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Abstract  
This paper attacks the Meese-Rogoff (exchange rate disconnect) puzzle from a different 
perspective: out-of-sample interval forecasting. Most studies in the literature focus on point 
forecasts. In this paper, we apply Robust Semi-parametric (RS) interval forecasting to a 
group of Taylor rule models. Forecast intervals for twelve OECD exchange rates are 
generated and modified tests of Giacomini and White (2006) are conducted to compare the 
performance of Taylor rule models and the random walk. Our contribution is twofold. First, 
we find that in general, Taylor rule models generate tighter forecast intervals than the 
random walk, given that their intervals cover out-of-sample exchange rate realizations 
equally well. This result is more pronounced at longer horizons. Our results suggest a 
connection between exchange rates and economic fundamentals: economic variables contain 
information useful in forecasting the distributions of exchange rates. The benchmark Taylor 
rule model is also found to perform better than the monetary and PPP models. Second, the 
inference framework proposed in this paper for forecast-interval evaluation can be applied in 
a broader context, such as inflation forecasting, not just to the models and interval 
forecasting methods used in this paper. 
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1 Introduction

Recent studies explore the role of monetary policy rules, such as Taylor rules, in exchange rate determination.

They find empirical support in these models for the linkage between exchange rates and economic funda-

mentals. Our paper extends this literature from a different perspective: interval forecasting. We find that

the Taylor rule models can outperform the random walk, especially at long horizons, in forecasting twelve

OECD exchange rates based on relevant out-of-sample interval forecasting criteria. The benchmark Taylor

rule model is also found to perform relatively better than the standard monetary model and the purchasing

power parity (PPP) model.

In a seminal paper, Meese and Rogoff (1983) find that economic fundamentals - such as the money supply,

trade balance and national income - are of little use in forecasting exchange rates. They show that existing

models cannot forecast exchange rates better than the random walk in terms of out-of-sample forecasting

accuracy. This finding suggests that exchange rates may be determined by something purely random rather

than economic fundamentals. Meese and Rogoff’s (1983) finding has been named the Meese-Rogoff puzzle

in the literature.

In defending fundamental-based exchange rate models, various combinations of economic variables and

econometric methods have been used in attempts to overturn Meese and Rogoff’s finding. For instance, Mark

(1995) finds greater exchange rate predictability at longer horizons.1 Groen (2000) and Mark and Sul (2001)

detect exchange rate predictability by using panel data. Kilian and Taylor (2003) find that exchange rates

can be predicted from economic models at horizons of 2 to 3 years, after taking into account the possibility

of nonlinear exchange rate dynamics. Faust, Rogers, and Wright (2003) find that the economic models

consistently perform better using real-time data than revised data, though they do not perform better than

the random walk.

Recently, there is a growing strand of literature that uses Taylor rules to model exchange rate determina-

tion. Engel and West (2005) derive the exchange rate as a present-value asset price from a Taylor rule model.

They also find a positive correlation between the model-based exchange rate and the actual real exchange

rate between the US dollar and the Deutschmark (Engel and West, 2006). Mark (2007) examines the role

of Taylor-rule fundamentals for exchange rate determination in a model with learning. In his model, agents

use least-square learning rules to acquire information about the numerical values of the model’s coefficients.

He finds that the model is able to capture six major swings of the real Deutschmark-Dollar exchange rate

from 1973 to 2005. Molodtsova and Papell (2009) find significant short-term out-of-sample predictability

1Chinn and Meese (1995) and MacDonald and Taylor (1994) find similar results. However, the long-horizon exchange rate
predictability in Mark (1995) has been challenged by Kilian (1999) and Berkowitz and Giorgianni (2001) in subsequent studies.



of exchange rates with Taylor-rule fundamentals for 11 out of 12 currencies vis-á-vis the U.S. dollar over

the post-Bretton Woods period. Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008a, 2008b) find evidence

of out-of-sample predictability for the dollar/mark nominal exchange rate with forecasts based on Taylor

rule fundamentals using real-time data, but not revised data. Chinn (forthcoming) also finds that Taylor

rule fundamentals do better than other models at the one year horizon. With a present-value asset pricing

model as discussed in Engel and West (2005), Chen and Tsang (2009) find that information contained in

the cross-country yield curves are useful in predicting exchange rates.

Our paper joins the above literature of Taylor-rule exchange rate models. However, we address the Meese

and Rogoff puzzle from a different perspective: interval forecasting. A forecast interval captures a range in

which the exchange rate may lie with a certain probability, given a set of predictors available at the time

of forecast. Our contribution to the literature is twofold. First, we find that for twelve OECD exchange

rates, the Taylor rule models in general generate tighter forecast intervals than the random walk, given

that their intervals cover the realized exchange rates (statistically) equally well. This finding suggests an

intuitive connection between exchange rates and economic fundamentals beyond point forecasting: the use

of economic variables as predictors helps narrow down the range in which future exchange rates may lie,

compared to random walk forecast intervals. Second, we propose an inference framework for cross-model

comparison of out-of-sample forecast intervals. The proposed framework can be used for forecast-interval

evaluation in a broader context, not just for the models and methods used in this paper. For instance, the

framework can also be used to evaluate out-of-sample inflation forecasting.

As we will discuss later, we in fact derive forecast intervals from estimates of the distribution of changes

in the exchange rate. Hence, in principle, evaluations across models can be done based on distributions

instead of forecast intervals. However, focusing on interval forecasting performance allows us to compare

models in two dimensions that are more relevant to practitioners: empirical coverage and length.

While the literature on interval forecasting for exchange rates is sparse, several authors have studied

out-of-sample exchange rate density (distribution) forecasts, from which interval forecasts can be derived.

Diebold, Hahn and Tay (1999) use the RiskMetrics model of JP Morgan (1996) to compute half-hour-

ahead density forecasts for Deutschmark/Dollar and Yen/Dollar returns. Christoffersen and Mazzotta (2005)

provide option-implied density and interval forecasts for four major exchange rates. Boero and Marrocu

(2004) obtain one-day-ahead density forecasts for the Euro nominal effective exchange rate using self-exciting

threshold autoregressive (SETAR) models. Sarno and Valente (2005) evaluate the exchange rate density

forecasting performance of the Markov-switching vector equilibrium correction model that is developed by

Clarida, Sarno, Taylor and Valente (2003). They find that information from the term structure of forward
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premia help the model to outperform the random walk in forecasting out-of-sample densities of the spot

exchange rate. More recently, Hong, Li, and Zhao (2007) construct half-hour-ahead density forecasts for

Euro/Dollar and Yen/Dollar exchange rates using a comprehensive set of univariate time series models that

capture fat tails, time-varying volatility and regime switches.

There are several common features across the studies listed above, which make them different from

our paper. First, the focus of the above studies is not to make connections between the exchange rate and

economic fundamentals. These studies use high frequency data, which are not available for most conventional

economic fundamentals. For instance, Diebold, Hahn, and Tay (1999) and Hong, Li, and Zhao (2007) use

intra-day data. With the exception of Sarno and Valente (2005), all the studies focus only on univariate time

series models. Second, these studies do not consider multi-horizon-ahead forecasts, perhaps due to the fact

that their models are often highly nonlinear. Iterating nonlinear density models multiple horizons ahead is

analytically difficult, if not infeasible. Lastly, the above studies assume that the densities are analytically

defined for a given model. The semiparametric method used in this paper does not impose such restrictions.

Our choice of the semiparametric method is motivated by the difficulty of using macroeconomic models

in exchange rate interval forecasting: these models typically do not describe the future distributions of

exchange rates. For instance, the Taylor rule models considered in this paper do not describe any features

of the data beyond the conditional means of future exchange rates. We address this difficulty by applying

Robust Semiparametric forecast intervals (hereon RS forecast intervals) of Wu (2009).2 This method is

useful since it does not require the model be correctly specified, or contain parametric assumptions about

the future distribution of exchange rates.

We apply RS forecast intervals to a set of Taylor rule models that differ in terms of the assumptions on

policy and interest rate smoothing rules. Following Molodtsova and Papell (2009), we include twelve OECD

exchange rates (relative to the US dollar) over the post-Bretton Woods period in our dataset. For these

twelve exchange rates, the out-of-sample RS forecast intervals at different forecast horizons are generated

from the Taylor rule models and then compared with those of the random walk. The empirical coverages and

lengths of forecast intervals are used as the evaluation criteria. Our empirical coverage and length tests are

modified from Giacomini and White’s (2006) predictive accuracy tests in the case of rolling, but fixed-size,

estimation samples.

For a given nominal coverage (probability), the empirical coverage of forecast intervals derived from a

forecasting model is the probability that the out-of-sample realizations (exchange rates) lie in the intervals.

The length of the intervals is a measure of its tightness: the distance between its upper and lower bound.
2For brevity, we omit RS and simply say forecast intervals when we believe that it causes no confusion.
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In general, the empirical coverage is not the same as its nominal coverage. Significantly missing the nom-

inal coverage indicates poor quality of the model and intervals. One certainly wants the forecast intervals

to contain out-of-sample realizations as close as possible to the probability they target. Most evaluation

methods in the literature focus on comparing empirical coverages across models, following the seminal work

of Christoffersen (1998). Following this literature, we first test whether forecast intervals of the Taylor rule

models and the random walk have equally accurate empirical coverages. The model with more accurate

coverages is considered the better model. In the cases where equal coverage accuracy cannot be rejected, we

further test whether the lengths of forecast intervals are the same. The model with tighter forecast intervals

provides more useful information about future values of the data, and hence is considered as a more useful

forecasting model.

It is also important to establish what this paper is not attempting. First, the inference procedure does

not carry the purpose of finding the correct model specification. Rather, inference is on how useful models

are in generating forecast intervals, measured in terms of empirical coverages and lengths. Second, this paper

does not consider the possibility that there might be alternatives to RS forecast intervals for the exchange

rate models we consider. Some models might perform better if parametric distribution assumptions (e.g. the

forecast errors are conditionally heteroskedastic and t−distributed) or other assumptions (e.g. the forecast

errors are independent of the predictors) are added. One could presumably estimate the forecast intervals

differently based on the same models, and then compare those with the RS forecast intervals, but this is

out of the scope of this paper. As we described, we choose the RS method for the robustness and flexibility

achieved by the semiparametric approach.

Our benchmark Taylor rule model is from Engel and West (2005) and Engel, Wang, and Wu (2008).

For the purpose of comparison, several alternative Taylor rule models are also considered. These setups

have been studied by Molodtsova and Papell (2009) and Engel, Mark, and West (2007). In general, we find

that the Taylor rule models perform better than the random walk model, especially at long horizons: the

models either have more accurate empirical coverages than the random walk, or in cases of equal coverage

accuracy, the models have tighter forecast intervals than the random walk. The evidence of exchange rate

predictability is much weaker in coverage tests than in length tests. In most cases, the Taylor rule models and

the random walk have statistically equally accurate empirical coverages. So, under the conventional coverage

test, the random walk model and the Taylor rule models perform equally well. However, the results of length

tests suggest that Taylor rule fundamentals are useful in generating tighter forecasts intervals without losing

accuracy in empirical coverages.

We also consider two other popular models in the literature: the monetary model and the model of
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purchasing power parity (PPP). Based on the same criteria, both models are found to perform better than

the random walk in interval forecasting. As with the Taylor rule models, most evidence of exchange rate

predictability comes from the length test: economic models have tighter forecast intervals than the random

walk given statistically equivalent coverage accuracy. The PPP model performs worse than the benchmark

Taylor rule model and the monetary model at short horizons. The benchmark Taylor rule model performs

slightly better than the monetary model at most horizons.

Our findings suggest that exchange rate movements are linked to economic fundamentals. However,

we acknowledge that the Meese-Rogoff puzzle remains difficult to understand. Although Taylor rule models

offer statistically significant length reductions over the random walk, the reduction of length is quantitatively

small, especially at short horizons. Forecasting exchange rates remains a difficult task in practice. There

are some impressive advances in the literature, but most empirical findings remain fragile. As mentioned in

Cheung, Chinn, and Pascual (2005), forecasts from economic fundamentals may work well for some currencies

during certain sample periods but not for other currencies or sample periods. Engel, Mark, and West (2007)

recently show that a relatively robust finding is that exchange rates are more predictable at longer horizons,

especially when using panel data. We find greater predictability at longer horizons in our exercise. It would

be of interest to investigate connections between our findings and theirs.

Several recent studies have attacked the puzzle from a different angle: there are reasons that economic

fundamentals cannot forecast the exchange rate, even if the exchange rate is determined by these funda-

mentals. Engel and West (2005) show that existing exchange rate models can be written in a present-value

asset-pricing format. In these models, exchange rates are determined not only by current fundamentals but

also by expectations of what the fundamentals will be in the future. When the discount factor is large (close

to one), current fundamentals receive very little weight in determining the exchange rate. Not surprisingly,

the fundamentals are not very useful in forecasting. Nason and Rogers (2008) generalize the Engel-West

theorem to a class of open-economy dynamic stochastic general equilibrium (DSGE) models. Other factors

such as parameter instability and mis-specification (for instance, Rossi 2005) may also play important roles

in understanding the puzzle. It is interesting to investigate conditions under which we can reconcile our

findings with these studies.

The remainder of this paper is organized as follows. Section two describes the forecasting models we use,

as well as the data. In section three, we illustrate how the RS forecast intervals are constructed from a given

model. We also propose loss criteria to evaluate the quality of the forecast intervals and test statistics that

are based on Giacomini and White (2006). Section four presents results of out-of-sample forecast evaluation.

Finally, section five contains concluding remarks.
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2 Models and Data

Seven models are considered in this paper. Let m = 1, 2, ..., 7 be the index of these models and the first

model be the benchmark model. A general setup of the models takes the form of:

st+h − st = αm,h + β′m,hXm,t + εm,t+h, (1)

where st+h−st is h-period changes of the (log) exchange rate, and Xm,t contains economic variables that are

used in model m. Following the literature of long-horizon regressions, both short- and long-horizon forecasts

are considered. Models differ in economic variables that are included in matrix Xm,t. In the benchmark

model,

X1,t ≡
[

πt − π∗t ygap
t − ygap∗

t qt

]
,

where πt (π∗t ) is the inflation rate, and ygap
t (ygap∗

t ) is the output gap in the home (foreign) country. The

real exchange rate qt is defined as qt ≡ st + p∗t − pt, where pt (p∗t ) is the (log) consumer price index in the

home (foreign) country. This setup is motivated by the Taylor rule model in Engel and West (2005) and

Engel, Wang, and Wu (2008). The next subsection describes this benchmark Taylor rule model in detail.

We also consider the following models that have been studied in the literature:

• Model 2: X2,t ≡
[

πt − π∗t ygap
t − ygap∗

t

]

• Model 3: X3,t ≡
[

πt − π∗t ygap
t − ygap∗

t it−1 − i∗t−1

]
, where it (i∗t ) is the short-term interest rate

in the home (foreign) country.

• Model 4: X4,t ≡
[

πt − π∗t ygap
t − ygap∗

t qt it−1 − i∗t−1

]
• Model 5: X5,t ≡ qt

• Model 6: X6,t ≡
[

st − [(mt −m∗
t )− (yt − y∗t )]

]
, where mt (m∗

t ) is the money supply and yt (y∗t ) is

total output in the home (foreign) country.

• Model 7: X7,t ≡ 0

Models 2-4 are the Taylor rule models studied in Molodtsova and Papell (2009). Model 2 can be considered

as the constrained benchmark model in which PPP always holds. Molodtsova and Papell (2009) include

interest rate lags in models 3 and 4 to take into account potential interest rate smoothing rules of the central
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bank.3 Model 5 is the purchasing power parity (PPP) model and model 6 is the monetary model. Both

models have been widely used in the literature. See Molodtsova and Papell (2009) for the PPP model and

Mark (1995) for the monetary model. Model 7 is the driftless random walk model (α7,h ≡ 0).4 Given a

date τ and horizon h, the objective is to estimate the forecast distribution of sτ+h− sτ conditional on Xm,τ ,

and subsequently build forecast intervals from the estimated forecast distribution. Before moving to the

econometric method, we first describe the Taylor rule model that motivates the setup of our benchmark

model.

2.1 Benchmark Taylor Rule Model

Our benchmark model is the Taylor rule model that is derived in Engel and West (2005) and Engel, Wang,

and Wu (2008). Following Molodtsova and Papell (2009), we focus on models that depend only on current

levels of inflation and the output gap.5 The Taylor rule in the home country takes the form of:

īt = ī + δπ(πt − π̄) + δyygap
t + ut, (2)

where īt is the central bank’s target for the short-term interest rate at time t, ī is the equilibrium long-term

rate, πt is the inflation rate, π̄ is the target inflation rate, and ygap
t is the output gap. The foreign country

is assumed to follow a similar Taylor rule. In addition, we follow Engel and West (2005) to assume that the

foreign country targets the exchange rate in its Taylor rule:

ī∗t = ī + δπ(π∗t − π̄) + δyygap∗
t + δs(st − s̄t) + u∗t , (3)

where s̄t is the targeted exchange rate. Assume that the foreign country targets the PPP level of the exchange

rate: s̄t = pt − p∗t , where pt and p∗t are logarithms of home and foreign aggregate prices. In equation (3), we

assume that the policy parameters take the same values in the home and foreign countries. Molodtsova and

Papell (2009) denote this case as “homogeneous Taylor rules”. Our empirical results also hold in the case

of heterogenous Taylor rules. To simplify our presentation, we assume that the home and foreign countries

have the same long-term inflation and interest rates. Such restrictions have been relaxed in our econometric

model after we include a constant term in estimations.
3The coefficients on lagged interest rates in the home and foreign countries can take different values in Molodtsova and

Papell (2009).
4We also tried the random walk with a drift. It does not change our results.
5Clarida, Gali, and Gertler (1998) find empirical support for forward-looking Taylor rules. Forward-looking Taylor rules are

ruled out because they require forecasts of predictors, which creates additional complications in out-of-sample forecasting.
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We do not consider interest rate smoothing in our benchmark model. That is, the actual interest rate

(it) is identical to the target rate in the benchmark model:

it = īt. (4)

Molodtsova and Papell (2009) consider the following interest rate smoothing rule:

it = (1− ρ)̄it + ρit−1 + νt, (5)

where ρ is the interest rate smoothing parameter. We include these setups in models 3 and 4. Note that our

estimation methods do not require the monetary policy shock ut and the interest rate smoothing shock νt

to satisfy any assumptions, aside from smoothness of their distributions when conditioned on predictors.

Substituting the difference of equations (2) and (3) into Uncovered Interest-rate Parity (UIP), we have:

st = Et

(1− b)
∞∑

j=0

bj(pt+j − p∗t+j)− b

∞∑
j=0

bj
[
δy(ygap

t+j − ygap∗
t+j ) + δπ(πt+j − π∗t+j)

] , (6)

where the discount factor b = 1
1+δs

. Under some conditions, the present value asset pricing format in equation

(6) can be written into an error-correction form:6

st+h − st = αh + βhzt + εt+h, (7)

where the deviation of the exchange rate from its equilibrium level is defined as:

zt = st − pt + p∗t +
b

1− b

[
δy(ygap

t − ygap∗
t ) + δπ(πt − π∗t )

]
. (8)

We use equation (7) as our benchmark setup in calculating h-horizon-ahead out-of-sample forecasting inter-

vals. According to equation (8), the matrix X1,t in equation (1) includes economic variables qt ≡ st +p∗t −pt,

ygap
t − ygap∗

t , and πt − π∗t .

6See appendix for more detail. While the long-horizon regression format of the benchmark Taylor model is derived directly
from the underlying Taylor rule model, this is not the case for the models with interest rate smoothing (models 3 and 4).
Molodtsova and Papell (2009) only consider the short-horizon regression for the Taylor rule models. We include long-horizon
regressions of these models only for the purpose of comparison.
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2.2 Data

The forecasting models and the corresponding forecast intervals are estimated using monthly data for twelve

OECD countries. The United States is treated as the foreign country in all cases. For each country we

synchronize the beginning and end dates of the data across all models estimated. The twelve countries and

periods considered are: Australia (73:03-06:6), Canada (75:01-06:6), Denmark (73:03-06:6), France (77:12-

98:12), Germany (73:03-98:12), Italy (74:12-98:12), Japan (73:03-06:6), Netherlands (73:03-98:12), Portugal

(83:01-98:12), Sweden (73:03-04:11), Switzerland (75:09-06:6), and the United Kingdom (73:03-06:4).

The data is taken from Molodtsova and Papell (2009).7 With the exception of interest rates, the data

is transformed by taking natural logs and then multiplying by 100. The nominal exchange rates are end-of-

month rates taken from the Federal Reserve Bank of St. Louis database. Output data (yt) are proxied by

Industrial Production (IP) from the International Financial Statistics (IFS) database. IP data for Australia

and Switzerland are only available at a quarterly frequency, and hence are transformed from quarterly to

monthly observations using the quadratic-match average option in Eviews 4.0 by Molodtsova and Papell

(2009). Following Engel and West (2006), the output gap (ygap
t ) is calculated by quadratically de-trending

the industrial production for each country.

Prices data (pt) are proxied by Consumer Price Index (CPI) from the IFS database. Again, CPI for

Australia is only available at a quarterly frequency and the quadratic-match average is used to impute

monthly observations. Inflation rates are calculated by taking the first differences of the logs of CPIs. The

money market rate from IFS (or “call money rate”) is used as a measure of the short-term interest rate set

by the central bank. Finally, M1 is used to measure the money supply for most countries. M0 for the UK

and M2 for Italy and Netherlands is used due to the unavailability of M1 data.

3 Econometric Method

For a given model m, the objective is to estimate from equation (1) the distribution of sτ+h− sτ conditional

on data Xm,τ that is observed up to time τ . This is the h-horizon-ahead forecast distribution of the exchange

rate, from which the corresponding forecast interval can be derived. For a given α, the forecast interval of

coverage α ∈ (0, 1) is an interval in which sτ+h − sτ is supposed to lie with a probability of α.

Models m = 1, ..., 7 in equation (1) provide only point forecasts of sτ+h − sτ . In order to construct

forecast intervals for a given model, we apply robust semiparametric (RS) forecast intervals to all models.

7We thank the authors for the data, which we downloaded from David Papell’s website. For the exact line numbers and
sources of the data, see the data appendix of Molodtsova and Papell (2009).
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The nominal α-coverage forecast interval of sτ+h − sτ conditional on Xm,τ can be obtained by the following

three-step procedure:

Step 1. Estimate model m by OLS and obtain residuals ε̂m,t+h ≡ st+h − st − α̂m,h + β̂
′

m,hXm,t, for t =

1, ..., τ − h.

Step 2. For a range of values of ε (sorted residuals {ε̂m,t+h}τ−h
t=1 ), estimate the conditional distribution of

εm,τ+h|Xm,τ by:

P̂ (εm,τ+h ≤ ε|Xm,τ ) ≡
∑τ−h

t=1 1(ε̂m,t+h ≤ ε)Kb(Xm,t −Xm,τ )∑τ−h
t=1 Kb(Xm,t −Xm,τ )

, (9)

where Kb(Xm,t − Xm,τ ) ≡ b−dK((Xm,t − Xm,τ )/b), K(·) is a multivariate Gaussian kernel with a

dimension the same as that of Xm,t, and b is the smoothing parameter or bandwidth.8

Step 3. Find the (1 − α)/2 and (1 + α)/2 quantiles of the estimated distribution, which are denoted by

ε̂
(1−α)/2
m,h and ε̂

(1+α)/2
m,h , repectively. The estimate of the α-coverage forecast interval for sτ+h − sτ

conditional on Xm,τ is:

Îα
m,τ+h ≡ (β̂′m,hXm,τ + ε̂

(1−α)/2
m,h , β̂′m,hXm,τ + ε̂

(1+α)/2
m,h ) (10)

For each model m, the above method uses the forecast models in equation (1) to estimate the location

of the forecast distribution, while the nonparametric kernel distribution estimate is used to estimate the

shape. As a result, the interval obtained from this method is semiparametric. Wu (2009) shows that under

some weak regularity conditions, this method consistently estimates the forecast distribution,9 and hence

the forecast intervals of sτ+h − sτ conditional on Xm,τ , regardless of the quality of model m. That is, the

forecast intervals are robust. Stationarity of economic variables is one of those regularity conditions. In our

models, exchange rate differences, interest rates and inflation rates are well-known to be stationary, while

empirical tests for real exchange rates and output gaps generate mixed results. These results may be driven

by the difficulty of distinguishing a stationary, but persistent, variable from a non-stationary one. In this

paper, we take the stationarity of these variables as given.

Model 7 is the random walk model. The estimator in equation (9) becomes the Empirical Distribution

Function (EDF) of the exchange rate innovations. Under regularity conditions, equation (9) consistently

estimates the unconditional distribution of sτ+h − sτ , and can be used to form forecast intervals for sτ+h.
8We choose b using the method of Hall, Wolff, and Yao (1999).
9It is consistent in the sense of convergence in probability as the estimation sample size goes to infinity.
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The forecast intervals of economic models and the random walk are compared. Our interest is to test whether

RS forecast intervals based on economic models are more accurate than those based on the random walk

model. We focus on the empirical coverage and the length of forecast intervals in our tests.

Following Christoffersen (1998) and related work, the first standard we use is the empirical coverage.

The empirical coverage should be as close as possible to the nominal coverage (α). Significantly missing

the nominal coverage indicates the inadequacy of the model and predictors for the given sample size. For

instance, if 90% forecast intervals calculated from a model contain only 50% of out-of-sample observations,

the model can hardly be identified as useful for interval forecasting. This case is called under-coverage. In

contrast, over-coverage implies that the intervals could be reduced in length (or improved in tightness), but

the forecast interval method and model are unable to do that for the given sample size. An economic model

is said to outperform the random walk if its empirical coverage is more accurate than that of the random

walk.

On the other hand, the empirical coverage of an economic model may be equally accurate as that of the

random walk model, but the economic model has tighter forecast intervals than the random walk. We argue

that the lengths of forecast intervals signify the informativeness of the intervals given that these intervals

have equally accurate empirical coverages. In this case, the economic model is also considered to outperform

the random walk in forecasting exchange rates. The empirical coverage and length tests are conducted at

both short and long horizons for the six economic models relative to the random walk for each of the twelve

OECD exchange rates.

We use tests that are applications of the unconditional predictive accuracy inference framework of Gi-

acomini and White (2006). Unlike the tests of Diebold and Mariano (1995) and West (1996), our forecast

evaluation tests do not focus on the asymptotic features of the forecasts. Rather, in the spirit of Giacomini

and White (2006), we are comparing the population features of forecasts generated by rolling samples of

fixed sample size. This contrasts to the traditional forecast evaluation methods in that although it uses

asymptotic approximations to do the testing, the inference is not on the asymptotic properties of forecasts,

but on their population finite sample properties. We acknowledge that the philosophy of this inference

framework remains a point of contention, but it does tackle three important evaluation difficulties in this

paper. First, it allows for evaluation of forecast intervals that are not parametrically derived. The density

evaluation methods developed in well-known studies such as Diebold, Gunther, Tay (1998), Corradi and

Swanson (2006a) and references within Corradi and Swanson (2006b) require that the forecast distributions

be parametrically specified. Giacomini and White’s (2006) method overcomes this challenge by allowing

comparisons among parametric, semiparametric and nonparametric forecasts. As a result, in the cases of
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semiparametric and nonparametric forecasts, it also allows comparison of models with predictors of different

dimensions, as evident in our exercise. Second, by comparing the finite sample properties of RS forecast in-

tervals derived from different models, we avoid rejecting models that are mis-specified,10 but are nonetheless

good approximations useful for forecasting. Finally, we can individually (though not jointly) test whether

the forecast intervals differ in terms of empirical coverages and lengths, for the given estimation sample, and

are not confined to focus only on empirical coverages or holistic properties of forecast distribution, such as

probability integral transform.

3.1 Test of Equal Empirical Coverages

Suppose the sample size available to the researcher is T and all data are collected in a vector Wt. Our

inference procedure is based on a rolling estimation scheme, with the size of the rolling window fixed while

T → ∞. Let T = R + N and R be the size of the rolling window. For each horizon h and model m, a

sequence of N(h) = N + 1 − h α-coverage forecast intervals are generated using rolling data: {Wt}R
t=1 for

forecast for date R + h, {Wt}R+1
t=2 for forecast for date R + h + 1, and so on, until forecast for date T is

generated using {Wt}R+N(h)−1
t=N(h) .

Under this fixed-sample-size rolling scheme, for each finite h we have N(h) observations to compare the

empirical coverages and lengths across m models (m = 1, 2, ..., 7). By fixing R, we allow the finite sample

properties of the forecast intervals to be preserved as T →∞. Thus, the forecast intervals and the associated

forecast losses are simply functions of a finite and fixed number of random variables. We are interested in

approximating the population moments of these objects by taking N(h) → ∞. A loose analogy would be

finding the finite-sample properties of a certain parameter estimator when the sample size is fixed at R, by

a bootstrap with an arbitrarily large number of bootstrap replications.

We conduct individual tests for the empirical coverages and lengths. In each test, we define a corre-

sponding forecast loss, propose a test statistic and derive its asymptotic distribution. As defined in equation

(10), let Îα
m,τ+h be the h−horizon ahead RS forecast interval of model m with a nominal coverage of α. For

out-of-sample forecast evaluation, we require Îα
m,τ+h to be constructed using data from t = τ − R + 1 to

t = τ . The coverage accuracy loss is defined as:

CLα
m,h =

[
P (Yτ+h ∈ Îα

m,τ+h)− α
]2

. (11)

For economic models (m = 1, ..., 6), the goal is to compare the coverage accuracy loss of RS forecast intervals

10While RS intervals remedy mis-specifications asymptotically, it does not guarantee such corrections in a given finite sample.
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of model m with that of the random walk (m = 7). The null and alternative hypotheses are:

H0 : ∆CLα
m,h ≡ CLα

7,h − CLα
m,h = 0

HA : ∆CLα
m,h 6= 0.

Define the sample analog of the coverage accuracy loss in equation (11):

ĈL
α

m,h =

(
N(h)−1

T−h∑
τ=R

1(Yτ+h ∈ Îα
m,τ+h)− α

)2

,

where 1(Yτ+h ∈ Îα
m,τ+h) is an index function that equals one when Yτ+h ∈ Îα

m,τ+h, and equals zero otherwise.

Applying the asymptotic test of Giacomini and White (2006) to the sequence {1(Yτ+h ∈ Îα
m,τ+h)}T−h

τ=R and

applying the Delta method, we can show that

√
N(h)(∆ĈL

α

m,h −∆CLα
m,h) d→ N(0,Γ

′

m,hΩm,hΓm,h), (12)

where d→ denotes convergence in distribution, and Ωm,h is the long-run covariance matrix between 1(Yτ+h ∈

Îα
m,τ+h) and 1(Yτ+h ∈ Îα

7,τ+h). The matrix Γm,h is defined as:

Γm,h ≡
[

2
(
P
(
Yτ+h ∈ Îα

m,τ+h

)
− α

)
2
(
P
(
Yτ+h ∈ Îα

7,τ+h

)
− α

) ]′
.

Γm,h can be estimated consistently by its sample analog Γ̂m,h, while Ωm,h can be estimated by some HAC

estimator Ω̂m,h, such as Newey and West (1987).11 The test statistic for coverage test is defined as:

Ctαm,h ≡
√

N(h)∆ĈL
α

m,h√
Γ̂′

m,hΩ̂m,hΓ̂m,h

d→ N(0, 1) (13)

3.2 Test of Equal Empirical Lengths

Define the length loss as:

LLα
m,h ≡ E

[
leb
(
Îα
m,τ+h

)]
, (14)

11We use Newey and West (1987) for our empirical work, with a window width of 12.
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where leb(·) is the Lesbesgue measure. To compare the length loss of RS forecast intervals of economic

models m = 1, 2, ..., 6 with that of the random walk (m = 7), the null and alternative hypotheses are:

H0 : ∆LLα
m,h ≡ LLα

7,h − LLα
m,h = 0

HA : ∆LLα
m,h 6= 0.

The sample analog of the length loss for model m is defined as:

L̂L
α

m,h = N(h)−1
T−h∑
τ=R

leb(Îα
m,τ+h).

Directly applying the test of Giacomini and White (2006), we have

√
N(h)(∆L̂L

α

m,h −∆LLα
m,h) d→ N(0,Σm,h), (15)

where Σm,h is the long-run variance of leb
(
Îα
7,τ+h

)
− leb

(
Îα
m,τ+h

)
. Let Σ̂m,h be the HAC estimator of Σm,h.

The test statistic for empirical length is defined as:

Ltαm,h ≡
√

N(h)∆L̂L
α

m,h√
Σ̂m,h

d→ N(0, 1). (16)

3.3 Discussion

The coverage accuracy loss function is symmetric in our paper. In practice, an asymmetric loss function

may be better when looking for an exchange rate forecast model to help make policy or business decisions.

Under-coverage is arguably a more severe problem than over-coverage in practical situations. However, the

focus of this paper is the disconnect between economic fundamentals and the exchange rate. Our goal is to

investigate which model comes closer to the data: the random walk or fundamental-based models. It is not

critical in this case whether coverage inaccuracy comes from the under- or over-coverage. We acknowledge

that the use of symmetric coverage loss remains a caveat, especially since we are using the coverage accuracy

test as a pre-test for the tests of length. Clearly, there is a tradeoff between the empirical coverage and the

length of forecast intervals. Given the same center,12 intervals with under-coverage have shorter lengths than

intervals with over-coverage. In this case, the length test is in favor of models that systematically under-cover

the targeted nominal coverage when compared to a model that systematically over-covers. This problem
12Center here means the half way point between the upper and lower bound for a given interval.
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cannot be detected by the coverage accuracy test with symmetric loss function because over- and under-

coverage are treated equally. However, our results in section 4 show that there is no evidence of systematic

under-coverage for the economic models considered in this paper. For instance, in Table 1, one-month-ahead

(h = 1) forecast intervals over-cover the nominal coverage (90%) for eight out of twelve exchange rates.13

Note that under-coverage does not guarantee shorter intervals either in our paper, because forecast intervals

of different models usually have different centers.14 In addition, we also compare the coverage of economic

models and the random walk directly in an exercise not reported in this paper. There is no evidence that

the coverage of economic models is systematically smaller than that of the random walk.15

As we have mentioned, comparisons across models can also be done at the distribution level. We choose

interval forecasts for two reasons. First, interval forecasts have been widely used and reported by the

practitioners. For instance, the Bank of England calculates forecast intervals of inflation in its inflation

reports. Second, compared to evaluation metrics for density forecasts, the empirical coverage and length

loss functions of interval forecasts, and the subsequent interpretations of test rejection/acceptance are more

intuitive.

4 Results

We apply RS forecast intervals for each model for a given nominal coverage of α = 0.9. There is no particular

reason why we chose 0.9 as the nominal coverage. Some auxiliary results show that our qualitative findings

do not depend on the choice of α. Due to different sample sizes across countries, we choose different sizes for

the rolling window (R) for different countries. Our rule is very simple: for countries with T ≥ 300, we choose

R = 200, otherwise we set R = 150.16 Again, from our experience, tampering with R does not change the

qualitative results, unless R is chosen to be unusually big or small.

For time horizons h = 1, 3, 6, 9, 12 and models m = 1, ..., 7, we construct a sequence of N(h) 90% forecast

intervals {Î0.9
m,τ+h}

T−h
τ=R for the h-horizon change of the exchange rate st+h − st. Then we compare economic

models and the random walk by computing empirical coverages, lengths and test statistics Ct0.9
m,h and Lt0.9

m,h

as described in section 3. We first report the results of our benchmark model. After that, results of alternative

models are reported and discussed.
13These nine exchange rates are the Danish Kroner, the French Franc, the Deutschmark, the Japanese Yen, the Dutch Guilder,

the Portuguese Escudo, the Swiss Franc, and the British pound. Similar results hold at other horizons.
14When comparing the intervals for Sτ+h −Sτ , the random walk model builds the forecast interval around 0, while economic

model m builds it around bβ′
m,hXm,τ .

15Results are available upon request.
16The only exception is Portugal, where only 192 data points were available. In this case, we choose R = 120.
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4.1 Results of Benchmark Model

Table 1 shows results of the benchmark Taylor rule model. For each time horizon h and exchange rate,

the first column (Cov.) reports the empirical coverage for the given nominal coverage of 90%. The second

column (Leng.) reports the length of forecast intervals (the distance between upper and lower bounds). The

length is multiplied by 100 and therefore expressed in terms of the percentage change of the exchange rate.

For instance, the empirical coverage and length of the one-month-ahead forecast interval for the Australian

dollar are 0.895 and 7.114, respectively. It means that on average, with a chance of 89.5%, the one-month-

ahead change of AUD/USD lies in an interval with length 7.114%. We use superscripts a, b, and c to denote

that the null hypothesis of equal empirical coverage accuracy/length is rejected in favor of the Taylor rule

model at a confidence level of 10%, 5%, and 1% respectively. Superscripts x, y, and z are used for rejections

in favor of the random walk analogously.

We summarize our findings in three panels. In the first panel ((1) Coverage Test), the row of “Model

Better” reports the number of exchange rates that the Taylor rule model has more accurate empirical

coverages than the random walk. The row of “RW Better” reports the number of exchange rates for which

the random walk outperforms the Taylor rule model under the same criterion. In the second panel ((2)

Length Test Given Equal Coverage Accuracy), a better model is the one with tighter forecast intervals given

equal coverage accuracy. In the last panel ((1)+(2)), a better model is the one with either more accurate

coverages, or tighter forecast intervals given equal coverage accuracy.

For most exchange rates and time horizons, the Taylor rule model and the random walk model have

statistically equally accurate empirical coverages. The null hypothesis of equal coverage accuracy is rejected

in only six out of sixty tests (two rejections each at horizons 6, 9, and 12). Five out of six rejections are

in favor of the Taylor rule model. That is, the empirical coverage of the Taylor rule model is closer to the

nominal coverage than those of the random walk. However, based on the number of rejections (5) in a total

of sixty tests, there is no strong evidence that the Taylor rule model can generate more accurate empirical

coverages than the random walk.

In cases where the Taylor rule model and the random walk have equally accurate empirical coverages,

the Taylor rule model generally has equal or significantly tighter forecast intervals than the random walk. In

forty-two out of fifty-four cases, the null hypothesis of equally tight forecast intervals is rejected in favor of

the Taylor rule model. In contrast, the null hypothesis is rejected in only three cases in favor of the random

walk. The evidence of exchange rate predictability is more pronounced at longer horizons. At horizon twelve

(h = 12), for all cases where empirical coverage accuracies between the random walk and the Taylor rule
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model are statistically equivalent, the Taylor rule model has significantly tighter forecast intervals than the

random walk.

As for each individual exchange rate, the benchmark Taylor rule model works best for the French Franc,

the Deutschmark, the Dutch Guilder, the Swedish Krona, and the British Pound: for all time horizons, the

model has tighter forecast intervals than the random walk, while their empirical coverages are statistically

equally accurate. The Taylor rule model performs better than the random walk in most horizons for the

remaining exchange rates except the Portuguese Escudo, for which the Taylor rule model outperforms the

random walk only at long horizons.

4.2 Results of Alternative Models

Five alternative economic models are also compared with the random walk: three alternative Taylor rule

models that are studied in Molodtsova and Papell (2009), the PPP model, and the monetary model. Tables

2-6 report results of these alternative models.

In general, results of coverage tests do not show strong evidence that economic models can generate

more accurate coverages than the random walk at either short or long horizons. However, after considering

length tests, we find that economic models perform better than the random walk, especially at long horizons.

Taylor rule model 4 (the benchmark model with interest rate smoothing Table 4) and the PPP model (Table

5) perform the best among alternative models. Results of these two models are very similar to that of

the benchmark Taylor rule model. At horizon twelve, both models outperform the random walk for most

exchange rates under our out-of-sample forecast interval evaluation criteria. The performance of Taylor rule

model 2 (Table 2) and 3 (Table 3) is relatively less impressive than other models, but for more than half of

the exchange rates, the economic models outperform the random walk at several horizons in out-of-sample

interval forecasts.

Comparing the benchmark Taylor rule model, the PPP model and the monetary model, the performance

of the PPP model (Table 5) is worse than the other two models at short horizons. Compared to the Taylor

rule and PPP models, the monetary model outperforms the random walk for a smaller number of exchange

rates at horizons 6, 9, and 12. Overall, the benchmark Taylor rule model seems to perform slightly better than

the monetary and PPP models. Molodtsova and Papell (2009) find similar results in their point forecasts.

Table 7 shows results with heterogeneous Taylor rules.17 In this model, we relaxed the assumption that

the Taylor rule coefficients are the same in the home and foreign countries. We replace πt−π∗t and ygap
t −ygap∗

t

in matrix X1,t of the benchmark model with δ̂ππt − δ̂∗ππ∗t and δ̂yygap
t − δ̂∗yygap∗

t , where δ̂π, δ̂∗π, δ̂y, and δ̂∗y

17See Appendix A.3 for details.
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are Taylor rule coefficients estimated from the data of home and foreign countries. The main findings in the

benchmark model also hold in Table 7.

4.3 Discussion

After Mark (1995) first documents exchange rate predictability at long horizons, long-horizon exchange rate

predictability has become a very active area in the literature. With panel data, Engel, Mark, and West

(2007) recently show that the long-horizon predictability of the exchange rate is relatively robust in the

exchange rate forecasting literature. We find similar results in our interval forecasts. The evidence of long-

horizon predictability seems robust across different models and currencies when both empirical coverage and

length tests are used. At horizon twelve, all economic models outperform the random walk for six exchange

rates: the Australian Dollar, French Franc, Italian Lira, Japanese Yen, Swedish Krona, and the British

Pound in the sense that interval lengths of economic models are smaller than those of the random walk,

given equivalent coverage accuracy. This is true only for the Danish Kroner and Swiss Franc at horizon one.

We also notice that there is no clear evidence of long-horizon predictability based on the tests of empirical

coverage accuracy only.

Molodtsova and Papell (2009) find strong out-of-sample exchange rate predictability for Taylor rule

models even at the short horizon. In our paper, the evidence for exchange rate predictability at short

horizons is not very strong. This finding may be a result of some assumptions we have used to simplify

our computation. For instance, an α-coverage forecast interval in our paper is always constructed using

the (1 − α)/2 and (1 + α)/2 quantiles. Alternatively, we can choose quantiles that minimize the length of

intervals, given the nominal coverage.18 In addition, the development of more powerful testing methods may

also be helpful. The evidence of exchange rate predictability in Molodtsova and Papell (2009) is partly driven

by the testing method recently developed by Clark and West (2006, 2007). We acknowledge that whether

or not short-horizon results can be improved remains an interesting question, but do not pursue this in the

current paper. The purpose of this paper is to show the connection between the exchange rate and economic

fundamentals from an interval forecasting perspective. Predictability either at short- or long-horizons will

serve this purpose.

Though we find that economic fundamentals are helpful for forecasting exchange rates, we acknowledge

that exchange rate forecasting in practice is still a difficult task. The forecast intervals from economic

models are statistically tighter than those of the random walk, but they remain fairly wide. For instance,

the distance between the upper and lower bound of three-month-ahead forecast intervals is usually a 20%
18See Wu (2009) for more discussion.
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change of the exchange rates. Figures 1-3 show the length of forecast intervals generated by the benchmark

Taylor rule model and the random walk for the British Pound, the Deutschmark, and the Japanese Yen at

different horizons.19 At the horizon of 12 months, the length of forecast intervals in the Taylor rule model is

usually smaller than that in the random walk. However, at shorter horizons, such as 1 month, the difference

is quantitatively small.

5 Conclusion

There is a growing strand of literature that uses Taylor rules to model exchange rate movements. Our

paper contributes to the literature by showing that Taylor rule fundamentals are useful in forecasting the

distribution of exchange rates. We apply Robust Semiparametric forecast intervals of Wu (2009) to a group

of Taylor rule models for twelve OECD exchange rates. The forecast intervals generated by the Taylor rule

models are in general tighter than those of the random walk, given that these intervals cover the realized

exchange rates equally well. The evidence of exchange rate predictability is more pronounced at longer

horizons, a result that echoes previous long-horizon studies such as Mark (1995). The benchmark Taylor

rule model is also found to perform better than the monetary and PPP models based on out-of-sample

interval forecasts.

Though we find some empirical support for the connection between the exchange rate and economic

fundamentals, we acknowledge that the detected connection is weak. The reductions of the lengths of

forecast intervals are quantitatively small, though they are statistically significant. Forecasting exchange

rates remains a difficult task in practice. Engel and West (2005) argue that as the discount factor gets closer

to one, present value asset pricing models place greater weight on future fundamentals. Consequently, current

fundamentals have very weak forecasting power and exchange rates appear to follow approximately a random

walk. Under standard assumptions in Engel and West (2005), the Engel-West theorem does not imply that

exchange rates are more predictable at longer horizons or that economic models can outperform the random

walk in forecasting exchange rates based on out-of-sample interval forecasts. However, modifications to

these assumptions may be able to reconcile the Engel-West explanation with empirical findings of exchange

rate predictability. For instance, Engel, Wang, and Wu (2008) find that when there exist stationary, but

persistent, unobservable fundamentals, for example risk premium, the Engel-West explanation predicts long-

horizon exchange rate predictability in point forecasts, though the exchange rate still approximately follows

a random walk at short horizons. It would also be of interest to study conditions under which our findings
19Figures in other countries show similar patterns. Results are available upon request.
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in interval forecasts can be reconciled with the Engel-West theorem.

We believe other issues, such as parameter instability (Rossi, 2005), nonlinearity (Kilian and Taylor,

2003), real time data (Faust, Rogers, and Wright, 2003, Molodtsova, Nikolsko-Rzhevskyy, and Papell, 2008a,

2008b), and model selection (Sarno and Valente, forthcoming) are all contributing to the Meese-Rogoff puzzle.

Panel data are also found helpful in detecting exchange rate predictability, especially at long horizons. For

instance, see Mark and Sul (2001), Engel, Mark, and West (2007), and Rogoff and Stavrakeva (2008). It

would be interesting to incorporate these studies into interval forecasting. We leave these extensions for

future research.
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Table 1: Results of Benchmark Taylor Rule Model

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.895 7.114 0.888 14.209c 0.959 21.140 0.942 26.613 0.963 29.175c

Canadian Dollar 0.814 3.480 0.794 6.440c 0.738 8.483c 0.675 8.669c 0.596x 9.707c

Danish Kroner 0.920 8.676c 0.939 17.415c 0.954 26.198 0.922 28.712c 0.968 37.123c

French Franc 0.912 8.921c 0.860 15.728c 0.928c 26.007c 0.957 29.924c 0.934 36.883c

Deutschmark 0.927 8.327c 0.879 18.634c 0.894 27.923c 0.960a 33.734c 0.969 39.618c

Italian Lira 0.899 8.291c 0.875 18.305 0.910 26.788c 0.846 32.545c 0.874 37.151c

Japanese Yen 0.915 9.633z 0.909 19.762 0.892 28.451c 0.932 33.793c 0.883 37.728c

Dutch Guilder 0.917 8.726c 0.907 18.615c 0.933 27.458c 0.941b 30.902c 0.959a 40.177c

Portuguese Escudo 0.901 8.580z 0.928 18.758z 0.894c 23.552b 0.825 27.086 0.867 32.092c

Swedish Krona 0.839 7.360c 0.860 15.413c 0.874 23.930c 0.820 28.090c 0.834 37.432c

Swiss Franc 0.947 9.358c 0.916 19.655 0.963 26.553c 0.963 30.780c 0.899 35.008c

British Pound 0.919 8.413a 0.923 16.592c 0.912 23.317c 0.900 26.942c 0.855 25.905c

(1) Coverage Test†

Model Better 0 0 2 2 1
RW Better 0 0 0 0 1

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 8 8 8 8 10
RW Better 2 1 0 0 0

(1)+(2)§

Model Better 8 8 10 10 11
RW Better 2 1 0 0 1

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the
economic model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in
favor of the random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 2: Results of Taylor Rule Model Two

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.884 7.146y 0.899 15.086c 0.928 21.327 0.901 27.329 0.872 30.815b

Canadian Dollar 0.825 3.442c 0.783 6.321c 0.814 8.490c 0.858 10.034c 0.825 11.921c

Danish Kroner 0.915 8.753a 0.939 17.764c 0.954 27.479z 0.953 33.426y 0.942 40.717
French Franc 0.951 9.042c 0.930 18.783 0.949c 29.161c 0.936 34.994c 0.868 42.081c

Deutschmark 0.917 9.090 0.869 19.217 0.952 29.746 0.941a 39.093z 0.980 44.571z

Italian Lira 0.928 9.196 0.875 18.322 0.895 26.926c 0.869 35.883c 0.898a 41.235z

Japanese Yen 0.915 9.568x 0.914 19.734 0.912 29.344c 0.937 36.834 0.942 44.385c

Dutch Guilder 0.908 8.586c 0.888 18.782c 0.962 29.777 0.990 39.507z 0.990 47.514z

Portuguese Escudo 0.916 8.005 0.957 17.924z 0.909c 24.270b 0.889 28.533z 0.883a 35.338c

Swedish Krona 0.867 7.624 0.860 16.132 0.857 24.500c 0.837 32.825 0.811 37.772c

Swiss Franc 0.941 9.953b 0.928 20.105 0.982 29.758c 0.994 38.267z 0.962 45.965z

British Pound 0.919 8.627z 0.933 17.334c 0.922 26.227c 0.937 31.044c 0.957 36.397c

(1) Coverage Test†

Model Better 0 0 2 1 2
RW Better 0 0 0 0 0

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 5 5 6 4 6
RW Better 3 1 1 4 3

(1)+(2)§

Model Better 5 5 8 5 8
RW Better 3 1 1 4 3

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the economic
model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in favor of the
random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 3: Results of Taylor Rule Model Three

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.884 7.229z 0.899 15.055c 0.881 21.055 0.885 26.359c 0.867 30.234c

Canadian Dollar 0.831 3.453b 0.789 6.408c 0.814 8.629c 0.864 10.220c 0.819 11.971c

Danish Kroner 0.920 8.753b 0.934 17.649c 0.949 27.523z 0.948 33.307 0.936 40.070
French Franc 0.951 9.171 0.740 14.488c 0.722 20.313c 0.915 35.562a 0.813 41.350c

Deutschmark 0.908 9.020 0.897 19.303 0.914 29.676 0.901c 37.291a 0.878 44.761z

Italian Lira 0.928 8.900a 0.875 17.206c 0.872 26.674c 0.839 34.819c 0.787 39.569c

Japanese Yen 0.905 9.179c 0.878 18.907c 0.892 25.883c 0.927 31.259c 0.894 37.049c

Dutch Guilder 0.927 8.910 0.907 19.204a 0.952 29.426a 0.951a 36.896c 0.959 46.321z

Portuguese Escudo 0.930 7.961 0.942 16.883c 0.955a 23.786 0.905 26.620c 0.850 33.745c

Swedish Krona 0.867 7.316c 0.848 15.017c 0.840 23.241c 0.791 29.265c 0.757 33.751c

Swiss Franc 0.929 9.761b 0.922 19.517c 0.939 28.437b 0.926c 37.519 0.911 45.619
British Pound 0.929 8.239a 0.939 16.213c 0.927 23.951c 0.905 28.720c 0.952 34.900c

(1) Coverage Test†

Model Better 0 0 1 3 0
RW Better 0 0 0 0 0

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 7 11 8 8 8
RW Better 1 0 1 0 2

(1)+(2)§

Model Better 7 11 9 11 8
RW Better 1 0 1 0 2

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the
economic model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in
favor of the random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 4: Results of Taylor Rule Model Four

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.895 7.119 0.888 14.424c 0.928 20.966 0.927 25.304c 0.872 27.492c

Canadian Dollar 0.814 3.425c 0.771 6.366c 0.698 8.019c 0.651 8.631c 0.494y 7.693c

Danish Kroner 0.920 8.703c 0.929 17.536c 0.964 26.025 0.984x 30.891c 0.963 36.545c

French Franc 0.892 8.361c 0.870 16.079c 0.938c 25.950c 0.883 30.016c 0.791 35.755c

Deutschmark 0.927 8.314c 0.879 18.652c 0.894 26.803c 0.931c 33.350c 0.969 36.393c

Italian Lira 0.891 8.663c 0.838 17.575c 0.865 26.387c 0.746 32.270c 0.724 36.422c

Japanese Yen 0.905 9.157c 0.863 18.708c 0.866 24.417c 0.869 28.730c 0.851 31.470c

Dutch Guilder 0.936 8.815 0.897 18.368c 0.914 26.700c 0.931c 30.036c 0.796 29.462c

Portuguese Escudo 0.901 8.525z 0.913a 17.110 0.939c 23.461c 0.889 27.096a 0.917 28.778c

Swedish Krona 0.861 7.289c 0.860 15.321c 0.869 23.340c 0.773 27.198c 0.728 31.843c

Swiss Franc 0.947 9.149c 0.940 19.782a 0.811 22.796c 0.808 26.148c 0.671 26.683c

British Pound 0.919 8.113a 0.913 15.765c 0.875 21.679c 0.825 27.312c 0.839 29.081c

(1) Coverage Test†

Model Better 0 1 2 2 0
RW Better 0 0 0 1 1

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 9 11 8 9 11
RW Better 1 0 0 0 0

(1)+(2)§

Model Better 9 12 10 11 11
RW Better 1 0 0 1 1

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the economic
model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in favor of the
random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 5: Results of Purchasing Power Parity Model

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.895 7.114z 0.883 15.558 0.912 21.311 0.880 26.120c 0.856 30.316c

Canadian Dollar 0.819 3.570z 0.806 6.872 0.767 9.615 0.728 11.078c 0.615 12.306c

Danish Kroner 0.925 8.697c 0.939 18.333 0.938 25.887c 0.937 31.673c 0.957 37.447c

French Franc 0.922 8.904c 0.940 18.029c 0.918c 25.786c 0.904 29.789c 0.802 34.209c

Deutschmark 0.936 9.079 0.935 18.797c 0.942 27.677c 1.000 33.585c 0.990 40.570c

Italian Lira 0.913 8.780c 0.868 17.767c 0.827 25.044c 0.769 30.190c 0.772 34.806c

Japanese Yen 0.920 9.662z 0.899 19.903 0.912 28.689c 0.932 33.973c 0.899 38.568c

Dutch Guilder 0.936 8.862y 0.935 18.904c 0.952 27.928c 1.000 33.468c 0.990 41.812c

Portuguese Escudo 0.916 8.421y 0.928 19.027y 0.924c 23.918 0.857 27.450 0.867 32.467c

Swedish Krona 0.861 7.541c 0.876 16.089 0.886 24.345c 0.855 31.744b 0.799 37.943c

Swiss Franc 0.941 9.708c 0.946 19.694b 0.976 27.197c 0.950b 31.725c 0.880 36.235c

British Pound 0.934 8.571y 0.933 16.954c 0.932 24.064c 0.947 28.761c 0.925a 31.372c

(1) Coverage Test†

Model Better 0 0 2 1 1
RW Better 0 0 0 0 0

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 5 6 8 10 11
RW Better 6 1 0 0 0

(1)+(2)§

Model Better 5 6 10 11 12
RW Better 6 1 0 0 0

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the
economic model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in
favor of the random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 6: Results of Monetary Model

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.879 7.108 0.848 15.151 0.830 20.090 0.770 24.642c 0.745 30.099b

Canadian Dollar 0.842 4.027x 0.829 7.492 0.744 10.518 0.645 10.689b 0.675 12.993c

Danish Kroner 0.905 8.770b 0.893 17.943 0.897 25.017c 0.853 28.581c 0.809 32.504c

French Franc 0.922 8.791c 0.910 18.237c 0.949b 26.322c 0.957 31.032c 0.956 35.971c

Deutschmark 0.908 8.595 0.841 17.436c 0.808 24.622c 0.772 28.052c 0.704 31.364c

Italian Lira 0.913 8.858c 0.882 18.439b 0.925 26.585c 0.931 34.857c 0.913 40.885c

Japanese Yen 0.930 9.556 0.919 19.374c 0.887 28.614c 0.864 33.401c 0.809 36.520c

Dutch Guilder 0.917 8.753a 0.916 19.408 0.962 29.149b 0.970 38.173 0.898c 41.716c

Portuguese Escudo 0.901 8.086 0.986 18.484 0.985 24.744 0.984 27.230 1.000 34.222
Swedish Krona 0.850 7.504a 0.848 17.097x 0.811 23.878c 0.826 31.287 0.805 34.710c

Swiss Franc 0.905 9.078c 0.820 17.020c 0.732 21.212c 0.609 22.741c 0.513x 23.225c

British Pound 0.909 7.811c 0.882 14.945c 0.787 20.788c 0.677 24.311c 0.656 26.374c

(1) Coverage Test†

Model Better 0 0 1 0 1
RW Better 0 0 0 0 1

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 7 6 8 9 9
RW Better 1 1 0 0 0

(1)+(2)§

Model Better 7 6 9 9 10
RW Better 1 1 0 0 1

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and lengths
are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the
economic model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in
favor of the random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Table 7: Results of Heterogenous Taylor Rules

h = 1 h = 3 h = 6 h = 9 h = 12
Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng. Cov. Leng.

Australian Dollar 0.915 7.155 0.909 14.690c 0.959 20.547 0.963y 26.364 0.947 29.583c

Canadian Dollar 0.825 3.526 0.794 6.525c 0.797 9.040c 0.787 10.370c 0.693 11.352c

Danish Kroner 0.915 8.548c 0.929 17.930c 0.938 25.328c 0.890 30.504c 0.904 36.624c

French Franc 0.912 8.864c 0.880 15.970c 0.845 20.693c 0.968 30.436c 0.714 22.789c

Deutschmark 0.917 8.605c 0.907 18.356c 0.894 28.121c 0.911c 31.378c 0.939 33.779c

Italian Lira 0.913 8.659c 0.890 18.664 0.887 25.840c 0.831 32.037c 0.693 32.236c

Japanese Yen 0.920 9.637z 0.888 19.352b 0.871 28.018c 0.932 33.388c 0.878 36.859c

Dutch Guilder 0.936 8.851 0.916 18.822c 0.942 27.259c 0.970 31.410c 0.990 39.882c

Portuguese Escudo 0.916 8.881z 0.870 17.651 0.758 18.730c 0.746 23.852c 0.600 20.593c

Swedish Krona 0.828 7.428c 0.854 15.658c 0.903 24.315c 0.861 29.866c 0.876 36.235c

Swiss Franc 0.935 9.731c 0.940 19.797 0.970 27.227c 0.969 32.179c 0.937 36.567c

British Pound 0.919 8.350 0.908 16.774c 0.828 20.811c 0.783 23.105c 0.720 23.286c

(1) Coverage Test†

Model Better 0 0 0 1 0
RW Better 0 0 0 1 0

(2) Length Test Given Equal Coverage Accuracy‡

Model Better 6 9 11 10 12
RW Better 2 0 0 0 0

(1)+(2)§

Model Better 6 9 11 11 12
RW Better 2 0 0 1 0

Note:
–h denotes forecast horizons for monthly data.
–For each horizon (h), the first column (Cov.) reports empirical coverages given a nominal coverage of 90%. The second column
(Leng.) reports the length of forecast intervals in terms of percentage change of the exchange rate. Empirical coverages and
lengths are averages across N(h) out-of-sample trials.
–Superscripts a, b, c in the column of Cov. (Leng.) denote rejections of equal coverage accuracy (equal length) in favor of the
economic model at a 10%, 5% and 1% confidence level respectively. Superscripts x, y, z are defined analogously for rejections in
favor of the random walk.
†–In this panel, a better model is the one with more accurate empirical coverages. RW is the abbreviation of Random Walk.
‡–In this panel, a better model is the one with tighter forecast intervals given equal coverage accuracy.
§–In this panel, a better model is the one with either more accurate coverages or tighter forecast intervals given equal coverage
accuracy.
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Figure 1: Length of Forecast Intervals for Benchmark Taylor Rule and Random Walk Models (British Pound)
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(a) 1-month-ahead forecast
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(b) 6-month-ahead forecast
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(c) 12-month-ahead forecast

Note:

In each chart, the length of forecast intervals is normalized by the first observation of the benchmark Taylor rule model.
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Figure 2: Length of Forecast Intervals for Benchmark Taylor Rule and Random Walk Models (Deutschmark)

0 4

0.6

0.8

1

1.2

0

0.2

0.4
19
89

M
12

19
90
M
4

19
90
M
8

19
90

M
12

19
91
M
4

19
91
M
8

19
91

M
12

19
92
M
4

19
92
M
8

19
92

M
12

19
93
M
4

19
93
M
8

19
93

M
12

19
94
M
4

19
94
M
8

19
94

M
12

19
95
M
4

19
95
M
8

19
95

M
12

19
96
M
4

19
96
M
8

19
96

M
12

19
97
M
4

19
97
M
8

19
97

M
12

19
98
M
4

19
98
M
8

19
98

M
12

Taylor Rule Model Random Walk Model

(a) 1-month-ahead forecast
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(b) 6-month-ahead forecast
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(c) 12-month-ahead forecast

Note:

In each chart, the length of forecast intervals is normalized by the first observation of the benchmark Taylor rule model.
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Figure 3: Length of Forecast Intervals for Benchmark Taylor Rule and Random Walk Models (Japanese
Yen)
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(a) 1-month-ahead forecast
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(b) 6-month-ahead forecast
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(c) 12-month-ahead forecast

Note:

In each chart, the length of forecast intervals is normalized by the first observation of the benchmark Taylor rule model.
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APPENDIX

A.1 Monetary and Taylor Rule Models

In this section, we describe the monetary and Taylor rule models used in the paper.

A.1.1 Monetary Model

Assume the money market clearing condition in the home country is:

mt = pt + γyt − αit + vt,

where mt is the log of money supply, pt is the log of aggregate price, it is the nominal interest rate, yt is the

log of output, and vt is the money demand shock. A symmetric condition holds in the foreign country and

we use an asterisk in superscript to denote variables in the foreign country. Subtracting the foreign money

market clearing condition from the home, we have:

it − i∗t =
1
α

[−(mt −m∗
t ) + (pt − p∗t ) + γ(yt − y∗t ) + (vt − v∗t )] . (A.1.1)

The nominal exchange rate is equal to its purchasing power value plus the real exchange rate:

st = pt − p∗t + qt. (A.1.2)

The uncovered interest rate parity in financial market takes the form:

Etst+1 − st = it − i∗t + ρt, (A.1.3)

where ρt is the uncovered interest rate parity shock. Substituting equations (A.1.1) and (A.1.2) into (A.1.3),

we have

st = (1− b) [mt −m∗
t − γ(yt − y∗t ) + qt − (vt − v∗t )]− bρt + bEtst+1, (A.1.4)
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where b = α/(1 + α). Solving st recursively and applying the “no-bubbles” condition, we have:

st = Et

(1− b)
∞∑

j=0

bj
[
mt+j −m∗

t+1 − γ(yt+j − y∗t+1) + qt+1 − (vt+j − v∗t+j)
]
− b

∞∑
j=1

bjρt+j

 . (A.1.5)

In the standard monetary model, such as Mark (1995), purchasing power parity (qt = 0) and uncovered

interest rate parity hold (ρt = 0). Furthermore, it is assumed that the money demand shock is zero (vt =

v∗t = 0) and γ = 1. Equation (A.1.5) reduces to:

st = Et

(1− b)
∞∑

j=0

bj
(
mt+j −m∗

t+j − (yt+j − y∗t+j)
) .

A.1.2 Taylor Rule Model

We follow Engel and West (2005) to assume that both countries follow the Taylor rule and the foreign country

targets the exchange rate in its Taylor rule. The interest rate differential is:

it − i∗t = δs(st − s̄∗t ) + δy(ygap
t − ygap∗

t ) + δπ(πt − π∗t ) + vt − v∗t , (A.1.6)

where s̄∗t is the targeted exchange rate. Assume that monetary authorities target the PPP level of the

exchange rate: s̄∗t = pt − p∗t . Substituting this condition and the interest rate differential into the UIP

condition, we have:

st = (1− b)(pt − p∗t )− b
[
δy(ygap

t − ygap∗
t ) + δπ(πt − π∗t ) + vt − v∗t

]
− bρt + bEtst+1, (A.1.7)

where b = 1
1+δs

. Assuming that uncovered interest rate parity holds (ρt = 0) and monetary shocks are zero,

equation (A.1.7) reduces to the benchmark Taylor rule model in our paper:

st = Et

(1− b)
∞∑

j=0

bj(pt+j − p∗t+j)− b
∞∑

j=0

bj(δy(ygap
t+j − ygap∗

t+j ) + δπ(πt+j − π∗t+j))

 .

A.2 Long-horizon Regressions

In this section, we derive long-horizon regressions for the monetary model and the benchmark Taylor rule

model.
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A.2.1 Monetary Model

In the monetary model:

st = Et

(1− b)
∞∑

j=0

bj
(
mt+j −m∗

t+j − (yt+j − y∗t+j)
) ,

where mt and yt are logarithms of domestic money stock and output, respectively. The superscript ∗ denotes

the foreign country. Money supplies (mt and m∗
t ) and total outputs (yt and y∗t ) are usually I(1) variables.

The general form considered in Engel, Wang, and Wu(2008) is:

st = (1− b)
∞∑

j=0

bjEtα
′
Dt

(In − Φ(L))∆Dt = εt (A.2.1)

E(εt+j |εt, εt−1, ...) ≡ Et(εt+j) = 0,∀j ≥ 1,

where n is the dimension of Dt and In is an n × n identity matrix. L is the lag operator and Φ(L) =

φ1L+φ2L
2+...+φpL

p. Assume Φ(1) is non-diagonal and the covariance matrix of εt is given by Ω = Et[εtε
′
t].

We assume that the change of fundamentals follows a VAR(p) process in our setup. From proposition 1 of

Engel, Wang, Wu (2008), we know that for a fixed discount factor b and p ≥ 2,

st+h − st = βhzt + δ
′

0,h∆Dt + ... + δ
′

p−2,h∆Dt−p+2 + ζt+h

is a correctly specified regression where the regressors and errors do not correlate. In the case of p = 1, the

long-horizon regressions reduces to

st+h − st = βhzt + ζt+h.

Following the literature, for instance Mark (1995), we do not include ∆Dt and its lags in our long-horizon

regressions. The monetary model can be written in the form of (A.2.1) by setting Dt = [mt m∗
t yt y∗t ]′,

α = [1 − 1 − 1 1]′. By definition, zt = st − (mt − m∗
t ) + (yt − y∗t ). This corresponds to βm,h = 1,

Xm,t = st − (mt −m∗
t ) + (yt − y∗t ) in equation (1) of section 3.
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A.2.2 Taylor Rule Model

In the Taylor rule model,

st = Et

(1− b)
∞∑

j=0

bj(pt+j − p∗t+j)− b
∞∑

j=0

bj(δy(ygap
t+j − ygap∗

t+j ) + δπ(πt+j − π∗t+j))

 ,

where pt, ygap
t and πt are domestic aggregate price, output gap and inflation rate, respectively. δy and δπ

are coefficients of the Taylor rule model. The aggregate prices pt and p∗t are usually I(1) variables. Inflation

and output gap are more likely to be I(0). Engel, Wang, and Wu (2008) consider a setup which includes

both stationary and non-stationary variables:

st = (1− b)
∞∑

j=0

bjEt [f1t+j ] + b

∞∑
j=0

bjEt [f2t+j + u2t+j ]

f1t = α′1Dt ∼ I(1)

f2t = α′2∆Dt ∼ I(0)

u2t = α′3∆Dt ∼ I(0)

(In − Φ(L))∆Xt = εt, (A.2.2)

where f1t and f2t (u2t) are observable (unobservable) fundamentals. ∆Dt is the first difference of Dt, which

contains I(1) economic variables.20

From proposition 2 of Engel, Wang, and Wu (2008), we know that for a fixed discount factor b and h ≥ 2,

st+h − st = β̃hzt +
p−1∑
k=0

δ̃
′

k,h∆Dt−k + ζ̃t+h (A.2.3)

is a correctly specified regression, where the regressors and errors do not correlate. In the case of p = 1, the

long-horizon regressions reduces to:

st+h − st = β̃hzt + ζ̃t+h.

20To incorporate I(0) economic variables, Dt contains the levels of I(1) variables and the summation of I(0) variables from
negative infinity to time t.
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The Taylor rule model can be written into the form of (A.2.2) by setting

Dt =

[
pt p∗t

t∑
s=−∞

ygap
s

t∑
s=−∞

ygap∗
s ,

t∑
s=−∞

πs

t∑
s=−∞

π∗s

]′
.

By definition, zt = st − pt + p∗t + b
1−b (δy(ygap

t − ygap∗
t ) + δπ(πt − π∗t )). This corresponds to βm,h =

[1 b
1−bδy

b
1−bδπ] and Xm,t = [qt ygap

t − ygap∗
t πt−π∗t ], where qt = st− pt + p∗t is the real exchange rate.

βm,h and Xm,t can be defined differently. For instance, βm,h = 1 and Xm,t = st − pt + p∗t + b
1−b (δy(ygap

t −

ygap∗
t ) + δπ(πt − π∗t )). Our results do not change qualitatively under this alternative setup.

A.3 Model with Heterogeneous Taylor Rules

In the benchmark model, we assume that the Taylor rule coefficients are the same in the home and foreign

countries. In this appendix, we relax the assumption of homogeneous Taylor rules in the benchmark model.

It is straightforward to show in this case that the benchmark model changes to:

st+h − st = αh + βhzt + εt+h, (A.3.1)

where the deviation of the exchange rate from its equilibrium level is defined as:

zt = st − pt + p∗t +
b

1− b

[
δyygap

t − δ∗yygap∗
t + δππt − δ∗ππ∗t

]
. (A.3.2)

According to equation (8), the matrix X1,t in equation (1) includes economic variables qt ≡ st + p∗t − pt,

δyygap
t − δ∗yygap∗

t , and δππt − δ∗ππ∗t .21

We first estimate the Taylor rules in the home and foreign countries according to equations (2) and (3).

Then qt ≡ st +p∗t −pt, δ̂yygap
t − δ̂∗yygap∗

t , and δ̂ππt− δ̂∗ππ∗t are used in the long-horizon regressions and interval

forecasts. The results are very similar to the benchmark model and reported in Table 7.

21Another option to incorporate heterogenous Taylor rules is to include qt, ygap
t , ygap∗

t , πt, and π∗
t in X1,t. For instance, see

Moldtsova and Papell (forthcoming). However, increasing the number of regressors may cause the “curse of dimensionality”
problem for our semiparametric method. To be comparable to our benchmark model, we define X1,t here such that the number
of regressors is the same as in the benchmark model.

39


	The Taylor Rule and Forecast Intervals for Exchange Rates
	Introduction
	Models and Data
	Benchmark Taylor Rule Model
	Data

	Econometric Method
	Test of Equal Empirical Coverages
	Test of Equal Empirical Lengths
	Discussion

	Results
	Results of Benchmark Model
	Results of Alternative Models
	Discussion

	Conclusion
	References
	Appendix
	Monetary and Taylor Rule Models
	Monetary Model
	Taylor Rule Model

	Long-horizon Regressions
	Monetary Model
	Taylor Rule Model

	Model with Heterogeneous Taylor Rules




