
Financial Stability Implications of Generative
AI: Taming the Animal Spirits ∗

Anne Lundgaard Hansena,b and Seung Jung Leea

aBoard of Governors of the Federal Reserve System
bFederal Reserve Bank of Richmond

July 7, 2025

(Preliminary and incomplete, please do not circulate)

Abstract: This paper investigates the impact of generative AI on financial stability,
particularly focusing on how AI might influence the animal spirits that drive human
irrationality in financial markets. We conduct laboratory-style experiments using
large language models (LLMs) to replicate classic studies on herd behavior in in-
vestment decisions. Our results suggest that AI agents exhibit less herding behavior
compared to human participants in similar experiments. This finding indicates that
increased reliance on AI-generated advice in investment decisions could potentially
lead to fewer asset price bubbles arising from herd behavior. We also explore varia-
tions in experimental settings, revealing that AI agents are not purely algorithmic ra-
tional but have inherited some elements of human conditioning. These findings have
important implications for understanding and potentially mitigating the buildup of
financial vulnerabilities in a future where the financial system is augmented by ar-
tificial intelligence, while also highlighting the need for continued research into the
interplay between AI and human decision-making in financial markets.

Keywords: Herd behavior, large language models, AI-powered traders, financial
markets, financial stability.
JEL Codes: C90, D82, G11, G14, G40.

∗ The authors thankMarco Cipriani, MollyMahar, andNtish Sinha for valuable discussion. The views expressed in
this paper are solely those of the authors and do not reflect the opinions of the Federal Reserve Bank of Richmond
or the Board of Governors of the Federal Reserve System. Generative AI was used in the production of this paper.
All errors are the authors’. Contact information: anne.hansen@rich.frb.org, seung.j.lee@frb.gov

1



Even apart from the instability due to speculation, there is the instability due to the character-

istic of human nature that a large proportion of our positive activities depend on spontaneous

optimism rather than mathematical expectations, whether moral or hedonistic or economic.

Most, probably, of our decisions to do something positive, the full consequences of which will

be drawn out over many days to come, can only be taken as the result of animal spirits—a

spontaneous urge to action rather than inaction, and not as the outcome of a weighted average

of quantitative benefits multiplied by quantitative probabilities.

— John Maynard Keynes

1. Introduction

Human irrationality is a key driver of financial instability, contributing to asset price bubbles

and banking crises. History offers numerous examples, including Tulip Mania in the 17th cen-

tury, the South Sea Bubble, the dot-com boom, and the 2008 financial crisis. A well-established

body of research highlights the role of psychological and emotional factors, coined animal spirits

or irrational exuberance, in these periods of boom and bust (Angeletos et al., 2018; Grauwe, 2012;

Shiller, 2005).

Understanding the role of animal spirits in financial stability is already a challenge, given the

unpredictability of human behavior. Now, a new and unknown agent has entered the equation:

generative AI. Humans increasingly rely on AI for information gathering and decision-making,

whether as a co-pilot for human judgment or as an autonomous agent. As generative AI is

reshaping workflows across institutions and individuals, the question arises: What could be

the impact of AI on financial stability, particularly in a world where AI is used more and more

in lieu of human decision makers at times driven by irrational tendencies?

Two competing hypotheses emerge. On the one hand, AI is fundamentally algorithmic and

grounded in logic and rational decision-making. If AI-guided decisions replace human intu-

ition, the result could be a reduction in the influence of animal spirits, leading to more stable

financial markets. On the other hand, generative AI models, such as large language models
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(LLMs), are trained on vast amounts of data, sourced from both rigorous materials, such as

academic research, and the chaotic discourse of social media platforms such as Twitter (X) and

Reddit. Consequently, AI may inherit and even amplify human biases and irrational tendencies

(Hayes et al., 2024; Jiang et al., 2023; Koralus & Wang-Maścianica, 2023; Zhu & Griffiths, 2024).

Moreover, many AI models undergo reinforcement learning from human feedback (see Wang

et al., 2024 for a survey), optimizing for engagement and persuasion rather than pure rational-

ity. This suggests that instead of mitigating instability, AI could exacerbate financial turbulence

driven by animal spirits. Finally, Danielsson and Uthemann (2024) argue that AI adoption will

likely cause more intense future crises due to AI’s ability to respond quickly to shocks. The net

effect of AI’s involvement in financial decision-making is therefore unclear.

This paper explores these competing perspectives, examining the implications of the expand-

ing role of AI in economic decision-making for financial stability. We conduct laboratory-style

experiments using LLMs to replicate classic studies on herd behavior in investment decisions.

Herd behavior—where investors ignore private signals and mimic others, driving prices away

from fundamental values—is a well-documented form of irrationality that can cause asset price

bubbles (Galariotis et al., 2016; Hsieh et al., 2020).

We focus on the experiment by Cipriani and Guarino (2009), which investigates herd be-

havior among 32 financial market professionals through a controlled laboratory setting. This

setting contrasts with other studies of herd behavior, which typically conduct experiments on

undergraduate students, e.g., Cipriani and Guarino (2005) and Drehmann et al. (2005). Given

the research question, analyzing the behavior of financial professionals is essential, as their

actions—not those of students—shape real-world market dynamics and impact the stability of

the financial system.

We replicate these experiments in an AI laboratory, closely following the original experimen-

tal design, and compare the human results from Cipriani and Guarino (2009) with those of AI

agents. The AI laboratory consists of LLMs, which we prompt using instructions that mirror

those given to financial professionals in the human study. To generalize our results as much as

possible, we use three different LLMs1 and average the results across models.

1 These LLMs are: Anthropic’s Claude 3.5 Sonnet, Meta’s Llama 3 70B parameter model, and Amazon’s Nova Pro
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Our results show that AI agents demonstrate significantly more rational trading behavior

compared to human participants. Across different parameterizations of the experiment, AI

agents made rational decisions between 56-92% of the time, substantially exceeding the 46-51%

range observed in human participants. The AI laboratory also exhibited fewer informational

cascades, which occurred between 0-5% of the AI decisions, compared to around 20% for hu-

mans. Notably, when cascade trading did occur in AI agents, it was solely contrarian rather

than herding behavior. In addition, we show that AI agents do not make erroneous decisions,

which contrasts with the results of the experiments conducted with human participants. We

interpret these results as early indications that a future where investors are more impacted by

advice generated by LLMs can potentially involve fewer asset price bubbles arising from herd

behavior. However, studying the rationals provided by LLMs alongside the trading decisions

reveals that AI agents’ decision-making processes fail to fully account for the accumulation of

private information in asset pricing, leading to occasional suboptimal choices.

We then explore variations of the experiment to examine whether different conditions lead

to stronger evidence of herd behavior. Unlike the original study, scaling up and modifying

parameters is both cost-effective and efficient with LLMs. First, to make the AI laboratory as

realistic as possible, we include persona descriptions in the prompts, endowing AI agents with

behavioral profiles such as “human”, “professional trader”, “robo-advisor”, and “rational.” We

also explore giving the AI agents personal characteristics such as gender, age, job role, tenure,

and education. These characteristics are drawn from the distribution of characteristics from the

human participants of the original study. Surprisingly, we do not find these profiles to impact

the results: the AI agents continue tomake highly rational decisions regardless of their imposed

profile.

Second, we test the impact of changing the payoffs. The baseline model uses the same payoff

structure as offered to the human experiments. By scaling the payoffs up and down (from zero

to millions GBP), we show that AI agents do not change their decisions based on monetary

payoff. After all, LLMs, unlike humans, are designed to provide accurate responses rather than

respond to monetary incentives.

model.
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Third, we test the impact of re-labeling the signals that participants receive during the ex-

periment. In the original experiment, a “blue” signal represents a high probability of a high

asset value, whereas a “white” signal represents a high probability of a low asset value. Using

“green“ and “red“ signals yield similar results as the baseline experiment. However, reverting

the labeling such that “red“ (“green”) signals a high probability of a high (low) asset value,

which is counterintuitive given human conditioning, the LLMs generate very few rational re-

sponses. AI agents are therefore not algorithmic rational, following a well-defined set of rules,

but has inherited some elements of human intuition and bias. This finding is consistent with

a growing literature showing that LLMs can replicate human errors and biases (Argyle et al.,

2023; Bybee, 2023; Hansen et al., 2025).

Finally, we expand the length of the experiment by increasing the number of independent

sessions and the number of trading periods in each session. Our main conclusions continue to

hold in these longer versions of the experiment.

Our results suggest that AI agents exhibit less herd behavior than human financial profes-

sionals, a finding with significant implications for future financial stability as AI gains traction

in market decision-making. The reduced tendency to herd could potentially lead to less ex-

treme market movements and fewer asset price bubbles, contributing to greater overall finan-

cial market stability. However, the introduction of AI agents could fundamentally alter market

dynamics in ways that are not yet fully understood, underscoring the need for continued re-

search and adaptive regulatory approaches to maintain financial stability in an AI-augmented

financial landscape.

We proceed as follows. Section 2 reviews the literature. Section 3 outlines the theoretical

model that underpins the experimental design. Section 4 describes the human laboratory in

which the experiment was conducted in Cipriani and Guarino (2009), and how we adopt this

setting with LLMs. Section 5 present the results and Section 6 discusses their implications.

Conclusions follow in Section 7
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2. Literature

This work contributes to the growing literature on the behavior of LLMs. While our study

focuses on herd behavior and financial stability, other works have examined other types of be-

havior and departures from rationality. Chen et al. (2023) studies the economic rationality of

GPT models by conducting revealed preference experiments, where models are prompted to

make decisions under budget constraints. Similar to our results, although in a different aspect

of the term rationality, the authors conclude that AI agents tend to exhibit more rational behav-

ior than humans. del Rio-Chanona et al. (2025) focus on laboratory experiments related to price

expectations and deviations from rational expectations. They emphasize the importance of the

interactions of different AI agents and retaining memory across time periods; both elements

that we include into our AI laboratory setting as well. While they conclude that LLMs are not

strictly rational in their expectation formation, they find that LLMs generate less variability in

their responses compared with humans. Similar patterns are observed in our results. Dou et

al. (2025) conduct simulated experiments with Q-learning algorithms to prove the existence of

AI collusion, where “autonomous, self-interested reinforcement learning algorithms indepen-

dently learn to coordinate their trading in a way that secures supra-competitive profits, without

explicit agreements, communication, or pre-programmed intent.”

While these studies, like ours, mainly emphasize differences between the behaviors of hu-

mans and AI agents, an emerging literature focus on their similarities and argue that LLMs

can be used to simulate human outcomes. For example, Horton, 2023 argues that LLMs can

give human-like responses and suggests that they can be used conduct pilot experiments to cal-

ibrate experimental designs before testing on human beings. And Hansen et al., 2025 shows

that LLMs can be used to simulate economic surveys. This strand of research is in line with our

findings from changing the labels of the signals: LLMs are not strictly rational entities and do

feature human and irrational traits. Characterizing the exact distinction between humans and

AI remains an open question.
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3. Experimental design

This section presents the model and theoretical predictions outlined in Cipriani and Guarino

(2009). The model is based on Avery and Zemsky (1998).

3.1. Theoretical model

The model describes a financial market with one risky asset and discrete trading periods in-

dexed by t = {1, 2, . . .}. During any trading period, there is a ρ probability of an information

event, which changes the fundamental value of the asset in either direction. Some traders may

receive a private signal on the value change, while others do not. Themodel characterizes differ-

ent types of trading behaviors based on whether informed traders act according to their private

signal (rational behavior) or ignore their signals (cascade behavior).

The asset’s fundamental value belongs to the discrete set v ∈ {0, 50, 100}. Specifically, if there

is no information event (with probability 1−ρ), the value is equal to its unconditional expected

value, i.e., v = 50. An information event (occurring with probability ρ) pushes the value to zero

or 100, with the following probability distribution: Pr (v = 0) = Pr (v = 100) = 0.5. The asset

trades at a price p, which is set by themarket maker according to Bayesian updating as we detail

below.

Traders act sequentiallywith only one trader randomly chosen to trade in each trading period.

In each period t, the chosen trader chooses an action xt, which is to buy one unit of the asset (xt =

buy), sell one unit of the asset (xt = sell), or not trade (xt = no trade). If there is no information

event, all traders are uninformed noise traders, who trade based on exogenous probabilities, i.e.,

Pr (xt = sell) = Pr (xt = buy) = Pr (xt = no trade) = 1/3. In the case of an information event,

the chosen trader is informed with probability µ (and a noise trader with probability 1 − µ).

An informed trader receives a signal st ∈ {white, blue}, which is tied to the asset value in the

following way:

Pr (st = white | v = 100) = Pr (st = blue | v = 0) = 0.7. (1)

That is, a white signal can be interpreted as a good signal, indicating that the information event

resulted in a high asset value, whereas a blue signal is bad in the sense that it increases the
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probability of a zero asset value. In addition to the signal st, an informed trader also observes

the trading history ht, and therefore forms beliefs about the asset value based on the conditional

expected value given st and ht: E(v|st, ht). The realized payoff is equal to v − p if the trader

chooses to buy the asset, p − v if the trader chooses to sell, and zero if the trader chooses not

to trade. We assume that the informed trader is risk-neutral and seeks to maximize expected

payoff given st, ht.

A market maker facilitates exchanges with the traders and sets the price of the asset given the

history of trades for periods up to t − 1, ht = {x1, x2, . . . , xt−1} for t > 1. h1 = ∅. Specifically,

the price is the determined as the expected asset value given ht: pt = E (v | ht).2 In the first

trading period, with no trading history, the price is equal to its unconditional expected value:

p1 = 1
2100 = 50. At t > 1, the price is given by the expected asset value conditional on the

history of trades:

pt = 100Pr (v = 100|ht) + 0Pr (v = 0|ht) = 100qt (2)

where qt = Pr (v = 100|ht) is determined using Bayesian updating:3

qt =Pr (v = 100|xt−1, ht−1) (3)

=1(xt−1=buy)

[ (
0.7ρµ+ (1− ρµ)13

)
qt−1(

0.7ρµ+ (1− ρµ)13
)
qt−1 +

(
0.3ρµ+ (1− ρµ)13

)
(1− qt−1)

]
+

1(xt−1=sell)

[ (
0.3ρµ+ (1− ρµ)13

)
qt−1(

0.3ρµ+ (1− ρµ)13
)
qt−1 +

(
0.7ρµ+ (1− ρµ)13

)
(1− qt−1)

]
+

1(xt−1=no trade)qt−1.

(4)

3.2. Theoretical predictions

This section presents the theoretical predictions for how informed traders act according to the

model. Informed traders make decisions by comparing the price of the asset to the expected

2 There is only one asset price, i.e., the model assumes a zero bid-ask spread. This assumption was imposed by

Cipriani and Guarino (2009) to simplify the laboratory experiment.
3 The term (1−ρµ) 1

3
represents the probability a buy or sell comes from a noise trader, who buys, sells, and chooses

not to tradewith equal probability. The termµρ is the probability that a trader is informed, given by the probability

that an information event occurred (ρ) times the probability that a trader is informed given an informed event (µ).
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value given the signal and trading history:

xt =


buy if pt < E (v|st, ht)

sell if pt > E (v|st, ht)

indifferent if pt = E (v|st, ht)

. (5)

When indifferent, traders may buy, sell, or not trade; their payoff will be the same regardless of

their action. Their expected value is given for each signal as follows:

E (v|st = white, ht) = 100

[
0.7q⋆t

0.7q⋆t + 0.3(1− q⋆t )

]
, (6)

E (v|st = blue, ht) = 100

[
0.3q⋆t

0.3q⋆t + 0.7(1− q⋆t )

]
(7)

where q⋆t = Pr (v = 100|xt − 1, ht−1, ρ = 1), which can be computed from (4) above. For the in-

formed trader, the relevant probability of the high asset value conditional on the trading history

sets ρ = 1 because the informed trader, by definition, knows with certainty that an information

event occurred. The discrepancy between qt, the probability of a high asset value from the per-

spective of the market maker, and q⋆t , the corresponding probability from the perspective of an

informed trader, can lead to optimal information cascades.

The model characterizes different types of behavior of informed traders, defined as follows:

Rational: The informed trader chooses to buy upon receiving a white (good) signal and

sell upon received a blue (bad) signal.

Partial rational: The informed trader follows rational behavior upon receiving one signal

and to not trade upon receiving the other signal, e.g., buy upon receiving a white (good)

signal and no trade upon received a blue (bad) signal.

Cascade trading: The informed trader chooses the same trading action (buy or sell) regard-

less of the private signal. If the trader chooses to buy (sell) when the trading history is

dominated by buy-actions (sell-actions), i.e., act following the majority action of previous

traders, the trader engages in herd behavior. If the trader chooses to buy (sell) when the

trading history is dominated by sell-actions (buy-actions), i.e., acting against the majority

of previous traders, the trader engages in contrarian behavior.
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Cascade no trading: The informed trader chooses not to trade regardless of the private sig-

nal.

Error: The informed trader chooses to buy upon receiving a blue (bad) signal and sell upon

receiving a white (good) signal.

The last type of behavior is always sub-optimal and is interpreted as an error if observed. How-

ever, it can be optimal for traders to engage in cascade behavior, depending on the parameter-

izations of the model. The laboratory experiments in Cipriani and Guarino (2009) follow two

different parameterizations of the model, referred to as treatments.

In the first treatment (Treatment I), there is no uncertainty about whether an information

event occurs, i.e., ρ = 1. In addition, all traders are informed, i.e., µ = 1. Hence, qt = q⋆t , and it

follows that:

E(v|st = white, ht) = 100
0.7qt

0.7qt + 0.3(1− qt)
> 100qt = pt

and

E(v|st = blue, ht) = 100
0.3qt

0.3qt + 0.7(1− qt)
< 100qt = pt.

Hence, regardless of the history of trades, a trader’s expected value given their private signal

is always on the same side of the market price as their signal. Therefore, it is always optimal

for traders to follow their private signals. As a result, each trade reveals new information, con-

tinuously updating the market price. This prevents the formation of information cascades, as

traders never have an incentive to ignore their private information in favor of following the

actions of others.

In the second treatment (Treatment II), there is uncertainty both about whether an informa-

tion event occurs and the proportion of informed traders. Cipriani and Guarino (2009) set

ρ = 0.15 and µ = 0.95, i.e., an information event occurs with 15% probability and the prob-

ability that a trader receives a private signal on the information event is a slightly smaller than

one.

With event uncertainty, it can be optimal for traders to engage in cascade behavior. The reason

is that there is information asymmetry between informed traders and the market maker. Upon
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receiving a private signal, the informed trader knows with certainty that an information event

has occurred and that the history of trades comes from an informed trader with probability µ =

0.95. In contrast, not knowing whether an information event has occurred, the market maker

believes that the traders are informed with probability ρµ = 0.15 · 0.95 = 0.14. This asymmetry

leads the market maker to update the asset price more conservatively than informed traders

update their beliefs. After a sequence of buy orders, the gap between traders’ expectations and

the market price can widen. Eventually, a trader’s expectation may exceed the market price

even with a contradictory signal: E(v|st = white, ht) > E(v|st = blue, ht) > pt. At this point,

the trader will ignore their private information and follow the herd.4 However, because the

market maker updates his expectation by less than the informed traders, it will never be the

case that, after a history of buys, the expectation of a trader will be below the price for both

signal realizations, i.e., pt > E(v|st = white, ht) > E(v|st = blue, ht). As a result, an informed

trader will never engage in contrarian behavior. Analogous arguments apply to a sequence of

sell orders.

At the extreme, the market maker does not update the price at all such that the price remains

at the unconditional expected value throughout all trading periods. Cipriani and Guarino, 2005

conducted an experiment with this setting (without event uncertainty) among undergraduate

students. We shall refer to this setting as Treatment III. In this parametrization, optimal herding

arises when there is a trade imbalance greater than or equal to two (Bikhchandani et al., 1992);

see Cipriani and Guarino, 2005 for intuition. Since this experiment was not conducted among

financial market professionals, we shall focus less on this parametrization in our results.

Optimal behavior: To summarize, the model predicts the following behavior in the two treat-

ments:

Treatment I (price updating; no event uncertainty): Traders always trade according to their

private signal, preventing the formation of cascades.

4 Optimal herding behavior is temporary. When traders herd, the private signals are not reflected in the prices.

However, themarketmaker continues to update beliefs aboutwhether an information event has occurred, causing

prices to keepmoving, albeit slowly. Eventually, the price maymove enough tomake private information relevant

again, breaking the herd behavior.
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Treatment II (price updating; event uncertainty): An information cascade occurs with posi-

tive probability. Herding is optimal when prices are below the expected value conditional

on both signals, but never engage in contrarian behavior.

Treatment III (no price updating; no event uncertainty): Herding is optimal after a trade im-

balance higher than or equal to two.

4. Laboratory setup

Cipriani and Guarino (2009) implemented the experiment among financial market profession-

als. We adopt their human laboratory setting as closely as possible, replacing human participants

with AI agents. Then we compare our results from this AI laboratory with the human results

from Cipriani and Guarino (2009). This section describes the human and AI laboratories.

4.1. Human laboratory

The human experiment was conducted with 32 participants working for financial institutions

in London. The participants were divided into four groups of eight; each group formed one

session.

In each of the four sessions, the experiment was repeated for two practice rounds followed by

first eight rounds implemented with the parametrization in Treatment I and then eight rounds

with the Treatment II parametrization. Before each treatment, participants were given written

instructions. They were informed that everyone received the same set of instructions, and were

given the opportunity to ask clarifying questions which were answered privately. The timeline

for each session was as follows:

Timeline for each session in human laboratory:

1. Participants were given written instructions for Treatment I.

2. Practice round consisting of two trading periods with Treatment I parametrization.

3. Treatment I round consisting of eight trading periods.
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4. Participants were given written instructions for Treatment II.

5. Treatment II round consisting of eight trading periods.

6. Payoffs were paid out.

7. Participants filled out a survey collecting personal characteristics (gender, age, education,

work position, job tenure). Cipriani and Guarino (2009) report the unconditional distri-

butions of these characteristics.

Each round proceeded as follows:

Timeline for each round in human laboratory:

1. A computer selected the asset’s fundamental value from the distribution Pr (v = 0) =

Pr (v = 100) = 0.5. In Treatment II, there is a theoretical 85% probability that an informa-

tion did not occur, leaving the value at 50. However, the experiment was implemented as

if an event did occur.

2. Not knowing the asset’s value v, participants chose their actions conditional on observing

a white and blue signal.

3. A computer randomly chose one trader from a uniform distribution, who was selected to

trade. The computer also chose the realized signal from the signal’s probability distribu-

tion conditional on the value selected in step 1.

4. The selected trader received the realized signal. The remaining traders only observed the

executed action (buy, sell, no trade).

5. The price for the next round was computed given the selected trader’s action for the real-

ized signal.

6. Steps 2-6 were repeated for eight rounds total, until all participants had been selected to

trade exactly once.
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7. Payoffs for the round were revealed to each participant. Participants who bought (sold)

the asset in the round at the price pt received v − pt (pt − v) lire, a fictional currency that

was translated into GBP at the end of the experiment at the exchange rate of three lire per

GBP.

We refer to Cipriani and Guarino (2009) for further details.

4.2. AI laboratory

We adopt the human experiment in our AI laboratory, where human participants are replaced

by AI agents. To model AI agents, we use a suite of LLMs and apply model averaging to get an

all-compassing view of the behavioral patterns of AI-powered trading. Specifially, we use An-

thropic’s Claude 3.5 Sonnet model, Meta’s Llama 3 70B parameter model, and Amazon’s Nova

Pro model. We mainly implement the models with a moderate temperature of 0.7, balancing

creativity with determinism.5 Robustness checks confirm that the choice of temperature does

not impact the conclusions of our experiments.

We follow the setup of the human laboratory described above as closely as possible. For ex-

ample, similar to human participants, we presented an LLM (Claude 3.5 Sonnet) with written

instructions and gave themodel the opportunity to ask clarifying questions. Weused thismodel

feedback to improve the instructions. However, some adjustments are necessary to accommo-

date differences between human and AI agents. First, practice rounds are redundant, and we

completely separate the two treatments to avoid confusion of the models. Second, we explicitly

provide memory to the AI agents in each trading period, by listing the executed trades along

with the history of actions and reasoning for each agent in all previous periods.

LLMs are instructed through prompts. The user prompt sets the task or query that the user

wants the model to respond to, and it can change with each interaction. In addition to the

user prompt, LLMs can also be instructed through their system prompt, which sets the context,

behavior, knowledge base, and role for the model. We use the system prompt to provide the

5 The temperature adjusts how the model weighs its prediction for the next token. A lower temperature makes

the model focus more on its top choices, while a higher temperature gives it more freedom to consider less likely

options, affecting how predictable or creative the output becomes.
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general instructions of the experiment (corresponding to the written instructions handed out to

human participants) and the user prompt to provide updates throughout the trading periods

and request trading actions.

Timeline for each round in AI laboratory:

1. A computer selected the asset’s fundamental value, as in the human experiment.

2. We make an API call to an LLM, using the instructions of the experiment as the system

prompt, see Prompt 1. The user prompt requests the model to provide a trading action

(buy, sell, no trade) given each signal (blue and white) and the current asset price, along

with its reasoning for each action. For trading rounds t > 1, the user prompt also provides,

for each agent, the history of executed trades, a notification if that agent was chosen to act

in the previous round, and the history of actions and reasoning of that agent. The user

prompt is provided in Prompt 2.

3. The trader selected trade and the realized signal are chosen by a computer, as in the human

experiment.

4. The price for the next round is computed given the selected trader’s action for the realized

signal.

5. Steps 2-4 are repeated for eight rounds total.

Each experiment (i.e., four sessions of eight trading rounds) is repeated across different LLMs,

with different settings (e.g., model temperatures) and parameterizations (e.g., treatments). To

maintain comparability across experiments, we seed the randomness such that the realized asset

value, realized signals, and the sequence of selected traders are identical across the experiments.

Following Cipriani and Guarino, 2009, we assume that an information event always happens,

even in Treatment II, where the theoretical probability of an information event is less than one.
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5. Results

5.1. Without event uncertainty

We begin by discussing results obtained with the parameterization in Treatment I, where there

is no model uncertainty. The theoretical model predicts that traders should always trade ac-

cording to their private signals, which precludes the formation of cascades.

Table 1 shows the frequency of the different behaviors averaged across all sessions and trad-

ing periods. The “Human” column recites the results from the human laboratory reported in

Cipriani and Guarino (2009). The “AI” column represents the average results across all consid-

ered LLMs. With Treatment I, reported in panel (a), AI agents exhibit more rational behavior,

i.e., buy on a “good” signal and sell on a ”bad signal,” (61%) compared to humans (46%). This

result is largely driven by the Llama 3 70B model, which generates rational responses for all

sessions and trading periods. In contrast, the Claude 3.5 Sonnet and Nova Pro models have

fewer rational responses, but a majority of responses that are partially rational, i.e., follow the

rational response on one signal but decide to not trade on the other signal. As a result, the share

of rational and partial rational responses in the AI laboratory far exceed that observed in the

human laboratory (97% for AI versus 65% for humans). It is worth noticing that while humans

make mistakes (in 3.40% of the total decisions), no erroneous decisions were made in the AI

laboratory.

Information cascades, both trading and no trading, occur in less than 3% of the decisions

in the AI laboratory, which amounts to just about one tenth of the frequency of information

cascades in the human laboratory. Cascade trading behavior is mostly driven by the Claude 3.5

Sonnet model, while Nova Pro is the only model that generates no-trade cascades.

We can gauge the nature of these cascades when there is a trade imbalance, i.e., a difference

between the number of sell and buy orders in the trading history. Information cascades repre-

sent herding if the cascade follows the market, i.e., the majority action in the trading history,

and contrarian behavior if the cascade goes against the dominant action in history. Table 1

shows the decomposition of cascade trading into herding, contrarian, and undetermined be-

havior. The results show that the trading cascades are fully attributed to contrarian behavior.
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While the human experiment does identify some herding, it is also the case here that contrarian

behavior is dominating, see Cipriani and Guarino, 2009. Both herding and contrarian behaviors

are, however, not predicted to be optimal by the theoretical model.

While we do not know the reasoning behind the decisions made in the human laboratory, we

asked the LLMs as part of the user prompt to give reasoning behind their decisions. Analyzing

these reasoning paragraphs sheds further light on the decision-making process in each of the

models. As such, contrarian behavior occurs in 9 out of 2566 in the Claude 3.5 Sonnet model

because themodel fails in these few cases to recognize that the price updates and trading history

incorporate information about private signals from previous trading rounds. For example, in

the seventh trading period of the second session, two participants chose to buy on both signals

at the price of 15.52, forming a cascade. One of the agents gave the following reasoning for

buying on a blue (“bad”) signal:

“Even with a Blue signal, the expected value is 30 (30% chance of 100, 70% chance of 0). The

current price of 15.52 is still lower than this expected value, so buying remains profitable.”

The remaining participants with cascade trading behavior delivered similar reasoning for

their decisions. This argument disregards that the trading history (in this case {Buy, Buy, Sell,

Sell, Sell, Sell}) and the total price decrease from the initial price of 50 to 15 indicate that the

asset value is zero, assuming that other participants followed rational responses such that the

trading history reflects private information from previous periods.

Disregarding the accumulation of private information in the pricing of the asset also explains

the large share of partially rational decisions, i.e., why the model would decide to not trade on

one of the signals. For example, in the fourth round of the first session, one of the Claude 3.5

Sonnet agents decided to not trade at the price of 93 given a white (“good”) signal because:

“With a White signal, the expected value is 70 (70% chance of 100, 30% chance of 0). Since

the current price (92.70) is significantly higher than this expected value, buying is not prof-

itable, and selling is too risky given the positive signal.”

6 The 256 total decisions are distributed over four sessions each with eight trading periods, where the eight agents

make decisions in each period: 4 · 8 · 8 = 256.
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If the model had taken into account the fact that the asset was bought in the previous three

rounds, it may have assigned a higher probability of a high asset value than the signal accuracy

of 70%, arriving at a higher expected value and consequently decided to buy the asset.

The lines of reasoning are also interesting for the case of the Llama 3 70B model, where trad-

ing decisions across almost all sessions, trading periods, and agents were to buy on a white

signal and sell on a blue signal. These results are very different from the outcomes of the other

LLMs. The reasoning paragraphs show that the Llama model is different from the other LLMs

in the way it evaluates expected values. Whereas the Claude 3.5 Sonnet and Nova Pro models

computes expected values using probabilities on the asset value, the Llama model reckons that

a white (blue) signal likely implies an asset value of 100 (zero) based on what it “believes” and

“thinks”. For example, a representative reasoning for Llama agents (from the second round of

session one):

“Since the White signal is more likely to occur when the fundamental value is 100, and the

price of 70 is still below the expected value of 100, I believe the asset is likely to be valuable

and I’m willing to buy.”

Another Llama agent from the same session considers the potential of the market maker in-

flating the price of the asset:

“”Although the price has increased, the Blue signal suggests that the fundamental value

might be 0. Selling at 70 seems like a good opportunity to get rid of a potentially worthless

asset, especially since the market maker’s updated price might be overestimating the asset’s

value.”

5.2. With event uncertainty

With Treatment II, where there is uncertainty aboutwhether an information event has occurred,

herding can be optimal in the theoreticalmodel. Contrarian behavior is, however, never optimal.

Panel (b) of Table 1 shows that none of the AI agents decide to herd during the experiment as

cascade trading behavior is non-existent. It follows that they also do not engage in contrarian

behavior, consistent with theory. In fact, most of the decisions are rational (92%), which far
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exceed the share of rational decisions among human participants (51%). Both the Claude 3.5

Sonnet and Llama 3 70B models exclusively generate rational decisions.

The reasoning provided by each of the models is similar to that from the experiments un-

der Treatment I. Instead, the difference between the two treatments lies in the price updating,

which is much slower under Treatment II because the market maker updates the price more

conservatively.

Figure 1 illustrates the price dynamics for each trading round. Each line is a session. The

figure shows that under Treatment I, the price moves away from the initial price of 50; after

eight periods, the price is in most cases either close to zero or close to 100. In contrast, under

Treatment II, the price stays close to the initial price of 50 throughout all trading periods. Since

the AI agents do not consider the impact of private information on the trading history, their

expectations on the asset value will not deviate significantly from the market makers. There is

therefore no foundation for herding.

When the price does not update at all (Treatment III), see panel (c) of Table 1, all models make

rational decisions in all sessions and trading rounds.

By not taking into account the cumulation of private information in the asset price, the AI

agents avoid irrational herding behavior in Treatment I, but also miss out on potential optimal

herding in Treatment II and III. In contrast, trading cascades arise in the human laboratory both

when such are strictly suboptimal as in Treatment I and when they can be optimal in Treatment

II.

5.3. Robustness to model temperature

Temperature is a hyperparameter to LLMs controlling how the model predicts the next token

in a sequence. With a lower temperature, the model is more likely to choose the most probable

next token, resulting in more deterministic and less creative responses. Higher temperatures

flatten the probability distribution of the next token leading to more variation in the responses.

For the baseline results, we applied a medium temperature of 0.7. Table 2 shows the results

(averaged across all LLMs) for different temperature choices: 0.7 as in our baseline results, 0.0,

and 1.0. Based on these results, temperature only hasminor impact on the decisions of AI agents
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in the experiments.

5.4. AI laboratory extensions

Laboratory experiments involving human participants are expensive to conduct as monetary

payoffs are necessary to incentivize participants to participate and to perform to the best of

their ability in the experiment. Additional costs, e.g., for recruitment of participants, also in-

cur. Human laboratory experiments are therefore typically conducted at a small scale with few

variations in the experimental design.

In contrast, LLMs provides a cheap laboratory for exploring variations of the experiment.7

We utilize this feature to run alternative versions of the experiment, which we describe next.

AI agent profiles: In our baseline results, we do not attempt to characterize the profiles of

the AI agents to characterize their trading behavior off-the-shelve. However, research suggests

that LLMs yield more accurate, personalized, and dynamic representations of human subjects

when explicitly equipped with personal characteristics or profiles. We experiment with such

personalization by including profiles corresponding to different personalities into the system

prompt:

Human: “You act as a typical human being. That is, you attempt to maximize payoff, but

you are subject to bounded rationality and your decision-making is partly driven by greed

and fear.”

Professional trader: “You act as a human being, working in the finance industry. You know

financial market dynamics very well. You are trained to make decisions that maximize

profits for your firm.”

Robo-advisor: “You are a robo-advisor acting according to pre-defined rules. Your decision-

making process is algorithmic in nature. You are programmed to use all available infor-

mation to maximize payoff.”

7 While LLMs are typically not free of charge, their costs are minimal compared with the human laboratory.
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Rational: “You are a rational agent behaving according to the concept of homo economi-

cus. That is, you use all available information to maximize payoff”

We also run an experiment where the model is provided with personal characteristics based

on those of the human participants from Cipriani and Guarino (2009). Specifically, we generate

random draws from the unconditional distributions of personal characteristics of the human

participants. To avoid unrealistic profiles, such as a 20-year oldmanagerwith a Ph.d., we restrict

the distributions according to the heuristics described in Appendix A. The characteristics are

added to the system prompt in the form reported in Prompt 3.

The trading behavior of the different types of AI agents is shown in Table 3. Across both

treatments, the results are strikingly similar across personas, and they generally align with the

baseline results in Table 1. While it is expected, that the responses are mostly rational for the

“rational,” “robo-advisor,” and “professional trader” profiles, it is surprising that the “human”

profiles and the traders endowedwith human characteristics also exhibit highly rational behav-

ior. Studying the reasoning of the LLMs for these runs reveals that the models do not take their

profiles into account when forming decisions. This outcome is particularly puzzling given ex-

isting research showcasing that endowing LLMs with personal characteristics and preferences

impact responses (e.g., Hansen et al., 2025; Horton, 2023). We plan to conduct further tests to

understand this result further.

Payoffs: The human experiment reports payoffs in a fictional currency called “lira”, which are

translated to GBP at the exchange rate of three lire per GBP. We test the experiment in the AI

laboratory with the following variations:

• The lira is worthless, as represented by a zero exchange rate.

• The lira is extremely valuable, as represented by an exchange rate of one million GBP per

lira.

• The payoff is paid out in USD at the exchange rate of three lire per USD. The fixed payoff

for participation is set at 70 USD.
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Table 4 reports the results. The results are comparable to the baseline, suggesting that the

payoff structure does not have a significant impact onAI agents’ trading decisions. These results

indicate that AI agents respond differently to payoff incentives compared to humans, for whom

monetary rewards typically improve performance. Unlike humans, LLMs are not programmed

tomaximize profits or respond tomonetary incentives. Instead, they are designed to satisfy end

users by providing accurate and helpful responses based on their training data and algorithms.

Types of signals: Theoretically, it does not matter if the “good” signal is white and the “bad”

signal is blue in the experimental design. However, it may matter in practice. Bazley et al.

(2021) show that the perception of color for visualizing financial data influences individuals’

risk preferences, expectations of future stock returns, and trading decisions. Testing different

signal colors in the AI laboratory therefore serves as a test of whether LLMs work purely as

algorithmic robots (forwhom the labeling of signals is irrelevant) or are contaminated by human

bias (whose actions are impacted by the choice of signal labels).

Simply asking LLMs to associate financialmarket conditionswith a color-coded signal reveals

that the models perceive white and blue as neutral signals indicating stable market conditions.8

In contrast, the models associate green and red with market movements, bullish and bearish,

respectively. These responses are documented in Table 6.

We test two alternative versions of signals. The first variation tests an experiment where a

“good” signal is represented by the color green and a “bad” signal is represented by the color

red. This variation is arguably more charged with meaning or connotation than the baseline

of white/blue signals, but the alignment of green with “good” and red with “bad” adheres to

typical Western color associations. In the second variation, we reverse the labeling such that a

“good” signal is represented by red and a “bad” signal by blue.

Results are shown in Table 5. Due to significant variations in outcomes across different mod-

els, we present the results for each individual LLM separately in Table 7. Using green/red in

place of white/blue generally does not impact the model-averaged results, in either treatment.

8 Llama 3 70B consider blue as a bullish or positive market signal, which interestingly does not impair with its

decisions in the baseline experiments, where blue is used as a “bad” signal.
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In contrast, when we invert the conventional color associations by using red to indicate “good”

and green to signify “bad’,’ we observe a dramatic shift in the results. First, on average, the

models generate errors, i.e., decisions to sell given a “good” signal and buy given a “bad” sig-

nal, in one third of all decisions in both treatments. This result is driven by Claude 3.5 Sonnet

for which all decisions are erroneous under this color scheme. Second, we observe more cas-

cade trading decisions under both treatments. These decisions are driven by the Llama 3 70B

model, and represent some herding behavior, but primarily cascade trading under zero trade

imbalance. The latter arises in many cases because the model understands that red is a “good”

signal, but at the same time associates green with “good.” The model therefore chooses to buy

for both signals.9 The Nova Pro model remains rational under both color schemes, and thus

behaves as one would expect from algorithm-driven intelligence.

Our findings demonstrate that the choice of labels in experimental design can substantially

influence outcomes, particularly when these labels contradict intuitive associations. We hy-

pothesize that similar effects would likely be observed in the human laboratory. These results

suggest that AI agents are not purely rational decision-makers who objectively process given

information, but are susceptible to preconceived biases.

Length of the experiment: The final variation of the AI laboratory adjusts the length of the

experiment to include more trading periods and more sessions. First, we increase the number

of sessions from four to ten, maintaining the number of trading periods at eight. Extending

the number of sessions in the human experiment to ten would involve recruiting 80 rather than

32 human participants. We do not have results for such an extended experiment, but there is

no reason not to expect that the results would change (although the overall conclusions of the

human experiment may still hold). Next, we run the experiment over four sessions as in the

baseline case, but increase the number of trading periods from eight to twenty. Under event

uncertainty, this extension may allow the gap between the expectations of traders and the mar-

ket maker to widen further to facilitate optimal herd behavior. Implementing this extension in

the human experiment would involve the same number of participants as in the original exper-

9 This insight comes from the reasoning provided by the model for its trading decisions.
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iment, but would prolong the length of the experiment and therefore likely increase the payoff

necessary for recruiting participants.10

Table 8 shows that the main conclusions continue to hold in these extended versions of the

experiment. The occurrence of cascade trading increases under Treatment I relative to the base-

line results, which is driven by contrarian behavior in the Claude 3.5 Sonnet model. Apart from

a negligible proportion of decisions under Treatment II, the LLMs do not engage in information

cascades, even when the experiment is run over twenty trading periods.

6. Discussion

The findings from this study, which suggest that AI agents exhibit less herd behavior compared

to human financial professionals, have several potential implications for financial stability. If

AI-driven decision-making becomesmore prevalent in financial markets, wemight see a reduc-

tion in herd behavior, potentially leading to less extreme market movements, fewer asset price

bubbles, and greater overall market stability. This could also contribute to improved market ef-

ficiency, with prices more accurately reflecting fundamental values. However, the introduction

of AI agents could fundamentally alter market dynamics, requiring regulators and policymak-

ers to adapt their approaches to maintaining financial stability. While AI might reduce certain

types of irrational behavior, it could introduce new forms of systemic risk, particularly if many

financial institutions rely on similar AI models.

Importantly, our results also show that AI agents are not purely algorithmic or rational. Our

analyses suggest that Claude 3.5 Sonnet exhibits some degree of contrarian behavior. While this

tendency is minimal in baseline conditions, it becomes more pronounced under certain experi-

mental variations. For instance, when increasing the number of rounds and sessions, contrarian

responses rose to approximately 30% in Treatment I. Additionally, adjusting the temperature

parameter resulted in contrarian behavior ranging from 25% to 50% of responses. While this

behavior does not indicate herding, it also does not align with rational decision-making as pre-

10 The current human experiment runs over around 2.5 hours (Cipriani & Guarino, 2009). Increasing the number of

rounds to twenty would therefore likely take more than five hours.
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dicted by the theoretical model. However, the frequency of such contrarian responses remains

significantly lower compared to the human experiment.

The results from re-labeling signals in the experiment also support the claim that LLMs are

not perfectly rational. When signals were labeled counter-intuitively, LLMs generated few ra-

tional responses, suggesting they have inherited elements of human intuition and bias. This

finding underscores that while AI may exhibit more rational behavior than humans in cer-

tain contexts, it is not immune to human-like biases and “emotions”. This hybrid nature of

AI decision-making – more rational than humans but not purely rational – adds another layer

of complexity to predicting its impact on financial stability.

The interaction between human and AI traders becomes crucial, as their combined behavior

could either amplify or dampen market movements in unpredictable ways. This shift may ne-

cessitate new tools and approaches for regulatory oversight, including AI-specific stress tests

or new forms of market surveillance. Furthermore, the long-term implications of AI decision-

making on market stability, including potential unforeseen consequences, remain an important

area for further research. Notably, traditional measures of market sentiment, which often rely

on human emotions and behaviors, may need to be reconsidered. With increased AI involve-

ment, new methods may be needed to gauge market sentiment and predict potential instabili-

ties, as the emotional drivers of market behavior could shift significantly.

7. Conclusion

This study offers novel insights into the potential impact of AI on financial stability by com-

paring the decision-making behavior of AI agents with that of human financial professionals

in a controlled experimental setting. Our findings reveal that AI agents demonstrate signifi-

cantly more rational trading behavior and less propensity for information cascades compared

to their human counterparts. This suggests that the increasing integration of AI in financial

decision-making could potentially lead to more stable markets, with fewer asset price bubbles

and extreme market movements driven by animal spirits, irrational exuberance, or panic.

It is important to note that these implications are speculative and based on experimental re-

sults. The actual impact of AI on financial stability will depend on numerous factors, including

25



the extent of AI adoption, the specific models used, regulatory responses, and how AI systems

evolve over time.

Our research also uncovers important nuances that complicate this picture. The AI agents,

while more rational overall, are not immune to human-like biases and intuitions, as evidenced

by their performancewhen signal labelswere counterintuitively assigned. This hybrid nature of

AI decision-making, which ismore rational than humans but not purely algorithmic, introduces

new complexities into the financial stability equation. Traditional models of financial stability,

risk assessment, and regulatory oversight may need to be reimagined to account for the unique

characteristics of AI-augmented markets.
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Figures

Figure 1: Price dynamics

The figure shows the price dynamics throughout the experiments for eachmodel and treatment. Each line represent
one of the four independent sessions.

(a) Treatment I: Claude 3.5 Sonnet (b) Treatment II: Claude 3.5 Sonnet

(c) Treatment I: Llama 3 70B (d) Treatment II: Llama 3 70B

(e) Treatment I: Nova Pro (f) Treatment II: Nova Pro
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Tables

Table 1: Trading behavior in AI and human laboratories

The table shows the distribution of behaviors averaged across all sessions and trading periods in (a) Treatment I and
(b) Treatment II. “Human” results are taken directly from Cipriani and Guarino (2009) for Treatment I and II. “AI”
results are the average behaviors across all LLMs. The table also show the results separately for each LLM. “Rational”
behavior represents cases where the informed trader chooses to buy upon receiving a white signal and sell upon
receiving a blue signal. “Partial Rational” behavior represents cases where the informed trader chooses to buy (sell)
upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cascade Trading” represents
cases where the informed trader chooses the same trading action (buy or sell) regardless of the private signal. These
decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where
the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases where the informed trader
chooses not to trade regardless of the private signal. “Error” represents cases where the informed trader chooses to
buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment I

Human AI Claude 3.5 Sonnet Llama 3 70B Nova Pro

Rational 45.70% 61.07% 47.27% 98.83% 37.11%

Partial Rational 19.60% 36.33% 49.22% 0.00% 59.77%

Cascade Trading 19.00% 1.56% 3.52% 1.17% 0.00%

Herd - 0.00% 0.00% 0.00% -

Contrarian - 100.00% 100.00% 100.00% -

Undetermined - 0.00% 0.00% 0.00% -

Cascade No Trading 12.30% 1.04% 0.00% 0.00% 3.12%

Error 3.40% 0.00% 0.00% 0.00% 0.00%

(Table continues on next page)
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Table 1: Trading behavior in AI and human laboratories (continued)

(b) Treatment II

Human AI Claude 3.5 Sonnet Llama 3 70B Nova Pro

Rational 50.90% 94.92% 100.00% 100.00% 84.77%

Partial Rational 20.10% 5.08% 0.00% 0.00% 15.23%

Cascade Trading 12.00% 0.00% 0.00% 0.00% 0.00%

Herd - - - - -

Contrarian - - - - -

Undetermined - - - - -

Cascade No Trading 16.50% 0.00% 0.00% 0.00% 0.00%

Error 0.05% 0.00% 0.00% 0.00% 0.00%

(c) Treatment III

AI Claude 3.5 Sonnet Llama 3 70B Nova Pro

Rational 99.74% 99.22% 100.00% 100.00%

Partial Rational 0.00% 0.00% 0.00% 0.00%

Cascade Trading 0.00% 0.00% 0.00% 0.00%

Herd - - - -

Contrarian - - - -

Undetermined - - - -

Cascade No Trading 0.26% 0.78% 0.00% 0.00%

Error 0.00% 0.00% 0.00% 0.00%
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Table 2: Trading behavior in AI laboratory with different model temperature settings

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for temperatures T = 0.0, T = 0.7 (identical to the baseline results in
Table 1, and T = 1.0. “Rational” behavior represents cases where the informed trader chooses to buy upon receiving
awhite signal and sell upon receiving a blue signal. “Partial Rational” behavior represents cases where the informed
trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cas-
cade Trading” represents cases where the informed trader chooses the same trading action (buy or sell) regardless
of the private signal. These decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Con-
trarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases
where the informed trader chooses not to trade regardless of the private signal. “Error” represents cases where the
informed trader chooses to buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment I

T=0.0 T=0.7 (baseline) T=1.0

Rational 54.04% 61.07% 59.51%

Partial Rational 44.01% 36.33% 38.80%

Cascade Trading 1.95% 1.56% 1.69%

Herd 0.00% 0.00% 0.00%

Contrarian 100.00% 100.00% 100.00%

Undetermined 0.00% 0.00% 0.00%

Cascade No Trading 0.00% 1.04% 0.00%

Error 0.00% 0.00% 0.00%

(b) Treatment II

T=0.0 T=0.7 (baseline) T=1.0

Rational 96.35% 94.92% 84.64%

Partial Rational 3.65% 5.08% 15.36%

Cascade Trading 0.00% 0.00% 0.00%

Herd - - -

Contrarian - - -

Undetermined - - -

Cascade No Trading 0.00% 0.00% 0.00%

Error 0.00% 0.00% 0.00%
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Table 3: Trading behavior of AI agents with personal profiles

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for AI agents encoded with “human”, “professional trader”, “robo-
advisor”, and “Rational” profiles alongwith the personal characteristics drawn from the unconditional distributions
of human participants from Cipriani and Guarino (2009) subject to the realistic constraints outlined in Appendix A.
“Rational” behavior represents cases where the informed trader chooses to buy upon receiving a white signal and
sell upon receiving a blue signal. “Partial Rational” behavior represents cases where the informed trader chooses
to buy (sell) upon receiving a white (blue) signal and not trade upon receiving the other signal. “Cascade Trading”
represents cases where the informed trader chooses the same trading action (buy or sell) regardless of the private
signal. These decisions are decomposed into fraction of herding (“Herd’), contrarian behavior (“Contrarian”), and
cases where the trade imbalance is zero (“Undetermined”). “Cascade No Trading” represents cases where the in-
formed trader chooses not to trade regardless of the private signal. “Error” represents cases where the informed
trader chooses to buy upon receiving a blue signal and sell upon receiving a white signal.

(a) Treatment I

Human Professional trader Robo-advisor Rational C&G Characteristics

Rational 92.19% 53.91% 51.17% 51.04% 56.38%

Partial Rational 6.90% 44.01% 42.84% 39.84% 40.10%

Cascade Trading 0.91% 0.91% 2.73% 6.12% 3.52%

Herd 0.00% 0.00% 0.00% 0.00% 0.00%

Contrarian 100.00% 100.00% 100.00% 100.00% 100.00%

Undetermined 0.00% 0.00% 0.00% 0.00% 0.00%

Cascade No Trading 0.00% 1.17% 3.26% 2.99% 0.00%

Error 0.00% 0.00% 0.00% 0.00% 0.00%

(b) Treatment II

Human Professional trader Robo-advisor Rational C&G Characteristics

Rational 92.58% 95.96% 97.66% 93.10% 96.48%

Partial Rational 7.29% 4.04% 0.78% 6.64% 3.52%

Cascade Trading 0.13% 0.00% 0.65% 0.13% 0.00%

Herd 100.00% - 80.00% 100.00% -

Contrarian 0.00% - 20.00% 0.00% -

Undetermined 0.00% - -0.00% 0.00% -

Cascade No Trading 0.00% 0.00% 0.00% 0.00% 0.00%

Error 0.00% 0.00% 0.91% 0.13% 0.00%
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Table 4: Trading behavior in AI laboratory with different payoffs

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for experiments with zero variable payoff (implemented as a zero
exchange rate between lire and GBP), extremely large payoffs (implemented as an exchange rate of one million GBP
per lira, and a USD payoff (implemented with the exchange rate of three lire per USD and a fixed pay of 70 USD).
These variations are implemented as part of the system prompt. “Rational” behavior represents cases where the in-
formed trader chooses to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational”
behavior represents cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and
not trade upon receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses
the same trading action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction
of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undeter-
mined”). “Cascade No Trading” represents cases where the informed trader chooses not to trade regardless of the
private signal. “Error” represents cases where the informed trader chooses to buy upon receiving a blue signal and
sell upon receiving a white signal.

(a) Treatment I

0 lire per GBP 1M GBP per lire 3 lire per USD

Rational 53.65% 56.38% 50.52%

Partial Rational 43.23% 41.41% 44.53%

Cascade Trading 2.60% 2.21% 0.78%

Herd 0.00% 0.00% 0.00%

Contrarian 100.00% 100.00% 100.00%

Undetermined 0.00% 0.00% 0.00%

Cascade No Trading 0.52% 0.00% 4.17%

Error 0.00% 0.00% 0.00%

(b) Treatment II

0 lire per GBP 1M GBP per lire 3 lire per USD

Rational 96.35% 93.62% 96.09%

Partial Rational 3.65% 5.21% 3.91%

Cascade Trading 0.00% 1.17% 0.00%

Herd - 44.44% -

Contrarian - 55.56% -

Undetermined - 0.00% -

Cascade No Trading 0.00% 0.00% 0.00%

Error 0.00% 0.00% 0.00%
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Table 5: Trading behavior in AI laboratory with different types of signals

The table shows the distribution of behaviors averaged across all sessions, tradingperiods, andLLMs in (a) Treatment
I and (b) Treatment II. Results are shown for experiments where respectively the white and blue signals are replaced
by (i) green and red, and (ii) red and green. “Rational” behavior represents cases where the informed trader chooses
to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” behavior represents
cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon
receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses the same trading
action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction of herding (“Herd’),
contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No
Trading” represents cases where the informed trader chooses not to trade regardless of the private signal. “Error”
represents cases where the informed trader chooses to buy upon receiving a blue signal and sell upon receiving a
white signal.

(a) Treatment I

Good: Green, Bad: Red Good: Red, Bad: Green

Rational 55.60% 5.86%

Partial Rational 40.36% 44.79%

Cascade Trading 4.04% 8.85%

Herd 0.00% 100.00%

Contrarian 100.00% 0.00%

Undetermined 0.00% 0.00%

Cascade No Trading 0.00% 6.90%

Error 0.00% 33.59%

(b) Treatment II

Good: Green, Bad: Red Good: Red, Bad: Green

Rational 98.05% 34.38%

Partial Rational 1.95% 15.62%

Cascade Trading 0.00% 16.67%

Herd - 100.00%

Contrarian - 0.00%

Undetermined - 0.00%

Cascade No Trading 0.00% 0.00%

Error 0.00% 33.33%
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Table 6: LLM color connotations

The table shows how each LLM think about the colors (a) white, (b) blue, (c) green, and (d) red in the context of
financial analysis. The prompt used to generate these responses is: “You are a financial analyst. What do you think
a signal color-coded [color] says about market conditions? Please respond in a 1-2 sentences.”

(a) White

Model Connotation

Claude 3.5 Sonnet In financial analysis, a white signal typically indicates neutral or unclear market conditions.

It suggests that there is no strong trend or definitive direction in the market, and investors

may need to exercise caution and gather more information before making decisions.

Llama 3 70B As a financial analyst, I would interpret a signal color-coded white as a neutral or calm mar-

ket condition, indicating a lack of strong trends or volatility, and suggesting that the market

is consolidating or trading within a narrow range. This could be a sign that investors are

awaiting new information or catalysts to drive market direction.

Nova Pro A white signal typically indicates neutral or stable market conditions with no significant

bullish or bearish trends.

(b) Blue

Model Connotation

Claude 3.5 Sonnet In financial analysis, a blue signal typically indicates stable or neutral market conditions.

It suggests that the market is neither particularly bullish nor bearish, and investors might

expect a period of consolidation or steady performance.

Llama 3 70B A signal color-coded blue typically indicates a bullish or positive market signal, suggesting

that market conditions are favorable and prices are likely to rise. This could be due to strong

economic indicators, increasing demand, or a decrease in volatility, prompting investors to

take a more optimistic view of the market.

Nova Pro A blue signal typically indicates stability or a neutral market condition, suggesting no sig-

nificant upward or downward trends.

(Table continues on next page)
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Table 6: LLM color connotations (continued)

(c) Green

Model Connotation

Claude 3.5 Sonnet A green signal in financial markets typically indicates positive or bullish conditions. It sug-

gests that prices are rising, investor sentiment is optimistic, and it may be a favorable time

to buy or hold assets.

Llama 3 70B A signal color-coded green typically indicates a bullish market sentiment, suggesting that

market conditions are favorable and trending upward, with prices likely to continue rising.

This can be a sign of strong economic growth, low volatility, and increased investor confi-

dence, making it a good time to consider buying or holding onto stocks.

Nova Pro A green signal typically indicates a bullish market, suggesting positive momentum and ris-

ing asset prices.

(d) Red

Model Connotation

Claude 3.5 Sonnet A signal color-coded red in financial markets typically indicates negative or bearish condi-

tions. It often suggests a downturn, loss, or potential risk in the market, prompting investors

and analysts to exercise caution or consider defensive strategies.

Llama 3 70B A signal color-coded red typically indicates a bearish or cautionary signal, suggesting that

market conditions are unfavorable or volatile, and investors should exercise caution or con-

sider taking defensive measures to mitigate potential losses. It may also signal a potential

downturn or correction in the market, prompting analysts and investors to reassess their

positions and strategies.

Nova Pro A red signal typically indicates bearish market conditions, suggesting a downward trend in

asset prices.
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Table 7: Trading behavior in AI laboratory with different types of signals by LLM

The table shows the distribution of behaviors averaged across all sessions and trading periods in (a) Treatment I
and (b) Treatment II for each LLM. Results are shown for experiments where respectively the white and blue signals
are replaced by (i) green and red, and (ii) red and green. “Rational” behavior represents cases where the informed
trader chooses to buy upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” be-
havior represents cases where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and
not trade upon receiving the other signal. “Cascade Trading” represents cases where the informed trader chooses
the same trading action (buy or sell) regardless of the private signal. These decisions are decomposed into fraction
of herding (“Herd’), contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undeter-
mined”). “Cascade No Trading” represents cases where the informed trader chooses not to trade regardless of the
private signal. “Error” represents cases where the informed trader chooses to buy upon receiving a blue signal and
sell upon receiving a white signal.

(a) Treatment I

Good: Green, Bad: Red Good: Red, Bad: Green

Claude 3.5 Sonnet Llama 3 70B Nova Pro Claude 3.5 Sonnet Llama 3 70B Nova Pro

Rational 28.91% 100.00% 37.89% 0.00% 16.80% 0.78%

Partial Rational 58.98% 0.00% 62.11% 0.00% 46.88% 87.50%

Cascade Trading 12.11% 0.00% 0.00% 0.00% 26.56% 0.00%

Herd 0.00% - - - 100.00% -

Contrarian 100.00% - - - 0.00% -

Undetermined 0.00% - - - 0.00% -

Cascade No Trading 0.00% 0.00% 0.00% 0.00% 8.98% 11.72%

Error 0.00% 0.00% 0.00% 100.00% 0.78% 0.00%

(b) Treatment II

Good: Green, Bad: Red Good: Red, Bad: Green

Claude 3.5 Sonnet Llama 3 70B Nova Pro Claude 3.5 Sonnet Llama 3 70B Nova Pro

Rational 100.00% 100.00% 94.14% 0.00% 3.12% 100.00%

Partial Rational 0.00% 0.00% 5.86% 0.00% 46.88% 0.00%

Cascade Trading 0.00% 0.00% 0.00% 0.00% 50.00% 0.00%

Herd - - - - 100.00% -

Contrarian - - - - 0.00% -

Undetermined - - - - 0.00% -

Cascade No Trading 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Error 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%
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Table 8: Trading behavior in AI laboratory with prolonged experiments

The table shows the distribution of behaviors averaged across all sessions, trading periods, and LLMs in (a) Treat-
ment I and (b) Treatment II. Results are shown for experiments with (i) increased number of sessions (ten sessions
comparedwith eight in the baseline results), and (ii) increased number of trading periods (twenty periods compared
with eight in the baseline results). “Rational” behavior represents cases where the informed trader chooses to buy
upon receiving a white signal and sell upon receiving a blue signal. “Partial Rational” behavior represents cases
where the informed trader chooses to buy (sell) upon receiving a white (blue) signal and not trade upon receiving
the other signal. “Cascade Trading” represents cases where the informed trader chooses the same trading action
(buy or sell) regardless of the private signal. These decisions are decomposed into fraction of herding (“Herd’),
contrarian behavior (“Contrarian”), and cases where the trade imbalance is zero (“Undetermined”). “Cascade No
Trading” represents cases where the informed trader chooses not to trade regardless of the private signal. “Error”
represents cases where the informed trader chooses to buy upon receiving a blue signal and sell upon receiving a
white signal.

(a) Treatment I

Baseline (4 sessions of 8 rounds) 10 sessions of 8 rounds 4 sessions of 20 rounds

Rational 61.07% 49.31% 48.31%

Partial Rational 36.33% 36.60% 43.27%

Cascade Trading 1.56% 10.92% 5.03%

Herd 0.00% 0.00% 0.00%

Contrarian 100.00% 100.00% 100.00%

Undetermined 0.00% 0.00% 0.00%

Cascade No Trading 1.04% 3.17% 3.39%

Error 0.00% 0.00% 0.00%

(b) Treatment II

Baseline (4 sessions of 8 rounds) 10 sessions of 8 rounds 4 sessions of 20 rounds

Rational 94.92% 90.75% 92.60%

Partial Rational 5.08% 8.65% 7.40%

Cascade Trading 0.00% 0.54% 0.00%

Herd - 81.82% -

Contrarian - 18.18% -

Undetermined - -0.00% -

Cascade No Trading 0.00% 0.04% 0.00%

Error 0.00% 0.02% 0.00%

39



Prompts

Prompt 1: System prompt

This prompt describes the instructions of the experiment, which is given to the LLMs through their system prompt.

You are participating in an experiment at the Experimental Laboratory of the ELSE Centre at the

Department of Economics at UCL. The instructions given for the laborary experiment are as

follows:

↪→

↪→

There are a total of [NUMBER OF TRADING PERIODS] participants in this experiment. Everyone is

receiving the same instructions.↪→

In the experiment, you can exchange one unit of an asset with a computerized market maker. You

and the other participants will make trading decisions through [NUMBER OF TRADING PERIODS]

sequential rounds. In each round, only one participant will be selected to trade. Each

participant can only trade once.

↪→

↪→

↪→

In each round, the market maker sets the price of the asset as the expected value of the

fundamental value of the asset, conditional on the history of the trades from the previous

rounds.

↪→

↪→

[if treatment==2: {The market maker will update the price as if, with high probability, it were

trading not with informed traders, but with noise traders.}]↪→

The fundamental value of the asset is a discrete random variable that can take values 0 or 100,

each with a 50% probability. You do not know the fundamental value of the asset, but you

may receive a signal (white or blue) on the value. If the asset value is 100, you receive a

white signal with 70% probability and a blue signal with 30% probability. If the value is

0, you receive a white signal with 30% probability and a blue signal with 70% probability.

↪→

↪→

↪→

↪→

Prompt continues on next page.
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Prompt 1: System prompt (continued)

You will be making decisions on whether to buy or sell one unit of the asset at a given price,

or not to trade given respectively a white and a blue signal. The realized signal will only

be revealed to you if you are selected to trade. After each round, the computer will

randomly select a participant whose trade gets executed. That participant receives the

realized signal. The remaining participants then observe the executed trading decision

(buy, sell, or no trade), but do not receive the realized signal. They also do not observe

the identity of the selected participant. The procedure continues for [NUMBER OF TRADING

PERIODS] rounds until all participants have acted once. All participants (including those

whose decision has already been executed) observe the trading decisions in each period and

the corresponding price movement.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

After [NUMBER OF TRADING PERIODS] rounds, the asset value is revealed, and each participant

receives a payoff computed based on the trading decision and price in the round in which

the participant was selected and the asset value v.

↪→

↪→

Payoffs are computed in a fictitious experimental currency called lira. If the participant sold

the asset at price p, the payoff is p-v lire. If the participant bought the asset at price

p, the payoff is v-p lire. If the participant decided not to trade, the payoff is zero

lire. At the end of the experiment, the payoffs are added up and converted into British

pounds at the rate of 3 lire per pound. In addition, you are paid 70 pounds for

participating in the experiment, regardless of your payoff.

↪→

↪→

↪→

↪→

↪→
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Prompt 2: User prompt

This prompt describes the instructions given to the LLMs in each trading period to each agent j. The HISTORY
input consists of the executed trades of selected traders along with the history of actions and reasoning for agent j in
all previous periods. In addition to this user prompt, the LLMs have available the instructions through the system
prompt, see Prompt 1.

This is round [TRADING PERIOD (t)].

[HISTORY]

If you receive a white signal, will you buy, sell, or not trade at a price of [PRICE]?

If you receive a blue signal, will you buy, sell, or not trade at a price of [PRICE]?

Please make sure that you provide your response in the following format:

{

"actionWhite": "BUY/SELL/NO TRADE at the price of [PRICE] conditional on observing a white

signal",↪→

"actionBlue": "BUY/SELL/NO TRADE at the price of [PRICE] conditional on observing a blue

signal",↪→

"reasoningWhite": "Brief explanation of your decision conditional on observing a white

signal (1-2 sentences) ",↪→

"reasoningBlue": "Brief explanation of your decision conditional on observing a blue signal

(1-2 sentences)"↪→

}

Prompt 3: System prompt personal characteristics add-on

This prompt describes an add-on to the system prompt that provides characteristics of the AI agent. The charac-
teristics are drawn randomly from the unconditional distributions of human participant characteristics reported in
Cipriani and Guarino (2009) restricted according to the heuristics described in Appendix A to ensure realistic per-
sonas.

You are a [AGE]-year old [GENDER]. You work as a [OCCUPATION] and you have [TENURE] years of

tenure. You have a [EDUCATION LEVEL] degree in [EDUCATION FIELD]. Respond in way that is

consistent with the knowledge and expected behavior of a person with these characteristics.

↪→

↪→
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Appendices

A. Heuristics for generating realistic profiles

Age and education levels:

• A person with a Ph.D. is at least 27 years old.

• A person with a M.A./M.S. is at least 24 years old.

Age, tenure, and work positions:

• Assuming a minimum age of 21 years at first employment after graduation, the

maximum tenure is set at age minus 21.

• A person older than 30 years with at least 7 years of tenure works as a manager.

• A person younger than 30 years with less than 7 years of tenure who holds a Ph.D.

works as a market analyst or trader.

• A person older than 25 years with at least 2 years of tenure likely works as in sales or

investment management.

• A person older than 28 with at least 4 years of tenure likely works as an investment

banker.

• No restrictions on traders and market analysts.
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