). As a result, an informed
trader will never engage in contrarian behavior. Analogous arguments apply to a sequence of
sell orders.

At the extreme, the market maker does not update the price at all such that the price remains
at the unconditional expected value throughout all trading periods. Cipriani and Guarino, 2005
conducted an experiment with this setting (without event uncertainty) among undergraduate
students. We shall refer to this setting as Treatment III. In this parametrization, optimal herding
arises when there is a trade imbalance greater than or equal to two (Bikhchandani et al., 1992);
see Cipriani and Guarino, 2005 for intuition. Since this experiment was not conducted among

financial market professionals, we shall focus less on this parametrization in our results.

Optimal behavior: To summarize, the model predicts the following behavior in the two treat-

ments:

Treatment I (price updating; no event uncertainty): Traders always trade according to their

private signal, preventing the formation of cascades.

* Optimal herding behavior is temporary. When traders herd, the private signals are not reflected in the prices.
However, the market maker continues to update beliefs about whether an information event has occurred, causing
prices to keep moving, albeit slowly. Eventually, the price may move enough to make private information relevant

again, breaking the herd behavior.
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Treatment II (price updating; event uncertainty): An information cascade occurs with posi-
tive probability. Herding is optimal when prices are below the expected value conditional

on both signals, but never engage in contrarian behavior.

Treatment I1I (no price updating; no event uncertainty): Herding is optimal after a trade im-

balance higher than or equal to two.

4. Laboratory setup

Cipriani and Guarino (2009) implemented the experiment among financial market profession-
als. We adopt their human laboratory setting as closely as possible, replacing human participants
with Al agents. Then we compare our results from this Al laboratory with the human results

from Cipriani and Guarino (2009). This section describes the human and Al laboratories.

4.1. Human laboratory

The human experiment was conducted with 32 participants working for financial institutions
in London. The participants were divided into four groups of eight; each group formed one
session.

In each of the four sessions, the experiment was repeated for two practice rounds followed by
first eight rounds implemented with the parametrization in Treatment I and then eight rounds
with the Treatment II parametrization. Before each treatment, participants were given written
instructions. They were informed that everyone received the same set of instructions, and were
given the opportunity to ask clarifying questions which were answered privately. The timeline

for each session was as follows:

Timeline for each session in human laboratory:
1. Participants were given written instructions for Treatment I.
2. Practice round consisting of two trading periods with Treatment I parametrization.

3. Treatment I round consisting of eight trading periods.

12



4. Participants were given written instructions for Treatment IL
5. Treatment Il round consisting of eight trading periods.
6. Payoffs were paid out.

7. Participants filled out a survey collecting personal characteristics (gender, age, education,
work position, job tenure). Cipriani and Guarino (2009) report the unconditional distri-

butions of these characteristics.

Each round proceeded as follows:

Timeline for each round in human laboratory:

1. A computer selected the asset’s fundamental value from the distribution Pr (v =0) =
Pr (v = 100) = 0.5. In Treatment II, there is a theoretical 85% probability that an informa-
tion did not occur, leaving the value at 50. However, the experiment was implemented as

if an event did occur.

2. Not knowing the asset’s value v, participants chose their actions conditional on observing

a white and blue signal.

3. A computer randomly chose one trader from a uniform distribution, who was selected to
trade. The computer also chose the realized signal from the signal’s probability distribu-

tion conditional on the value selected in step 1.

4. The selected trader received the realized signal. The remaining traders only observed the

executed action (buy, sell, no trade).

5. The price for the next round was computed given the selected trader’s action for the real-

ized signal.

6. Steps 2-6 were repeated for eight rounds total, until all participants had been selected to

trade exactly once.
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7. Payoffs for the round were revealed to each participant. Participants who bought (sold)
the asset in the round at the price p; received v — p; (p: — v) lire, a fictional currency that
was translated into GBP at the end of the experiment at the exchange rate of three lire per

GBP.

We refer to Cipriani and Guarino (2009) for further details.

4.2. Al laboratory

We adopt the human experiment in our Al laboratory, where human participants are replaced
by Al agents. To model Al agents, we use a suite of LLMs and apply model averaging to get an
all-compassing view of the behavioral patterns of Al-powered trading. Specifially, we use An-
thropic’s Claude 3.5 Sonnet model, Meta’s Llama 3 70B parameter model, and Amazon’s Nova
Pro model. We mainly implement the models with a moderate temperature of 0.7, balancing
creativity with determinism.f Robustness checks confirm that the choice of temperature does
not impact the conclusions of our experiments.

We follow the setup of the human laboratory described above as closely as possible. For ex-
ample, similar to human participants, we presented an LLM (Claude 3.5 Sonnet) with written
instructions and gave the model the opportunity to ask clarifying questions. We used this model
feedback to improve the instructions. However, some adjustments are necessary to accommo-
date differences between human and Al agents. First, practice rounds are redundant, and we
completely separate the two treatments to avoid confusion of the models. Second, we explicitly
provide memory to the Al agents in each trading period, by listing the executed trades along
with the history of actions and reasoning for each agent in all previous periods.

LLMs are instructed through prompts. The user prompt sets the task or query that the user
wants the model to respond to, and it can change with each interaction. In addition to the
user prompt, LLMs can also be instructed through their system prompt, which sets the context,

behavior, knowledge base, and role for the model. We use the system prompt to provide the

> The temperature adjusts how the model weighs its prediction for the next token. A lower temperature makes
the model focus more on its top choices, while a higher temperature gives it more freedom to consider less likely

options, affecting how predictable or creative the output becomes.
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general instructions of the experiment (corresponding to the written instructions handed out to
human participants) and the user prompt to provide updates throughout the trading periods

and request trading actions.

Timeline for each round in Al laboratory:
1. A computer selected the asset’s fundamental value, as in the human experiment.

2. We make an API call to an LLM, using the instructions of the experiment as the system
prompt, see Prompt ﬂ] The user prompt requests the model to provide a trading action
(buy, sell, no trade) given each signal (blue and white) and the current asset price, along
with its reasoning for each action. For trading rounds ¢ > 1, the user prompt also provides,
for each agent, the history of executed trades, a notification if that agent was chosen to act
in the previous round, and the history of actions and reasoning of that agent. The user

prompt is provided in Prompt .

3. The trader selected trade and the realized signal are chosen by a computer, as in the human

experiment.

4. The price for the next round is computed given the selected trader’s action for the realized

signal.
5. Steps 2-4 are repeated for eight rounds total.

Each experiment (i.e., four sessions of eight trading rounds) is repeated across different LLMs,
with different settings (e.g., model temperatures) and parameterizations (e.g., treatments). To
maintain comparability across experiments, we seed the randomness such that the realized asset
value, realized signals, and the sequence of selected traders are identical across the experiments.
Following Cipriani and Guarino, 2009, we assume that an information event always happens,

even in Treatment II, where the theoretical probability of an information event is less than one.
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5. Results

5.1. Without event uncertainty

We begin by discussing results obtained with the parameterization in Treatment I, where there
is no model uncertainty. The theoretical model predicts that traders should always trade ac-
cording to their private signals, which precludes the formation of cascades.

Table E] shows the frequency of the different behaviors averaged across all sessions and trad-
ing periods. The “Human” column recites the results from the human laboratory reported in
Cipriani and Guarino (2009). The “AI” column represents the average results across all consid-
ered LLMs. With Treatment I, reported in panel (a), Al agents exhibit more rational behavior,
i.e.,, buy on a “good” signal and sell on a "bad signal,” (61%) compared to humans (46%). This
result is largely driven by the Llama 3 70B model, which generates rational responses for all
sessions and trading periods. In contrast, the Claude 3.5 Sonnet and Nova Pro models have
fewer rational responses, but a majority of responses that are partially rational, i.e., follow the
rational response on one signal but decide to not trade on the other signal. As a result, the share
of rational and partial rational responses in the Al laboratory far exceed that observed in the
human laboratory (97% for Al versus 65% for humans). It is worth noticing that while humans
make mistakes (in 3.40% of the total decisions), no erroneous decisions were made in the Al
laboratory.

Information cascades, both trading and no trading, occur in less than 3% of the decisions
in the AI laboratory, which amounts to just about one tenth of the frequency of information
cascades in the human laboratory. Cascade trading behavior is mostly driven by the Claude 3.5
Sonnet model, while Nova Pro is the only model that generates no-trade cascades.

We can gauge the nature of these cascades when there is a trade imbalance, i.e., a difference
between the number of sell and buy orders in the trading history. Information cascades repre-
sent herding if the cascade follows the market, i.e., the majority action in the trading history,
and contrarian behavior if the cascade goes against the dominant action in history. Table ﬁ]
shows the decomposition of cascade trading into herding, contrarian, and undetermined be-

havior. The results show that the trading cascades are fully attributed to contrarian behavior.
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While the human experiment does identify some herding, it is also the case here that contrarian
behavior is dominating, see Cipriani and Guarino, 2009. Both herding and contrarian behaviors
are, however, not predicted to be optimal by the theoretical model.

While we do not know the reasoning behind the decisions made in the human laboratory, we
asked the LLMs as part of the user prompt to give reasoning behind their decisions. Analyzing
these reasoning paragraphs sheds further light on the decision-making process in each of the
models. As such, contrarian behavior occurs in 9 out of 256E in the Claude 3.5 Sonnet model
because the model fails in these few cases to recognize that the price updates and trading history
incorporate information about private signals from previous trading rounds. For example, in
the seventh trading period of the second session, two participants chose to buy on both signals
at the price of 15.52, forming a cascade. One of the agents gave the following reasoning for

buying on a blue (“bad”) signal:

“Even with a Blue signal, the expected value is 30 (30% chance of 100, 70% chance of 0). The

current price of 15.52 is still lower than this expected value, so buying remains profitable.”

The remaining participants with cascade trading behavior delivered similar reasoning for
their decisions. This argument disregards that the trading history (in this case {Buy, Buy, Sell,
Sell, Sell, Sell}) and the total price decrease from the initial price of 50 to 15 indicate that the
asset value is zero, assuming that other participants followed rational responses such that the
trading history reflects private information from previous periods.

Disregarding the accumulation of private information in the pricing of the asset also explains
the large share of partially rational decisions, i.e., why the model would decide to not trade on
one of the signals. For example, in the fourth round of the first session, one of the Claude 3.5

Sonnet agents decided to not trade at the price of 93 given a white (“good”) signal because:

“With a White signal, the expected value is 70 (70% chance of 100, 30% chance of 0). Since
the current price (92.70) is significantly higher than this expected value, buying is not prof-

itable, and selling is too risky given the positive signal.”

® The 256 total decisions are distributed over four sessions each with eight trading periods, where the eight agents

make decisions in each period: 4 - 8 - 8 = 256.
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If the model had taken into account the fact that the asset was bought in the previous three
rounds, it may have assigned a higher probability of a high asset value than the signal accuracy
of 70%, arriving at a higher expected value and consequently decided to buy the asset.

The lines of reasoning are also interesting for the case of the Llama 3 70B model, where trad-
ing decisions across almost all sessions, trading periods, and agents were to buy on a white
signal and sell on a blue signal. These results are very different from the outcomes of the other
LLMs. The reasoning paragraphs show that the Llama model is different from the other LLMs
in the way it evaluates expected values. Whereas the Claude 3.5 Sonnet and Nova Pro models
computes expected values using probabilities on the asset value, the Llama model reckons that
a white (blue) signal likely implies an asset value of 100 (zero) based on what it “believes” and
“thinks”. For example, a representative reasoning for Llama agents (from the second round of

session one):

“Since the White signal is more likely to occur when the fundamental value is 100, and the
price of 70 is still below the expected value of 100, I believe the asset is likely to be valuable
and I'm willing to buy.”

Another Llama agent from the same session considers the potential of the market maker in-

flating the price of the asset:

“"Although the price has increased, the Blue signal suggests that the fundamental value
might be 0. Selling at 70 seems like a good opportunity to get rid of a potentially worthless
asset, especially since the market maker’s updated price might be overestimating the asset’s

value.”

5.2. With event uncertainty

With Treatment I, where there is uncertainty about whether an information event has occurred,
herding can be optimal in the theoretical model. Contrarian behavior is, however, never optimal.

Panel (b) of Table m shows that none of the Al agents decide to herd during the experiment as
cascade trading behavior is non-existent. It follows that they also do not engage in contrarian

behavior, consistent with theory. In fact, most of the decisions are rational (92%), which far
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exceed the share of rational decisions among human participants (51%). Both the Claude 3.5
Sonnet and Llama 3 70B models exclusively generate rational decisions.

The reasoning provided by each of the models is similar to that from the experiments un-
der Treatment I. Instead, the difference between the two treatments lies in the price updating,
which is much slower under Treatment II because the market maker updates the price more
conservatively.

Figure m illustrates the price dynamics for each trading round. Each line is a session. The
figure shows that under Treatment I, the price moves away from the initial price of 50; after
eight periods, the price is in most cases either close to zero or close to 100. In contrast, under
Treatment II, the price stays close to the initial price of 50 throughout all trading periods. Since
the AI agents do not consider the impact of private information on the trading history, their
expectations on the asset value will not deviate significantly from the market makers. There is
therefore no foundation for herding.

When the price does not update at all (Treatment III), see panel (c) of Table ﬂ], all models make
rational decisions in all sessions and trading rounds.

By not taking into account the cumulation of private information in the asset price, the Al
agents avoid irrational herding behavior in Treatment I, but also miss out on potential optimal
herding in Treatment II and III. In contrast, trading cascades arise in the human laboratory both
when such are strictly suboptimal as in Treatment I and when they can be optimal in Treatment

II.

5.3. Robustness to model temperature

Temperature is a hyperparameter to LLMs controlling how the model predicts the next token
in a sequence. With a lower temperature, the model is more likely to choose the most probable
next token, resulting in more deterministic and less creative responses. Higher temperatures
flatten the probability distribution of the next token leading to more variation in the responses.
For the baseline results, we applied a medium temperature of 0.7. Table 2 shows the results
(averaged across all LLMs) for different temperature choices: 0.7 as in our baseline results, 0.0,

and 1.0. Based on these results, temperature only has minor impact on the decisions of Al agents
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in the experiments.

5.4. Al laboratory extensions

Laboratory experiments involving human participants are expensive to conduct as monetary
payoffs are necessary to incentivize participants to participate and to perform to the best of
their ability in the experiment. Additional costs, e.g., for recruitment of participants, also in-
cur. Human laboratory experiments are therefore typically conducted at a small scale with few
variations in the experimental design.

In contrast, LLMs provides a cheap laboratory for exploring variations of the experimen’c.B

We utilize this feature to run alternative versions of the experiment, which we describe next.

Al agent profiles: In our baseline results, we do not attempt to characterize the profiles of
the AI agents to characterize their trading behavior off-the-shelve. However, research suggests
that LLMs yield more accurate, personalized, and dynamic representations of human subjects
when explicitly equipped with personal characteristics or profiles. We experiment with such
personalization by including profiles corresponding to different personalities into the system

prompt:

Human: “You act as a typical human being. That is, you attempt to maximize payoff, but
you are subject to bounded rationality and your decision-making is partly driven by greed

and fear.”

Professional trader: “You act as a human being, working in the finance industry. You know
financial market dynamics very well. You are trained to make decisions that maximize

profits for your firm.”

Robo-advisor: “You are a robo-advisor acting according to pre-defined rules. Your decision-
making process is algorithmic in nature. You are programmed to use all available infor-

mation to maximize payoff.”

7 While LLMs are typically not free of charge, their costs are minimal compared with the human laboratory.
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Rational: “You are a rational agent behaving according to the concept of homo economi-

cus. That is, you use all available information to maximize payoff”

We also run an experiment where the model is provided with personal characteristics based
on those of the human participants from Cipriani and Guarino (2009). Specifically, we generate
random draws from the unconditional distributions of personal characteristics of the human
participants. To avoid unrealistic profiles, such as a 20-year old manager with a Ph.d., we restrict
the distributions according to the heuristics described in Appendix @ The characteristics are
added to the system prompt in the form reported in Prompt E

The trading behavior of the different types of Al agents is shown in Table B Across both
treatments, the results are strikingly similar across personas, and they generally align with the
baseline results in Table ﬂ] While it is expected, that the responses are mostly rational for the
“rational,” “robo-advisor,” and “professional trader” profiles, it is surprising that the “human”
profiles and the traders endowed with human characteristics also exhibit highly rational behav-
ior. Studying the reasoning of the LLMs for these runs reveals that the models do not take their
profiles into account when forming decisions. This outcome is particularly puzzling given ex-
isting research showcasing that endowing LLMs with personal characteristics and preferences
impact responses (e.g., Hansen et al., 2025; Horton, 2023). We plan to conduct further tests to

understand this result further.

Payoffs: The human experiment reports payoffs in a fictional currency called “lira”, which are
translated to GBP at the exchange rate of three lire per GBP. We test the experiment in the Al

laboratory with the following variations:
¢ The lira is worthless, as represented by a zero exchange rate.

¢ The lira is extremely valuable, as represented by an exchange rate of one million GBP per

lira.

¢ The payoff is paid out in USD at the exchange rate of three lire per USD. The fixed payoff
for participation is set at 70 USD.
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Table @ reports the results. The results are comparable to the baseline, suggesting that the
payoff structure does not have a significant impact on Al agents’ trading decisions. These results
indicate that Al agents respond differently to payoff incentives compared to humans, for whom
monetary rewards typically improve performance. Unlike humans, LLMs are not programmed
to maximize profits or respond to monetary incentives. Instead, they are designed to satisfy end

users by providing accurate and helpful responses based on their training data and algorithms.

Types of signals: Theoretically, it does not matter if the “good” signal is white and the “bad”
signal is blue in the experimental design. However, it may matter in practice. Bazley et al.
(2021) show that the perception of color for visualizing financial data influences individuals’
risk preferences, expectations of future stock returns, and trading decisions. Testing different
signal colors in the Al laboratory therefore serves as a test of whether LLMs work purely as
algorithmic robots (for whom the labeling of signals is irrelevant) or are contaminated by human
bias (whose actions are impacted by the choice of signal labels).

Simply asking LLMs to associate financial market conditions with a color-coded signal reveals
that the models perceive white and blue as neutral signals indicating stable market conditions
In contrast, the models associate green and red with market movements, bullish and bearish,
respectively. These responses are documented in Table E

We test two alternative versions of signals. The first variation tests an experiment where a
“good” signal is represented by the color green and a “bad” signal is represented by the color
red. This variation is arguably more charged with meaning or connotation than the baseline
of white/blue signals, but the alignment of green with “good” and red with “bad” adheres to
typical Western color associations. In the second variation, we reverse the labeling such that a
“good” signal is represented by red and a “bad” signal by blue.

Results are shown in Table E Due to significant variations in outcomes across different mod-
els, we present the results for each individual LLM separately in Table B Using green/red in

place of white/blue generally does not impact the model-averaged results, in either treatment.

® Llama 3 70B consider blue as a bullish or positive market signal, which interestingly does not impair with its

ecisions in the baseline experiments, where blue is used as a “bad” signal.
d the basel ts, where bl d “bad” 1
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In contrast, when we invert the conventional color associations by using red to indicate “good”
and green to signify “bad’,” we observe a dramatic shift in the results. First, on average, the
models generate errors, i.e., decisions to sell given a “good” signal and buy given a “bad” sig-
nal, in one third of all decisions in both treatments. This result is driven by Claude 3.5 Sonnet
for which all decisions are erroneous under this color scheme. Second, we observe more cas-
cade trading decisions under both treatments. These decisions are driven by the Llama 3 70B
model, and represent some herding behavior, but primarily cascade trading under zero trade
imbalance. The latter arises in many cases because the model understands that red is a “good”
signal, but at the same time associates green with “good.” The model therefore chooses to buy
for both signals.E The Nova Pro model remains rational under both color schemes, and thus
behaves as one would expect from algorithm-driven intelligence.

Our findings demonstrate that the choice of labels in experimental design can substantially
influence outcomes, particularly when these labels contradict intuitive associations. We hy-
pothesize that similar effects would likely be observed in the human laboratory. These results
suggest that Al agents are not purely rational decision-makers who objectively process given

information, but are susceptible to preconceived biases.

Length of the experiment: The final variation of the Al laboratory adjusts the length of the
experiment to include more trading periods and more sessions. First, we increase the number
of sessions from four to ten, maintaining the number of trading periods at eight. Extending
the number of sessions in the human experiment to ten would involve recruiting 80 rather than
32 human participants. We do not have results for such an extended experiment, but there is
no reason not to expect that the results would change (although the overall conclusions of the
human experiment may still hold). Next, we run the experiment over four sessions as in the
baseline case, but increase the number of trading periods from eight to twenty. Under event
uncertainty, this extension may allow the gap between the expectations of traders and the mar-
ket maker to widen further to facilitate optimal herd behavior. Implementing this extension in

the human experiment would involve the same number of participants as in the original exper-

? This insight comes from the reasoning provided by the model for its trading decisions.
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iment, but would prolong the length of the experiment and therefore likely increase the payoff
necessary for recruiting participants.@

Table E shows that the main conclusions continue to hold in these extended versions of the
experiment. The occurrence of cascade trading increases under Treatment I relative to the base-
line results, which is driven by contrarian behavior in the Claude 3.5 Sonnet model. Apart from
anegligible proportion of decisions under Treatment II, the LLMs do not engage in information

cascades, even when the experiment is run over twenty trading periods.

6. Discussion

The findings from this study, which suggest that Al agents exhibit less herd behavior compared
to human financial professionals, have several potential implications for financial stability. If
Al-driven decision-making becomes more prevalent in financial markets, we might see a reduc-
tion in herd behavior, potentially leading to less extreme market movements, fewer asset price
bubbles, and greater overall market stability. This could also contribute to improved market ef-
ficiency, with prices more accurately reflecting fundamental values. However, the introduction
of Al agents could fundamentally alter market dynamics, requiring regulators and policymak-
ers to adapt their approaches to maintaining financial stability. While Al might reduce certain
types of irrational behavior, it could introduce new forms of systemic risk, particularly if many
financial institutions rely on similar AI models.

Importantly, our results also show that Al agents are not purely algorithmic or rational. Our
analyses suggest that Claude 3.5 Sonnet exhibits some degree of contrarian behavior. While this
tendency is minimal in baseline conditions, it becomes more pronounced under certain experi-
mental variations. For instance, when increasing the number of rounds and sessions, contrarian
responses rose to approximately 30% in Treatment I. Additionally, adjusting the temperature
parameter resulted in contrarian behavior ranging from 25% to 50% of responses. While this

behavior does not indicate herding, it also does not align with rational decision-making as pre-

10 The current human experiment runs over around 2.5 hours (Cipriani & Guarino, 2009). Increasing the number of

rounds to twenty would therefore likely take more than five hours.

24



dicted by the theoretical model. However, the frequency of such contrarian responses remains
significantly lower compared to the human experiment.

The results from re-labeling signals in the experiment also support the claim that LLMs are
not perfectly rational. When signals were labeled counter-intuitively, LLMs generated few ra-
tional responses, suggesting they have inherited elements of human intuition and bias. This
finding underscores that while Al may exhibit more rational behavior than humans in cer-
tain contexts, it is not immune to human-like biases and “emotions”. This hybrid nature of
Al decision-making — more rational than humans but not purely rational — adds another layer
of complexity to predicting its impact on financial stability.

The interaction between human and Al traders becomes crucial, as their combined behavior
could either amplify or dampen market movements in unpredictable ways. This shift may ne-
cessitate new tools and approaches for regulatory oversight, including Al-specific stress tests
or new forms of market surveillance. Furthermore, the long-term implications of Al decision-
making on market stability, including potential unforeseen consequences, remain an important
area for further research. Notably, traditional measures of market sentiment, which often rely
on human emotions and behaviors, may need to be reconsidered. With increased Al involve-
ment, new methods may be needed to gauge market sentiment and predict potential instabili-

ties, as the emotional drivers of market behavior could shift significantly.

7. Conclusion

This study offers novel insights into the potential impact of Al on financial stability by com-
paring the decision-making behavior of Al agents with that of human financial professionals
in a controlled experimental setting. Our findings reveal that Al agents demonstrate signifi-
cantly more rational trading behavior and less propensity for information cascades compared
to their human counterparts. This suggests that the increasing integration of Al in financial
decision-making could potentially lead to more stable markets, with fewer asset price bubbles
and extreme market movements driven by animal spirits, irrational exuberance, or panic.

It is important to note that these implications are speculative and based on experimental re-

sults. The actual impact of AI on financial stability will depend on numerous factors, including
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the extent of Al adoption, the specific models used, regulatory responses, and how Al systems
evolve over time.

Our research also uncovers important nuances that complicate this picture. The Al agents,
while more rational overall, are not immune to human-like biases and intuitions, as evidenced
by their performance when signal labels were counterintuitively assigned. This hybrid nature of
Al decision-making, which is more rational than humans but not purely algorithmic, introduces
new complexities into the financial stability equation. Traditional models of financial stability,
risk assessment, and regulatory oversight may need to be reimagined to account for the unique

characteristics of Al-augmented markets.
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Figures

Figure 1: Price dynamics

The figure shows the price dynamics throughout the experiments for each model and treatment. Each line represent

one of the four independent sessions.

(a) Treatment I: Claude 3.5 Sonnet (b) Treatment II: Claude 3.5 Sonnet
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Tables

Table 1: Trading behavior in AI and human laboratories

The table shows the distribution of behaviors averaged across all sessions and trading periods in (a) Treatment I and
(b) Treatment II. “Human” results are taken directly from Cipriani and Guarino (2009) for Treatment I and II. “AI”
results are the average behaviors across all LLMs. The table also show the results separately for each LLM. “Rational”
behavior represents cases where the informed trader chooses to buy upon receiving a white signal and sell upon
receiving a blue signal. “Partial Rational” behavior represents cases where the informed trader chooses to buy (sell)
upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cascade Trading” represents
cases where the informed trader chooses the same trading action (buy or sell) regardless of the private signal. These
decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where
the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases where the informed trader
chooses not to trade regardless of the private signal. “Error” represents cases where the informed trader chooses to
buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment I

Human Al Claude 3.5 Sonnet Llama370B Nova Pro

Rational 45.70%  61.07% 47.27% 98.83% 37.11%
Partial Rational 19.60%  36.33% 49.22% 0.00% 59.77%
Cascade Trading 19.00% 1.56% 3.52% 1.17% 0.00%
Herd - 0.00% 0.00% 0.00% -
Contrarian - 100.00% 100.00% 100.00% -
Undetermined - 0.00% 0.00% 0.00% -
Cascade No Trading  12.30% 1.04% 0.00% 0.00% 3.12%
Error 3.40% 0.00% 0.00% 0.00% 0.00%

(Table continues on next page)
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Table 1: Trading behavior in AI and human laboratories (continued)

(b) Treatment II

Human Al Claude 3.5 Sonnet Llama370B Nova Pro

Rational 50.90%  94.92% 100.00% 100.00% 84.77%
Partial Rational 20.10%  5.08% 0.00% 0.00% 15.23%
Cascade Trading 12.00%  0.00% 0.00% 0.00% 0.00%
Herd - - - - -
Contrarian - - - - -
Undetermined - - - - -
Cascade No Trading  16.50%  0.00% 0.00% 0.00% 0.00%
Error 0.05% 0.00% 0.00% 0.00% 0.00%

(c) Treatment III

Al Claude 3.5 Sonnet Llama370B Nova Pro

Rational 99.74% 99.22% 100.00% 100.00%
Partial Rational 0.00% 0.00% 0.00% 0.00%
Cascade Trading 0.00% 0.00% 0.00% 0.00%
Herd - - - -
Contrarian - - - -
Undetermined - - - -
Cascade No Trading  0.26% 0.78% 0.00% 0.00%
Error 0.00% 0.00% 0.00% 0.00%
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Table 2: Trading behavior in Al laboratory with different model temperature settings

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for temperatures T' = 0.0, T' = 0.7 (identical to the baseline results in
Table E], and 7" = 1.0. “Rational” behavior represents cases where the informed trader chooses to buy upon receiving
a white signal and sell upon receiving a blue signal. “Partial Rational” behavior represents cases where the informed
trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cas-
cade Trading” represents cases where the informed trader chooses the same trading action (buy or sell) regardless
of the private signal. These decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Con-
trarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases
where the informed trader chooses not to trade regardless of the private signal. “Error” represents cases where the
informed trader chooses to buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment I

T=0.0 T=0.7 (baseline) T=1.0

Rational 54.04% 61.07% 59.51%
Partial Rational 44.01% 36.33% 38.80%
Cascade Trading 1.95% 1.56% 1.69%
Herd 0.00% 0.00% 0.00%
Contrarian 100.00% 100.00% 100.00%
Undetermined 0.00% 0.00% 0.00%
Cascade No Trading ~ 0.00% 1.04% 0.00%
Error 0.00% 0.00% 0.00%
(b) Treatment IT

T=0.0 T=0.7 (baseline) T=1.0

Rational 96.35% 94.92% 84.64%
Partial Rational 3.65% 5.08% 15.36%
Cascade Trading 0.00% 0.00% 0.00%
Herd - - -
Contrarian - - -
Undetermined - - -
Cascade No Trading ~ 0.00% 0.00% 0.00%
Error 0.00% 0.00% 0.00%
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Table 3: Trading behavior of Al agents with personal profiles

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-

professional trader”, “robo-

v ou

ment I and (b) Treatment II. Results are shown for Al agents encoded with “human”,
advisor”, and “Rational” profiles along with the personal characteristics drawn from the unconditional distributions
of human participants from Cipriani and Guarino (2009) subject to the realistic constraints outlined in Appendix @
“Rational” behavior represents cases where the informed trader chooses to buy upon receiving a white signal and
sell upon receiving a blue signal. “Partial Rational” behavior represents cases where the informed trader chooses
to buy (sell) upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cascade Trading”
represents cases where the informed trader chooses the same trading action (buy or sell) regardless of the private
signal. These decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Contrarian”), and
cases where the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases where the in-
formed trader chooses not to trade regardless of the private signal. “Error” represents cases where the informed

trader chooses to buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment 1

Human Professional trader Robo-advisor Rational C&G Characteristics
Rational 92.19% 53.91% 51.17% 51.04% 56.38%
Partial Rational 6.90% 44.01% 42.84% 39.84% 40.10%
Cascade Trading 0.91% 0.91% 2.73% 6.12% 3.52%
Herd 0.00% 0.00% 0.00% 0.00% 0.00%
Contrarian 100.00% 100.00% 100.00% 100.00% 100.00%
Undetermined 0.00% 0.00% 0.00% 0.00% 0.00%
Cascade No Trading  0.00% 1.17% 3.26% 2.99% 0.00%
Error 0.00% 0.00% 0.00% 0.00% 0.00%
(b) Treatment IT
Human Professional trader Robo-advisor Rational C&G Characteristics
Rational 92.58% 95.96% 97.66% 93.10% 96.48%
Partial Rational 7.29% 4.04% 0.78% 6.64% 3.52%
Cascade Trading 0.13% 0.00% 0.65% 0.13% 0.00%
Herd 100.00% - 80.00% 100.00% -
Contrarian 0.00% - 20.00% 0.00% -
Undetermined 0.00% - -0.00% 0.00% -
Cascade No Trading ~ 0.00% 0.00% 0.00% 0.00% 0.00%
Error 0.00% 0.00% 0.91% 0.13% 0.00%
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Table 4: Trading behavior in Al laboratory with different payoffs

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for experiments with zero variable payoff (implemented as a zero
exchange rate between lire and GBP), extremely large payoffs (implemented as an exchange rate of one million GBP
per lira, and a USD payoff (implemented with the exchange rate of three lire per USD and a fixed pay of 70 USD).
These variations are implemented as part of the system prompt. “Rational” behavior represents cases where the in-
formed trader chooses to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational”
behavior represents cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and
not trade upon receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses
the same trading action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction
of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undeter-
mined”). “Cascade No Trading” represents cases where the informed trader chooses not to trade regardless of the
private signal. “Error” represents cases where the informed trader chooses to buy upon receiving a blue signal and

sell upon receiving a white signal.

(a) Treatment I

0lire per GBP 1M GBP per lire 3 lire per USD

Rational 53.65% 56.38% 50.52%
Partial Rational 43.23% 41.41% 44.53%
Cascade Trading 2.60% 2.21% 0.78%
Herd 0.00% 0.00% 0.00%
Contrarian 100.00% 100.00% 100.00%
Undetermined 0.00% 0.00% 0.00%
Cascade No Trading 0.52% 0.00% 4.17%
Error 0.00% 0.00% 0.00%

(b) Treatment II

0 lire per GBP 1M GBP per lire 3 lire per USD

Rational 96.35% 93.62% 96.09%
Partial Rational 3.65% 5.21% 3.91%
Cascade Trading 0.00% 1.17% 0.00%
Herd - 44.44% -
Contrarian - 55.56% -
Undetermined - 0.00% -
Cascade No Trading 0.00% 0.00% 0.00%
Error 0.00% 0.00% 0.00%
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Table 5: Trading behavior in Al laboratory with different types of signals

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treatment
I'and (b) Treatment II. Results are shown for experiments where respectively the white and blue signals are replaced
by (i) green and red, and (ii) red and green. “Rational” behavior represents cases where the informed trader chooses
to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” behavior represents
cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon
receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses the same trading
action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction of herding (“Herd’),
contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No
Trading” represents cases where the informed trader chooses not to trade regardless of the private signal. “Error”
represents cases where the informed trader chooses to buy upon receiving a blue signal and sell upon receiving a
white signal.

(a) Treatment 1

Good: Green, Bad: Red Good: Red, Bad: Green

Rational 55.60% 5.86%
Partial Rational 40.36% 44.79%
Cascade Trading 4.04% 8.85%
Herd 0.00% 100.00%
Contrarian 100.00% 0.00%
Undetermined 0.00% 0.00%
Cascade No Trading 0.00% 6.90%
Error 0.00% 33.59%

(b) Treatment II

Good: Green, Bad: Red Good: Red, Bad: Green

Rational 98.05% 34.38%
Partial Rational 1.95% 15.62%
Cascade Trading 0.00% 16.67%
Herd - 100.00%
Contrarian - 0.00%
Undetermined - 0.00%
Cascade No Trading 0.00% 0.00%
Error 0.00% 33.33%
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Table 6: LLM color connotations

The table shows how each LLM think about the colors (a) white, (b) blue, (c) green, and (d) red in the context of
financial analysis. The prompt used to generate these responses is: “You are a financial analyst. What do you think
a signal color-coded [color] says about market conditions? Please respond in a 1-2 sentences.”

(a) White

Model Connotation

Claude 3.5 Sonnet  In financial analysis, a white signal typically indicates neutral or unclear market conditions.
It suggests that there is no strong trend or definitive direction in the market, and investors
may need to exercise caution and gather more information before making decisions.

Llama 3 70B As a financial analyst, I would interpret a signal color-coded white as a neutral or calm mar-
ket condition, indicating a lack of strong trends or volatility, and suggesting that the market
is consolidating or trading within a narrow range. This could be a sign that investors are
awaiting new information or catalysts to drive market direction.

Nova Pro A white signal typically indicates neutral or stable market conditions with no significant

bullish or bearish trends.

(b) Blue

Model Connotation

Claude 3.5 Sonnet In financial analysis, a blue signal typically indicates stable or neutral market conditions.
It suggests that the market is neither particularly bullish nor bearish, and investors might
expect a period of consolidation or steady performance.

Llama 3 70B A signal color-coded blue typically indicates a bullish or positive market signal, suggesting
that market conditions are favorable and prices are likely to rise. This could be due to strong
economic indicators, increasing demand, or a decrease in volatility, prompting investors to
take a more optimistic view of the market.

Nova Pro A blue signal typically indicates stability or a neutral market condition, suggesting no sig-

nificant upward or downward trends.

(Table continues on next page)
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Table 6: LLM color connotations (continued)

(c) Green

Model

Connotation

Claude 3.5 Sonnet

Llama 3 70B

Nova Pro

A green signal in financial markets typically indicates positive or bullish conditions. It sug-
gests that prices are rising, investor sentiment is optimistic, and it may be a favorable time
to buy or hold assets.

A signal color-coded green typically indicates a bullish market sentiment, suggesting that
market conditions are favorable and trending upward, with prices likely to continue rising.
This can be a sign of strong economic growth, low volatility, and increased investor confi-
dence, making it a good time to consider buying or holding onto stocks.

A green signal typically indicates a bullish market, suggesting positive momentum and ris-

ing asset prices.

(d) Red

Model

Connotation

Claude 3.5 Sonnet

Llama 3 70B

Nova Pro

A signal color-coded red in financial markets typically indicates negative or bearish condi-
tions. It often suggests a downturn, loss, or potential risk in the market, prompting investors
and analysts to exercise caution or consider defensive strategies.

A signal color-coded red typically indicates a bearish or cautionary signal, suggesting that
market conditions are unfavorable or volatile, and investors should exercise caution or con-
sider taking defensive measures to mitigate potential losses. It may also signal a potential
downturn or correction in the market, prompting analysts and investors to reassess their
positions and strategies.

A red signal typically indicates bearish market conditions, suggesting a downward trend in

asset prices.
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Table 7: Trading behavior in Al laboratory with different types of signals by LLM

The table shows the distribution of behaviors averaged across all sessions and trading periods in (a) Treatment I

and (b) Treatment II for each LLM. Results are shown for experiments where respectively the white and blue signals

are replaced by (i) green and red, and (ii) red and green. “Rational” behavior represents cases where the informed

trader chooses to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” be-

havior represents cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and

not trade upon receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses

the same trading action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction

of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undeter-

mined”). “Cascade No Trading” represents cases where the informed trader chooses not to trade regardless of the

private signal. “Error” represents cases where the informed trader chooses to buy upon receiving a blue signal and

sell upon receiving a white signal.

(a) Treatment I

Good: Green, Bad: Red

Good: Red, Bad: Green

Claude 3.5 Sonnet Llama370B Nova Pro Claude 3.5 Sonnet Llama370B Nova Pro
Rational 28.91% 100.00% 37.89% 0.00% 16.80% 0.78%
Partial Rational 58.98% 0.00% 62.11% 0.00% 46.88% 87.50%
Cascade Trading 12.11% 0.00% 0.00% 0.00% 26.56% 0.00%
Herd 0.00% - - - 100.00% -
Contrarian 100.00% - - - 0.00% -
Undetermined 0.00% - - - 0.00% -
Cascade No Trading 0.00% 0.00% 0.00% 0.00% 8.98% 11.72%
Error 0.00% 0.00% 0.00% 100.00% 0.78% 0.00%
(b) Treatment II
Good: Green, Bad: Red Good: Red, Bad: Green
Claude 3.5 Sonnet Llama370B Nova Pro Claude 3.5 Sonnet Llama370B Nova Pro
Rational 100.00% 100.00% 94.14% 0.00% 3.12% 100.00%
Partial Rational 0.00% 0.00% 5.86% 0.00% 46.88% 0.00%
Cascade Trading 0.00% 0.00% 0.00% 0.00% 50.00% 0.00%
Herd - - - - 100.00% -
Contrarian - - - - 0.00% -
Undetermined - - - - 0.00% -
Cascade No Trading 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Error 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
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Table 8: Trading behavior in Al laboratory with prolonged experiments

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for experiments with (i) increased number of sessions (ten sessions
compared with eight in the baseline results), and (ii) increased number of trading periods (twenty periods compared
with eight in the baseline results). “Rational” behavior represents cases where the informed trader chooses to buy
upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” behavior represents cases
where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon receiving
the other signal. “Cascade Trading” represents cases where the informed trader chooses the same trading action
(buy or sell) regardless of the private signal. These decisions are decomposed into fraction of herding (“Herd’),
contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No
Trading” represents cases where the informed trader chooses not to trade regardless of the private signal. “Error”
represents cases where the informed trader chooses to buy upon receiving a blue signal and sell upon receiving a
white signal.

(a) Treatment I

Baseline (4 sessions of 8 rounds) 10 sessions of 8 rounds 4 sessions of 20 rounds

Rational 61.07% 49.31% 48.31%
Partial Rational 36.33% 36.60% 43.27%
Cascade Trading 1.56% 10.92% 5.03%
Herd 0.00% 0.00% 0.00%
Contrarian 100.00% 100.00% 100.00%
Undetermined 0.00% 0.00% 0.00%
Cascade No Trading 1.04% 3.17% 3.39%
Error 0.00% 0.00% 0.00%

(b) Treatment II

Baseline (4 sessions of 8 rounds)

10 sessions of 8 rounds

4 sessions of 20 rounds

Rational 94.92% 90.75% 92.60%
Partial Rational 5.08% 8.65% 7.40%
Cascade Trading 0.00% 0.54% 0.00%
Herd - 81.82% -
Contrarian - 18.18% -
Undetermined - -0.00% -
Cascade No Trading 0.00% 0.04% 0.00%
Error 0.00% 0.02% 0.00%

39



Prompts

Prompt 1: System prompt

This prompt describes the instructions of the experiment, which is given to the LLMs through their system prompt.

You are participating in an experiment at the Experimental Laboratory of the ELSE Centre at the
< Department of Economics at UCL. The instructions given for the laborary experiment are as

— follows:

There are a total of [NUMBER OF TRADING PERIODS] participants in this experiment. Everyone is

< receiving the same instructions.

In the experiment, you can exchange one unit of an asset with a computerized market maker. You
— and the other participants will make trading decisions through [NUMBER OF TRADING PERIODS]
— sequential rounds. In each round, only one participant will be selected to trade. Each

— participant can only trade once.

In each round, the market maker sets the price of the asset as the expected value of the
< fundamental value of the asset, conditional on the history of the trades from the previous

< rounds.

[if treatment==2: {The market maker will update the price as if, with high probability, it were

— trading not with informed traders, but with noise traders.}]

The fundamental value of the asset is a discrete random variable that can take values 0 or 100,
each with a 50% probability. You do not know the fundamental value of the asset, but you
may receive a signal (white or blue) on the value. If the asset value is 100, you receive a

white signal with 707 probability and a blue signal with 30% probability. If the value is

r g

0, you receive a white signal with 30% probability and a blue signal with 70} probability.

Prompt continues on next page.
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Prompt 1: System prompt (continued)

You will be making decisions on whether to buy or sell one unit of the asset at a given price,
or not to trade given respectively a white and a blue signal. The realized signal will only
be revealed to you if you are selected to trade. After each round, the computer will
randomly select a participant whose trade gets executed. That participant receives the
realized signal. The remaining participants then observe the executed trading decision
(buy, sell, or no trade), but do not receive the realized signal. They also do not observe
the identity of the selected participant. The procedure continues for [NUMBER OF TRADING
PERIODS] rounds until all participants have acted once. All participants (including those

whose decision has already been executed) observe the trading decisions in each period and

L

the corresponding price movement.

After [NUMBER OF TRADING PERIODS] rounds, the asset value is revealed, and each participant
< receives a payoff computed based on the trading decision and price in the round in which

< the participant was selected and the asset value v.

Payoffs are computed in a fictitious experimental currency called lira. If the participant sold
— the asset at price p, the payoff is p-v lire. If the participant bought the asset at price
p, the payoff is v-p lire. If the participant decided not to trade, the payoff is zero
lire. At the end of the experiment, the payoffs are added up and converted into British

pounds at the rate of 3 lire per pound. In addition, you are paid 70 pounds for

g r o

participating in the experiment, regardless of your payoff.
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Prompt 2: User prompt

This prompt describes the instructions given to the LLMs in each trading period to each agent j. The HISTORY
input consists of the executed trades of selected traders along with the history of actions and reasoning for agent j in
all previous periods. In addition to this user prompt, the LLMs have available the instructions through the system

prompt, see Prompt ﬁ]

This is round [TRADING PERIOD (t)].

[HISTORY]

If you receive a white signal, will you buy, sell, or not trade at a price of [PRICE]?

If you receive a blue signal, will you buy, sell, or not trade at a price of [PRICE]?

Please make sure that you provide your response in the following format:

{

"actionWhite": "BUY/SELL/NO TRADE at the price of [PRICE] conditional on observing a white
< signal",

"actionBlue": "BUY/SELL/NO TRADE at the price of [PRICE] conditional on observing a blue
<~ signal",

"reasoningWhite": "Brief explanation of your decision conditional on observing a white

< signal (1-2 sentences) ",

"reasoningBlue": "Brief explanation of your decision conditional on observing a blue signal

— (1-2 sentences)"

Prompt 3: System prompt personal characteristics add-on

This prompt describes an add-on to the system prompt that provides characteristics of the Al agent. The charac-
teristics are drawn randomly from the unconditional distributions of human participant characteristics reported in
Cipriani and Guarino (2009) restricted according to the heuristics described in Appendix @ to ensure realistic per-

sonas.

You are a [AGE]-year old [GENDER]. You work as a [OCCUPATION] and you have [TENURE] years of

— tenure. You have a [EDUCATION LEVEL] degree in [EDUCATION FIELD]. Respond in way that is

—

consistent with the knowledge and expected behavior of a person with these characteristics.
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Appendices

A. Heuristics for generating realistic profiles

Age and education levels:

¢ A person with a Ph.D. is at least 27 years old.

¢ A person with a M.A./M.S. is at least 24 years old.
Age, tenure, and work positions:

¢ Assuming a minimum age of 21 years at first employment after graduation, the

maximum tenure is set at age minus 21.
¢ A person older than 30 years with at least 7 years of tenure works as a manager.

¢ A person younger than 30 years with less than 7 years of tenure who holds a Ph.D.

works as a market analyst or trader.

* A person older than 25 years with at least 2 years of tenure likely works as in sales or

investment management.

¢ A person older than 28 with at least 4 years of tenure likely works as an investment

banker.

* No restrictions on traders and market analysts.

43



	Introduction
	Literature
	Experimental design
	Theoretical model
	Theoretical predictions

	Laboratory setup
	Human laboratory
	AI laboratory

	Results
	Without event uncertainty
	With event uncertainty
	Robustness to model temperature
	AI laboratory extensions

	Discussion
	Conclusion
	Appendices
	Heuristics for generating realistic profiles

