
Federal Reserve Bank of Dallas 
Globalization and Monetary Policy Institute  

Working Paper No. 152 
http://www.dallasfed.org/assets/documents/institute/wpapers/2013/0152.pdf  

 
Price Indexation, Habit Formation, and the Generalized 

Taylor Principle* 
 

Saroj Bhattarai 
Penn State University 

 
Jae Won Lee 

Rutgers University 
 

Woong Yong Park 
University of Hong Kong 

 
August 2013 

 
Abstract  
We prove that the Generalized Taylor Principle, under which the nominal interest rate reacts 
more than one-for-one to inflation in the long run, is a necessary and (under some extra mild 
restrictions on parameters) sufficient condition for determinacy in a sticky price model with 
positive steady-state inflation, interest rate smoothing in monetary policy, partial dynamic 
price indexation, and habit formation in consumption. 
 
JEL codes: E31, E52, E58 
 

                                                 
* Saroj Bhattarai, 615 Kern Building, University Park, PA 16802. 814-863-3794. Sub31@psu.edu.          
Jae Won Lee, 75 Hamilton Street, NJ Hall, New Brunswick, NJ 08901. 848-932-8643. 
jwlee@econ.rutgers.edu.  Woong Yong Park, 908 KK Leung Building, University of Hong Kong, 
Pokfulam Road, Hong Kong. wypark@hku.uk.  We are grateful to Thomas Lubik for encouragement and 
advice and Hantaek Bae for useful comments. The views in this paper are those of the authors and do not 
necessarily reflect the views of the Federal Reserve Bank of Dallas or the Federal Reserve System. 



1 Introduction

One of the most important guiding principles for practical monetary policy is the Generalized

Taylor Principle, which asserts that in order to ensure price stability, the nominal interest

rate needs to respond more than one-for-one to inflation in the long run. Indeed, Bullard

and Mitra (2002), Woodford (2003), and Lubik and Marzo (2007) show that the Generalized

Taylor Principle is a necessary and sufficient condition for a unique stable equilibrium in

simple sticky price models when the central bank follows a Taylor rule, that is, a rule where

the nominal interest rate responds to both inflation and output.1

While these results are highly influential, most sticky price models that are taken to the

data now routinely feature various propagation mechanisms such as habit formation and price

indexation, following Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters

(2007). To the best of our knowledge, the determinacy properties of such models have been

studied only numerically.

We contribute to the literature by showing analytically that the Generalized Taylor Princi-

ple is a necessary and (under some extra mild restrictions) sufficient condition for determinacy

in a more general environment than considered by previous studies. In particular, we consider

a sticky price model with non-zero steady-state inflation, dynamic partial price indexation,

and habit formation in consumption and in which the central bank follows a Taylor rule where

the nominal interest rate is determined by its lag and partially responds to both (current)

inflation and output.2 As a by-product of our analysis, we also characterize analytically the

full solution of the model when a unique equilibrium exists.

We find that habit formation in consumption and interest rate smoothing in the Taylor rule

does not affect the Generalized Taylor Principle while dynamic partial price indexation requires

monetary policy to respond to inflation and/or output more strongly to ensure determinacy.

This is because dynamic partial price indexation decreases the long-run trade-off between

inflation and output in the model while habit formation does not affect the long-run trade-off

at all. Moreover, interest rate smoothing does not affect the Generalized Taylor Principle as

it does not change the extent of long-run impact of interest rates on inflation.

Our results can be practically applied in likelihood-based estimation of monetary models

to impose parameter restrictions that lead to determinacy or indeterminacy separately. For

example, in Bhattarai, Lee, and Park (2013), we estimate a sticky price model under different

combinations of monetary and fiscal policy regimes and where each regime (including one

which features indeterminacy) is imposed by making use of the analytical boundary condition

1Carlstron, Fuerst, and Ghironi (2006) show that the Taylor principle is a necessary and sufficient condition
for determinacy in a two-sector model where the nominal interest rate responds only to inflation.

2To preserve analytical tractability, we do not allow for sticky wages or investment in the model.

2



derived here. In particular, having an analytical boundary greatly aids in making the posterior

simulation stable and helps substantially with convergence.

2 Model

The model is based on the prototypical New Keynesian set-up in Woodford (2003). The

detailed exposition of the model is in the appendix. Here, we present the log-linearized

equilibrium conditions and the monetary policy rule which are

(Yt − ηYt−1) = (EtYt+1 − ηYt)− (1− η) (Rt − Etπt+1) + dt, (1)

(πt − γπt−1) = β (Etπt+1 − γπt) + κ

[
ϕYt +

1

1− η
(Yt − ηYt−1)

]
+ ut, (2)

Rt = ρRRt−1 + (1− ρR) (φππt + φY Yt) + εR,t, (3)

where Y is output, π is inflation, and R is the nominal interest rate.3 The parameter 0 < η < 1

governs habit formation, 0 < γ < 1 governs dynamic price indexation, 0 < β < 1 is the

discount factor, κ > 0 is a composite parameter that depends inversely on the extent of price

stickiness, and ϕ > 0 is the inverse of the Frisch elasticity of labor supply. The model is

therefore a generalization of the text-book, purely forward looking New Keynesian model. In

particular, habit formation introduces persistence in the “IS” equation (1) while dynamic price

indexation introduces persistence in the “Phillips curve” (2). Finally, the Taylor rule (3) takes

a standard form with interest rate smoothing and has the smoothing parameter 0 < ρR < 1

and feedback parameters φπ ≥ 0 and φY ≥ 0 on inflation and output, respectively.4

The exogenous shock dt is a normalized preference shock and ut is a normalized markup

shock. We assume that they evolve according to an AR(1) process as follows

dt = ρddt−1 + εd,t,

ut = ρuut−1 + εu,t,

where εd,t and εu,t are i.i.d. and have finite mean and variance. The shock εR,t, which is

also i.i.d. and has finite mean and variance, captures an unanticipated deviation of monetary

policy from the Taylor rule. Since stationary shocks do not matter for determinacy of the

model equilibrium, we can drop dt, ut, and εR,t from the model in most of the derivations and

proofs below.

3Y , π, and R denote the log deviation of the variables from their respective state state value. To keep the
presentation uncluttered, we do not use a hat to denote log deviations. Note that in the appendix, variables
with no hats denote variables in levels, not log deviations.

4Clearly, when η, γ = 0 and ρR = 0, the model reduces to a completely forward-looking set-up.
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3 Results

We present our results in steps. We first show a condition on the roots of a fifth-order

characteristic equation for determinacy of the model. Then we derive a necessary condition

and a sufficient condition in terms of the model parameters for a unique stable equilibrium.

Finally, given that this condition is met, we analytically characterize the unique solution of

the model.

3.1 Condition on Characteristic Roots for Determinacy

To derive a condition for equilibrium determinacy of the model, we first collapse the three

equations (1)-(3) into a single equation for Yt and its leads and lags and then use the factor-

ization method with the lag operator.5 The method boils down to finding a condition about

the roots of a univariate characteristic equation. It is essentially equivalent to the standard

method that uses the eigenvalue decomposition, but turns out to be easier to apply in our

case since we can make use of some properties of a high-order polynomial.

Because of the complicated lag structure introduced by habit formation in consumption,

dynamic price indexation, and interest rate smoothing in monetary policy, we use equations

in different time periods to eliminate πt and Rt, and their leads and lags. After a series of

algebraic operations, we obtain

(
L−5 + a4L

−4 + a3L
−3 + a2L

−2 + a1L
−1 + a0

)
Et−1Yt−2 = Et−1wt−1, (4)

where L is the lag operator,

wt−1 = β−1 (ρd − ρR) (ρd − γ) (1− βρd) dt−1 − β−1 [(1− ρR)φπ + ρR − ρu] (1− η) ρ2uut−1,

and

a4 =−
[
1 + β−1 + (η + γ + ρR) + (1− η)κβ−1

((
ϕ+

1

1− η

)
+ (1− ρR)φY κ

−1β

)]
a3 =β−1 + (η + γ + ρR)

(
1 + β−1

)
+ (ηγ + ηρR + γρR)

+ (1− η) (1− ρR)κβ−1

 φπ

(
ϕ+ 1

1−η

)
+ (1 + βγ)φY κ

−1

+ ρR
1−ρR

(
ϕ+ 1

1−η

)
+ 1

1−ρR

(
η

1−η

)  ,
a2 =−

[
(η + γ + ρR) β−1 + (ηγ + ηρR + γρR) (1 + β−1) + ηγρR

+ (1− η) (1− ρR)κβ−1
(
φπ

(
η

1−η

)
+ φY κ

−1γ + ρR
1−ρR

(
η

1−η

)) ] ,
5See Sargent (1987) or Hamilton (1994) for a detailed presentation of the factorization method.
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a1 =ηγβ−1 + ρRβ
−1 (η + γ + ηγ + βηγ) ,

a0 =− ηγρRβ−1.

Note that a4, a2, a0 < 0 and a3, a1 > 0.6

Let λ1, λ2, λ3, λ4 and λ5 be the five roots of the characteristic equation for the left hand

side of (4),

f (z) ≡ z5 + a4z
4 + a3z

3 + a2z
2 + a1z + a0 = 0, (5)

where |λ1| ≤ |λ2| ≤ |λ3| ≤ |λ4| ≤ |λ5|. Then, (4) can be written as

(1− λ1L) (1− λ2L) (1− λ3L)
(
L−1 − λ4

) (
L−1 − λ5

)
Et−1Yt+1 = Et−1wt−1. (6)

The condition for (4) to have a unique stable solution for Et−1Yt+1 is therefore that f (z) = 0

has three roots inside the unit circle and two roots outside the unit circle

|λ1| ≤ |λ2| ≤ |λ3| < 1 < |λ4| ≤ |λ5| . (7)

Under the condition (7), we can derive a unique solution for Et−1Yt+1 and use it to solve for

Et−1Yt, which can be used in turn to solve for endogenous variables such as Yt, πt, and Rt. If

there are more than three roots inside the unit circle, (4) is not determinate and has multiple

solutions of Et−1Yt+1, which results in equilibrium indeterminacy. If there are less than three

roots inside the unit circle, there does not exist any stable solution of Et−1Yt+1.

3.2 Generalized Taylor Principle

We now translate the condition (7) for equilibrium determinacy into a condition with respect

to the parameters of the model. We first derive a necessary condition, which turns out to

be the Generalized Taylor Principle, and then show that this is also sufficient for equilibrium

determinacy under a weak additional assumption.

3.2.1 Necessary Condition for Determinacy

A necessary condition for (7) is f (1) > 0 since f (z) is a fifth-order polynomial and f (z) < 0

for real z ≤ 0. Otherwise, there exist no root, two roots or four roots inside the unit circle.

6The detailed derivation is presented in the appendix. Note that L−1 is the forward operator. The lag
operator and forward operator apply to the time subscript of a variable but not on the time period in which
the expectation of the same variable is taken.
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Note that

f (1) = 1 + a4 + a3 + a2 + a1 + a0

= (1− η) (1− ρR)κβ−1 (ϕ+ 1)

[
φπ +

(1− γ) (1− β)

κ (ϕ+ 1)
φY − 1

]
,

and therefore f (1) > 0 is equivalent to

φπ +
(1− γ) (1− β)

κ (ϕ+ 1)
φY > 1. (8)

3.2.2 Sufficient Condition for Determinacy

It turns out that a mild restriction on parameters is needed for (8) to be sufficient for equilib-

rium determinacy. There exist some parameter values for which (8) is met but the model does

not have a unique stable equilibrium.7 We instead derive a sufficient condition for equilibrium

determinacy and then show that this sufficient condition is only slightly stronger than (8).

Using an exhaustive grid search on the parameter space, we find that the difference between

the two conditions is practically unimportant.

Let g (z) = a3z
3. A stronger version of the Rouché Theorem by Glicksberg (1976) states

that if the strict inequality

|f (z)− g (z)| < |f (z)|+ |g (z)| (9)

holds on the unit circle C = {z : |z| = 1}, and f (z) and g (z) have no zeros on C, then

f (z) = 0 and g (z) = 0 have the same number of roots inside C.8 Here, each root is counted

as many times as its multiplicity.

Choose z ∈ C. Then there exists ω ∈ [0, 2π] such that z = eiω = cos (ω) + i sin (ω) and it

follows that

|f (z)− g (z)| =
∣∣ei5ω + a4e

i4ω + a2e
i2ω + a1e

iω + a0
∣∣

=
∣∣e−i3ω∣∣ ∣∣ei5ω + a4e

i4ω + a2e
i2ω + a1e

iω + a0
∣∣

=

{
[(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω)]2

+ [(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω)]2

}1/2

,

7These parameter values are practically not relevant as we discuss in detail later. Moreover, numerically,
we find that they lead to an explosive solution.

8While f and g are real-valued, we extend the domain of f and g to include all the complex numbers for
the proof. Note however that the roots of f and g with the extended domain are the same as the roots of f
and g with the original domain.
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and

|f (z)|+ |g (z)| =
∣∣a3ei3ω∣∣+

∣∣ei5ω + a4e
i4ω + a3e

i3ω + a2e
i2ω + a1e

iω + a0
∣∣

= a3 +
∣∣e−i3ω∣∣ ∣∣ei5ω + a4e

i4ω + a3e
i3ω + a2e

i2ω + a1e
iω + a0

∣∣
= a3 +

{
[(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + a3]

2

+ [(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω)]2

}1/2

.

First suppose that

(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω) 6= 0.

Then f (z) 6= 0. Now define

h (µ, z) ≡ µa3 +

{
[(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + µa3]

2

+ [(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω)]2

}1/2

,

for µ ∈ [0, 1]. Observe that

∂h (µ, z)

∂µ
=

[
1 +

(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + µa3
h (µ, z)− µa3

]
a3 > 0,

since a3 > 0 and

0 <

∣∣∣∣(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + µa3
h (µ, z)− µa3

∣∣∣∣ < 1.

Therefore, h (µ, z) is strictly increasing in µ over [0, 1], which implies that the inequality (9)

holds since h (0, z) = |f (z)− g (z)| and h (1, z) = |f (z)|+ |g (z)|.
Now suppose that

(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω) = 0. (10)

Then we assume that

(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + a3 > 0. (11)

It follows that since a3 > 0, the inequality (9) holds. Also, under this assumption, f (z) 6= 0.

It is obvious that g (z) does not have zeros on C. Therefore, according to the stronger

version of the Rouché Theorem, f (z) = 0 has exactly three roots inside the unit circle as

g (z) = 0 has three roots inside the unit circle. This concludes the proof that the condition
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that (11) holds for any ω satisfying (10) is sufficient for equilibrium determinacy. Note that

(11) does not have to hold for ω that does not satisfy (10).

Let us denote this sufficient condition by [(10) ⇒ (11)]. Note that there is the following

relationship between the conditions found so far

[(10)⇒ (11)]⇒ (7)⇒ (8),

where (7) is the necessary and sufficient condition for equilibrium determinacy.9

We now summarize our main result in the following proposition.

Proposition (The Generalized Taylor Principle). Under the standard assumption on the

domain of the parameters, a necessary condition for equilibrium determinacy of the model

(1)-(3) is

φπ +
(1− γ) (1− β)

κ (ϕ+ 1)
φY > 1. (12)

For any ω ∈ [0, 2π] such that

(1− a1) sin (2ω) + (a4 − a2) sin (ω)− a0 sin (3ω) = 0, (13)

assume that

(1 + a1) cos (2ω) + (a4 + a2) cos (ω) + a0 cos (3ω) + a3 > 0. (14)

Then the condition (12) is both necessary and sufficient for equilibrium determinacy.

It is easy to show that when η = 0, γ = 0, and ρR = 0, that is, when the model (1)-(3) is

purely forward-looking, the sufficient condition [(13) ⇒ (14)] is equivalent to the necessary

condition (12). That is, (12) is necessary and sufficient.

In general, the sufficient condition [(13)⇒ (14)] is only slightly stronger than the necessary

condition (12). Using an exhaustive grid search, we find that [(13) ⇒ (14)] is practically

equivalent to (12) in that those parameter values that meet (12) but not [(13)⇒ (14)] are not

relevant. In particular, when a condition that β is greater than either of η, γ, or ρR, which

is not restrictive at all, is further assumed, (12) is found to be necessary and sufficient for

equilibrium determinacy.10

9We can derive a sufficient condition that f(z) = 0 has only one root or five roots inside the unit circle
by defining g(z) = a1z or g(z) = z5, respectively. The sufficient conditions are mutually exclusive of each
other and also with [(10) ⇒ (11)]. A parameter value that satisfies either of these sufficient conditions is an
example of the discrepancy between [(10) ⇒ (11)] and (8). In an exhaustive grid search, we find that there
are no parameter values under (8) that produce five roots inside the unit circle. See Section 3.2.4 for details.

10We discuss the relationship between the sufficient condition [(13) ⇒ (14)] and the necessary condition
(12) and the grid search in Section 3.2.4.
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3.2.3 Economic Intuition

Economic intuition implied by the condition (12) in the proposition above is well known.

Suppose that the endogenous variables are stable. Then, the Phillips curve (2) implies the

following long-run relationship between inflation and output

dY =
(1− γ) (1− β)

κ (ϕ+ 1)
dπ, (15)

where dπ and dY are the sizes of a permanent change in inflation and output, respectively.

Combining this with the long-run relationship implied by the Taylor rule (3) leads to

dR =

[
φπ +

(1− γ) (1− β)

κ (ϕ+ 1)
φY

]
dπ, (16)

where dR is the size of a permanent change in the nominal interest rate.11 Note that the

condition (12) is exactly given by the term in the brackets in (16) being greater than 1 and

implies that when it is fulfilled, the nominal interest rate reacts to a rise in inflation by more

than one-for-one in the long run. Thus, the real interest rate eventually rises when inflation

rises, which works to counteract the increase in inflation and stabilizes the economy. This

property is referred to as the Generalized Taylor Principle in the literature. Therefore, our

main result is indeed that the Generalized Taylor Principle (12) is both necessary and sufficient

for the existence of a unique stable equilibrium in our model except for some parameter values

that are ruled out by the sufficient condition [(13)⇒ (14)].

Moreover, note that the habit formation parameter η does not directly influence condition

(12) since it does not affect the long-term inflation and output gap trade-off in the model via

(2). Exactly for this reason, η does not appear in (15). Our results overall generalize those

in Bullard and Mitra (2002), Woodford (2003), and Lubik and Marzo (2007), who consider

a purely forward-looking New Keynesian model. When γ = 0, (12) indeed simplifies to

the condition for a unique equilibrium shown in these papers. With partial dynamic price

indexation, that is 0 < γ < 1, our proposition shows that ceteris paribus, the Taylor rule

feedback coefficients φπ and/or φY have to be larger to ensure a determinate equilibrium.

This is because dynamic inflation indexation reduces the long-run trade-off between inflation

and output in the model, as shown clearly by (15).12

11Note that the interest rate smoothing parameter does not appear since we consider permanent changes.
12In fact, if one were to allow for complete price indexation, then the long-run trade-off between inflation

and output would disappear completely, as discussed in Woodford (2003). In such a case, the condition for
determinacy would simply be φπ > 1. Note that even with non-zero steady-state inflation, unlike in Coibion
and Gorodnichenko (2011), the Generalized Taylor Principle is necessary and sufficient to ensure determinacy
because we allow for partial dynamic price indexation as well as partial indexation to steady-state inflation.
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3.2.4 The Sufficient Condition and the Generalized Taylor Principle

Using an exhaustive grid search on the parameter space, we find that the sufficient condition

[(13)⇒ (14)] is practically equivalent to the Generalized Taylor Principle (12).13 That is, for

most of the parameter values, the two conditions are met simultaneously. Note that (13) can

be rewritten as

−4a0 cos2 (ω) + 2 (1− a1) cos (ω) + a4 − a2 + a0 = 0, (17)

for ω such that sin (ω) 6= 0. In most of the cases, there does not exist any ω that invokes

(17) since the quadratic equation in terms of cos (ω) does not have a real root on [0, 1]. Even

though there exists such ω solving (17), (14) is often true under (12). Also, for the values of

ω such that sin (ω) = 0, (14) always holds given (12).

Next, those parameter values that satisfy (12) but not [(13) ⇒ (14)] are not practically

relevant as they are quite extreme and implausible. In particular, using the grid search we

find that (12) is necessary and sufficient under an extra condition that β > η, γ, or ρR. This

extra condition rules out these irrelevant and extreme parameter values.

In addition, we note that in the grid search, we do not find any parameter values that meet

(12) but produce multiple stable equilibria. So we conjecture that equilibrium indeterminacy

is ruled out under (12). In particular, parameter values with β < η, γ and ρR that are

sometimes found to violate the sufficient condition [(13)⇒ (14)] while satisfying (12) generate

an explosive equilibrium. Our conjecture is that such parameter values make the model

dynamics too persistent, leading to an explosive solution, and that [(13) ⇒ (14)] rules such

solution out.

Lastly, using the grid search, we find [(13) ⇒ (14)] to be necessary and sufficient for

equilibrium determinacy generally. That is, any parameter values that result in equilibrium

determinacy are found to satisfy [(13)⇒ (14)].

3.3 Model Solution

Finally we present the complete solution to the model under equilibrium determinacy.14 We

can rewrite (6) as

(
L−1 − λ4

) (
L−1 − λ5

)
Et−1 [Yt+1 − (λ1 + λ2 + λ3)Yt + (λ1λ2 + λ1λ3 + λ2λ3)Yt−1

− (λ1λ2λ3)Yt−2] = Et−1wt−1,

13We provide technical details of the grid search in the appendix.
14For the detailed derivation, see the appendix.
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which is solved as

Et−1Yt+1 = (λ1 + λ2 + λ3)Yt − (λ1λ2 + λ1λ3 + λ2λ3)Yt−1 + (λ1λ2λ3)Yt−2 (18)

+
(ρd − ρR) (ρd − γ) (1− βρd)

β (λ4 − ρd) (λ5 − ρd)
dt−1 −

[(1− ρR)φπ + ρR − ρu] (1− η) ρ2u
β (λ4 − ρu) (λ5 − ρu)

ut−1.

Note that εR,t−1 does not appear in the solution of Et−1Yt+1 since it is independent over time.

The two-step ahead expectation of output Et−1Yt+1 is uniquely determined and stable.

We can further find a unique solution for Et−1Yt and finally Yt, πt, and Rt using (18). The

solution for Yt is

Yt =
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0ΨY,−1 + Φ̃Y,−1

)
Yt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0Ψπ,−1 + Φ̃π,−1

)
πt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0ΨR,−1 + Φ̃R,−1

)
Rt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0Ψd,0 + Φ̃d,0

)
dt

+
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0Ψu,0 + Φ̃u,0

)
ut

+
(

Φ̃Y,0 − Φ̃π,0Ψ
−1
π,0ΨY,0

)−1 (
Φ̃π,0Ψ

−1
π,0ΨεR,0 + Φ̃εR,0

)
εR,t,

where

Φ̃Y,0 = Ψ−1
π,0

[
ΨY,0Φ

−1
Y,1ΦY,0 + ΨY,−1 + ΨR,−1 (1− ρR)φY

]
+ κβ−1

(
ϕ+

1

1− η

)
,

Φ̃π,0 = β−1 (1 + βγ)−Ψ−1
π,0

(
ΨY,0Φ

−1
Y,1Φπ,0 + Ψπ,−1 + ΨR,−1 (1− ρR)φπ

)
,

Φ̃Y,−1 = κβ−1

(
η

1− η

)
−Ψ−1

π,0ΨY,0Φ
−1
Y,1ΦY,−1,

Φ̃π,−1 = −β−1γ −Ψ−1
π,0ΨY,0Φ

−1
Y,1Φπ,−1,

Φ̃R,−1 = −Ψ−1
π,0ΨR,−1ρR,

Φ̃d,0 = −Ψ−1
π,0

(
ΨY,0Φ

−1
Y,1Φd,0 + Ψd,0ρd

)
,

Φ̃u,0 = −β−1 −Ψ−1
π,0

(
ΨY,0Φ

−1
Y,1Φu,0 + Ψu,0ρu

)
,

Φ̃εR,0 = −Ψ−1
π,0ΨR,−1,

and

Ψπ,0 = Φ−1
Y,1Φπ,0 − (1− η)

[
(1− ρR)φπ − β−1 (1 + βγ)

]
,
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ΨY,0 = 1− Φ−1
Y,1ΦY,0 + η + (1− η)

[
(1− ρR)φY + κβ−1

(
ϕ+

1

1− η

)]
,

ΨY,−1 = −η − Φ−1
Y,1ΦY,−1 − κβ−1η,

Ψπ,−1 = −Φ−1
Y,1Φπ,−1 + (1− η) β−1γ,

ΨR,−1 = (1− η) ρR,

Ψd,0 = −Φ−1
Y,1Φd,0 − 1,

Ψu,0 = −Φ−1
Y,1Φu,0 + (1− η) β−1,

ΨεR,0 = (1− η) ,

and

ΦY,1 =1− (λ1 + λ2 + λ3) + η + ρR + (1− η)

[
(1− ρR)φY + κβ−1

(
ϕ+

1

1− η

)]
,

ΦY,0 =η + ρR − (λ1λ2 + λ1λ3 + λ2λ3) + ρRη + (1− η) (1− ρR)φπκβ
−1

(
ϕ+

1

1− η

)
− (1− η)

[
β−2 (1 + βγ)κ

(
ϕ+

1

1− η

)
− κβ−1

(
η

1− η

)]
+ (1− η) ρRκβ

−1

(
ϕ+

1

1− η

)
,

Φπ,0 = (1− η) β−1
[
β−1 (1 + βγ)2 − γ

]
− (1− η) β−1 (1 + βγ) ((1− ρR)φπ + ρR) ,

ΦY,−1 = (λ1λ2λ3)− ρRη − (1− η) (1− ρR)φπκβ
−1

(
η

1− η

)
+ (1− η) β−2 (1 + βγ)κ

(
η

1− η

)
− (1− η) ρRκβ

−1

(
η

1− η

)
,

Φπ,−1 = (1− η) (1− ρR)φπβ
−1γ − (1− η) β−2γ (1 + βγ) + (1− η) ρRβ

−1γ,

Φd,0 = (ρd − ρR)

(
1 +

(ρd − γ) (1− βρd)
β (λ4 − ρd) (λ5 − ρd)

)
,

Φu,0 = (1− η) (1− ρR) β−1φπ − (1− η) β−1
[
ρu + β−1 (1 + βγ)

]
+ (1− η) ρRβ

−1

− [(1− ρR)φπ + ρR − ρu] (1− η) ρ2u
β (λ4 − ρu) (λ5 − ρu)

.

Inflation πt is solved for as

πt =Ψ−1
π,0ΨY,0Yt + Ψ−1

π,0ΨY,−1Yt−1 + Ψ−1
π,0Ψπ,−1πt−1 + Ψ−1

π,0ΨR,−1Rt−1

+ Ψ−1
π,0Ψd,0dt + Ψ−1

π,0Ψu,0ut + Ψ−1
π,0ΨεR,0εR,t,

which can be further solved to remove Yt on the right hand side. The interest rate Rt is then

simply determined by the Taylor rule (3).

12



4 Conclusion

We show analytically that the generalized Taylor Principle, under which the nominal interest

rate reacts more than one-for-one to inflation in the long-run, is a necessary and sufficient

condition for determinacy in a sticky price model with non-zero steady-state inflation, partial

dynamic price indexation, and habit formation in consumption.
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Appendix

A Model

A.1 Households

There is a continuum of households in the unit interval. Each household specializes in the supply of a particular

type of labor. A household that supplies labor of type-j maximizes the utility function:

E0


∞∑
t=0

βtδt

log
(
Cjt − ηCt−1

)
−

(
Hj
t

)1+ϕ
1 + ϕ


 ,

where Cjt is consumption of household j, Ct is aggregate consumption, and Hj
t denotes the hours of type-j

labor services. The parameters β, ϕ, and η are, respectively, the discount factor, the inverse of the (Frisch)

elasticity of labor supply, and the degree of external habit formation, while δt represents an intertemporal

preference shock that follows:

δt = δρδt−1 exp(εδ,t).

Household j’s flow budget constraint is:

PtC
j
t +Bjt + Et

[
Qt,t+1V

j
t+1

]
= Wt(j)H

j
t + V jt +Rt−1B

j
t−1 + Πt

where Pt is the price level, Bjt is the amount of one-period risk-less nominal bond held by household j, Rt is

the interest rate on the bond, Wt(j) is the competitive nominal wage rate for type-j labor, and Πt denotes

profits of intermediate firms. In addition to the government bond, households trade at time t one-period

state-contingent nominal securities V jt+1 at price Qt,t+1, and hence fully insure against idiosyncratic risk.

A.2 Firms

The final good Yt, which is consumed by the government and households, is produced by perfectly competitive

firms assembling intermediate goods, Yt(i), with the technology Yt =
(∫ 1

0
Yt(i)

θt−1
θt di

) θt
θt−1

, where θt de-

notes time-varying elasticity of substitution between intermediate goods that follows θt = θ̄1−ρθθρθt−1 exp(εθ,t)

with the steady-state value θ̄. The corresponding price index for the final consumption good is Pt =(∫ 1

0
Pt(i)

1−θtdi
) 1

1−θt
, where Pt(i) is the price of the intermediate good i. The optimal demand for Yt(i)

is given by Yt(i) = (Pt(i)/Pt)
−θt Yt.

Monopolistically competitive firms produce intermediate goods using the production function:

Yt(i) = Ht(i),

where Ht(i) denotes the hours of type-i labor employed by firm i. We do not include a productivity shock for

simplicity.

A firm resets its price optimally with probability 1 − α every period. Firms that do not optimize adjust
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their price according to the simple partial dynamic indexation rule:

Pt(i) = Pt−1(i)πγt−1π̄
1−γ ,

where γ measures the extent of indexation and π̄ is the steady-state value of the gross inflation rate πt ≡
Pt/Pt−1. All optimizing firms choose a common price P ∗t to maximize the present discounted value of future

profits:

Et

∞∑
k=0

αkQt,t+k

[
P ∗t Xt,k −

Wt+k(i)

At+k

]
Yt+k(i),

where

Xt,k ≡

{
(πtπt+1 · · ·πt+k−1)

γ
π̄(1−γ)k, k ≥ 1

1, k = 0
.

A.3 Monetary policy

The central bank sets the nominal interest rate according to a Taylor-type rule:

Rt
R̄

=

(
Rt−1
R̄

)ρR [(πt
π̄

)φπ
(Yt)

φY

]1−ρR
exp (εR,t) , (19)

which features smoothing through the dependence on the lag and systematic responses of interest rates to

output and deviation of inflation from the steady-state π̄. The steady-state value of Rt is R̄ and εR,t is the

non-systematic monetary policy shock that is i.i.d.

A.4 Equilibrium

Equilibrium is characterized by the prices and quantities that satisfy the households’ and firms’ optimality

conditions, the monetary policy rule, and the clearing conditions for the product, labor, and asset markets:∫ 1

0

Cjt dj = Yt, Ht(j) = Hj
t ,

∫ 1

0

V jt dj=0, and

∫ 1

0

Bjt dj=Bt = 0.

Note that Cjt = Ct due to the complete market assumption.

We use approximation methods to solve for equilibrium: we obtain a first-order approximation to the

equilibrium conditions around the non-stochastic steady state. The approximation leads to the equations in

the text. We reparameterize the shocks so that

dt = (1− ρδ) δt,

ut = −κ 1

θ̄ − 1
θt,

where κ = (1− αβ) (1− α) / [α (1 + ϕθ)].
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B Derivations

B.1 Derivation of the Characteristic Equation

We collapse the following three equations into a single equation with respect to Yt and its leads and lags

(Yt − ηYt−1) = (EtYt+1 − ηYt)− (1− η) (Rt − Etπt+1) + dt, (20)

(πt − γπt−1) = β (Etπt+1 − γπt) + κ

[
ϕYt +

1

1− η
(Yt − ηYt−1)

]
+ ut, (21)

Rt = ρRRt−1 + (1− ρR) [φππt + φY Yt] + εR,t. (22)

First, push (20) one period ahead, take Et, and subtract (20) multiplied by ρR from it as

(EtYt+1 − ηYt)− ρR (Yt − ηYt−1) = (EtYt+2 − ηEtYt+1)− ρR (EtYt+1 − ηYt)

− (1− η) (EtRt+1 − ρRRt) + (1− η) (Etπt+2 − ρREtπt+1) + (Etdt+1 − ρRdt)

= (EtYt+2 − ηEtYt+1)− ρR (EtYt+1 − ηYt)

− (1− η) (1− ρR) (φπEtπt+1 + φY EtYt+1)

+ (1− η) (Etπt+2 − ρREtπt+1) + (ρd − ρR) dt, (23)

where we used (22) to eliminate Rt. Now, lag (23) one period, multiply γ to it, and subtract it from the

expectation of (23) given information in period t− 1 as

(Et−1Yt+1 − ηEt−1Yt)− ρR (Et−1Yt − ηYt−1)− γ [(Et−1Yt − ηYt−1)− ρR (Yt−1 − ηYt−2)]

= (Et−1Yt+2 − ηEt−1Yt+1)− ρR (Et−1Yt+1 − ηEt−1Yt)− γ [(Et−1Yt+1 − ηEt−1Yt)− ρR (Et−1Yt − ηYt−1)]

− (1− η) (1− ρR)φπ (Et−1πt+1 − γEt−1πt)

− (1− η) (1− ρR)φY (Et−1Yt+1 − γEt−1Yt)

+ (1− η) [(Et−1πt+2 − γEt−1πt+1)− ρR (Et−1πt+1 − γEt−1πt)]

+ (ρd − ρR) (ρd − γ) dt−1. (24)

Then push (24) one period ahead, take Et−1, multiply β and subtract it from (24) to obtain

(Et−1Yt+1 − ηEt−1Yt)− ρR (Et−1Yt − ηYt−1)− γ [(Et−1Yt − ηYt−1)− ρR (Yt−1 − ηYt−2)]

− β {(Et−1Yt+2 − ηEt−1Yt+1)− ρR (Et−1Yt+1 − ηYt)− γ [(Et−1Yt+1 − ηEt−1Yt)− ρR (Et−1Yt − ηYt−1)]}

= (Et−1Yt+2 − ηEt−1Yt+1)− ρR (Et−1Yt+1 − ηEt−1Yt)− γ [(Et−1Yt+1 − ηEt−1Yt)− ρR (Et−1Yt − ηYt−1)]

− β {(Et−1Yt+3 − ηEt−1Yt+2)− ρR (Et−1Yt+2 − ηEt−1Yt+1)− γ [(Et−1Yt+2 − ηEt−1Yt+1)− ρR (Et−1Yt+1 − ηEt−1Yt)]}

− (1− η) (1− ρR)φπ [(Et−1πt+1 − γEt−1πt)− β (Et−1πt+2 − γEt−1πt+1)]

− (1− η) (1− ρR)φY [(Et−1Yt+1 − γEt−1Yt)− β (Et−1Yt+2 − γEt−1Yt+1)]

+ (1− η) [(Et−1πt+2 − γEt−1πt+1)− β (Et−1πt+3 − γEt−1πt+2)]

− (1− η) ρR [(Et−1πt+1 − γEt−1πt)− β (Et−1πt+2 − γEt−1πt+1)]

+ (ρd − ρR) (ρd − γ) (dt−1 − βEt−1dt) . (25)

17



But note that from (21),

(Et−1πt+1 − γEt−1πt)−β (Et−1πt+2 − γEt−1πt+1) = κ

[
ϕEt−1Yt+1 +

1

1− η
(Et−1Yt+1 − ηEt−1Yt)

]
+Et−1ut+1,

and

(Et−1πt+2 − γEt−1πt+1)−β (Et−1πt+3 − γEt−1πt+2) = κ

[
ϕEt−1Yt+2 +

1

1− η
(Et−1Yt+2 − ηEt−1Yt+1)

]
+Et−1ut+2,

which can be plugged into (25) to eliminate πt and its leads and lags. After arranging terms, we finally obtain

(
L−5 + a4L

−4 + a3L
−3 + a2L

−2 + a1L
−1 + a0

)
Et−1Yt−2 = Et−1wt−1,

where L is the lag operator,

wt−1 = β−1 (ρd − ρR) (ρd − γ) (1− βρd) dt−1 − β−1 [(1− ρR)φπ + ρR − ρu] (1− η) ρ2uut−1,

and

a4 =−
[
1 + β−1 + (η + γ + ρR) + (1− η)κβ−1

((
ϕ+

1

1− η

)
+ (1− ρR)φY κ

−1β

)]
a3 =β−1 + (η + γ + ρR)

(
1 + β−1

)
+ (ηγ + ηρR + γρR)

+ (1− η) (1− ρR)κβ−1

 φπ

(
ϕ+ 1

1−η

)
+ (1 + βγ)φY κ

−1

+ ρR
1−ρR

(
ϕ+ 1

1−η

)
+ 1

1−ρR

(
η

1−η

)  ,
a2 =−

[
(η + γ + ρR)β−1 + (ηγ + ηρR + γρR)

(
1 + β−1

)
+ ηγρR

+ (1− η) (1− ρR)κβ−1
(
φπ

(
η

1−η

)
+ φY κ

−1γ + ρR
1−ρR

(
η

1−η

)) ] ,
a1 =ηγβ−1 + ρRβ

−1 (η + γ + ηγ + βηγ) ,

a0 =− ηγρR.

B.2 Solution of (4) for Output Expectations

The expectational difference equation (4) can be written as

(1− λ1L) (1− λ2L) (1− λ3L)
(
L−1 − λ4

) (
L−1 − λ5

)
Et−1Yt+1 = Et−1wt−1,

where λi’s (i = 1, 2, 3, 4, 5) are the roots of the characteristic equation (4) and

|λ1| ≤ |λ2| ≤ |λ3| < 1 < |λ4| ≤ |λ5| .

Note that

(
L−1 − λ4

)
Et−1 [Yt+1 − (λ1 + λ2 + λ3)Yt + (λ1λ2 + λ1λ3 + λ2λ3)Yt−1 − (λ1λ2λ3)Yt−2] =

(
L−1 − λ5

)−1
Et−1wt−1

= −λ−15

∞∑
s=0

λ−s5 Et−1wt−1+s.
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Since

Et−1wt−1+s = β−1 (ρd − ρR) (ρd − γ) (1− βρd)Et−1dt−1+s − β−1 [(1− ρR)φπ + ρR − ρu] (1− η) ρ2uEt−1ut−1+s

= β−1 (ρd − ρR) (ρd − γ) (1− βρd) ρsddt−1 − β−1 [(1− ρR)φπ + ρR − ρu] (1− η) ρ2uρ
s
uut−1,

for s ≥ 1, it follows that

∞∑
s=0

λ−s5 Et−1wt−1+s

=β−1 (ρd − ρR) (ρd − γ) (1− βρd)
∞∑
s=0

(
λ−15 ρd

)s
dt−1 − β−1 [(1− ρR)φπ + ρR − ρu] (1− η) ρ2u

∞∑
s=0

(
λ−15 ρu

)s
ut−1

=
(ρd − ρR) (ρd − γ) (1− βρd)

β
(
1− λ−15 ρd

) dt−1 −
[(1− ρR)φπ + ρR − ρu] (1− η) ρ2u

β
(
1− λ−15 ρu

) ut−1,

and thus

(
L−1 − λ4

)
Et−1 [Yt+1 − (λ1 + λ2 + λ3)Yt + (λ1λ2 + λ1λ3 + λ2λ3)Yt−1 − (λ1λ2λ3)Yt−2]

= − (ρd − ρR) (ρd − γ) (1− βρd)
β (λ5 − ρd)

dt−1 +
[(1− ρR)φπ + ρR − ρu] (1− η) ρ2u

β (λ5 − ρu)
ut−1.

By inverting
(
L−1 − λ4

)
and solving the equation in the same way, we can show that

Et−1Yt+1 = (λ1 + λ2 + λ3)Et−1Yt − (λ1λ2 + λ1λ3 + λ2λ3)Yt−1 + (λ1λ2λ3)Yt−2 (26)

+ ξddt−1 + ξuut−1, (27)

where

ξd =
(ρd − ρR) (ρd − γ) (1− βρd)

β (λ4 − ρd) (λ5 − ρd)
, and ξu = − [(1− ρR)φπ + ρR − ρu] (1− η) ρ2u

β (λ4 − ρu) (λ5 − ρu)
.

B.3 Solution to the Model

Now we use the solution of two-step ahead expected output (26) and solve the model for all the endogenous

variables Yt, πt, and Rt. First, solve (21) for Etπt+1 and Etπt+2 as

Etπt+1 = β−1 (1 + βγ)πt − β−1γπt−1 − β−1κ
[(
ϕ+

1

1− η

)
Yt −

η

1− η
Yt−1

]
− ut, (28)

and

Etπt+2 =β−1 (1 + βγ)Etπt+1 − β−1γπt − β−1κ
[(
ϕ+

1

1− η

)
EtYt+1 −

η

1− η
Yt

]
− Etut+1

=
[
β−2 (1 + βγ)

2 − β−1γ
]
πt − β−2 (1 + βγ) γπt−1

− β−1κ
(
ϕ+

1

1− η

)
EtYt+1 +

[
−β−2 (1 + βγ)κ

(
ϕ+

1

1− η

)
+ β−1κ

(
η

1− η

)]
Yt

+ β−2 (1 + βγ)κ

(
η

1− η

)
Yt−1 − β−1

[
ρu + β−1 (1 + βγ)

]
ut.
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Plug the solution for EtYt+2, Etπt+1 and Etπt+2 into (23) to obtain

ΦY,1EtYt+1 = ΦY,0Yt + Φπ,0πt + ΦY,−1Yt−1 + Φπ,−1πt−1 + Φd,0dt + Φu,0ut, (29)

where

ΦY,1 =1− (λ1 + λ2 + λ3) + η + ρR + (1− η)

[
(1− ρR)φY + κβ−1

(
ϕ+

1

1− η

)]
,

ΦY,0 =η + ρR − (λ1λ2 + λ1λ3 + λ2λ3) + ρRη + (1− η) (1− ρR)φπκβ
−1
(
ϕ+

1

1− η

)
− (1− η)

[
β−2 (1 + βγ)κ

(
ϕ+

1

1− η

)
− κβ−1

(
η

1− η

)]
+ (1− η) ρRκβ

−1
(
ϕ+

1

1− η

)
,

Φπ,0 = (1− η)β−1
[
β−1 (1 + βγ)

2 − γ
]
− (1− η)β−1 (1 + βγ) ((1− ρR)φπ + ρR) ,

ΦY,−1 = (λ1λ2λ3)− ρRη − (1− η) (1− ρR)φπκβ
−1
(

η

1− η

)
+ (1− η)β−2 (1 + βγ)κ

(
η

1− η

)
− (1− η) ρRκβ

−1
(

η

1− η

)
,

Φπ,−1 = (1− η) (1− ρR)φπβ
−1γ − (1− η)β−2γ (1 + βγ) + (1− η) ρRβ

−1γ,

Φd,0 = (ρd − ρR)

(
1 +

(ρd − γ) (1− βρd)
β (λ4 − ρd) (λ5 − ρd)

)
,

Φu,0 = (1− η) (1− ρR)β−1φπ − (1− η)β−1
[
ρu + β−1 (1 + βγ)

]
+ (1− η) ρRβ

−1

− [(1− ρR)φπ + ρR − ρu] (1− η) ρ2u
β (λ4 − ρu) (λ5 − ρu)

.

Now eliminate EtYt+1 and Etπt+1 from (20) using the solution for EtYt+1 in (29) and Etπt+1 in (28) and

eliminate Rt using (22) to get

Ψπ,0πt = ΨY,0Yt + ΨY,−1Yt−1 + Ψπ,−1πt−1 + ΨR,−1Rt−1 + Ψd,0dt + Ψu,0ut + ΨεR,0εR,t, (30)

where

Ψπ,0 = Φ−1Y,1Φπ,0 − (1− η)
[
(1− ρR)φπ − β−1 (1 + βγ)

]
,

ΨY,0 = 1− Φ−1Y,1ΦY,0 + η + (1− η)

[
(1− ρR)φY + κβ−1

(
ϕ+

1

1− η

)]
,

ΨY,−1 = −η − Φ−1Y,1ΦY,−1 − κβ−1η,

Ψπ,−1 = −Φ−1Y,1Φπ,−1 + (1− η)β−1γ,

ΨR,−1 = (1− η) ρR,

Ψd,0 = −Φ−1Y,1Φd,0 − 1,

Ψu,0 = −Φ−1Y,1Φu,0 + (1− η)β−1,

ΨεR,0 = (1− η) .

From (30), we get another expression for Etπt+1. After substituting (29) for EtYt+1 in this expression for

Etπt+1, equate it with (28) to obtain

Φ̃Y,0Yt = Φ̃π,0πt + Φ̃Y,−1Yt−1 + Φ̃π,−1πt−1 + Φ̃R,−1Rt−1 + Φ̃d,0dt + Φ̃u,0ut + Φ̃εR,0εR,t,
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where

Φ̃Y,0 = Ψ−1π,0

[
ΨY,0Φ−1Y,1ΦY,0 + ΨY,−1 + ΨR,−1 (1− ρR)φY

]
+ κβ−1

(
ϕ+

1

1− η

)
,

Φ̃π,0 = β−1 (1 + βγ)−Ψ−1π,0

(
ΨY,0Φ−1Y,1Φπ,0 + Ψπ,−1 + ΨR,−1 (1− ρR)φπ

)
,

Φ̃Y,−1 = κβ−1
(

η

1− η

)
−Ψ−1π,0ΨY,0Φ−1Y,1ΦY,−1,

Φ̃π,−1 = −β−1γ −Ψ−1π,0ΨY,0Φ−1Y,1Φπ,−1,

Φ̃R,−1 = −Ψ−1π,0ΨR,−1ρR,

Φ̃d,0 = −Ψ−1π,0

(
ΨY,0Φ−1Y,1Φd,0 + Ψd,0ρd

)
,

Φ̃u,0 = −β−1 −Ψ−1π,0

(
ΨY,0Φ−1Y,1Φu,0 + Ψu,0ρu

)
,

Φ̃εR,0 = −Ψ−1π,0ΨR,−1.

Finally, using (30), we can eliminate πt and solve for Yt as

Yt =
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0ΨY,−1 + Φ̃Y,−1

)
Yt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0Ψπ,−1 + Φ̃π,−1

)
πt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0ΨR,−1 + Φ̃R,−1

)
Rt−1

+
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0Ψd,0 + Φ̃d,0

)
dt

+
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0Ψu,0 + Φ̃u,0

)
ut

+
(

Φ̃Y,0 − Φ̃π,0Ψ−1π,0ΨY,0

)−1 (
Φ̃π,0Ψ−1π,0ΨεR,0 + Φ̃εR,0

)
εR,t.

The solution for πt can be obtained from (30). The solution for Rt is simply determined by the Taylor rule

(22).

B.4 Grid Search on the Parameter Space

We do an exhaustive grid search on the parameter space to figure out the discrepancy between the sufficient

condition [(13) ⇒ (14)] and the Generalized Taylor Principle (12). The following sets of values for each

parameter are selected:

β ∈ {0.05, 0.10, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.999},

α ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99},

ϕ ∈ {0.5, 1, 2, 4, 6},

η ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.994},

γ ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.995, 1},

φY ∈ {0.1, 0.2, 0.3, 0.5, 1, 2},

ρd ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99},

ρu ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.99},
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ρR ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 0.99, 0.996}.

For φπ, we use the set of values

φ∗π + {0.01, 0.1, 0.2, 0.3, 0.5, 1, 2, 4, 6, 9},

where

φ∗π = 1− (1− γ) (1− β)

κ (ϕ+ 1)
φY

is the boundary value of φπ for determinacy given values for the other parameters. With firm-specific labor,

the Phillips curve slope parameter is computed as

κ =
(1− αβ)(1− α)

α(1 + ϕθ)
,

where θ = 8 is the steady state value of the elasticity of substitution between differentiated goods. For each

parameter value, we check 1) how many roots f(z) = 0 has inside the unit circle; 2) whether there exists

ω ∈ [0, 2π] that solves (17) and, if yes, whether (14) is met; and 3) whether the Generalized Taylor Principle

(12) is satisfied.
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