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Abstract  
This paper extends the recent literature about global macroeconomic modelling by allowing 
the presence of a globally dominant economy. Our contribution is both theoretical and 
empirical. From a theoretical standpoint, we follow Chudik and Pesaran (2011 and 2012) to 
derive the GVAR approach as an approximation to two Infinite-Dimensional VAR (IVAR) 
models featuring nonstationary variables: one corresponding to the world consisting of 
several small open economies (benchmark model), and one corresponding to the world 
featuring a dominant economy (extended model). It is established that in the presence of a 
dominant economy, restrictions implied by the asymptotic analysis of a system without a 
dominant economy are no longer valid. The theoretical framework is then brought to the 
data by estimating both versions of the GVAR model featuring 33 countries for the period 
1979(Q2)-2003(Q4). We found some support for the extended version of the GVAR model, 
allowing the US to be the dominant player in the world economy. 
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1 Introduction

Macroeconomic modelling in a globalized world is a challenging area of research. Individual

economies are interdependent with one another and thus all macroeconomic variables in the global

economy are jointly determined. The time span of available data, however, is nowhere near large

enough to consider scores of advanced economies, each featuring several key macroeconomic indi-

cators, in a single unrestricted VAR due to ‘curse of dimensionality’.

One possible method of controlling the proliferation of parameters is found within the context

of Bayesian estimation where an unrestricted VAR is combined with Bayesian priors (Canova and

Ciccarelli, 2007, among others). A more common practice in the literature to overcome the curse

of dimensionality is to impose restrictions directly on the parameters of the model. In particu-

lar, all foreign economies are typically approximated by one representative economy constructed

as a (trade-)weighted average of foreign economies. Such ‘rest of the world’aggregate variables

are generally referred to as ‘star’variables and typically treated as exogenous to the home econ-

omy. This modelling approach is labelled in the literature as ‘small open economy’framework (see

Schmitt-Grohe and Uribe, 2003). Examples include macroeconometric modelling of a single open

economy (for instance Adolfson et al., 2007, provide an application for the Euro area), equilib-

rium real exchange rate modeling (e.g. Bussière et al., 2010), or the recently introduced coherent

framework for modelling international linkages known as GVAR, originally developed by Pesaran,

Schuermann, and Weiner (PSW 2004, with discussion).1 PSW estimate individual country VARX∗

models, each featuring domestic endogenous variables and weakly exogenous foreign star variables,

and then combine them in a single global VAR (GVAR) featuring all variables in the panel.

Until recently, little justification has been given in the literature for the above mentioned conven-

tional restrictions that empirical researchers typically impose in applied macroeconomic modelling,

besides referring to the home economy as small and open. Chudik and Straub (2011) demonstrate

within the context of an N -country Dynamic Stochastic General Equilibrium (DSGE) model that

such a modelling strategy is asymptotically (as N becomes large) justified only if no country is

locally or globally dominant.2 This paper departs from existing empirical literature by allowing for

the presence of a globally dominant economy.3

Following Chudik and Pesaran (2011 and 2012), we control the proliferation of parameters by

imposing restrictions that are binding in the limit as N →∞ and we derive the GVAR model as an

approximation to an infinite-dimensional VAR (IVAR) where all variables in the global economy

1The GVAR approach is capable of capturing cointegration within as well as across countries. It has been used
to analyse credit risk in Pesaran et al. (2006) and Pesaran, Schuermann, and Treutler (2006). An extended and
updated version of the GVAR by Dées et al. (2007), which treats the Euro area as a single unit, was used by Pesaran,
Smith, and Smith (2007) to evaluate the UK and the Sweden entry into the Euro. Further developments of a global
modelling approach are provided in Pesaran and Smith (2006). Garratt et al. (2006) provide a textbook treatment
of the GVAR.

2The concept of local and global dominance within the context of an N -country DSGE model is defined according
to the orders of magnitude of the individual elements of export and import share matrices. See Chudik and Straub
(2011) for details. The international trade flows in theoretical models depend on various factors such as the size and
position of individual economies in the world, preferences, degree of international specialization etc.

3Shocks originating in US are viewed possibly as a global shocks in Dées et al. (2007) version of GVAR, where the
dominant role of US economy is confined to endogenous determination of oil prices in the US model and to exclusion
of US-specific star variables that did not pass weak exogeneity tests from the US VARX∗ model.
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are integrated of order one and determined endogenously. Two IVAR models are considered. The

first corresponds to a world consisting of several small, open economies. Macroeconomic variables

in this model are cross sectionally weakly dependent once conditioned on unobserved and observed

common factors such as technological progress, oil prices, etc.4 An idiosyncratic shock to any

economy is not a common factor. This means that strong cross section dependence, as defined

by Chudik, Pesaran, and Tosetti (2011), is not due to the influence of a particular country. The

second IVAR model corresponds to a world consisting of one dominant economy and several small

open economies. This paper shows that in the presence of a dominant economy, data shrinkage

(restrictions) implied by the asymptotic analysis of a system without a dominant economy are no

longer valid. In particular, individual country models need to be augmented by variables of the

dominant economy. This suggestion is explored in the empirical section of the paper.

Two versions of the GVAR model featuring real output, short term interest rates, inflation, real

price of oil and exchange rate variables are estimated. Firstly, the benchmark GVAR model (BM)

closely follows Dées et al. (DdPS, 2007) in which the country specific foreign variables, besides

the oil price, are cross sectional weighted averages of domestic variables in the rest of the countries

(star variables). The second GVAR model, also referred to as the extended GVAR model (EM),

relaxes the restrictions imposed in the BM, and adds US variables to the set of foreign variables in

the individual country models. This is in line with the US being treated as the globally dominant

economy. The global dominance of the US implies that idiosyncratic shocks to the US economy

have a non-negligible impact on potentially any country in the world while the impact of a small

economy on the US is negligible. Thus, US variables effectively become dynamic common factors

for other economies.

Empirical evidence is presented in support of relaxing the restrictions in the BM. The fraction of

additional foreign US variables that have significant impact elasticity (contemporaneous effect) on

the domestic counterpart in non-US country models is well above the nominal level of the tests. The

dynamic properties of the two GVAR models are then compared by means of persistence profiles

of a system wide shock to the cointegrating relationships and by means of generalized impulse

response functions (GIRFs). We find that bootstrap confidence intervals for constructed GIRFs in

the EM are, in the majority of cases, smaller than those in the BM. The choice of the appropriate

GVAR model by allowing the US to be the dominant economy can be of major importance when

assessing the magnitude of international economic linkages. For example in the case of negative

20bp shock to the US short term interest rate, we observe a significant response of Euro area short

term interest rate in the EM (12bp decline in one year) whereas the response of Euro area short

term interest rate in the BM is only 2bp and statistically insignificant beyond the first quarter.

The remainder of the paper is organized as follows. The next section describes the connection

between IVAR models, equilibrium solution of DSGE models and the nature of the imposed re-

strictions. In Section 3 a nonstationary GVAR model is derived as an approximation to an infinite-

dimensional VAR model, both considering and excluding the presence of a dominant economy.

4Weak and strong cross sectional dependence is formally defined in Chudik, Pesaran, and Tosetti (2011) and
analyzed in the context of IVAR models by Chudik and Pesaran (2011).
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Section 4 briefly discusses the asymptotic irrelevance of weights in stationary and non-stationary

systems. The two versions of the GVAR model, BM and EM, are presented in Section 5. The final

section offers some concluding remarks.

A brief word on notation: ‖A‖c denotes the maximum absolute column sum matrix norm of

A ∈ Mn×n, where Mn×n is the space of real-entried n × n matrices. ‖A‖r is the absolute row-
sum matrix norm of matrix A.5 ‖A‖ =

√
% (A′A) is the spectral norm of matrix A, % (A) is the

spectral radius of A. Asymptotics N,T →∞ jointly are denoted by N,T
j→∞. an = O(bn) states

the deterministic sequence an is at most of order bn. Symbol
q.m.→ represents the convergence in

quadratic mean.

2 Infinite-Dimensional VAR as an Equilibrium Solution of N-country

DSGE Models

DSGE models are becoming increasingly influential in contemporary macroeconomic policy making.

These models are highly nonlinear in nature and therefore approximate solution techniques are

employed to solve for equilibrium. The most common solution method of DSGE models is log-

linearization around a steady state, which allows to characterize the equilibrium by a system of

linear rational expectation equations. As it is discussed for example in Binder and Pesaran (1997),

solution to a system of linear rational expectation equations takes form of a VAR model, in general.

Hence the log-linear approximation to the equilibrium of a DSGE model is in essence a VAR model,

such as the following reduced form system (abstracting from deterministic terms).

Φ (L) xt = Dξt, (1)

where Φ (L) =
(
Ik −

∑p
`=1 Φ`L

`
)
is a polynomial in L, L denotes the lag operator, D and {Φ`}p`=1

are k × k dimensional matrices of coeffi cients, k is the number of endogenous variables and ξt is a
vector of error terms.

In the closed economy models, a small number of key macroeconomic variables can be reliably

estimated in a VAR. Owing to the mentioned curse of dimensionality, this is no longer true for

multicountry models, where the dimension of xt is considerably larger. In a multicountry set-up,

the solution of DSGE models is not easily tractable and models are typically calibrated. Examples

include SIGMA multicountry model of Federal Reserve Board (Erceg, Guerrieri, and Gust, 2006),

or the GEM model developed by International Monetary Fund (see Laxton and Pesenti, 2003, and

Bayoumi et al., 2004).

How to model a large set of endogenously determined variables without relying too much on a

particular theoretical macroeconomic structure? This is most probably the fundamental problem

in applied global macroeconomic modelling. Some restrictions must be imposed for the analysis of

large systems. Bayesian estimations, where priors could come from a theoretical DSGE model were

mentioned as one possibility. This paper follows another, novel approach, developed by Chudik and

5Maximum absolute column sum matrix norm and the maximum absolute row sum matrix norm are sometimes
denoted in the literature as ‖·‖1 and ‖·‖∞, respectively.
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Pesaran (2011), who propose restrictions that are binding in the limit, as the number of endogenous

variables approaches infinity.

The first analyzed IVAR model in the next section assumes that coeffi cients corresponding to

the foreign economies in the individual equations of the system (1) are of order O
(
N−1

)
, where N

denotes to the number of economies (excluding US). Such order restrictions are justified within the

context of a micro-founded multicountry DSGE model by Chudik and Straub (2011) who studies the

asymptotic properties of equilibrium for large N . In particular, this type of limiting restrictions

corresponds to the equilibrium solution of N -country DSGE model where the mentioned small

open economy framework is obtained in a limit as N → ∞. Thus we refer to the first analyzed
IVAR model as describing world consisting of small open economies.6 The second IVAR model

analyzed in the next section relaxes the first model by assuming that there is a globally dominant

economy. In this case, as shown in the context of DSGE model by Chudik and Straub (2011),

coeffi cients corresponding to the variables of the dominant economy in the individual equations of

the equilibrium solution (1) are in general of order O (1). The variables of the dominant economy

here become possibly a dynamic common factors for the rest of the economies in the world.

3 GVAR as an Approximation to an Infinite-Dimensional VAR

Suppose there are N + 1 countries indexed by i = 0, 1, 2, ..., N and ki ≥ 1 endogenous variables

belonging to country i, indexed by s = 1, 2, ..., ki.7 Let xist denote variable s of country i in

period t ∈ {1, 2, .., T} so that the country specific endogenous variables are given by vector xit =

(xi1t, xi2t, ..., xikit)
′. The k × 1 dimensional vector xt = (x′0t,x

′
1t, ...,x

′
Nt)
′ collects the endogenous

variables of all countries, where k =
∑N

i=0 ki denotes the total number of endogenous variables.

Suppose that xt is generated according to the following extended version of VAR model (1).

Φ (L) (xt − δ0 − δ1t− Γf ft) = Dξt, (2)

where δ0 =
(
δ′00, δ

′
01, ..., δ

′
0N

)′, δ1 =
(
δ′10, δ

′
11, ..., δ

′
1N

)′, δ′0i and δ′1i are ki × 1 dimensional vectors

of constants, ft is a mf × 1 dimensional vector of unobserved common factors, Γf is a k × mf

dimensional matrix of factor loadings, ξt =
(
ξ′0t, ξ

′
1t, ..., ξ

′
Nt

)′, and ξit is ki × 1 dimensional cross-

sectionally independent vector of country effects. This paper refers to model (2) also as an infinite-

dimensional VAR, when the number of variables, k, is relatively large. Country-specific equations

in the VAR model given by (2) can be written as

N∑
j=0

Φij (L) (xjt − δ0j − δ1jt− Γfjft) =
N∑
j=0

Dijξjt for i = 0, 1, .., N , (3)

6Note that it is not only the relative size of economies for the ‘small open economy framework’ to be justified
asymptotically as an approximation to N -country model, which treats all countries endogenously, but, more impor-
tantly, the order of magnitude of the individual coeffi cients of export and import share matrices is the key. Chudik
and Straub (2011) provides details.

7We start indexing countries with 0 in order to be compatible with the notation used in other GVAR articles in
the literature.
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where [Φij (L)], i, j ∈ {0, 1, .., N}, represent partitioning of Φ (L) into polynomials in ki × kj

dimensional matrices, similarly [Dij ] represent partitioning of matrix D into ki × kj dimensional
matrices, and the matrix of factor loadings is partitioned as Γf =

(
Γ′f0,Γ

′
f1, ...,Γ

′
fN

)′
with Γfi

having dimension ki ×mf .

Several special cases of the complex VAR model (2) have been analyzed in the literature. Model

(2) with ki = 1 for i = 0, 1, .., N , and Φ (L) = D = IN+1, corresponds to a static representation

of the (exact) dynamic factor model analyzed for example by Stock and Watson (2005). DdPS

derive GVAR as an approximation to (2) for Φ (L) = D = Ik and cross-sectionally independent,

but serially correlated country specific effects
{
ξjt
}
. VAR model (2) with further restrictions on

coeffi cient matrices and without the unobserved common factors has been analyzed by Binder,

Hsiao, and Pesaran (2005) for the large N and small T case. The focus of this paper is solely on

large N and large T panels and on endogenous variables integrated of order one, I (1) for short.

This is accomplished by introducing the unit root properties in the unobserved processes ft and ξt,

and, for the simplicity of exposition, all roots of |Φ (L)| = 0 are assumed to lie outside the unit

circle.

System (2) models deviations of endogenous variables from common factors ft and deterministic

terms in a VAR model. Alternatively, unobserved common factors could be introduced in the

residuals. Consider the following alternative data generating process (DGP)

Φ (L) (xt − δ0 − δ1t) = ϑt, (4)

where ϑt is k × 1 dimensional vector of error terms, given by

ϑt = Γggt + Dξt, (5)

gt is mg × 1 vector of unobserved common factors, and Γg is k ×mg dimensional matrix of factor

loadings.8 While it appears to be more conventional in the econometrics of panel data to introduce

the unobserved common factors in the residuals, the choice between models (2) and (4) is to some

extent arbitrary. Appendix B shows that models (4) and (2) are approximately the same models,

but with possibly different numbers of unobserved common factors. Therefore focusing solely on

either of the models bears no loss of generality, having treated the number of unobserved common

factors as unknown. Hereafter, the focus will be solely on model (2), which is analytically more

convenient. As it will become clear in what follows, this is because under certain assumptions

about the coeffi cient matrices {Φ`}p`=1 and D, cross-sectional averages of the right hand side of

(2) converge in quadratic mean to zero as N → ∞ and the unobserved common factors ft can be

approximated by cross-sectional averages of the endogenous variables xt. A similar idea has been

explored for the purpose of estimation and inference in large heterogenous panels with multifactor

error structure by Pesaran (2006).

8See also Pesaran (2007) for a brief discussion of alternative residual serial correlation models with cross-section
dependence.
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3.1 Derivation of the GVAR in a World With Many Small Open Economies

Assume xt is generated according to VAR model (2). In addition let mf ≤ k∗ <∞, where integer
k∗ does not depend on N , and let Wi = (Wi0,Wi1, ...,WiN )′ be any pre-determined k × k∗

dimensional matrix of weights satisfying the following granularity conditions

‖Wi‖ = O
(
N−

1
2

)
, (6)

‖Wij‖
‖Wi‖

= O
(
N−

1
2

)
. (7)

Define the following country specific vector of weighted averages

x∗it ≡W′
ixt =

N∑
j=0

Wijxjt. (8)

One possible example of Wi is the matrix of weights defining cross-sectional averages.9 The fol-

lowing assumptions on VAR model (2) are postulated.

ASSUMPTION 1 Let Φ` = [Φ`,ij ], i, j ∈ {0, 1, .., N}, represent partitioning of matrix Φ` into

ki × kj dimensional submatrices and define the k × ki dimensional matrix
Φ`,−i ≡ (Φ`,i0, ...,Φ`,i,i−1,0ki×ki ,Φ`,i,i+1, ...,Φ`,iN )′ . It is assumed that

‖Φ`,−i‖r = O
(
N−1

)
, (9)

‖D‖r ‖D‖c = O (1) , (10)

Dii = Iki (Normalization condition), (11)

ki = O (1) , (12)

for any i ∈ {0, 1, .., N}. Furthermore,

∞∑
`=0

‖R`‖ = O (1) , (13)

9 It is not required that Wii = 0 for convergence results presented in this section. Weights used in the estimation,
however, satisfy also requirement Wii = 0 for i ∈ {0, .., N}.
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where R`, for ` = 0, 1, 2, ..., is top-left k × k submatrix of the matrix Φ`, 10

Φ
kp×kp

=



Φ1 Φ2 Φ3 · · · Φp

Ik 0k 0k · · · 0k

0k Ik 0k 0k
...

. . .
...

0k 0k · · · Ik 0k


.

ASSUMPTION 2 The common factors ft and country-specific effects {ξit} follow the processes

∆ft = Λ (L) vft, vft ∼ IID
(
0,Ωvf

)
, (15)

∆ξit = Ψi (L) vit, vit ∼ IID (0,Ωvi) , (16)

where the polynomials

Λ (L) = Imf
−
∞∑
`=1

Λ`L
` and Ψi (L) = Iki −

∞∑
`=1

Ψi`L
` (17)

are absolute summable, Λ (L) and Ψi (L) are invertible, and the variance of ∆ft and ∆ξit is uni-

formly bounded in N , in particular

∥∥Ωvf

∥∥ < K <∞, (18)

max
i∈{0,1,..,N}

‖Ωvi‖r < K <∞, (19)

∞∑
`=0

max
i∈{0,1,..,N}

‖Ψi`‖r < K <∞. (20)

ASSUMPTION 3 Let yt ≡ xt − δ0 − δ1t−Γf ft and ut ≡ Dξt. Define set S ≡ {2− p, ...,−1, 0}
for p ≥ 2 and S ≡ ∅ for p = 1. It is assumed that

y1−p ∼ (0,Σ1−p) , % (Σ1−p) = O (1) , (21)

u1 = R (L) ∆u1 −
(

p∑
`=1

Φ` − Ik

)
y1−p −

∑
s∈S

(
1−s∑
`=1

Φ` − Ik

)
∆y−s, (22)

where R (L) =
∑∞

`=0 R`L
`, R` is defined in Assumption 1. Furthermore,

∆y` = R (L) ∆u`, (23)

for ` ∈ S, and y1−p is independently distributed from ∆y` for ` ∈ S and from ξt for any t ∈
10Alternatively, matrices R` satisfy

R` =

p∑
h=1

ΦhR`−h (14)

with starting values R0 = Ik, and R` = 0k for ` < 0.
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{1, .., T}.

ASSUMPTION 4 Matrix Γ∗fi has full column rank.

Remark 1 Assumption 1 allows for a general pattern of weak cross-sectional dependence of ut

(including any form of commonly used spatial dependence in the literature, see Chudik, Pesaran,

and Tosetti, 2011), but excludes additional common factors besides the vector ft.

Remark 2 Condition (13) of Assumption 1 implies that all roots of |Φ (L)| = 0 lie outside the

unit circle and a point on the unit circle is not a limit point of the sequence of roots of |Φ (L)| = 0

as N →∞. Hence, for each N ∈ N, Φ (L) is invertible and Φ−1 (L) = R (L) =
∑∞

`=0 R`L
`.

Remark 3 Assumptions 1, 2 and Assumption 3 on starting values imply that endogenous variables
are I (1).

Remark 4 Assumption 4 is required for approximation of unobserved common factors ft by a
linear combination of observed cross sectional averages x∗it and deterministic terms.

Vector y∗it = W′
i (xt − δ0 − δ1t− Γf ft) can be written as

y∗it =
t∑

`=2−p
∆y∗i` + W′

iy1−p . (24)

Starting values y1−p are cross sectionally weakly dependent (see Proposition 2.1 of Chudik, Pesaran,

and Tosetti, 2011) and distributed with mean 0 under Assumption 3. Therefore it follows that

W′
iy1−p

q.m.→ 0k∗ , (25)

as N →∞, for any weight matrix Wi satisfying condition (6) only.11

Lemma 1 Consider model (2) and let Assumptions 1-3 hold. Then for any weight matrix Wi

satisfying condition (6) only, ∥∥∥∥∥∥V ar
 t∑
`=2−p

∆y∗i`

∥∥∥∥∥∥ = O

(
T

N

)
,

where 1 ≤ t ≤ T , y∗i` =
∑N

j=0 Wijyj` and yj` is defined in Assumption 3.

11Using the Rayleigh-Ritz theorem (see Horn and Johnson, 1985, 1985, p. 176),∥∥V ar (W′
iy1−p

)∥∥ =
∥∥W′

iΣ1−pWi

∥∥ ,
≤ % (Σ1−p)

∥∥W′
iWi

∥∥ = O (1)
∥∥W′

iWi

∥∥ , (26)

where % (Σ1−p) = O (1) by condition (21) of Assumption 3. Self-adjoint and submultiplicative properties of the
spectral norm establish that ‖W′

iWi‖ ≤ ‖Wi‖2. But ‖Wi‖2 = O
(
N−1

)
according to granularity condition (6). It

follows that ‖V ar (W′
iy1−p)‖ = O

(
N−1

)
.
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Proof of Lemma 1 is relegated to Appendix.

Lemma 1 and equation (25) imply that for any increasing integer value function T (N) : N→ N
satisfying

lim
N→∞

T (N)

N
= 0, (27)

the following equality holds

lim
N→∞

sup
1≤t≤T (N)

‖V ar (y∗it)‖ = 0. (28)

Since also E (y∗it) = 0, we say that

y∗it
q.m.→ 0 (29)

uniformly in t ∈ {1, 2, ..., T (N)} as N,T j→ ∞, such that T/N → 0, or as N → ∞ followed by

T →∞. Equation (28) establishes that it is possible to approximate the unobserved common factors
ft by a linear combination of {x∗it, 1, t} if also Assumption 4 holds.12 Multiplying the equation (28)
by matrix

(
Γ∗′fiΓ

∗
fi

)−1
Γ∗′fi from the left yields

ft −
(
Γ∗′fiΓ

∗
fi

)−1
Γ∗′fi (x∗it − δ∗0i − δ∗1it)

q.m.→ 0, (30)

uniformly in t under the same asymptotics. Equation (30) holds for any weights Wi satisfying

granularity condition (6) only. Notice that under Assumption 1, matrices {Φ`,−i}p`=1 satisfy the

following inequality, see Bernstein (2005, p. 369, Fact 9.8.15).

‖Φ`,−i‖2 ≤ ‖Φ`,−i‖r ‖Φ`,−i‖c = O
(
N−1

)
, (31)

where ‖Φ`,−i‖c ≤ k ‖Φ`,−i‖r = O (1) and ‖Φ`,−i‖r = O
(
N−1

)
by Assumption 1. Therefore it

follows from (30) and (31) that

Φ`,−iyt
q.m.→ 0ki , (32)

uniformly in t as N,T
j→ ∞, such that T/N → 0 (or under the sequential asymptotics N → ∞

followed by T →∞), and the country-specific equation (3) reduces to

Φii (L) (xjt − δ0,j − δ1,jt− Γf,jft)− uit
q.m.→ 0ki , (33)

uniformly in t under the same asymptotics. The process ∆uit =
∑N

j=0 Dij∆ξjt is a stationary

weakly cross-sectionally dependent process. Using the Wold decomposition theorem, ∆uit can be

written as

∆uit = Qi (L) εit, (34)

12Without Assumption 4, {x∗it, δ∗0i, δ∗1it} would not suffi ce to approximate the unobserved common factors. Note
also that although the granularity condition (7) is not required for result (30), it establishes that ‖Wi‖c has a nonzero
limit as N → ∞, which is a necessary condition for Assumption 4 to hold, having bounded country-specific factor
loadings Γfi in N .
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where εit is serially uncorrelated, but in general weakly cross-sectionally dependent. Using the

following approximation

Hi (L, pi) ≈ (1− L) Q−1
i (L) Φii (L) , (35)

individual VAR models are obtained as

Hi (L, pi) (xit − δ0i − δ1it− Γfift)− εit ≈ 0ki . (36)

Country-specific models (36) with common factors proxied by (30) with x∗it entering as weakly

exogenous can be estimated separately by techniques developed by Harbo et al. (1998) and Pesaran,

Shin, and Smith (2000).13 After the individual VARX∗ models are estimated, they can be combined

in a GVAR model featuring all endogenous variables. This idea was originally introduced by PSW.

3.2 Derivation of a GVAR Model Featuring a Dominant Economy

This section derives GVAR as an approximation to the infinite dimensional VAR model (2) with

country 0 being dominant. For clarity of exposition and in order to focus on the implication of a

dominant country, it is assumed without loss of generality that p = 1.

ASSUMPTION 5 Define k× k0 dimensional matrix Φ0 ≡ (Φ′00, ...,Φ
′
N0)′, a k× k0 dimensional

selection matrix S0 = (Ik0 ,0, ...,0)′ and k × k dimensional matrix Φw ≡ Φ − Φ0S
′
0. Similarly,

define Dw ≡ D−D0S
′
0, where D0 ≡ (D′00, ...,D

′
N0)′. It is assumed that

‖Φw,−i‖r = O
(
N−1

)
, (37)

‖Dw,−i‖r = O
(
N−1

)
, (38)

for all i, where Φw,−i = (0,Φi1, ...,Φi,i−1,0,Φi,i+1, ...,ΦiN )′ andDw,−i = (0,Di1...,Di,i−1,0,Di,i+1, ...,DiN )′.

Furthermore,

‖Φ‖r < ρ < 1. (39)

ASSUMPTION 6 Matrix

Mi
(k0+k∗)×(k0+mf)

=

(
D00 Γf0

W′
iD0 Γ∗fi

)
(40)

has full column rank for any i ∈ {0, 1, ..., N}.

Remark 5 Under Assumption 5 all roots of Φ (L) = Ik − ΦL lie outside the unit circle and no

point on the unit circle is a limit point of the sequence of eigenvalues of Φ as N → ∞. Note also
that under Assumption 5 ‖Φ‖c = O (N). As discussed in Chudik and Pesaran (2012), the presence

of a dominant column in the matrix Φ implies {yit} is cross sectionally strongly dependent.
13Note that these techniques were developed under the assumption of no cointegration among star variables, which

is not likely to hold. Extension of these techniques to allow for cointegration among star variables is currently,
however, an open research question, which will not be pursued here.
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Remark 6 Assumptions 2, 3 and 5 imply ∆yt =
∑∞

`=t Φ
`∆ut−` is stationary.

Multiplying VAR model (2) by W′
i from the left and taking the first differences under Assump-

tions 2, 3 and 5 yields

∆y∗it =
∞∑
`=0

W′
iΦ

`D∆ξt−`,

=
∞∑
`=0

W′
iΦ

`D0∆ξ0,t−` +
∞∑
`=0

W′
iΦ

`Dw∆ξt−`. (41)

But
∑∞

`=0 W′
iΦ

`Dw∆ξt
q.m.→ 0 as N →∞ by Lemma 3 in the Appendix. Hence

∆y∗it −Θ (Wi, L) ∆ξ0t
q.m.→ 0, (42)

as N →∞, where Θ (Wi, L) =
∑∞

`=0 W′
iΦ

`D0L
`. Similarly, we have by Lemma 3,

∆y0t −Θ (S0, L) ∆ξ0t =
∞∑
`=0

S′0Φ
`Dw∆ξt−`

q.m.→ 0, (43)

as N → ∞, where Θ (S0, L) =
∑∞

`=0 S′0Φ
`D0L

`. For simplicity of exposition, the focus of this

subsection is on the convergence at the point in time t, and N → ∞. Equations (42) and (43),
assuming Assumption 6 also holds, establish

∆

[(
x0t

x∗it

)
−
(
δ01

δ∗i1

)
−
(
δ02

δ∗i2

)
t

]
−Ai (L) Mi

(
v0t

vft

)
q.m.→ 0, (44)

where Ai (L) = Ik0+k∗ −
∑∞

`=1 Ai`L
` is an absolute summable polynomial that satisfies

Ai (L) Mi =

(
Θ (S0, L) Γf0

Θ (Wi, L) Γ∗fi

)(
Ψ0 (L) 0

0 Λ (L)

)
. (45)

Equation (44) has two important implications. First, it establishes that the unobserved common

factor ft and the dynamic common factor ξ0t can be approximated using {x0t,x
∗
it}, their lags, and

deterministic terms. Assuming

Ei (L, hi) ≈ ∆A−1
i (L) , (46)

it follows from (44) that(
v0t

vft

)
≈
(
M′

iMi

)−1
M′

iEi (L, hi)

[(
x0t

x∗it

)
−
(
δ01

δ∗i1

)
−
(
δ02

δ∗i2

)
t

]
. (47)

Observe that the set of (dynamic) common factors {ft, ξ0t} can be successfully approximated only
if Mi has full column rank (i.e. Assumption 6 holds). The number of unobserved common factors

in ft not exceeding the number of star variables, mf ≤ k∗, is therefore a necessary condition for

12



Assumption 6 to hold. In the case where mf > k∗, the country-specific models cannot be consis-

tently estimated from the VARX∗ models developed below. The second implication of result (44)

is that the variables corresponding to the dominant group, x0t and x∗0t, are generally endogenously

determined. Rewriting (44) for i = 0 yields a model for the dominant country given by

E0 (L, hi) (z0t − d01 − d02t) ≈ νt, (48)

where z0t = (x′0t,x
∗′
0t)
′, d01 =

(
δ′01, δ

∗′
01

)′, d02 =
(
δ′02, δ

∗′
02

)′ and νt = Mi

(
v′0t,v

′
ft

)′
.

Equations for the remaining countries are now easily derived. Taking first differences of the

country-specific equations (3) yields

∆yit = Φii∆yi,t−1 + Φ′w,−i∆yt−1 + Φi0∆y0,t−1 + Di0∆ξ0t + ∆ξit + D′w,−i∆ξt . (49)

Lemma 3 implies

Φi0∆y0,t−1 −Φi0Θ (S0, L) ∆ξ0,t−1
q.m.→ 0ki , (50)

Φ′w,−i∆yt−1 −Θ
(
Φ′w,−i, L

)
∆ξ0,t−1

q.m.→ 0ki , (51)

as N → ∞, where the second result follows from Lemma 3 by noting that ‖Φw,−i‖r = O
(
N−1

)
under Assumption 5. Furthermore,

D′w,−i∆ξt
q.m.→ 0ki , (52)

as N →∞, since

∥∥V ar (D′w,−1∆ξt
)∥∥
r
≤ ‖Dw,−i‖r

∥∥D′w,−i∥∥c ‖V ar (∆ξt)‖r = O
(
N−1

)
, (53)

where ‖V ar (∆ξt)‖r ≤ maxi ‖V ar (∆ξit)‖r = O (1) by Assumption 2, and E
(
D′w,−i∆ξt

)
= 0ki .

Substituting equations (50)-(52) back into (49) establishes

(Iki −ΦiiL) (1− L) (xit − δ0i − δ1it)−Ci (L)

(
v0t

vft

)
−∆ξit

q.m.→ 0ki , (54)

as N →∞, where

Ci (L) =
( [

Di0 + Θ
(
Φ′w,−i + S0Φ

′
i0, L

)
L
]

Ψi (L) , (Iki −ΦiiL) Λ (L)
)
.

Using (47), the unobserved vector of innovations for the common factors,
(
v′0t,v

′
ft

)′
, can be ap-

proximated by observable variables x0t, x∗it, their lags and deterministic terms. Substituting (47)

into (54) and assuming

Gi (L, pi) ≈ (1− L) Ψ−1
i (L) (Iki −ΦiiL) , (55)(

B0i (L, r0i)
ki×k0

,B1i (L, r1i)
ki×k∗

)
≈ Ψ−1

i (L) Ci (L)
(
M′

iMi

)−1
M′

iA
−1
i (L) (1− L) , (56)
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the following country-specific VARX∗ models are obtained for i > 0,

Gi (L, pi) xit − δ0i − δ0it−B0i (L, r0i) x0t −B1i (L, r1i) x∗it ≈ vit. (57)

Country-specific models (57) for i = 1, .., N and the model (48) for a dominant country can

be consistently estimated separately. Observe that there are k endogenous variables, but k + k∗

equations given in (57) and (48). Therefore, in order to construct a GVAR model featuring k

endogenous variables in a coherent manner for the purpose of forecasting or impulse-response

analysis, the conditional model for x0t from (48) can be combined with country models (57) to

form a GVAR model featuring all endogenous variables.

The main implications for empirical modelling are summarized as follows. In the presence of a

dominant country 0, individual models for countries i > 0 need to be augmented by star variables

x∗it as well as variables x0t. The model for dominant economy i = 0 is a separate model and,

without further restrictions, x0t should generally be treated endogenously with x∗0t.

4 Dimensions of the Panel and Asymptotic Irrelevance of Weights

The selection of country-specific weights Wi defined in Section 3.1, as well as weights used in

the analysis of stationary infinite-dimensional VAR models in Chudik and Pesaran (2011), are

asymptotically irrelevant under the proper relative rates of convergence for N and T dimensions of

the panel as long as they satisfy the stated minimal requirements.

In the case of stationary systems, any joint or sequential convergence for N,T → ∞ could

be assumed for de-coupling of a group from the system (uniformly in t ∈ {1, 2, .., T (N)}), once
conditioned on all common factors. This is because for any weakly dependent stationary process

ζt with zero mean, absolute summable autocovariances, and % [V ar (ζt)] = O (1), we have

∥∥V ar (W′ζt
)∥∥ =

∥∥W′V ar (ζt) W
∥∥ ≤ % [V ar (ζt)] ‖W‖2 = O

(
N−1

)
, (58)

where ‖W‖2 = O
(
N−1

)
by granularity condition (6). Equation (58) implies14

lim
N→∞

sup
1≤t≤T (N)

V ar
(
W′ζt

)
= 0 (59)

for any increasing integer-valued function T (N). For the purpose of estimation and inference in

stationary IVARs, Chudik and Pesaran (2011) show that the relevant asymptotics are T,N
j→ ∞

with T/N → κ <∞. This means that the time dimension should not go to infinity at a faster rate
than the number of groups. Theoretical results developed in Chudik and Pesaran (2011) are thus

suitable for balanced panels, or for panels where N is large relative to T , and T is not very small.

In the case of cointegrated I (1) systems, a stronger requirement on the dimensions of the panel

is needed for the asymptotic irrelevance of chosen weights. T/N → 0 as N,T
j→ ∞ is required

14Note that the slightly weaker condition % [V ar (ζt)] = o (N) is suffi cient for (59) to hold.
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in Section 3.1 in order to approximate the unobserved factors ft (uniformly in t) using observable

averages. Again, the intuition is simple. For any cross-sectionally weakly dependent I (1) process

ωt =
∑t

`=0 ζ`, we have

∥∥V ar (W′ωt
)∥∥ =

∥∥∥∥∥V ar
(

W′
t∑

`=0

ζ`

)∥∥∥∥∥ ≤ ‖W‖2
∥∥∥∥∥V ar

(
t∑

`=0

ζ`

)∥∥∥∥∥ ≤ tO (N−1
)
, (60)

which proves that

lim
N→∞

sup
1≤t≤T (N)

∥∥V ar (W′ωt
)∥∥ = 0, (61)

for any increasing integer-valued function T (N) satisfying

lim
N→∞

T (N)

N
= 0.

That is, if joint asymptotics N,T
j→∞ are considered (T →∞ is needed for consistent estimation),

then T/N → 0 for equation (61) to hold. Unit root and cointegration properties of xt in Section 3

are accommodated for the simplicity of exposition by allowing the unobserved factors ft and/or the

country-specific effects, ξit, to have unit roots and all roots of polynomial Φ (L) lie outside the unit

circle. Thus the cross-sectional cointegration is a priori restricted to coming through the common

factors only. Appendix A shows, in the context of a more general nonstationary infinite-dimensional

VAR(1) model, that this simplifying assumption is not restrictive under the postulated restrictions

on coeffi cients and asymptotics N,T
j→∞ such that T/N → 0.

Since the group dimension (number of countries) needs to be large relative to the time dimension

of the panel in the case of I (1) variables (as opposed to stationary variables) for the above uniform

convergence results to hold, it is in general more likely that a purely ad-hoc selection of weights

is an empirically irrelevant issue in the context of modelling stationary systems (as opposed to

nonstationary systems).15 On the other hand, the main disadvantage of modelling variables that

have been transformed to induce stationarity is the potential bias resulting from the omitted error-

correction terms.

Economic theory does not have a unique answer regarding the selection of weights. For example,

the cointegrating vector for relative prices and relative productivities across multiple economies

typically depends on the joint assumptions of the macroeconomic model under consideration.

5 The GVAR Model in which the US is Treated as the Globally

Dominant Economy

This section develops two versions of a GVAR model of the global economy. Country and time

coverage is the same as in DdPS. 33 countries feature in the analysis, representing 90% of the world’s
15Some variables, such as equity and bond prices tend to move very closely across economies and therefore the

selection of different weights is unlikely to matter much here.
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output, where 8 of the 11 countries that originally joined the Euro on January 1, 1999 are grouped

together and the remaining countries are modelled separately. Data is quarterly and individual

country VARX∗ models were estimated over the period 1979(Q2)-2003(Q4). Thus N = 26 and

T = 98. Detailed explanations of the data sources and construction of the data can be found in

DdPS (2007) .

The selection of variables is one of the most important modelling choices. The GVAR model

developed in DdPS includes (depending on the availability) 6 endogenous variables in the individual

country models: real output (yit), the rate of inflation (πit = ∆pit), the real equity prices (qit), the

short term interest rate (ρsit), a long rate of interest (ρ
L
it) and an exchange rate variable

16.

The selection of variables must be balanced with the availability of the data. Treating the US as

a globally dominant economy comes at an additional cost in terms of degrees of freedom. Consider

country models (57). If the number of lags are restricted to pi ≤ 2 (for domestic endogenous

variables), r0i = 1 (for weakly exogenous US variables) and r1i = 1 (for weakly exogenous cross-

sectional averages), then the number of parameters per equation to be estimated in country models

is 36.17 This is clearly not reliable and therefore the number of endogenous variables must be

reduced in order to increase the degrees of freedom. In particular, long-term interest rates and real

equity prices were omitted from the model. Modelling choices regarding the exchange rate variable

follow those found in the DdPS model.

Two models were constructed for this paper. The first is the benchmark GVAR model (BM),

which is similar to the DdPS version of GVAR, but without the real stock prices and long term

interest rates. Where available, endogenous (domestic) variables in country models were

xit = (pit − eit, πit, yit, ρsit)
′ , for i ≥ 1 (62)

and

x0t = (π0t, y0t, ρ
s
0t, p

o
t )
′ (US model). (63)

Oil prices are an observed common factor and they were therefore included as endogenous variable

in the US model and as a weakly exogenous variable in the remaining country models. The vector

of weakly exogenous foreign variables in the individual country models is

(y∗it, π
∗
it, ρ

s∗
it , p

o
t ) , for i > 0 (BM only) (64)

and for the US

(y∗0t, π
∗
0t) . (65)

Variables ρs∗0t , e
∗
0t − p∗0t were not included as weakly exogenous in the benchmark US model as the

16DdPS employed domestic consumer price level converted into US$, variable eit − pit, while Dées, Holly, Pesaran,
and Smith (2007) used the trade-weighted real effective exchange rate, reit = (eit − pit)− (e∗it − p∗it). The price of oil
(pot ) is treated as an observed endogenous common factor and is therefore included in the US model as an additional
endogenous variable. Due to a closed system, the real exchange rate does not feature in the US model and e∗0t − p∗0t
(foreign price level converted into US$) is included in the US model as a foreign variable.
17 If additional countries/regions, for example the Euro area, were treated as being locally dominant over some of

their neighbours, then the number of parameters to be estimated per equation would be even higher.
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weak exogeneity assumption was found to be rejected across various lag specifications. This is

consistent with the hypothesis that the dominance of the US is likely to occur predominantly via

financial markets. Similar findings are reported in DdPS. As in DdPS, foreign variables that did

not pass the weak exogeneity tests were excluded from the US model.

The second constructed GVAR, also referred to as the extended GVAR model (EM), follows

the suggestions of Section 3.2 and assumes that the US is a dominant economy. In this case,

the restrictions imposed in the BM need not be in line with the true international linkages that

exist between economies, even asymptotically for large number of countries. See Chudik and Straub

(2011) for a similar argument in the context of the asymptotic analysis of equilibrium in a theoretical

N-country DSGE model. Therefore the vector of foreign variables in the individual country models

also includes US variables

(y∗it, π
∗
it, ρ

s∗
it , p

o
t , π0t, y0t, ρ

s
0t) , for i > 0 (EM only). (66)

The main difference in relation to the BM is thus the relaxation of the restrictions given by the

specification of individual country models. Note that the analysis of the IVAR model in Section

3.2 implies that US variables and US-specific foreign star variables should, in general, be treated

as endogenous. This suggestion is considered in the Supplement.18 Estimating an unrestricted

VAR in 8 endogenous variables is, given the availability of data, not very reliable. The US country

models in the BM and EM explored below are chosen to be the same.

5.1 Aggregation Weights

As in DdPS and Dées, Holly, Pesaran, and Smith (2007), a fixed foreign trade matrix (based on

the average trade flows computed over the years 1999-2001) was used to construct country-specific

foreign variables. The full foreign trade matrix is given in DdPS (2007, Supplement B). Besides

the size of individual economies, the largest column sums of the trade matrix plotted in Figure

1, provide useful pieces of additional information on the position of the economy in the panel.

The US is the first, followed very closely by the Euro area. The drawback of Figure 1 is that it

contains information only on the trade of goods. Yet the dominance of the US is likely to occur

predominantly via the financial markets.

5.2 Unit Root Tests

The order of integration of the individual series under consideration were initially examined. As-

suming variables are I (1) allows long-run relationships to be interpreted as cointegrating. Real

output, inflation and interest rates are commonly found to be I (1) in the literature. Supplement

A of DdPS reports WS-ADF unit root tests of Fuller and Park (1995) for all variables in the panel.

Table 9 in the Appendix extends the unit root tests presented in DdPS by adopting the modified

18After consistent estimation of the US model featuring 8 endogenous variables, x0t = (π0t, y0t, ρ
s
0t, p

o
t )
′ and

(y∗0t, π
∗
0t, ρ

s∗
0t , e

∗
0t − p∗0t)′, a conditional model for x0t (conditioning is on foreign variables) is derived. This derived

conditional model is used in the supplement for the construction of a new version of a GVAR.
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Figure 1: The largest column sums of the foreign trade share matrix constructed from IMF DOTS database
for 26 countries/regions of the panel.

AIC criterion proposed by Ng and Perron (2001), which is found to have better finite sample prop-

erties than traditional AIC. DdPS results were largely confirmed, with the UK output no longer

being a borderline case.19

5.3 Estimation of the Country Models

Assuming foreign variables are weakly exogenous and the parameters are stable over time, individual

VARX∗ models were estimated using techniques developed by Harbo et al. (1998) and Pesaran,

Shin, and Smith (2000).20 Both of these assumptions are tested in the following subsections.

Lags for the endogenous variables in the individual VARX∗ models, denoted by pi, were chosen

by AIC. Owing to the data constraints, pi was not allowed to be greater than 2 and lags for the

weakly exogenous variables, denoted by qi = r0i = r1i, were set as equal to 1. Cointegration tests

were subsequently conducted. The rank of the cointegrating space was determined according to

trace statistics, which is known to have better finite sample performance than the max eigenvalue

statistics. Asymptotic 5% critical values taken from MacKinnon, Haug, and Michelis (1999) were

employed in the tests.21 The deterministics considered were unrestricted intercept and restricted

trends (also referred to as the ‘case IV’ in the literature). Individual country models were then

estimated subject to the reduced rank restrictions and the corresponding error correcting terms

(ECM) were derived. ECMs were subsequently used to conduct weak exogeneity tests.

The number of cointegrating relationships in the BM country VARX∗ models, which do not

include US variables as additional weakly exogenous regressors, and the selected lag length for

19Besides the WS ADF unit root tests, the ADF tests with GLS de-trending and the MAX ADF test proposed
by Leybourne (1995) with GLS de-trending were also performed. These tests confirmed the findings of the unit root
tests in Table 9 and are therefore omitted due to space considerations.
20Estimation strategy is the same as in PSW, and DdPS versions of GVAR. See also Footnote 13.
21Detailed cointegration tests are presented in the Supplement due to space considerations.
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the domestic and foreign variables are reported in Table 2. Table 6 presents the same results

for the EM country models. For comparison, the tables also report the number of cointegrating

relationships in the corresponding VAR models that contain only domestic endogenous variables

plus the real price of oil (p0
t ). The preferred specification seems to be VARX

∗ (2, 1). There were 49

cointegrating relationships in the BM compared to 52 in the EM. These cointegrating relationships

will be assessed by means of persistence profiles in the constructed GVAR models in Subsection

5.7 below.

5.4 Weak Exogeneity Tests

Weak exogeneity of foreign variables with respect to the long-run parameters of the conditional

model was one of the assumptions underlying the estimation strategy. After estimating the indi-

vidual VARX∗ models, weak exogeneity was formally tested for along the lines of Harbo et al. (1998)

and Johansen (1992). In particular, F-tests for the joint significance of the error-correcting terms

taken from the individual (conditional) VARX∗ models in the partial models for the corresponding

postulated weakly exogenous variables were conducted. The number of lags for the variables in the

partial models were the same as those in the corresponding conditional models in the reported test

results in Table 1 for BM and Table 5 for EM. Also investigated was the sensitivity of these tests

to the different choices of lags. Very similar results were found to those presented in the Appendix.

Weak exogeneity assumptions were rejected at the 5% level in the BM (Table 1) in 3 out of

102 cases, representing a fraction of only 3%. Tests results reported in Table 5 confirm the weak

exogeneity of foreign variables in the EM. Weak exogeneity was rejected at the 5% level in only

4% of cases (7 out of 177 tests). Among the foreign US variables, weak exogeneity was rejected in

the case of US inflation in Malaysia and US output in Japan (p-value is 3.6%) and Chile. Three

rejections (at the 5% significance level) out of 75 tests again represent a fraction of only 4%.

5.5 Structural Stability Tests

The same battery of structural stability tests as performed in DdPS were conducted. Although,

in the context of cointegrated models, the possibility of a structural break is relevant for both

long-run as well as short-run coeffi cients, the focus was on the stability of short-run coeffi cients, as

the availability of data hinders any meaningful tests of the stability of cointegrating vectors.

The following tests were performed; Ploberger and Krämer (1992) maximal OLS cumulative

sum (CUSUM) statistics, denoted by PKsup; its mean square variant, denoted by PKmsq; Ny-

blom’s (1989) tests for the parameter constancy against non-stationary alternatives, denoted by

N; the Wald form of Quandt’s (1960) likelihood ratio statistics, denoted by QLR; the mean Wald

statistics of Hansen, denoted by MW ; and Andrews and Ploberger (1994) Wald statistics based on

exponential average, denoted by APW . The last three tests are Wald type tests utilizing a single

break at an unknown point. The heterokedasticity-robust version of the tests were also conducted.

Stability tests performed were based on residuals of the individual country models, which depend

on the dimension of the cointegrating space, not on the identification of cointegrating relationships.

The results of these tests at 5% significance level are reported while critical values of the tests,
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computed under the null of parameter stability, were calculated using the sieve bootstrap samples.

Details of the bootstrap procedure is given in DdPS (2007, Supplement A).

Table 4 summarizes the stability tests for BM. The findings were similar to the DdPS version

of GVAR. Test results varied across the tests and to a lesser extent across variables. In partic-

ular, among N, QLR, MW and APW tests, outcomes depended to a large extent on whether

heteroskedasticity-robust versions of the tests were employed. Non-robust versions showed rel-

atively large rejections, while coeffi cients seemed reasonably stable using robust versions of the

tests. PK tests (both versions) rejected the null of parameter constancy in only 6.8% of cases. As

in DdPS, the main reason for the rejection seems to be breaks in the error variances as opposed

to parameter coeffi cients. Once breaks in error variances are allowed for, parameters seems to be

reasonably stable. Turning to the tests outcomes summarized in Table 8 for EM, the pattern of

rejections was similar to BM. There were fewer numbers of overall rejections across all tests with

the exception PKsup (the same number of rejections as in BM) and robust-APW (11 rejections out

of 103 tests).

In accordance with DdPS, the problem of possible breaks in error variances was dealt with

by using bootstrap means and bootstrap confidence intervals in the persistence profiles and in the

generalized impulse responses analysis, and by using robust standard errors for constructing t-ratios

for the impact elasticities of the foreign variables given below.

5.6 Contemporaneous Effects (Impact Elasticities) of Foreign Variables on Their
Domestic Counterparts

The contemporaneous effects of foreign variables on their domestic counterparts are presented in

Table 3 for BM and Table 7 for EM. t-ratios were computed using White’s heteroskedasticity

consistent variance estimator.

Findings in the BM were similar to the DdPS version of the GVAR. Contemporaneous effects

were significant in about 45% of the cases with the average impact elasticity for output being 61%

(significant in 10 out of 26 cases), 67% for inflation (significant in 12 out of 26 cases) and 51% for

short term interest rates (significant in 9 out of 25 cases).

The EM included US variables as additional weakly exogenous foreign variables in the individual

VARX∗ models. Note that the star variables are weighted averages of all foreign trade partners, thus

they themselves include US variables by construction. The significance of additional US variables

(π0t, y0t, ρ
s
0t) in the non-US country models would imply that the relaxation of the restrictions in

BM improves the model. Contemporaneous effects of the US foreign variables on their domestic

counterparts were found to be significant in 18 out of 74 cases, including the models for the Euro

area, Japan and UK. This represent a fraction of 24.3% , well above the nominal 5% level of the tests.

Contemporaneous effects of star variables remain significant in about 40% of cases. It is interesting

that in the case of Canada additional foreign US variables were not significant. This suggests that

either the power of the tests in this case is low (star variables for Canada were highly correlated with

US variables simply because US variables have a large weight in the construction of Canadian star

variables) or that the impact of the US on Canada successfully comes through the star variables,
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i.e. that the restriction imposed by the trade weights in construction of star variables is valid. On

average, the impact elasticity of y∗it on domestic output was 74%, π
∗
it on domestic inflation was

88% and ρ∗it on domestic short term interest rates was 37%. The impact elasticity of the additional

US foreign output variable on domestic output was on average negative, -16%, suggesting that the

weight of the US output in the construction of star variables is probably overstated on average, at

least in the short-run. Note that the negative elasticity here does not imply that US output, on

average, has an instantaneously negative impact on the output in remaining countries.22 Also, in

the case of the foreign US short term interest rate variable, the average impact elasticity on domestic

short term interest rates was negative, -25%. Finally, in the case of US inflation, the average of

impact elasticity on domestic inflation was positive, 27%, suggesting that on average, weights of

US inflation in π∗it are probably understated, at least in the short-run. It would be interesting in

future research to compare these results with the weights derived from a theoretical N -country

DSGE model calibrated to data. Note that the relaxation of the trade weight restrictions achieved

by including the US variables allows for both the short-run and long-run impact of the US variables

on the domestic economy to be chosen by data.

5.7 Construction of GVAR and Persistence Profiles

There are 26 individual country models and 103 endogenous variables in both models. Individual

country models were solved together in one system using steps described in detail by DdPS. The

largest eigenvalue of the solved GVAR model was 1 in both the BM and EM versions. There were

exactly 54 eigenvalues equal to one in the BM, which corresponds to the number of endogenous

variables minus the number of cointegrating relationships (54 = 103− 49). The same was true for

the EM, where the number of eigenvalues equal to unity was 51 = 103− 52. The largest eigenvalue

in absolute value inside the unit circle was 0.928 in the BM and 0.929 in the EM.

Persistence profiles (PP) introduced by Pesaran and Shin (1996) were used to examine the

effect of system-wide shocks on the dynamics of the long-run relations. PPs are based on a moving

average representation of the GVAR and they refer to the time profile of the effects of a shock on

the cointegrating relations. See Dées, Holly, Pesaran, and Smith (2007) for a theoretical exposition

of PPs in the context of GVAR. PPs have a value of 1 at the time of impact and should converge

to zero as the time horizon reaches infinity. Thus PPs allows us to examine the speed at which the

long-run relations converge to their equilibrium states.

Bootstrap means of PPs are plotted in Figure 2 for BM and Figure 3 for EM. After a shock, all

variables returned to their long-run equilibrium. In most cases, the convergence was quite rapid,

often taking less than 2 years. In 28 out of 49 cointegrating relationships the value of the PPs was

less than 20% after one year in the BM and only in the case of UK (for 2 cointegrating relationships),

Japan (for 2 cointegrating relationships) and Peru (for 1 cointegrating relationship) was the PP

more than one-third after two years. Convergence towards long-run equilibrium was found to be

more rapid in the EM, where the value of the PPs was less than 20% after one year in 39 out of 53

22The net contemporaneous effect of US output on the output in remaining countries would have to be calculated
from impact elasticities of y∗it and y0t, using the corresponding US weight wi0 in the construction of y

∗
it.

21



cointegrating relationships and no PP exceeded 20% after two years.

5.8 Generalized Impulse-Responses

The dynamic properties of the two developed versions of GVAR were investigated further by means

of generalized impulse response functions (GIRF). Compact theoretical expositions of GIRFs within

the context of a GVAR model is provided in Dées, Holly, Pesaran, and Smith (2007). Four sets of

GIRFs were constructed. A negative unit (1 s.e.) shock to US variables (real output, inflation and

interest rates) and to the real price of oil was introduced. The impact on the four largest economies

based on average nominal output, the US, the Euro area, Japan, and UK, is presented.

5.8.1 Shock to US Real Output

Negative unit shock to US GDP corresponds to a 0.5% decline in US real output. Corresponding

GIRFs are presented in Figure 4. Conditional US country models in the EM and BM are identical;

hence it is not surprising that the response of US variables to the shock was similar across BM

and EM. This is also true of other shocks to US variables. It is interesting to note that bootstrap

confidence intervals were smaller in the EM model for GIRFs characterizing the response of US

indicators.

In the case of UK macroeconomic variables, the impact of a half percent decline in US GDP

becomes statistically significant in the EM: UK GDP suffered approximately a 0.25% decline in one

year, the UK interest rate dropped by 15 basis points (bp) in two years, while UK inflation was

only marginally affected (less than a 0.1% decline). Macroeconomic indicators in Japan, on the

other hand, showed no significant responses to US GDP shock in the EM model, except from a very

small 3bp instantaneous increase in interest rates. This is despite considerably smaller bootstrap

confidence bounds than the BM. The BM on the other hand shows a significant long-run impact

on inflation and interest rates in Japan.

The responses of Euro area indicators were similar across the two models. Output was affected

only marginally, inflation showed no significant response and interest rates declined by about 6bp

over a longer period.

5.8.2 Shock to US Inflation

Figure 5 plots the GIRFs of a negative unit shock to US Inflation, which corresponds to a 0.38%

decrease. The shock induced an increase in US GDP (about 0.6%-0.8% in two years) and a slight

6bp drop in US interest rates.

With the exception of Japan, foreign real output was positively affected. A circa 0.5% increase

in Euro area output in 2 years and a 0.3% rise in UK output in one year was noted. Foreign inflation

in general declined. In the case of the Euro area and Japan, the response of inflation to the shock

was more pronounced in the EM model with much smaller bootstrap bounds. The response of UK

inflation was similar across the two models.

22



Turning to interest rates, there was a significant drop in Japanese short term interest rates,

around 8bp in 1 year. Interest rates in the Euro area showed no statistically significant response in

the BM and a marginally significant response in the EM a few quarters after the shock. The two

responses have opposite signs. The response of UK interest rates was significantly positive in the

BM (10bp increase in 2 years) and statistically insignificant in the EM.

5.8.3 Shock to US Short-Term Interest Rates

Turning to Figure 6 which plots the GIRFs of a negative unit shock to US interest rates, we see

that the price puzzle (Sims, 1992; Eichenbaum, 1992), also observed in the DdPS version of GVAR,

remains. In particular, a 20 bp decrease in US short term interest rates was accommodated by a

decrease in inflation. There was also a slight drop in US output, although this response became

positive in about 1-2 years, but was statistically insignificant.

The biggest difference between the EM and BM GIRFs can be seen in the case of the Euro area

and UK interest rates. Here the responses were more pronounced in the EM. Euro area interest

rates dropped by 12bp in one year. Similar pattern were observed in the UK interest rates response.

5.8.4 Shock to the Real Price of Oil

The GIRFs of a negative unit shock to the real price of oil in Figure 7 were similar across the EM

and BM with the exception of interest rates in Japan and inflation in the UK and Japan. Interest

rates in Japan were less affected in the EM, showing about a 5bp decline in one year compared

to 12bp in the BM. Inflation in the UK and Japan, on the other hand, exhibited more oscillatory

behavior in the EM.

The shock represented about a 12% instantaneous decline in the real price of oil. Impact on

inflation across countries was in general negative, which is intuitive. Inflation dropped by 0.2%-1.2%

after one year, depending on the country. The response of real output to the shock was significant

by a margin only in the case of the UK while statistically insignificant in the US, Euro area and

Japan. With the exception of Japan (and marginally in the Euro area in the BM) interest rates

were left unaffected.

Overall, in 40 of the 48 GIRFs in Figures 5-7 bootstrap confidence bounds are found to be

smaller in the EM when compared to the BM.

6 Concluding Remarks

In this paper, macroeconometric modelling from a global perspective, treating the US economy

as globally dominant, has been considered. Following Chudik and Pesaran (2011 and 2012), the

GVAR approach is derived as an approximation to an infinite dimensional VAR model featuring

variables integrated of order one. It has been highlighted that the restrictions commonly imposed

by researchers to overcome the curse of dimensionality in open economy macroeconomics are mis-

specified in the presence of a globally dominant economy (assumed to be the US). In this case,
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individual country models for small open economies need to be augmented by US variables in

addition to weighted cross sectional averages of foreign trading partners (star variables).

This suggestion was followed in the estimation of a GVAR model featuring 33 countries during

the period 1979(Q2)-2003(Q4). Two GVAR models were constructed, each featuring the same set

of variables: real output, interest rates, inflation, the real price of oil and exchange rate variables.

The first is the benchmark GVAR model (BM), which is similar to the Dées et al. (DdPS, 2007)

model. The second, the extended GVAR model (EM), relaxed the restrictions imposed in the BM.

Individual country models in the EM were augmented by both US and star variables in line with

the US being treated as globally dominant. Evidence in support of the EM is presented and the two

models are compared by means of persistence profiles of system wide shocks to the cointegrating

relationships and by means of generalized impulse response functions. The choice of whether the

US economy should be treated as the “globally dominant”economy in the GVAR is shown to be

of importance when assessing the magnitude of international economic linkages.

While statistical evidence was found for relaxing the restrictions assumed in the BM, treating

the US as globally dominant has its cost in terms of degrees of freedom. Problem of finding

balance between complexity of estimated model and availability of data has not been addressed. A

promising avenue for future research would be to combine limiting restrictions considered in this

paper with Bayesian restrictions in the empirical work. A closer integration of theoretical DSGE

models and GVAR remains also an interesting and unexplored topic.
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Table 1: Weak exogeneity tests of the country-specific foreign variables in the BM.

Country F-test y∗it π∗it ρs∗it pot
China F(1, 76) 0.533 1.055 0.718 1.074
Euro Area F(2, 79) 1.732 0.589 0.856 0.267
Japan F(3, 78) 2.115 3.763 1.171 1.076
Argentina F(2, 75) 2.203 0.516 2.409 2.232
Brazil F(1, 76) 0.040 1.266 0.314 0.379
Chile F(2, 75) 3.105 0.533 0.554 0.329
Mexico F(3, 78) 2.072 0.526 0.075 0.490
Peru F(3, 74) 0.196 0.558 0.682 2.400
Australia F(1, 76) 0.566 0.003 2.262 0.197
Canada F(3, 78) 0.638 0.556 1.769 1.020
New Zealand F(1, 76) 0.038 0.973 0.339 1.931
Indonesia F(3, 74) 0.329 1.454 0.353 0.477
Korea F(3, 74) 2.026 0.586 0.533 1.170
Malaysia F(1, 76) 0.147 0.952 0.019 1.021
Philippines F(2, 75) 0.535 1.470 0.249 3.793
Singapore F(1, 80) 0.501 1.913 0.434 0.233
Thailand F(2, 79) 2.974 0.093 2.012 2.182
India F(2, 75) 0.009 2.113 1.261 1.900
South Africa F(1, 76) 0.627 0.425 0.819 0.057
Saudi Arabia F(1, 78) 0.005 2.124 0.014 0.032
Turkey F(1, 76) 1.969 0.801 0.430 0.091
Norway F(2, 75) 0.034 0.665 0.342 1.03
Sweden F(2, 75) 1.601 0.312 0.052 0.622
Switzerland F(2, 79) 3.101 0.250 0.475 0.928
UK F(3, 74) 2.836 0.924 0.414 0.819
US F(1, 80) 0.221 0.058 ... ...

Note: Significant coeffi cients at 5% level are highlighted.
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Persistence Profile of the Effect of SystemWide Shocks to
the Cointegrating Relations of the BM, Bootstrap Means
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Figure 2: Persistence Profile of the Effect of System-Wide Shocks to the Cointegrating Relations
of the Benchmark GVAR Model, Bootstrap Means

Persistence Profile of the Effect of SystemWide Shocks to
the Cointegrating Relations of the EM, Bootstrap Means
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Figure 3: Persistence Profile of the Effect of System-Wide Shocks to the Cointegrating Relations
of the Extended GVAR Model
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Figure 4: Generalized impulse responses of a negative unit (1 s.e.) shock to US real output.
Bootstrap estimates with 90% bootstrap error bounds.

27



Real Output Inflation Short Term Interest Rates

Real Output Inflation Short Term Interest Rates

UK UK UK

US
Short Term Interest Rates

Japan Japan Japan

Real Output
US

EuroArea
Short Term Interest Rates

EuroArea
Real Output

EuroArea
Inflation

US
Inflation

0.005

0

0.005

0.01

0.015

0 4 8 12 16 20 24

Quarters BM
EM

0.005

0.004

0.003

0.002

0.001

0

0.001

0 4 8 12 16 20 24

Quarters BM
EM

0.002
0.0015

0.001
0.0005

0
0.0005

0.001
0.0015

0.002

0 4 8 12 16 20 24

Quarters BM
EM

0.002

0

0.002

0.004

0.006

0.008

0.01

0 4 8 12 16 20 24

Quarters BM
EM

0.0025
0.002

0.0015
0.001

0.0005
0

0.0005
0.001

0.0015

0 4 8 12 16 20 24

Quarters BM
EM

0.0015
0.001

0.0005
0

0.0005
0.001

0.0015
0.002

0 4 8 12 16 20 24

Quarters BM
EM

0.004

0.002

0

0.002

0.004

0.006

0.008

0 4 8 12 16 20 24

Quarters BM
EM

0.004
0.003
0.002
0.001

0
0.001
0.002
0.003

0 4 8 12 16 20 24

Quarters BM
EM

0.0015
0.001

0.0005
0

0.0005
0.001

0.0015
0.002

0 4 8 12 16 20 24

Quarters BM
EM

0.015

0.01

0.005

0

0.005

0.01

0 4 8 12 16 20 24

Quarters BM
EM

0.004
0.003
0.002
0.001

0
0.001
0.002
0.003

0 4 8 12 16 20 24

Quarters BM
EM

0.0015
0.001

0.0005
0

0.0005
0.001

0.0015
0.002

0.0025

0 4 8 12 16 20 24

Quarters BM
EM

Figure 5: Generalized impulse responses of a negative unit (1 s.e.) shock to US inflation. Bootstrap
estimates with 90% bootstrap error bounds.
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Figure 6: Generalized impulse responses of a negative unit (1 s.e.) shock to US short term interest
rates. Bootstrap estimates with 90% bootstrap error bounds.
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Figure 7: Generalized impulse responses of a negative unit (1 s.e.) shock to real price of oil.
Bootstrap estimates with 90% bootstrap error bounds.
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Table 2: Number of cointegrating relationships and lags in the BM.

No. of cointegrating relationships
Country VARX models VAR models pi (based on AIC) qi
China 1 1 2 1
Euro Area 2 2 1 1
Japan 3 1 1 1
Argentina 2 1 2 1
Brazil 1 1 2 1
Chile 2 2 2 1
Mexico 3 1 1 1
Peru 3 2 2 1
Australia 1 1 2 1
Canada 3 2 1 1
New Zealand 1 1 2 1
Indonesia 3 2 2 1
Korea 3 2 2 1
Malaysia 1 1 2 1
Philippines 2 2 2 1
Singapore 1 1 1 1
Thailand 2 2 1 1
India 2 2 2 1
South Africa 1 1 2 1
Saudi Arabia 1 2 2 1
Turkey 1 1 2 1
Norway 2 1 2 1
Sweden 2 1 2 1
Switzerland 2 1 1 1
UK 3 2 2 1
US 1 1 2 1

All countries 49 37

Notes: In the case of the individual VAR models (without star variables) price of oil is included as an endogenous variable in

all models. Number of cointegrating relationships is selected according to Mackinnon’s 5% asymptotic critical values.
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Table 3: Contemporaneous effects of foreign variables on their domestic counterparts in the bench-
mark model.

Star variables

ysit π∗it ρsit

China −0.06
(−0.54)

0.61
(2.44)

0.10
(1.74)

Euro Area 0.62
(6.75)

0.30
(5.25)

0.09
(4.32)

Japan 0.35
(2.06)

−0.02
(−0.21)

−0.08
(−1.30)

Argentina 0.33
(1.33)

−3.12
(−1.56)

3.80
(2.14)

Brazil 0.77
(2.46)

1.10
(1.48)

0.98
(0.67)

Chile 0.41
(1.20)

0.03
(0.77)

0.06
(2.36)

Mexico 0.83
(3.51)

1.02
(1.67)

−0.20
(−0.32)

Peru 0.52
(0.84)

1.57
(0.58)

−0.51
(−0.37)

Australia 0.51
(2.67)

0.37
(2.36)

0.39
(2.04)

Canada 0.54
(5.05)

0.56
(4.53)

0.48
(2.74)

New Zealand 0.61
(2.52)

0.15
(0.60)

0.31
(1.09)

Indonesia 0.73
(1.90)

−0.17
(−0.30)

1.12
(1.91)

Korea 0.80
(1.99)

1.72
(4.87)

−0.17
(−1.24)

Malaysia 1.42
(5.16)

0.46
(2.05)

0.07
(0.39)

Philippines 0.07
(0.19)

−0.83
(−1.87)

0.93
(2.48)

Singapore 1.41
(7.25)

0.37
(2.35)

0.49
(2.54)

Thailand 0.20
(0.74)

1.14
(4.44)

1.01
(2.45)

India 0.24
(0.82)

−0.57
(−1.23)

−0.29
(−1.05)

South Africa 0.25
(1.53)

0.04
(0.15)

0.07
(0.64)

Saudi Arabia 0.61
(1.49)

−0.02
(−0.09)

...

Turkey 0.56
(0.77)

9.59
(8.35)

1.84
(1.77)

Norway 0.88
(2.27)

0.85
(5.72)

0.27
(0.98)

Sweden 1.26
(3.44)

1.38
(7.10)

1.18
(3.06)

Switzerland 0.73
(5.65)

0.44
(3.32)

0.12
(1.30)

UK 0.50
(3.68)

0.38
(1.62)

0.19
(1.25)

US 0.75
(5.12)

0.11
(1.44)

...

Note: Significant coeffi cients at 5% level are highlighted.
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Table 4: Stability tests, BM
Test Statistics yit πit pit − eit ρsit Total(%)

PKsup 2(7.7) 2(7.7) 2(8.0) 1(4.0) 7(6.8)

PKmsq 2(7.7) 2(7.7) 2(8.0) 1(4.0) 7(6.8)

N 0(0.0) 5(19.2) 4(16.0) 6(24.0) 15(14.6)

robust-N 1(3.8) 3(11.5) (21.0) 3(12.0) 10(9.7)

QLR 7(26.9) 12(46.2) 9(36.0) 15(60.0) 43(41.7)

robust-QLR 3(11.5) 2(7.7) 3(12.0) 3(12.0) 11(10.7)

MW 5(19.2) 9(34.6) 7(280) 9(36.0) 30(29.1)

robust-MW 3(11.5) 3(11.5) 2(8.0) 4(16.0) 12(11.7)

APW 8(30.8) 11(42.3) 8(32.0) 15(60.0) 42(40.8)

robust-APW 3(11.5) 1(3.8) 1(4.0) 3(12.0) 8(7.8)

Table 5: Weak exogeneity tests of the country-specific foreign variables in the EM.

Country F-test y∗it π∗it ρs∗it pot y0t π0t ρs0t
China F(1, 70) 0.183 0.734 0.303 0.082 1.588 2.517 2.255
Euro Area F(1, 70) 1.297 0.028 0.037 0.009 0.002 0.001 2.032
Japan F(2, 73) 6.158 0.91 1.560 0.765 3.479 1.046 0.126
Argentina F(1, 70) 1.882 0.660 3.508 2.795 0.066 2.055 0.017
Brazil F(2, 69) 0.432 1.725 0.466 0.050 0.399 0.350 1.265
Chile F(3, 68) 1.841 0.813 0.431 0.523 4.275 0.322 0.314
Mexico F(1, 74) 0.426 0.378 0.529 0.996 0.602 1.000 0.087
Peru F(3, 78) 0.654 0.597 0.824 0.980 0.451 0.592 0.250
Australia F(3, 72) 0.880 1.647 0.428 2.804 0.090 0.502 1.066
Canada F(3, 72) 0.633 0.898 1.077 1.943 0.707 1.222 0.722
New Zealand F(2, 69) 1.114 2.832 0.798 1.260 1.334 2.128 0.432
Indonesia F(3, 68) 0.625 1.470 0.268 0.688 0.066 1.694 1.325
Korea F(3, 68) 1.024 0.567 1.324 1.211 0.801 0.745 2.717
Malaysia F(1, 70) 0.336 0.508 0.104 0.412 0.869 4.066 1.612
Philippines F(3, 68) 1.648 1.139 0.099 3.752 1.104 2.163 0.342
Singapore F(2, 73) 0.802 0.959 1.260 0.748 1.707 1.077 0.273
Thailand F(2, 73) 4.213 0.222 0.961 1.128 2.899 0.77 0.004
India F(2, 69) 0.418 0.454 0.724 2.305 0.633 0.311 0.179
South Africa F(2, 69) 0.810 0.615 0.219 0.303 0.264 1.687 0.408
Saudi Arabia F(1, 72) 0.000 0.221 0.156 0.024 0.258 0.032 0.501
Turkey F(2, 73) 0.031 0.084 2.060 0.089 0.477 0.019 0.185
Norway F(2, 69) 0.404 0.684 0.150 1.336 0.714 0.701 1.993
Sweden F(2, 69) 2.077 0.657 0.212 1.223 1.153 0.370 0.209
Switzerland F(2, 69) 0.685 0.108 0.805 0.638 1.674 0.106 0.345
UK F(3, 68) 0.679 0.143 0.358 0.553 1.686 0.601 1.835
US F(2, 77) 0.858 0.179 ... ... ... ... ...

Note: Significant coeffi cients at 5% level are highlighted.
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Table 6: Number of cointegrating relationships and lags in the EM.

No. of cointegrating relationships
Country VARX models VAR models pi (based on AIC) qi
China 1 1 2 1
Euro Area 1 2 2 1
Japan 2 1 1 1
Argentina 1 1 2 1
Brazil 2 1 2 1
Chile 3 2 2 1
Mexico 1 1 1 1
Peru 3 2 2 1
Australia 3 1 1 1
Canada 2 2 1 1
New Zealand 2 1 2 1
Indonesia 3 2 2 1
Korea 3 2 2 1
Malaysia 1 1 2 1
Philippines 3 2 2 1
Singapore 2 1 1 1
Thailand 2 2 1 1
India 2 2 2 1
South Africa 2 1 2 1
Saudi Arabia 1 2 2 1
Turkey 2 1 1 1
Norway 2 1 2 1
Sweden 2 1 2 1
Switzerland 2 1 2 1
UK 3 2 2 1
US 1 1 2 1

All countries 52 37

Notes: In the case of the individual VAR models (without star variables) price of oil is included as an endogenous variable in

all models. Number of cointegrating relationships is selected according to Mackinnon’s 5% asymptotic critical values.
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Table 7: Contemporaneous effects of foreign variables on their domestic counterparts in the ex-
tended GVAR model.

Star variables US variables

ysit π∗it ρsit y0t π0t ρs0t

China −0.12
(−0.76)

0.69
(2.20)

0.13
(2.35)

0.06
(0.45)

0.09
(0.37)

0.03
(0.79)

Euro Area 0.63
(3.33)

0.24
(4.75)

0.05
(2.61)

−0.09
(−0.85)

0.14
(2.03)

0.23
(3.83)

Japan 0.42
(1.65)

−0.39
(−3.21)

0.03
(0.51)

−0.20
(−1.42)

0.55
(4.69)

−0.13
(−2.22)

Argentina 0.25
(1.04)

−1.02
(−0.58)

2.90
(1.90)

0.04
(0.14)

5.60
(1.43)

5.24
(1.32)

Brazil 0.61
(1.33)

1.32
(1.54)

0.37
(0.27)

−0.54
(−1.32)

3.02
(1.30)

−12.35
(−1.70)

Chile 0.22
(0.45)

−0.01
(−0.11)

0.12
(3.23)

−0.17
(−0.47)

−0.28
(−0.49)

−0.98
(−1.02)

Mexico 1.35
(0.57)

11.30
(3.49)

0.59
(0.50)

−0.69
(−0.33)

−9.80
(−3.09)

−0.39
(−0.40)

Peru 1.14
(0.84)

1.53
(0.48)

−2.40
(−1.92)

−0.84
(−1.03)

0.57
(0.23)

1.55
(0.88)

Australia 0.27
(1.73)

0.73
(3.55)

0.33
(1.67)

0.29
(2.62)

−0.30
(−1.55)

0.06
(0.36)

Canada 0.50
(0.68)

−0.02
(−0.04)

0.54
(1.52)

0.06
(0.08)

0.37
(0.92)

0.11
(0.32)

New Zealand 0.84
(2.7)

0.47
(1.54)

0.46
(1.45)

−0.34
(−1.76)

−0.36
(−1.39)

−0.24
(−1.12)

Indonesia 0.87
(2.09)

−0.32
(−0.51)

0.47
(1.06)

−0.08
(−0.24)

0.72
(1.42)

0.73
(1.97)

Korea 2.64
(3.45)

0.4
(1.14)

−0.29
(−2.43)

−0.80
(−1.99)

1.49
(5.66)

0.27
(1.56)

Malaysia 1.86
(4.87)

0.64
(2.22)

0.29
(1.80)

−0.57
(−2.55)

−0.09
(−0.50)

−0.31
(−2.25)

Philippines 0.61
(1.56)

−3.03
(−4.67)

1.80
(3.55)

−0.53
(−2.26)

2.44
(4.33)

−0.58
(−2.21)

Singapore 1.49
(7.61)

0.50
(2.80)

−0.07
(−0.47)

−0.27
(−1.38)

−0.04
(−0.29)

0.47
(6.05)

Thailand 0.39
(0.96)

0.72
(2.47)

0.71
(1.59)

−0.19
(−1.06)

0.30
(1.30)

0.45
(234)

India 0.52
(1.74)

−1.64
(−3.47)

−0.50
(−1.87)

0.16
(0.91)

1.55
(4.89)

0.35
(1.07)

South Africa 0.04
(0.18)

−0.90
(−3.18)

0.14
(1.42)

0.22
(1.75)

0.68
(3.16)

0.20
(0.81)

Saudi Arabia 0.45
(0.86)

0.24
(0.91)

... 0.24
(0.64)

−0.19
(−0.95)

...

Turkey 0.42
(0.60)

8.84
(5.80)

1.57
(1.90)

0.34
(0.76)

−0.54
(−0.52)

−0.02
(−0.04)

Norway 0.91
(1.95)

0.92
(5.72)

0.25
(0.94)

−0.11
(−0.40)

0.03
(0.13)

−0.26
(−1.67)

Sweden 1.17
(3.55)

1.20
(5.68)

1.19
(2.81)

0.03
(0.09)

0.12
(0.81)

−0.29
(−1.13)

Switzerland 0.74
(3.64)

0.51
(3.75)

0.06
(0.72)

0.08
(1.02)

0.01
(0.06)

−0.10
(−1.16)

UK 0.58
(2.88)

−0.26
(−1.15)

0.19
(1.21)

0.76
(4.85)

0.76
(4.85)

−0.06
(−0.56)

US 0.75
(5.12)

0.11
(1.44)

... ... ... ...

Note: Significant coeffi cients at 5% level are highlighted.
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Table 8: Stability tests, EM
Test Statistics yit πit pit − eit ρsit Total(%)

PKsup 1(3.8) 2(77) 3(12.0) 1(4.0) 7(6.8)

PKmsq 1(3.8) 1(3.8) 1(4.0) 1(4.0) 4(3.9)

N 1(3.8) 3(11.5) 2(8.0) 5(20.0) 11(10.7)

robust-N 1(3.8) 2(7.7) 2(8.0) 1(4.0) 6(5.8)

QLR 7(26.9) 12(46.2) 9(36.0) 11(44.0) 39(37.9)

robust-QLR 0(0.0) 1(3.8) 4(16.0) 1(4.0) 6(5.8)

MW 2(7.7) 7(26.9) 7(28.0) 7(28.0) 23(22.3)

robust-MW 2(7.7) 2(7.7) 2(8.0) 2(8.0) 8(7.8)

APW 8(30.8) 11(42.3) 9(36.0) 10(40.0) 38(36.9)

robust-APW 2(7.7) 3(11.5) 4(16.0) 2(8.0) 11(10.7)

Table 9: WS unit root test statistics for domestic variables (Based on AIC order selection criterion)
yit pit qit ρsit eit − pit

Country level ∆ ∆2 level ∆ ∆2 level ∆ ∆2 level ∆ ∆2 level ∆ ∆2

China −3.75 −3.34 −9.90 −1.63 −2.58 −5.07 . . . −1.20 −4.04 −15.9 −1.47 −4.53 −15.1

E.A. −1.92 −3.62 −15.9 −2.01 −0.05 −12.5 −2.42 −4.26 −12.8 −1.26 −5.51 −13.0 −2.09 −4.44 −14.7

Japan −1.36 −3.46 −16.9 −0.60 −0.55 −29.3 −1.40 −4.33 −13.0 −1.61 −5.59 −11.2 −1.52 −4.08 −14.0

Argen. −2.01 −4.69 −11.1 −1.57 −2.45 −15.4 −3.53 −10.6 −15.3 −2.16 −15.8 −19.1 −1.95 −6.47 −17.7

Brazil. −2.53 −7.85 −14.7 −1.45 −2.04 −9.11 . . . −2.19 −10.9 −15.5 −2.23 −9.81 −14.5

Chile −1.80 −3.78 −17.9 0.51 −1.42 −17.7 −1.82 −5.08 −16.2 −1.09 −15.2 −22.0 −2.26 −3.41 −12.6

Mexico −2.07 −5.29 −18.8 −1.12 −2.16 −10.6 . . . −1.42 −3.94 −14.2 −2.37 −4.42 −16.7

Peru −2.09 −8.38 −14.7 −1.61 −2.17 −13.2 . . . −3.02 −3.65 −17.3 −1.44 −8.57 −13.4

Australia −2.12 −6.60 −12.2 −0.40 −1.78 −17.1 −2.89 −9.36 −16.3 −1.86 −3.90 −14.0 −2.11 −3.93 −15.5

Canada −2.47 −3.86 −12.2 −0.63 −1.31 −13.4 −2.49 −5.73 −15.6 −1.36 −4.19 −21.5 −1.91 −2.19 −14.5

N. Zeal. −1.21 −4.92 −15.7 0.05 −1.64 −15.2 −2.52 −9.29 −15.5 −1.55 −10.6 −16.8 −2.16 −4.77 −15.6

Indon. −1.38 −6.04 −17.8 −1.91 −4.90 −7.05 . . . −2.66 −5.34 −19.7 −2.58 −5.79 −8.37

Korea −1.60 −4.42 −21.0 0.69 −1.20 −13.3 −2.07 −4.54 −14.7 −1.17 −7.91 −12.2 −1.94 −7.43 −12.7

Malays. −1.84 −4.54 −15.5 −1.33 −2.27 −18.2 −2.42 −4.93 −18.1 −2.41 −7.75 −12.7 −2.27 −6.72 −12.4

Philipp. −1.17 −2.85 −17.2 −0.85 −3.48 −7.63 −1.36 −5.11 −17.6 −2.31 −8.65 −14.7 −1.91 −5.54 −15.7

Singap. −1.37 −5.06 −15.8 −0.45 −2.21 −13.7 −3.13 −9.81 −15.9 −1.12 −4.92 −15.0 −0.69 −3.00 −16.6

Thail. −1.42 −2.57 −13.7 −0.38 −1.35 −15.4 −1.60 −3.46 −14.5 −1.99 −9.57 −15.7 −1.66 −7.29 −14.3

India −3.15 −7.45 −12.0 −1.01 −3.29 −11.6 −2.39 −7.42 −13.9 −2.64 −16.0 −23.7 −1.70 −7.24 −11.9

S.Africa −2.39 −4.57 −13.1 0.73 −1.63 −13.0 −3.34 −8.06 −13.5 −1.65 −4.75 −16.6 −1.86 −3.97 −14.4

S.Arabia −1.35 −4.68 −9.90 −1.82 −3.33 −15.3 . . . . . . −1.62 −3.02 −14.3

Turkey −2.11 −6.29 −18.0 −1.29 −2.19 −15.9 . . . −0.79 10.2 −16.0 −1.80 −9.26 −14.9

Norway −2.09 −15.4 −21.8 2.67 −1.38 −15.7 −2.34 −8.02 −13.5 −1.77 −10.7 −17.6 −2.20 −7.70 −13.9

Sweden −2.83 −14.5 −21.5 −0.77 −1.18 −15.1 −2.50 −4.60 −14.0 −1.96 −14.6 −20.4 −2.00 −3.89 −15.4

Switz. −1.98 −4.56 −15.0 −1.48 −1.81 −14.1 −1.24 −4.26 −16.4 −1.38 −3.83 −13.3 −2.18 −4.65 −14.2

U.K. −1.78 −3.21 −16.5 −0.39 −0.61 −19.8 −1.06 −8.46 −14.5 −1.76 −6.37 −18.4 −2.09 −7.90 −14.6

U.S. −2.23 −4.92 −15.3 −0.11 −0.07 −12.4 −2.07 −5.60 −15.2 −1.10 −3.63 −13.9 . . .

WS unit root statistics for price of oil: pot -2.26 ∆pot -8.19 ∆2pot -13.15

Notes: The WS statistics for all level variables are based on regressions including a linear trend, except for the interest rate
variables. The 95% critical value for the WS statistics for regressions with trend is -3.24, and for regressions without trend
-2.55.
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A A More General Nonstationary Infinite-Dimensional VAR(1)

Model

Let p = 1 and assume that VAR model in yt = xt − δ0 − δ1t− Γf ft,

yt = Φyt−1 + ζt, (A.1)

satisfies the following assumptions.

ASSUMPTION 7 Let Φ (L) = Ik −ΦL

(i) The roots of |Φ (L)| = 0 are either outside the unit circle or equal to one.

(ii) The matrix Π = Φ− Ik has reduced rank r < k, i.e. Π = αβ′ where α and β are k × r

matrices of full column rank.

(iii) The matrix α′⊥β⊥ has full rank, where α⊥ and β⊥ are orthogonal complements to α and β.

ASSUMPTION 8 Let ζt be a weakly dependent serially uncorrelated process:

ζt ∼ IID (0,Ωζ) (A.2)

where

% (Ωζ) = O (1) . (A.3)

Furthermore, the vector of unobserved common factors ft satisfies Assumption 2, and

y0 ∼ (0,Σ0) , with ‖Σ0‖r = O (1) . (A.4)

Starting values y0 are independently distributed from ζt for any t ∈ {1, 2, ..., T}.

ASSUMPTION 9

‖Φ‖r = O (1) and for any i ∈ N : ‖Φ−i‖r = O
(
N−1

)
(A.5)

where Φ−i = (Φi,0, ...,Φi,i−1,0ki ,Φi,i+1, ...,ΦiN )′. Furthermore, ∀` ∈ N :∥∥∥Φ`Φ′`
∥∥∥
r
< K <∞ (A.6)
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Remark 7 Conditions (i)-(iii) of Assumption 7 are assumptions of the Granger representation
theorem.23 Jointly with Assumption 8 and for finite N , they ensure the following. Condition (i)

ensures that process yt is not explosive or seasonally cointegrated. The condition (ii) ensures that

there are at least k − r unit roots and induces cointegration for r ≥ 1. Finally, the last condition,

(iii), ensures that the process yt is not integrated of higher order than I (1) as there are exactly

k − r unit roots.

Remark 8 Assumption 9 rules out dominant groups and establishes that the variance of ∆yit is

bounded in N . Note that for fixed N , the Granger representation theorem implies that lim`→∞Φ`

exists under Assumption 7, in particular lim`→∞Φ`= β⊥ (α′⊥β⊥)−1α′⊥; and therefore there exists

K (N) such that
∥∥Φ`Φ′`

∥∥
r
< K (N) for any ` ∈ N. Condition (A.6) of Assumption 9 establishes

that the sequence of upper bounds {K (N)}∞N=1 is bounded in N . This condition is particularly

responsible for convergence result (A.17) below.

Remark 9 ζt are assumed to be serially uncorrelated only due to simplicity of exposition. ζt could
be any stationary process with absolute summable autocovariances uniformly bounded in N .

Recursive substitution of model (A.1) and multiplying by W′
i from the left yields

y∗it = W′
i

t−1∑
`=0

Φ`ζt−` + W′
iΦ

ty0. (A.7)

Note that E (y∗it) = 0 and its variance is bounded by

‖V ar (y∗it)‖r ≤ ‖Wi‖r ‖Wi‖c % (Ωζ)
t−1∑
`=0

∥∥∥Φ`Φ′`
∥∥∥
r

+ ‖Wi‖r ‖Wi‖c
∥∥ΦtΦ′t

∥∥
r
‖Σ0‖r (A.8)

where we have used Rayleigh-Ritz theorem (see Horn and Johnson, 1985, p. 176) and the fact that

the spectral radius is a lower bound for any matrix norm (see Horn and Johnson, 1985, Theorem

5.6.9). But under Assumptions 7-9, % (Ωζ) = O (1),
∥∥Φ`Φ′`

∥∥
r

= O (1) for any ` ∈ N, ‖Σ0‖r = O (1).

Since Wi satisfies the granularity condition (6)-(7), it follows that ‖Wi‖r ‖Wi‖c = O
(
N−1

)
,24 and

‖V ar (y∗it)‖r ≤ tO
(
N−1

)
. (A.14)

23Two theorems, one due to Engle and Granger (1987) and one due to Johansen (1991, 1996) are both referred
to as Granger representation theorem. Johansen provides the moving average representation of a VAR by making
assumptions about the autoregressive parameters that characterize the I (1) process. Engle and Granger (1987) state
the existence of VECM representation of a process yt under the assumptions that ∆yt and β′yt have stationary
and invertible VARMA representation for some full column rank matrix β. See also Hansen (2005) for a closed form
expression for I (1) processes.
24Granularity conditions (6)-(7) are equivalent to the following conditions (A.9)-(A.10)

‖Wi‖c 6= o (1) , (A.9)

‖Wi‖r = O
(
N−1

)
. (A.10)

To see this, note that condition (7) implies
‖Wij‖2

‖Wi‖2
= O

(
N−1

)
. (A.11)
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Hence for any increasing integer valued function T (N) such that

lim
N→∞

T (N)

N
= 0, (A.15)

we have

lim
N→∞

sup
1≤t≤T (N)

‖V ar (y∗it)‖ = 0. (A.16)

This implies y∗it
q.m.→ 0 uniformly in t ∈ {1, .., T} under the asymptotics N,T j→ ∞ such that

T/N → 0. Thus we see that the convergence results in Section 3 continues to hold for more general

I (1) models with polynomial Φ (L) having some of the roots on the unit circle. In particular, note

the following approximate error correction representation of yit, under Assumptions 7-9,

lim
N→∞

sup
1≤t≤T (N)

‖V ar (∆yit − (Φii − Iki) yi,t−1 − ζit)‖ = 0, (A.17)

where T (N) is any increasing integer valued function satisfying equation (A.15). This is because

yit = Φiiyi,t−1 + Φ′−iyt−1 + ζit,

and

sup
1≤t≤T

∥∥V ar (Φ′−iyt−1

)∥∥ = O

(
T

N

)
+O

(
N−1

)
follows from equation (A.14) since ‖Φ−i‖r = O

(
N−1

)
by Assumption 9.

B Two Alternative Ways of Introducing Unobserved Common

Factors

It is easy to see that VAR model (2) can be considered as a special case of model (4) by letting

Γg = (Γf ,−Φ1Γf , ...,−ΦpΓf ) , (B.1)

and

gt =
(
f ′t , f

′
t−1, ..., f

′
t−p
)′ . (B.2)

But ‖Wi‖2 = O
(
N−1

)
by condition (6). Therefore

‖Wij‖2 = O
(
N−2

)
. (A.12)

Since dimension of Wij is ki× kj (recall that ki = O (1) for any i), it follows that the order of magnitude of ‖Wij‖m
does not depend on a particular matrix norm ‖·‖m under consideration. Hence ‖Wij‖2r = O

(
N−2

)
, which prooves

equation (A.10). Condition (A.9) can be established by contradiction. Note that equation (A.10) implies that

‖W‖c = O (1) . (A.13)
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Equations (B.1) and (B.2) imply

Γggt = Φ (L) Γf ft, (B.3)

and model (2) with mf common factors can always be written as model (4) with up to mg =

(p+ 1)mf common factors. In cases when p = ∞, model (2) can still be regarded as an approx-
imative special case of model (4) by adopting a finite approximation to the infinite polynomial

Φ (L).

What about the reverse? In particular, can model (4) be regarded, approximately, as a special

case of (2)? Since roots of |Φ (L)| = 0 lie outside the unit circle, polynomial Φ (L) is invertible and

we can define new k × 1 dimensional process ht as

ht = Φ−1 (L) Γggt. (B.4)

Using the following approximation

R (L, q) =

q∑
`=0

Rq,`L
` ≈ Φ−1 (L) (B.5)

yields an approximation of ht

ht ≈ R (L, q) Γggt = Γf ft, (B.6)

where Γf = (Rq0Γg, ...,RqqΓg) and ft =
(
g′t, ...,g

′
t−q
)′ is a mg (q + 1) × 1 dimensional vector of

factors. It follows from equation (B.6) that model (4) can be written as

Φ (L) (xt − δ0 − δ1t− Γf ft) ≈ Dξt. (B.7)

Thus model (4) is approximately a special case of model (2).25

C Lemmas and Proofs

Proof of lemma 1. Using the self-adjoint and submultiplicative properties of the spectral norm,

we have ∥∥∥∥∥∥V ar
 t∑
`=2−p

∆y∗i`

∥∥∥∥∥∥ =

∥∥∥∥∥∥
t∑

`=2−p

t∑
k=2−p

E
(

∆y∗i`∆y∗
′
ik

)∥∥∥∥∥∥ ,
≤ (t− 1 + p) ‖V ar (∆y∗it)‖+ 2

t−2+p∑
`=1

‖C`‖ (t− 1 + p− `) ,

≤ (T − 1 + p)

(
‖V ar (∆y∗it)‖+ 2

∞∑
`=1

‖C`‖
)
,

= O

(
T

N

)
, (C.1)

25This analysis can be generalized for the case where some of the roots of |Φ (L)| = 0 lie on the unit circle using
Granger’s representation theorem.
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where ‖V ar (∆y∗it)‖ = O
(
N−1

)
and

∑∞
`=1 ‖C`‖ = O

(
N−1

)
as established in Lemma 2.

Lemma 2 Consider model (2) and let Assumptions 1-3 hold. Then for any weights Wi satisfying

condition (6) only,

E (∆y∗it) = 0, (C.2)

sup
1≤t≤T

‖V ar (∆y∗it)‖ = O
(
N−1

)
, (C.3)

as well as ∞∑
`=1

‖C`‖ = O
(
N−1

)
, (C.4)

where C` = E
(

∆y∗i,t+`∆y∗′it

)
is `-th autocovariance of ∆y∗it, and y∗it ≡W′

iyt.

Proof of lemma 2. Recall that ∆yt, under Assumption 1-3, is

∆yt = R (L) ∆ut = R (L) DΨ (L) vt = C (L) vt, (C.5)

where

C (L) =
∞∑
`=0

C`L
` = R (L) DΨ (L) , Ψ (L) =


Ψ0 (L) 0

. . .

0 ΨN (L)

 , vt =


v0t

...

vNt

 ,
and Ck =

∑k
`=0 R`DΨk−`.

E
(
W′

i∆yt
)

= W′
iC (L)E (vt) = 0, (C.6)

‖V ar (∆y∗t )‖ =
∥∥W′

iV ar (∆yt) Wi

∥∥ ,
≤

∥∥W′
i

∥∥ ‖V ar (∆yt)‖ ‖Wi‖ ,

≤ ‖Wi‖2
∞∑
`=0

∥∥C`V ar (vt) C′`
∥∥ ,

≤ ‖Wi‖2 ‖Ωv‖
∞∑
`=0

‖C`‖2 , (C.7)

where we have used submultiplicative property of matrix norms, the fact that the spectral norm is

self-adjoint (see Horn and Johnson, 1985, p. 309), and

Ωv =


Ωv0 0

. . .

0 ΩvN

 .
Note that ‖Ωv‖ ≤

√
‖Ωv‖r ‖Ωv‖c (See Bernstein, 2005, p. 369, Fact 9.8.15). SinceΩv is symmetric,

it follows

‖Ωv‖ ≤ ‖Ωv‖r = max
i∈{0,1,..,N}

‖Ωvi‖r = O (1) (C.8)

43



by Assumption 2.

∞∑
k=0

‖Ck‖ =
∞∑
k=0

∥∥∥∥∥
k∑
`=0

R`DΨk−`

∥∥∥∥∥ ,
≤

∞∑
k=0

k∑
`=0

‖R`‖ ‖D‖ ‖Ψk−`‖ ,

≤ ‖D‖
∞∑
`=0

‖R`‖ ·
∞∑
`=0

‖Ψ`‖ .

‖Ψ`‖ is bounded by ‖Ψ`‖ ≤
√
‖Ψ`‖r ‖Ψ`‖c ≤

√
maxi ‖Ψ`i‖r maxi ‖Ψ`i‖c. Since ‖Ψ`i‖c ≤ ki ‖Ψ`i‖r

(See Horn and Johnson, 1985, p. 314), we have

∞∑
`=0

‖Ψ`‖ ≤
(

max
i∈{0,1,..,N}

√
ki

)
·
∞∑
`=0

max
i∈{0,1,..,N}

‖Ψ`i‖r = O (1) (C.9)

by Assumptions 1-2. Furthermore, ‖D‖ ≤
√
‖D‖r ‖D‖c = O (1) and

∑∞
`=0 ‖R`‖ = O (1) by

Assumption 1. It follows
∞∑
k=0

‖Ck‖ = O (1) . (C.10)

This implies
∞∑
k=0

‖Ck‖2 = O (1) . (C.11)

Noting that ‖Wi‖2 = O
(
N−1

)
by condition (6), equations (C.7)-(C.8),(C.11) establish

‖V ar (∆y∗t )‖ = sup
1≤t≤T

‖V ar (∆y∗t )‖ = O
(
N−1

)
. (C.12)

This completes the proof of result (C.3). In order to establish result (C.4), note that

∞∑
`=1

‖C`‖ ≤ ‖Wi‖2
∞∑
`=1

∞∑
k=0

‖Ck+`‖ ‖Ck‖ ‖Ωv‖ ,

≤ ‖Wi‖2 ‖Ωv‖
∞∑
k=0

∞∑
`=0

‖Ck‖ ‖Ck+`‖ ,

≤ ‖Wi‖2 ‖Ωv‖
∞∑
k=0

‖Ck‖ ·
∞∑
k=0

‖Ck‖ ,

= O
(
N−1

)
, (C.13)

where we have used equations (C.8),(C.10) and as before, ‖Wi‖2 = O
(
N−1

)
by condition (6). This

completes the proof.

Lemma 3 Let V = (V0,V1, ...,VN )′ be any pre-determined k × kv dimensional matrix satisfying
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following conditions.

‖Vw‖r = O
(
N−1

)
, (C.14)

‖V‖r = O (1) , (C.15)

where Vw = (0kv×k0 ,V1, ...,VN )′. Then

∞∑
`=0

V′Φ`Dw∆ξt−`
q.m.→ 0, (C.16)

as N →∞, where matrix Φ and Dw satisfies Assumption 5, and ∆ξt is given by Assumption 2.

Proof. Lemma 3 is a direct extension of Lemma 2 presented in supplement of Chudik and Pesaran
(2011) to multivariate case.
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