

Is there a Puzzle in Underwater Mortgage Default?

Lara Loewenstein¹ Paul Willen² Yuxi Yao³ David Zhang⁴

¹Federal Reserve Bank of Cleveland

²Federal Reserve Bank of Boston

³University of Nebraska–Lincoln

⁴Rice University

4th CEMLA/Dallas Fed Financial Stability Workshop
November 25, 2025

Note: Not an official position of the Federal Reserve Bank of Boston, Federal Reserve Bank of Cleveland, or the Federal Reserve System.

Motivation

- Models of mortgage default have long struggled to fit the data on underwater households:
 - Underwater households definition: households whose home value is under the mortgage balance.
 - Early option-theoretic models over-predict default: ([Foster and Van Order, 1984](#); [Riddiough, 1991](#)). Life-cycle models typically require unrealistically large default penalties: ([Campbell and Cocco, 2015](#); [Hembre, 2018](#); [Laufer, 2018](#))
 - [Low \(2023\)](#) matches average level of underwater default by incorporating psychic moving costs, but not for deeply underwater households.
- **Research Question:** Do the empirical findings on underwater default necessarily imply that borrowers face high non-pecuniary costs of default?
 - What theoretical benchmark should we use when evaluating the empirical evidence on mortgage default?

Motivation

- Models of mortgage default have long struggled to fit the data on underwater households:
 - Underwater households definition: households whose home value is under the mortgage balance.
 - Early option-theoretic models over-predict default: ([Foster and Van Order, 1984](#); [Riddiough, 1991](#)). Life-cycle models typically require unrealistically large default penalties: ([Campbell and Cocco, 2015](#); [Hembre, 2018](#); [Laufer, 2018](#))
 - [Low \(2023\)](#) matches average level of underwater default by incorporating psychic moving costs, but not for deeply underwater households.
- **Research Question:** Do the empirical findings on underwater default necessarily imply that borrowers face high non-pecuniary costs of default?
 - What theoretical benchmark should we use when evaluating the empirical evidence on mortgage default?

Motivation

- Models of mortgage default have long struggled to fit the data on underwater households:
 - Underwater households definition: households whose home value is under the mortgage balance.
 - Early option-theoretic models over-predict default: ([Foster and Van Order, 1984](#); [Riddiough, 1991](#)). Life-cycle models typically require unrealistically large default penalties: ([Campbell and Cocco, 2015](#); [Hembre, 2018](#); [Laufer, 2018](#))
 - [Low \(2023\)](#) matches average level of underwater default by incorporating psychic moving costs, but not for deeply underwater households.
- **Research Question:** Do the empirical findings on underwater default necessarily imply that borrowers face high non-pecuniary costs of default?
 - What theoretical benchmark should we use when evaluating the empirical evidence on mortgage default?

Outline of presentation

① **Campbell-Cocco model**

- How can we get it to fit the data?

② **Our model with housing tenure choice**

③ **Results**

④ **Conclusion**

Campbell-Cocco model, introduction

- Lifecycle model, exogenous housing consumption H_{it} , optimizes over non-housing consumption.
- Exogenous homeownership and mortgage size.
- Cost of default: rent forever.

Campbell-Cocco model, introduction

- Lifecycle model, exogenous housing consumption H_{it} , optimizes over non-housing consumption.
- Exogenous homeownership and mortgage size.
- Cost of default: rent forever.

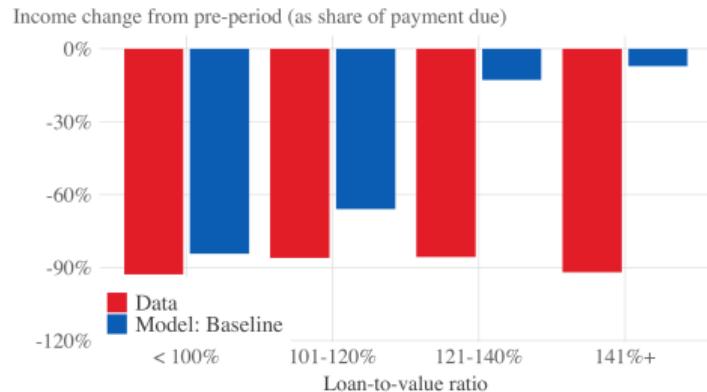
Campbell-Cocco model, introduction

- Lifecycle model, exogenous housing consumption H_{it} , optimizes over non-housing consumption.
- Exogenous homeownership and mortgage size.
- Cost of default: rent forever.

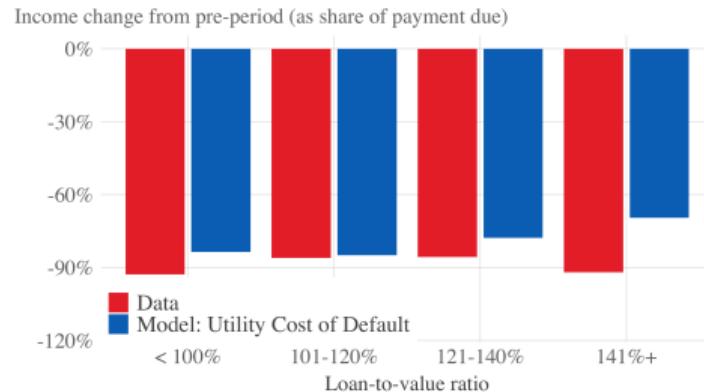
Campbell-Cocco model, rent to price (R_{it}/P_{it}) ratios

- Suppose R_{it}/P_{it} is constant. Then, **lower prices \rightarrow lower rent \rightarrow more strategic default incentives.**
- In reality, real rent is relatively flat while prices fluctuate (Loewenstein and Willen, 2023).
 - R_{it}/P_{it} rose from $\sim 7\%$ to about $\sim 10\%$ between 2007 and 2010.
 - Significantly moderates strategic default incentives.
- Campbell-Cocco R_{it}/P_{it} is actually more extreme:
 - Implies that R_{it}/P_{it} fell from $\sim 7\%$ in 2007 to $\sim 3\%$ in 2010.

Campbell-Cocco model, rent to price (R_{it}/P_{it}) ratios

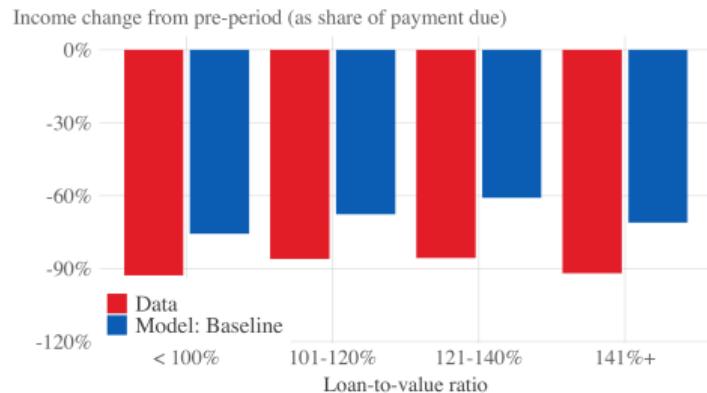

- Suppose R_{it}/P_{it} is constant. Then, **lower prices \rightarrow lower rent \rightarrow more strategic default incentives.**
- In reality, real rent is relatively flat while prices fluctuate ([Loewenstein and Willen, 2023](#)).
 - R_{it}/P_{it} rose from $\sim 7\%$ to about $\sim 10\%$ between 2007 and 2010.
 - Significantly moderates strategic default incentives.
- Campbell-Cocco R_{it}/P_{it} is actually more extreme:
 - Implies that R_{it}/P_{it} fell from $\sim 7\%$ in 2007 to $\sim 3\%$ in 2010.

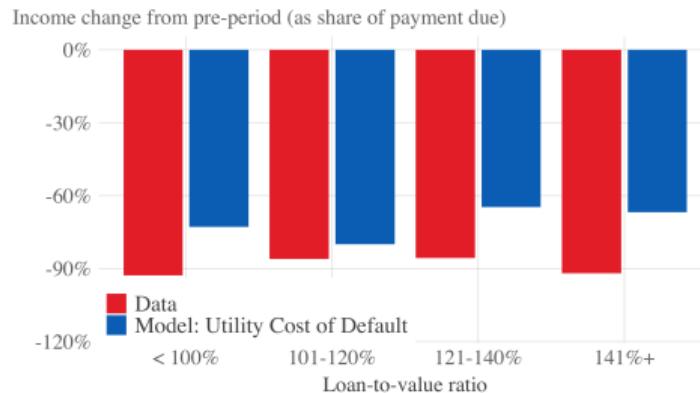
Campbell-Cocco model, rent to price (R_{it}/P_{it}) ratios


- Suppose R_{it}/P_{it} is constant. Then, **lower prices \rightarrow lower rent \rightarrow more strategic default incentives.**
- In reality, real rent is relatively flat while prices fluctuate ([Loewenstein and Willen, 2023](#)).
 - R_{it}/P_{it} rose from $\sim 7\%$ to about $\sim 10\%$ between 2007 and 2010.
 - Significantly moderates strategic default incentives.
- Campbell-Cocco R_{it}/P_{it} is actually more extreme:
 - Implies that R_{it}/P_{it} fell from $\sim 7\%$ in 2007 to $\sim 3\%$ in 2010.

Campbell-Cocco model, calibration results 1

Figure: Income changes conditional on default implied by [Campbell and Cocco \(2015\)](#)'s model, compared with [Ganong and Noel \(2023\)](#) data


(a) [Campbell and Cocco \(2015\)](#)'s model


(b) [Campbell and Cocco \(2015\)](#)'s model with high default stigma

Campbell-Cocco model, calibration results 2

Figure: Income changes conditional on default implied by [Campbell and Cocco \(2015\)](#)'s model, compared with [Ganong and Noel \(2023\)](#) data

(a) [Campbell and Cocco \(2015\)](#)'s model with constant real rent

(b) [Campbell and Cocco \(2015\)](#)'s model with constant real rent and high default stigma

Is this R_{it}/P_{it} fundamental?

- Model with endogenous housing tenure choice is necessary to contextualize R_{it}/P_{it} in utility terms.
- Need to account for positive equity default and endogenize the rent vs. own decision.

Is this R_{it}/P_{it} fundamental?

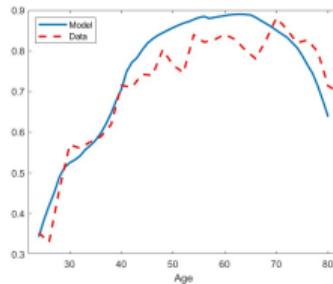
- Model with endogenous housing tenure choice is necessary to contextualize R_{it}/P_{it} in utility terms.
- Need to account for positive equity default and endogenize the rent vs. own decision.

Model features:

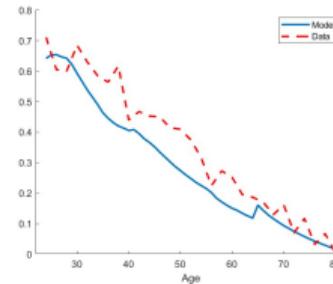
- ① Endogenize housing tenure choice in terms of owning and renting as well as the choice of mortgage balances.
- ② Allow for heterogeneity in endogenous house sizes as well as market segmentation in terms of the largest houses being only available via owning (Kaplan et al., 2020).
- ③ Calibrate our model to match the households' life-cycle ownership decisions, mortgage choice and Payment to income ratio by LTV.

Model features:

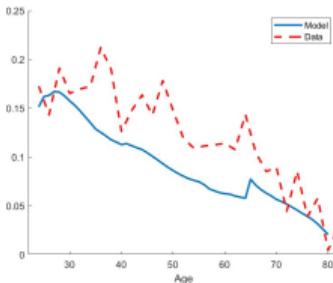
- ① Endogenize housing tenure choice in terms of owning and renting as well as the choice of mortgage balances.
- ② Allow for heterogeneity in endogenous house sizes as well as market segmentation in terms of the largest houses being only available via owning ([Kaplan et al., 2020](#)).
- ③ Calibrate our model to match the households' life-cycle ownership decisions, mortgage choice and Payment to income ratio by LTV.

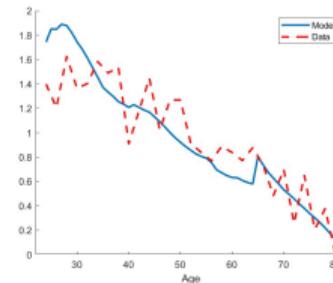

Model features:

- ① Endogenize housing tenure choice in terms of owning and renting as well as the choice of mortgage balances.
- ② Allow for heterogeneity in endogenous house sizes as well as market segmentation in terms of the largest houses being only available via owning ([Kaplan et al., 2020](#)).
- ③ Calibrate our model to match the households' life-cycle ownership decisions, mortgage choice and Payment to income ratio by LTV.

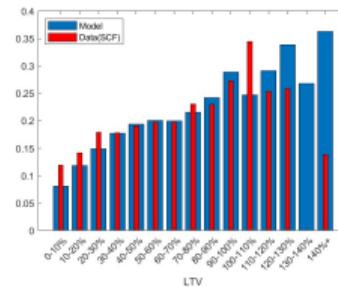

Calibration: Selected Parameters

Parameter		Value	Target
β	Discount factor	0.92	LTV
η	Housing Share	0.2	PTI
ϕ	Substitutability	1.5	PTI and LTV
ψ	Utility cost of default	0.15 (CEV 0.7%)	Default rates
b_0	Bequest Motive	20	Homeownership Rate & Mortgage Loan
b_1	Bequest Motive	1	of Senior Households

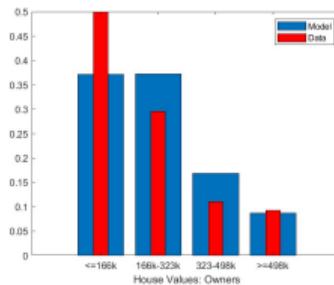

Calibration: Targeted Moments


(a) Homeownership Rates

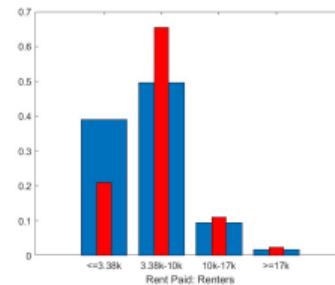
(b) Loan-to-Value Ratios



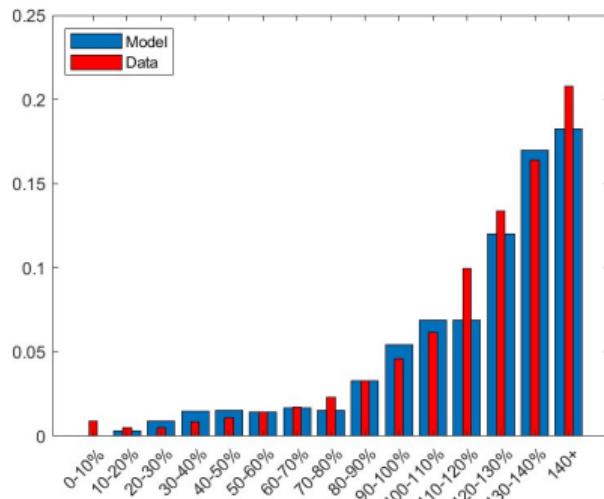
(c) Payment-to-Income Ratios



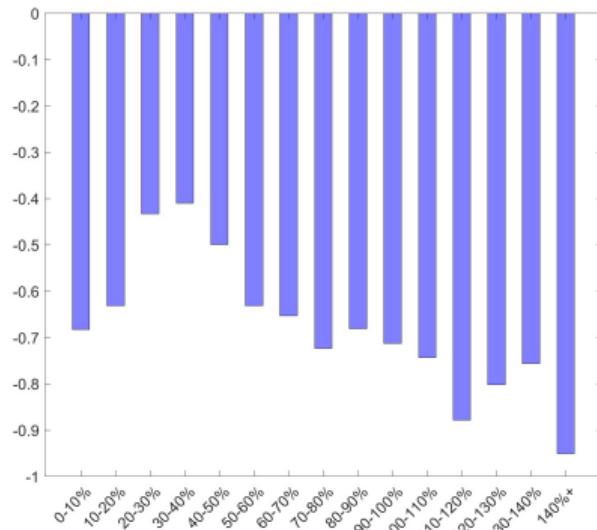
(d) Debt-to-Income Ratios


Calibration: Non-Targeted Moments

(a) Average PTI by LTV



(b) Distribution of House Values among Owners



(c) Distribution of Rents among Renters

Result: Model Implied Income Change Given Default

(a) Default Rate

(b) Income Change before Default as a Fraction of Mortgage Payment

Counterfactual: Forebearance is Effective in Reducing Default

	Default Rate	Foreclosure Rate
Baseline	2.34	0.97
Forbearance Steady State	1.32	0.83

- With a 1-year forbearance option, households take larger mortgages & end up with higher LTVs, but despite this effect in steady state default and foreclosure both decline.

Counterfactual: Forebearance is Effective in Reducing Default

	Default Rate	Foreclosure Rate
Baseline	2.34	0.97
Forbearance Steady State	1.32	0.83

- With a 1-year forbearance option, households take larger mortgages & end up with higher LTVs, but despite this effect in steady state default and foreclosure both decline.

- **For mortgage research:**

- Are non-pecuniary costs such as shame and social management important for mortgage default ([White, 2010](#))?
- We show that deviation from rational benchmarks are more difficult to identify from data than previously thought.

- **For financial stability policy:**

- Changes the financial welfare interpretation of forbearance policies.
- Add to the theoretical basis for liquidity based policies (e.g. forbearance).
- Suggestive evidence of “triple trigger” default, where flow incentives (i.e., flow utility of owning versus renting) may matter as much as stock incentives (i.e., being underwater).

- **For mortgage research:**

- Are non-pecuniary costs such as shame and social management important for mortgage default ([White, 2010](#))?
- We show that deviation from rational benchmarks are more difficult to identify from data than previously thought.

- **For financial stability policy:**

- Changes the financial welfare interpretation of forbearance policies.
- Add to the theoretical basis for liquidity based policies (e.g. forbearance).
- Suggestive evidence of “triple trigger” default, where flow incentives (i.e., flow utility of owning versus renting) may matter as much as stock incentives (i.e., being underwater).

- **For mortgage research:**

- Are non-pecuniary costs such as shame and social management important for mortgage default ([White, 2010](#))?
- We show that deviation from rational benchmarks are more difficult to identify from data than previously thought.

- **For financial stability policy:**

- Changes the financial welfare interpretation of forbearance policies.
- Add to the theoretical basis for liquidity based policies (e.g. forbearance).
- Suggestive evidence of “triple trigger” default, where flow incentives (i.e., flow utility of owning versus renting) may matter as much as stock incentives (i.e., being underwater).

- **For mortgage research:**

- Are non-pecuniary costs such as shame and social management important for mortgage default ([White, 2010](#))?
- We show that deviation from rational benchmarks are more difficult to identify from data than previously thought.

- **For financial stability policy:**

- Changes the financial welfare interpretation of forbearance policies.
- Add to the theoretical basis for liquidity based policies (e.g. forbearance).
- Suggestive evidence of “triple trigger” default, where flow incentives (i.e., flow utility of owning versus renting) may matter as much as stock incentives (i.e., being underwater).

Bibliography I

Campbell, J.Y., Cocco, J.F., 2015. A model of mortgage default. *The Journal of Finance* 70, 1495–1554. doi:doi: 10.1111/jofi.12252.

Foster, C., Van Order, R., 1984. An option-based model of mortgage default. *Housing Fin. Rev.* 3, 351.

Ganong, P., Noel, P., 2023. Why do borrowers default on mortgages? *The Quarterly Journal of Economics* 138, 1001–1065. doi:doi: 10.1093/qje/qjac040.

Hembre, E., 2018. HAMP, home attachment, and mortgage default. Unpublished. Department of Economics, University of Wisconsin-Madison .

Kaplan, G., Mitman, K., Violante, G.L., 2020. The housing boom and bust: Model meets evidence. *Journal of Political Economy* 128, 3285–3345. doi:doi: 10.1086/708816.

Laufer, S., 2018. Equity extraction and mortgage default. *Review of Economic Dynamics* 28, 1–33. doi:doi: 10.1016/j.red.2017.07.006.

Bibliography II

Loewenstein, L., Willen, P.S., 2023. House Prices and Rents in the 21st Century. Technical Report. National Bureau of Economic Research. doi:doi: 10.3386/w31013.

Low, D., 2023. An empirically-disciplined theory of mortgage default. Working paper .

Riddiough, T.J., 1991. Equilibrium mortgage default pricing with non-optimal borrower behavior. The University of Wisconsin-Madison.

White, B.T., 2010. Underwater and not walking away: Shame, fear, and the social management of the housing crisis. *Wake Forest L. Rev.* 45, 971.