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1 Introduction

This paper has several aims. First, it contributes to an emerging concern on relating eco-

nomic fundamentals to asset prices. For instance, many authors have discussed whether

the housing boom that occurred before the 2008 crisis was due to “over-pricing”.1 Ob-

viously, the level of the “fundamental house price” (FHP) needs to be determined before

the degree of “over-pricing” or “under-pricing” can be found. The potential issue of “mis-

pricing” in the housing market is also related to the debate on the role of the central bank.

Some authors argue that the central banks should act proactively once the asset prices

(both of stocks and of housing) deviate significantly from the levels considered to be con-

sistent with economic fundamentals.2 Even if everyone agreed to institute a “proactive”

central bank, there remains a gap to be filled through identifying “econometrically imple-

mentable” tests that define and detect “significant deviations” in asset prices. In other

words, an empirical determination of the FHP is central to both areas of debate. This

paper extends the literature by providing a simple theory of house price dynamics when

the housing market and the macroeconomy are driven solely by economic fundamentals.

This theory can then be used as a benchmark for detecting the “deviations” that are

potentially “mis-pricing”.

Similar attempts have been made previously. For instance, Malpezzi (1999) relates

the movement of house-price-to-income ratio to the house price dynamics and makes two

1The literature is too large to be reviewed here. Among others, see Sowell (2009) for a review of the

literature and related issues.
2For instance, the Economist magazine (2011) summarizes that, “Since the financial crisis in 2007 central

banks have expanded their remits, either at their own initiative or at governments’ behest, well beyond

conventional monetary policy. They have not only extended the usual limits of monetary policy by buying

government bonds and other assets... They are also taking on more responsibility for the supervision of

banks and the stability of financial systems.” See also Taylor (2009) for a related discussion.

Clearly, there are alternative views on the related issues and the discussion is still on-going.
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conjectures. First, the house-price-to-income ratio is a constant in the long run (this con-

jecture is hereafter denoted by M1 ). Second, house price changes do not directly depend

on price lag, but instead on the house-price-to-income ratio (in both the current period

and previous periods) in a format that exhibits certain features of an error-correction

model (this conjecture is hereafter denoted by M2 ). Malpezzi’s paper clearly addresses

the concerns of the general public in addition to those of official agents, as the house-

price-to-income ratio is often used as a measure of whether house prices have deviated

from “fundamental” prices. For instance, the Wall Street Journal (2011) comments that

“...For decades, price-to-income levels have moved in tandem, with a specific housing

market’s prices rising or falling in line with local residents’ incomes. Many economists

say that makes the price-to-income ratio a good gauge for determining whether housing

is undervalued or overvalued for a given market.” Regardless of whether all economists

would agree with this statement, it reflects the situation as perceived by the media. In a

research note of the Parliament of the United Kingdom, Keep (2012) comments that “The

ratio of house prices to income is a key indicator of the relative affordability of owner-

occupation.” A more systematic study of the relationship between house-price-to-income

ratio and movements in house price may thus be of value.

In contrast, Capozza et al. (2004) assert that house prices follow a second-order

difference equation without income explicitly appearing in the equation (this conjecture is

hereafter denoted by C1 ). Their simple and elegant model finds support from a dataset

with 62 metropolitan statistical areas (MSAs) in the United States from 1979 to 1995

(hereafter ). More recently, Glindro et al. (2011) find support for C1 from nine Asia-
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Pacific countries.3 Thus, some common patterns for house price dynamics seem to exist

across countries.

Note also that while Malpezzi (1999) includes the house-price-to-income ratio in the

empirical model, the model of Capozza et al (2004) only contains house price information.

These empirical models may thus represent different degrees of direct dependence of house

prices on income. There are, of course, other possible forms of error correction models for

house prices. For reasons of space, however, this paper focuses on building a simple model

to relate directly relate to these empirical models. More specifically, this paper addresses

the following questions arising from the two papers.

1. Malpezzi (1999) and Capozza et al. (2004), among others, provide empirical models

for the dynamics of house prices while leaving the theoretical side open. Is there a

way to “rationalize” these empirical models of house price dynamics in an equilibrium

setting with solid micro-foundation?

2. While these papers are innovative and insightful, the “error-correction structures”

in their models deviate from that in conventional error correction models (ECMs).

However, these models have achieved empirical successes. Can we provide a theoret-

ical justification for their abstraction of the dynamics of income in models of house

price?

3. Both Malpezzi (1999) and Capozza et al (2004) use MSA data from the U.S. with

almost identical sampling periods. Is it possible that there are some links between

3The nine countries are Australia, China, Hong Kong, Korea, Malaysia, New Zealand, Philippines,

Singapore and Thailand.
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the two models?

This paper takes the first step to address these questions. In particular, this paper

attempts to build a dynamic stochastic general equilibrium (DSGE) model in which both

house prices and aggregate output are derived endogenously. The house price dynamics

derived from this model can take a form that is similar either to (1) or to (2). In other

words, we can reconcile (M1, M2, C1) in an unifying framework. Thus, this paper also

establishes a strong link between the econometrics literature and the DSGE literature.4

It may be of interest independently because while error-correction models are often inter-

preted as evidence of “disequilibrium”, in this paper we derive an error-correction model

for house prices in an equilibrium setting.5

This paper also contributes to the recent macro-housing literature. Providing a com-

prehensive survey of this emerging literature is beyond the scope of this paper;6 instead,

a few contributions are highlighted. Greenwood and Hercowitz (1991) provides one of the

earliest studies of the different allocation of business and household capital in a dynamic,

general equilibrium setting. Jin and Zeng (2004) and Ortalo-Magne and Rady (2006),

among others, place emphasize on collateral constraints and how the endogeneity of the

house price provides feedback into the macroeconomy. Iacoviello (2005), Iacoviello and

Neri (2010), and Iacoviello and Pavan (2012), among others, concentrate on the quantita-

4 In some earlier literature, such as Kydland and Prescott (1996), DSGE is sometimes interpreted as a

substitute of econometrics. In the more recent literature, such as those surveyed by Fernandez-Villaverda

(2010), DSGE are often estimated with sophisticated econometrics techniques.
5 It is well known that the reduced form dynamics of the DSGE model can be summarized by a VAR

structure and co-integration test can be performed, as demonstrated by King et al, 1991; King, Plosser

and Rebelo, 2002, among others. To our knowledge, theoretically derive an error-correction structure and

examine the cointegration relationship among variables in a DSGE model is rare, and this paper takes a

preliminary step towards this direction.
6Among others, see Leung (2004), Van Nieuwerburgh (2012), for a review of the literature.
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tive aspect and include calibration to match different aspects of the U.S. housing market

and the macroeconomy. Ried and Uhlig (2009) build a two-sector DSGE model to nu-

merically mimic the house-price-to-GDP ratio and the stock-price-to-GDP ratio. Chen

et al (2012) study how house prices and mortgage premiums interact in a DSGE frame-

work. Clearly, it is important to know how far the observed variations in house prices

can be attributed to different effect and to design economic policies accordingly. However,

such models are typically technically involved and non-specialists may not be able to fully

understand the underlying mechanisms. On the applied theoretical front, Jin and Zeng

(2007) focus on the implications of different policies, given the collateral constraints. This

paper complements the efforts of these researchers by simplifying a standard DSGE model

and deriving the econometric implications of that model. In particular, it achieves several

goals: (a) it shows how house prices would evolve when driven purely by the aggregate

productivity shock, (b) it studies the stationarity of both income and house prices un-

der a general equilibrium setting, and (c) it theoretically studies the co-integration of the

two variables. These theoretical implications are clearly testable and hence provides a

benchmark for future work on both the empirical and the theoretical fronts.

The organization of this paper is straightforward. The following sections briefly review

the work of Malpezzi (1999) and Capozza et al (2004), and present the model and the

results. The final section provide some concluding remarks and all the proofs are presented

in the appendix.
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2 The Model

Before introducing the model formally,the formulation and results of Malpezzi (1999) and

Capozza et al (2004) are briefly reviewed. Malpezzi asserts that
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where  is the house price,  is the income,  is some long-run house-price-to-income

ratio,  is a vector of control variables, and  is the error term. According to (1), if the

house-price-to-income ratio is a constant 

=  for all period , then the change of house

price  will be driven merely by the control variables He finds empirical evidence from

133 MSAs from 1979 to 1996. Follow-up research mainly focus on M1 and the evidence

has been somewhat mixed.7

Capozza et al (2004) claim that house price dynamics can be summarized by the

following equation:

 = 1−1 + 2
¡
∗−1 − −1
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or  + 01−1 + 02−2 = 03
∗
 + 04

∗
−1 (2)

where  is the log house price, 
∗
 is some long run equilibrium house price given the period

 “exogenous explanatory variables”. Capozza et al (2004) recognize that in general, the

right hand of (2) is stochastic. For convenience, they assume that ∗ to be a constant for

all .8

7 It is beyond the scope of this paper to review that literature. Among others, see Gallin (2006), Klyuev

(2008), among others.
8Notice that when the whole series {∗ } is assumed to be constant over time, it is as if suggesting
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Interestingly, while both models involve an aspect of “error correction” in the data, they

significantly deviate from the conventional ECMs which has been widely used. According

to Engle and Granger (1987, p.251-2), “If  is a vector of economic variables, then they

may be said to be in equilibrium when the specific linear constraint 0 = 0 occurs. In

most time periods,  will not be in equilibrium and the univariate quantity  = 0 may

be called the equilibrium error. If the equilibrium concept is to have any relevance for the

specification of econometric models, the economy should appear to prefer a small value of

 rather than a large value.... a class of models, known as error-correcting, allows long-run

components of variables to obey equilibrium constraints while short-run components have

a flexible dynamic specification. A condition for this to be true, called co-integration, was

introduced by Granger (1981) and ...” (Italics added). Thus, if one is going to build an

ECM following Engle and Granger (1987), it may be natural to conjecture the following

form, µ 4
4

¶
= 0 +1

µ
−1
−1

¶
+

X
=1



µ 4−
4−

¶
+−→  (3)

where 1,  ,  = 0 1  are matrices with the appropriate dimensions. In light of

(3), the income dynamics is simply taken as given in Malpezzi (1999), and is completely

missing in Capozza et al. (2004). However, it is clear that the models of both Malpezzi

(1999) and Capozza et al. (2004) achieve empirical successes that apparently justify their

formulations. We therefore consider it important to consider a theoretical model which

would help us to understand why their formulations work; this is the subject of the next

that the factors which determine the house price have been reflected in the previous period house prices

and other adjustment parameters, and explicit dependence on other variables are un-necessary. In a way,

it somehow shares the spirit of “efficient market hypothesis.” It may not be the intention of the original

authors, yet some subsequent authors do interpret the model this way.
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section.

2.1 A Simple, Dynamic Stochastic General Equilibrium (DSGE) Model

Our model builds on Greenwood and Hercowitz (1991) and Kan et al. (2004), and an

informal overview may be helpful. This is a discrete time model with an infinite horizon.

The economy is populated by a continuum of infinite-lived agents. The population is fixed

and is normalized to unity. There are three goods: a non-storable consumption good,

residential property and business capital. While the consumption good is perishable, the

other two goods are durable, where the depreciation rate of business capital is commonly

recognized to be higher than that of residential property.9

The economy is subject to persistent productivity shocks that affect production, con-

sumption and investment opportunities. Forward-looking agents would therefore choose

the consumption of non-durable goods and durable housing, based on their budgets and

expectations of the future. Since the short-run supply of housing is relatively inelastic,

house prices would change according to the fluctuations in demand. An investment in

residential property would respond to changes in output and house prices. Thus, a pos-

itive productivity shock today would be associated with increases in output and house

prices. These increases would in turn encourage more investment in residential property,

leading to an increased supply of housing in the future and hence exerting a downward

pressure on future house prices. Thus, house prices would exhibit a form of “mean re-

version” or “error-correction” dynamics, even when all economic agents are rational and

forward-looking.

9The word “residential property”, “housing” and “residential capital” will be used interchangeably in

this paper.
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More formally, in each period ,  = 1 2,..., the representative agent maximizes the

expected value of the lifetime utility 

∞X
=

− ( )  which is the discounted

sum of the periodic utility  ( )  where  is the discounted factor, 0    1

 is the amount of consumption in period ,  is the stock of housing (or, residential

property; these terms are used interchangeably throughout this paper) owned by the

representative agent in period , and  is the number of working hours provided by the

agent, 0  ,  =  (+ 1), .... Following the literature, we assume that the preference

of the representative agent is separable. Formally, the utility function takes the following

form,

 () = ln +  ln − 
()

1+

1 + 
 (4)

where both  and  are positive preference parameters determining consumers’ resource

allocation among consumption, residential property and leisure. The assumed positivity

of  ensures that the labor supply curve is upward sloping.

The production side is relatively simple. The goods production technology is repre-

sented by a Cobb-Douglas function,

 =  ()
 ()

1−  (5)

where 0    1 and exhibits constant return to scale in business capital and labor.

Throughout this paper, the terms “output” and “income” will be used interchangeably for

. The amount of output, however, depends not only on the amount of business capital

and labor, but also on productivity , which fluctuates over time. In the macroeconomic

literature, it is commonly assumed that the log of productivity follows an AR(1) process,

 = −1 +  (6)
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where  = ln(), 0   ≤ 1, and  is a white noise process.
10

The evolution of the different kinds of capital stock in the model is also simple and

standard. For tractability, this paper follows Hercowitz and Sampson (1991) and Kan et

al. (2004), in their assumption of the laws of motion of business capital  and residential

property ,

+1 =  ()
1− ¡ ¢  (7)

+1 =  ()
1− ¡ ¢ +

  (8)

where 0     ∞, 0     1 and 
 represents the amount of existing housing

stock purchased from the secondary market.11 In this context, it may be instructive to

consider  and  as the “depreciation factors” of the business capital and residential prop-

erty respectively. Notice that in (7) and (8), the investment terms  and  represents

not only the new investment, but also the resources devoted to the completion of exist-

ing projects and the maintenance and renovation of existing capital assets and residential

properties, and hence can be very significant amounts.

The dynamic optimization problem of the representative agent can be summarized in

a Bellman equation,

 () = max ( ) +  (+1+1) 

subject to the budget constraint

 + 

 +  +  ≤  (9)

10By that we mean  (+) is independent of , ( +) = 0, ∀  0, and () = 2 which is a

constant.
11Lau (2002) shows that these laws of motion is equal to the conventional counterpart, +1 = +


 ,

when the DSGE model is log-linearly approximated.
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and the laws of motion for capital and housing, (7) and (8), where  ( ) is given

by (4) and  is given by (5). Implicitly, it is assumed that the representative agent can

buy or sell existing housing stock at unit price .

To solve this rather complicated system of equations, equilibrium conditions need to

be imposed. Following Lucas (1978), we impose the natural restriction that the net sale

of residential properties among agents is zero in equilibrium,


 = 0, ∀ (10)

Equipped with all these conditions, we are now ready to define the stationary equilib-

rium of the model.

Definition 1 For a given sequence of productivity shocks {}∞=0, a stationary equilib-

rium is a sequence of quantities
©
 


   

ª∞
=0

, and a sequence of housing

prices {}∞=0, such that the representative agent maximizes his expected life-time utility,

subject to the constraints (7), (8), and (9), Meanwhile, the housing market clears, implying

equation (10) holds.

In this model, the equilibrium can be solved explicitly. The solution strategy is simple.

The quantities are solved first, and are then followed by prices. All proofs are presented

in the appendix. We first show that the equilibrium quantities can be characterized by

the following equations.

Proposition 1 Under some conditions, the evolution of the equilibrium quantities can be
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characterized by these following equations:

 = 

 = 

 = 

 =   (11)

for some constant ,  ,  and  , such that 0  ,  ,   1, 0   

A few comments may improve understanding of the intuitions behind the results.

Intuitively, if there is a good productivity shock, then output  is expected to increase.

The income effect encourages the economic agents to increase the consumption-to-output

ratio. On the other hand, the substitution effect suggests the economic agent to invest more

because with more output, the marginal cost of investment decreases. Since our utility

function is in log form, the income effect and substitution effect exactly offset each other.

And with some technical conditions that are detailed in the appendix, the consumption-

to-output ratio and different investment-to-output ratios in the model remain constant. In

addition, the utility from is separable, and hence the labor supply depends on the product

of the marginal utility of consumption and the output, (1 )  Intuitively, if there is a

good productivity shock, then output  is expected to increase. However, with a higher

income, consumption will also increase, so that marginal utility of consumption 1 will

decrease. And with our separable log utility functional form, the two effects exactly offset

each other and hence the labor supply becomes constant.

Using (11), we can further characterize the entire dynamical system. First, we take

the natural logarithm for different variables. For instance,  = ln  = ln etc. This
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procedure not only facilitates the subsequent analysis, but is also the procedures used in

many empirical works and hence facilitates communication between the theoretical and

empirical work in this area. Notice further that most control variables depend on the

output , which in turns depends on the productivity shock, capital stock and labor (see

equation (5)). Following Sargent (1979), it is in fact a block-recursive system, meaning

that once we solve the dynamics of the “core” sub-system, the entire dynamical system can

be easily solved. Formally, it means that the model economy is described by the following

equation system,

 =  +  + 

+1 =  + (1− )  +  

+1 =  + (1− ) +  

 =  + 

 =  +  (12)

where , , , , , are all constant. Note further that (12) is driven by a “core”

sub-system, which is the vector −→  where

−→  =

µ



¶


The following result describes the dynamics of −→ 

Proposition 2 The dynamics of −→  is dictated by the following vector equation,

−→ +1 =0 +1
−→  +

−→ +1 (13)

where 0, 1are matrices of constant,
−→  is a vector of shock terms,

−→  =

µ
+1
0

¶
 In

fact, we can express, in log form, the output, physical capital stock, and residential housing
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stock as a summation of previous period productivity shocks,

 = 00 +  + ()

∞X
=0

(1−  + ) −1−

 = 00 + 

∞X
=0

(1−  + ) −1−

 = 
00
 + −1 + 

∞X
=0

 () −2− (14)

where 
00
,  = , ,  are constant,  () is a function of parameters and .

In a sense, this result is not very surprising. For instance, Slutzky (1937) shows that

a cyclical stochastic process can be decomposed as a summation of uncorrelated random

variables. Thus, (14) can be interpreted as a re-statement of Slutsky’s result in a DSGE

context. A consequence of (14) is that the stochastic properties of the economic variables

(the output , physical capital stock , and residential housing stock ) will depend on

the stochastic properties of the productivity shock  Following Cooley (1995), we assume

that the productivity shock follows an AR(1) process, as reflected by (6). Empirically, the

productivity shock process is not only serially correlated, but is also very close to unit root

(Cooley, 1995). According to some authors, the persistence parameter,  is sometimes

statistically indistinguishable from unity. We will therefore study both the case of “mean-

reverting” (or “temporary”) case, i.e. where 0    1 and the case of “unit root” (or

“permanent”) case, i.e. where  = 1. For simplification, we will focus on the case of

mean-reverting productivity shock in the text and present the case of permanent shock in

the appendix.

Proposition 3 The stationarity of  depends on the persistency of the productivity shock

 which is defined in (6). In particular, when we express  in the form of
P∞

=0 
()
 −,
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and if 0    1 i.e. the productivity shock  is a temporary shock, then the income

 is stationary,
∞X
=0

¯̄̄

()


¯̄̄2
∞ (15)

Notice that in general,
n

()


o
would depend on the value of  The appendix shows

that if temporary productivity shocks are permanent instead of temporary, the output will

be non-stationary. As we show below, such distinctions will also appear in the housing

market. Our next step is to understand the house price dynamics within this model. We

first relate the macro-dynamics to the housing market dynamics in the model. As we

have characterized the evolution of the major quantities in the model, namely, the output,

physical capital stock and residential property stock, as a summation of shocks in different

periods, the following proposition will help us to establish a dynamic relationship between

the house price (in real terms) and the other macroeconomic variables.

Proposition 4 In log form, the dynamics of the house price can be related to the dynamics

of output and the housing stock in the following way:

 =  +  − +1

= 0 + 

∞X
=1

(1− ) ( − −) 

(16)

where , 
0
 are constant.

The interpretation of (16) is clear. The first expression indicates that the house price

depends positively on the level of current level aggregate output and negatively on the
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foreseen amount of residential property stock. Thus, other things being equal, an antic-

ipation of an increase in the future stock of housing will depress the house price today.

The house price is “forward-looking” in this sense. The second expression requires more

explanation. Notice that, by definition, the term ( − −) = ln−ln− = ln(−)

which is the economic growth between period  and ( − ). Thus, the second expression

indicates that the house price (in real terms) can be interpreted as a weighted sum of

the economic growth between the current period and different previous periods. Higher

economic growth leads to a higher house price. Notice that the weight allocated to the

economic growth between period  and ( − ) is (1− ). As 0  (1− )  1 the value

of the term (1− ) decreases with , such that periods of more distant past (i.e. higher

values of ) will carry less weight. In other words, if the output level at some particular

time 0 is unusually high, it would lead to a higher level of house price 0 . The impact,

however, will die off over time. It is because if 0 is unusually high, then for   0,

it is likely that ( − 0) will become small and hence will constrain further increase in

house price. The model thus implies that continuous increase in house price can only be

sustained by persistent economic growth.

The next result concerns the stationarity of  This is the housing market counterpart

of (15). In other words, there are some similarities between the aggregate output and the

house market price in terms of the stationarity.

Proposition 5 The stationarity of  depends on the persistency of the productivity shock

 which is defined in (6) In particular, when we express  in the form of
P∞

=0 
()
 −,

and if 0    1, i.e. the productivity shock  is mean-reverting, then the house price 
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is stationary,
∞X
=0

¯̄̄

()


¯̄̄2
∞ (17)

Equipped with the stationarity results of the output and the (real) house price, we can

now present our main theorem, which relates the dynamics of the house price growth and

the dynamics of output.

2.2 Main Result

The following theorem characterizes the growth rate of the house price as a function of

house-price-to-income ratio (or, equivalently, house-price-to-output ratio) in the current

and previous periods.

Theorem 1 The house price growth rate and the house price-to-output ratio can be related

in the following way:

+1 =
(1− )


{[κ+1 − κ]− [κ − κ−1]}  (18)

where +1 is the house price growth factor,

+1 ≡ (+1 − ) = ln(+1) (19)

and κ is the log of the house price-to-output ratio,

κ ≡  −  = ln() (20)

The significance of this theoretical result needs to be put into context. In the media

and many applied studies, the house-price-to-income ratio is usually used to measure
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of whether a “housing bubble” exists. Yet formal studies on the relationship between

the house price dynamics and the house-price-to-income ratio are rare. This theoretical

result attempts to fill this gap. Notice that in (18), all variables are all in logarithmic

form. Thus, the variable κ ≡  −  = ln() = ln()
−1 = − ( − )  which

is the negative of the house-price-to-income ratio. Hence, [κ+1 − κ] is a measure of

the change in the house-price-to-income ratio. Consequently, the right hand side term

{[κ+1 − κ]− [κ − κ−1]} is a measure of the change of the growth rate of the house-

price-to-income ratio. Alternatively, if we may draw an analogy from physics, the term

{[κ+1 − κ]− [κ − κ−1]} is a measure of the acceleration of the house-price-to-income

ratio. The left hand side term +1 ≡ (+1 − ) = ln(+1) is simply the (gross)

rate of growth in house prices. Thus, this theoretical result states that the growth rate of

the house price depends on the acceleration of the house-price-to-income ratio. Thus, the

media attention to focus on the level or the rate of change of the house-price-to-income

ratio could be misplaced.

This theoretical result not only sheds light on the dynamics of the house-price-to-

income ratio but also helps us to understand the stylized facts mentioned at the beginning

of this paper. Formal analysis on these is now in order.

2.3 Relationship with Capozza et al (2004)

In this subsection, we show that a re-statement of our theoretical result (equation (18))

sheds light on stylized fact C1. Recall that Capozza et al. (2004) assert that the house
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prices follow a second-order equation, (2),

 = 1−1 + 2
¡
∗−1 − −1

¢
+ 3

∗
 

or  + 01−1 + 02−2 = 03
∗
 + 04

∗
−1

where ,  = 1 2 3 are parameters to be estimated,  is defined in (19), and 
∗
 is some

long-run equilibrium house price given the period  “exogenous explanatory variables”.

Capozza et al. (2004) recognize that, in general, the right-hand side is stochastic. For

convenience, they assume that ∗ to be a constant for all . Interestingly, they find

empirical support for their formulation. The next proposition shows that we can also

re-write (18) in a comparable manner.

Proposition 6 The house price dynamics in (18) can be expressed as a second order

difference equation in the following form,

 + 01−1 + 02−2 = (1− ) [( − −1)]  (21)

where 01, 
0
2 are parameters, and  is the change in log-income,

 ≡  − −1 (22)

Notice that by definition,  ≡  − −1 = ln(−1) the log of the gross growth

rate. If the economic growth rate  is small, where  ≡ (−1)− 1, then  ≈ 

Thus, the right-hand side of (21) is approximately equal to a fraction of the change in

economic growth rate.12 When the economic growth rate is relatively stable, which may

be the case for the sampling period of Capozza et al. (2004) (from 1979 to 1995), the

12 In the appendix, we provide more analysis on this.
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right-hand side of (21) can indeed be approximated by a constant. In other words, the

assumption made in Capozza et al. (2004) may be justifiable not only on the empirical

ground, but also on theoretical grounds when the economic growth rate does not vary too

much. Therefore, the dynamic model proposed here provides an equilibrium interpretation

of the empirical results in Capozza et al. (2004).

2.4 Relationship with Malpezzi (1999)

Our theoretical result expressed in equation (18) can also help us to understand M1 and

M2. Recall that Malpezzi (1999) considers the following empirical model, (1),

 = 0 + 1

µ
−1
−1

− 

¶
+ + 

µ
−
−

− 

¶
+1

µ
−1
−1

− 

¶3
+ + 

µ
−
−

− 

¶3
++ 

Notice that our theoretical result (equation (18)) is in logarithmic form. If we apply the

Taylor expansion on all the log terms of (18), our result will be approximated by the

formulation of Malpezzi (equation (1)).13 Thus, our theoretical model has successfully

derived M2 and the equation (18) can indeed be an equilibrium interpretation of the

stylized fact discovered by Malpezzi (1999). It also demonstrates that an error-correction

structure can be compatible with a DSGE model.

We now connect equation (18) to the last stylized fact M1, which concerns the steady

state of the house price, and the house-price-to-income ratio. The following result is

immediate from (18).

Corollary 1 Based on (18), if the house price-to-income ratio reaches its steady state,

13Obviously, we need to remove the quadratic terms, in order to “fit (18) into (??),” so to speak.
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κ+1 = κ, ∀, then the house price will also reaches its steady state value, +1 = .

Notice that if the house-price-to-income ratio reaches a steady state, by (20), κ ≡

 −  = ln() = κ where κ is a constant. Thus,

 = exp(κ)

This is exactly the conjecture M1 proposed by Malpezzi (1999)! However, a steady state

may not exist for non-stationary processes. Thus, to understand the dynamics of the house

price, it is necessary to verify the stationarity of the house-price-to-income ratio. To verify

the stationarity of a stochastic process, it is natural to apply the Wold’s decomposition

theorem, which requires us express the variable κ ≡ ( − ) as a (potentially) infinite

sum of white noise.14 The following proposition expresses the idea formally,

Proposition 7 The house price-to-income ratio (in log) can be expressed as a weighted

sum of the current period and previous periods of productivity shocks,

( − ) = b +  + 

∞X
=0

 () −1− (23)

where b is a constant term, and { ()}, ©0 ()ª are functions of parameters.
Corollary 2 At the deterministic steady state, {} = 0, the house price-to-income ratio

(in log) is a constant, ( − ) = b In other words, () is a constant.
The corollary shows that the house-price-to-income ratio becomes a constant at the de-

terministic steady state, which is consistent with M1 and the empirical finding of Malpezzi

14See the appendix for more discussion on this.
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(1999). In general, however, {} 6= 0. Moreover, as we have assumed in (6), it is seri-

ally correlated, i.e. ( −) 6= 0 for   0. Thus, to verify the stationarity of the

house-price-to-income ratio ( − )  we need to express it as an infinite sum of seri-

ally uncorrelated disturbance terms, following the Wold’s decomposition theorem. The

following proposition addresses this.

Proposition 8 Assume that (6) holds. We can then write the house price-to-income ratio

in the following form,

( − ) = b + ∞X
=0

0 () − (24)

where  is a white noise. Furthermore, if 0    1, i.e. the productivity shock  is a

temporary shock, the stochastic process of log house price-to-income ratio is stationary

∞X
=0

¯̄
0 ()

¯̄2
∞ (25)

The intuition of the result is simple. If the productivity shock is temporary (0    1),

a positive shock today may not have much impact on the discounted lifetime wealth as

the representative agent rationally expects a future negative shock to offset the current

period’s positive shock. As a result, the house price does not increase much and the house

price-to-income ratio remains stationary. In the empirical literature, many authors do not

consider whether the house-price-to-income ratio is stationary. Instead, they investigate

whether house prices and income are co-integrated. Interestingly, our model can also shed

light on this issue. Notice that in logarithmic form, the house-price-to-income ratio is
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simply ( − ) and hence the stationarity of the house-price-to-income ratio is equivalent

to the co-integration of the two variables.

Corollary 3 If 0    1, the house price and income (both in log) are co-integrated.

In the appendix, we show that if  = 1, the house-price-to-income ratio is not station-

ary, i.e. ( − ) is not stationary. However, the two variables can still be co-integrated if

we can find a constant  such that ( − ) is stationary. The appendix shows that this

is indeed the case. The important lesson here is that regardless of whether the produc-

tivity shock is mean-reverting or permanent, house prices and income are co-integrated.

Thus, this paper provides a theoretical foundation for the empirical practice of applying

co-integration tests to the two variables.

3 Concluding Remarks

This paper accomplishes several objectives. It builds a DSGE model that exhibits several

desirable features. In a reduced form, the model displays an error-correction structure that

is consistent with the empirical work of Malpezzi (1999), Capozza et al. (2004), and others.

It also relates the degree of persistence of a productivity shock to the stationarity of the

income and house prices, and even of the house-price-to-income ratio. The model suggests

that it is possible for some empirical studies to find stationary house-price-to-income ratio

while others do not, because the shock processes in different empirical samples can process

different stochastic properties and hence alter the empirical results. This paper also shows

that even when the house-price-to-income ratio is not stationary, it is still possible to

obtain a co-integration relationship between house prices and income. Thus, it provides a
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micro-foundation for the empirical practices in the literature of applying the co-integration

test between house prices and income. In addition, as this paper demonstrates that it is

possible for a DSGE model to have an error-correction structure, the empirical validity

of the error-correction model can be consistent with an equilibrium interpretation of the

dynamics of output and house prices.

This paper makes several simplifying assumptions, which naturally become limitations.

We will briefly discuss these here and leave it to future studies to improve on these di-

mensions. First, this paper assumes that there is only a national housing market and only

one source of shock that affects both the aggregate output and the housing market. In

practice, different regional housing markets may be subject to different shocks and may

behave differently.15 To address the regional heterogeneity, this model needs to be ex-

tended to allow for the existence of (ex post) heterogeneous regions and to possibly allow

for region-specific shocks to affect different regions. In addition, regional labor markets

and, in general, the “frictions” involved in any factor (labor, capital, . . . ) to move across

regions, or even the financial instruments available for agents to diversify risk, may affect

the regional house price dynamics.16 Clearly, more research is needed into the equilibrium

prediction of regional house price dynamics.

As the current paper focuses on the productivity shock as a driving force for both the

aggregate output and house prices, it inevitably ignores other channels. For instance, the

15Among others, see Davidoff (2013) for a review of the literature.
16Recently, there are some attemtps along this line. For instance, Leung and Teo (2011) study a multi-

region DSGE with both aggregate and region-specific shocks. They allow agents to hold stock as well

as housing in their portfolio. However, they did not allow for agents to move across regions. They find

that, numerically, the short run dynamics of regional house price can be very different, depending on the

region-specific adjustment cost of housing stock. On the other hand, Van Nieuwerburgh and Weill (2012)

allow agents to be freely mobile. However, they assume agents to have linear preference non-durable

consumption goods, and thus eliminating the need to insure for non-durable consumption risk. They focus

on the house price dispersion and do not examine the house price dynamics.
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model could be enriched by introducing household production.17 Among others, Davis

and Martin (2009) and Dong et al. (2013) show, numerically, that introducing house-

hold production can improve the data-matching performance of a conventional business

cycle model with housing. However, they do not explore the evolution of the house price

dynamics analytically, and do not relate the house price dynamics to the dynamics of

house-price-to-income ratio. Recently, Mian and Sufi (2010) and Mian et al. (2010),

among others, provide micro-evidence that the mortgage supply and the political econ-

omy may be important in explaining why some counties have been affected more severely

than others by the Great Recession. There are tractable models on how mortgage sup-

ply and house prices are both endogenously determined in a dynamic equilibrium setting,

such as Chen et al. (2012), Chen and Leung (2008) and Jin et al. (2012). Chen et al.

(2012) and Jin et al. (2012) both numerically matches some aspects of the housing market

reasonably well. However, adding the political economy in any of these models may be

very involved.18 We can thus only recognize these as limitations and leave them for future

research.

17Greenwood et al (1995) show that the reduced form of models with household production that is

subject to stochastic productivity shock may not be distinguishable from models with taste shock.
18Clearly, it is beyond the scope of this paper to explain the potential difficulties to extend an economic

model to a political economy model. Among others, see Acemoglu and Robinson (2009), Banks and

Hanushek (1995), Persson and Tabellini, 2002.
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A Proof

A.1 Proof of (11)

To solve the model, we need to first obtain the first order conditions. Let 1, 2 and 3
denote the Lagrangian Multipliers of the constraints (9), (7) and (8), respectively. The

first order conditions can be easily derived,

1 = 1 (26)

1 = 3 (27)

1 = 2

µ
+1



¶
 (28)

1 = 3

µ
+1 −





¶
 (29)

 ()
 = 1 (1− )

µ




¶
 (30)

3 = 

"


+1
+ 3+1 (1− )

Ã
+2 −

+1

+1

!#
 (31)

2 = 

∙
2+1 (1− )

+2

+1
+ 1+1

µ
+1

+1

¶¸
 (32)

First, notice that the model economy satisfies the standard conditions in Stokey, Lucas

and Prescott (1989, chapter 9), it is easy to see that the equilibrium is unique, and hence

justifies the approach of Sargent (1987), which is to conjecture that (11) is indeed correct

and verify that ,  ,  and  are indeed constant.

We first combine (31) with (10), and solve recursively, we have

3+1 =


1− (1− )
 (33)

if we have the following transversality condition satisfied,

lim
→∞

3+1 = 0 (34)

Notice also that 0     1 Thus 3+1  0 We then combine (26), (29) with (33),

we get

 =


1− (1− )
 (35)

By the same token, if we impose another transversality condition,

lim
→∞

2+1 = 0 (36)
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and combine (26), (28), (32), we will have

 =


1− (1− )
 (37)

Notice that   0 as   0 and (1− )  1 And since  represents a share of

the output, we need   1 It means that the third condition we need to impose is

  1− (1− )

or,  + (1− )  1 (38)

By (30), we have

()
+1 =

(1− )


(1)

=
(1− )



1




Thus, if  is a constant,  is also a constant.

Now, by (9) and (10), we have

 +  +  = 1

Combine it with (35) and (37), we get

 =
1− (1− )− 

1− (1− ) + 


which is clearly a constant. Clearly,   1 By (38), we also have   0 By (35), we

have

 =


1− (1− )

1− (1− )− 

1− (1− ) + 


Again, by (38), it is clear that   0 And if we write  ≡ , [1− (1− )] ≡ ,

 ≡ , [1− (1− )] ≡ , and , ,   0, then

 =




 − 

 + 


Thus, for   1 we need

( − ) 
 + 


 (39)

Thus, for the conjecture to be valid, we need to impose (34), (36) and (38), (39).
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A.2 Proof of (13), (14)

We will first provide the proof of (13), which is relatively easy. Taking natural log of (5),

(7), and (11), we have

 =  +  + 

+1 =  + (1− )  +  

 =  + 

The first can be re-written as

+1 − +1 =  + +1

The last two can be combined as

+1 =  + (1− )  +  ( + )

= 0 + (1− )  + 

where 0 ≡  +  Thus, we haveµ
1 −
0 1

¶µ
+1
+1

¶
=

µ

0

¶
+

µ
0 0

 (1− )

¶µ



¶
+

µ
+1
0

¶
 (40)

which is in a form similar to structural VAR.

Now notice that

µ
1 −
0 1

¶−1
=

µ
1 

0 1

¶
 Thus, (40) can be written as

µ
+1
+1

¶
=

µ
0
0

¶
+

µ
  (1− )

 (1− )

¶µ



¶
+

µ
+1
0

¶


where 0 =  + 0 This also completes the proof of (13).

To prove (14), we need some more notations. Let  be the Lag operator,  = −,
 = 1 2 , and  = , for all constant  (see Sargent, 1987). Then (13) can be rewritten

as
−→  =0 +1()

−→  +
−→ 

where

1() =

µ
  (1− )

 (1− )

¶


It follows that

−→  = ( −1())
−10 + ( −1())

−1−→ 
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where  is the identity matrix. By Cramer’s Rule,

( −1())
−1 = [1− (1−  + )]−1

µ
1− (1− )  (1− )

 1− 

¶


and recall that [1− (1−  + )]−1 can be understood as a shorthand for a polynominal,

[1− (1−  + )]−1 =
∞X
=0

[(1−  + )] 

And since 0 =

µ
0
0

¶
,

( −1())
−10

= ( (1− ))−1
µ

0 +  (1− ) 0
0 + (1− ) 0

¶
≡
µ

00
00

¶


Similarly, as −→  =

µ

0

¶
, we have

 = 00 +  + ()

∞X
=0

(1−  + ) −1−

 = 00 + 

∞X
=0

(1−  + ) −1− (41)

Notice that the impact from  to  is “one-to-one,” whereas that from  to  is

zero. It is because the business capital is a state variable and  can only influence + ,

 = 1 2 

To obtain an expression of  in terms of {}  recall from (12) that +1 =  +

(1− ) +   and  =  +  It means that

+1 = 0 + (1− ) +  (42)

where 0 ≡  +  Solving (42) recursively, we get

 = 0 + [1− (1− )]−1 

= 
(2)

 + 

∞X
=0

(1− ) −1− (43)

where 
(2)

 is a constant. Combining (43) with (41) will deliver

 = 
(2)

 + 

∞X
=0

(1− )

⎛⎝00 + −1− + ()
∞X
=0

(1−  + ) −2−−

⎞⎠
= 

00
 + −1 + 

∞X
=0

 () −2−
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where 
00
 is a constant,

 () = (1− )+1 + ()

X
=0

(1− )− (1−  + )  (44)

with
P0

=0 (1− )− (1−  + ) ≡ 1. And it is the last expression of (14).
In fact, based on (14), we can relate the output growth to the productivity growth

more explicitly.

Lemma 1 The growth rate of the output can be expressed in the following way:

+1 = +1 + ()  −
¡
2

¢
(1− )

∞X
=0

(1−  + ) −1− (45)

where +1 is the output growth factor,

+1 ≡ (+1 − ) = ln(+1)

and +1 is the productivity growth factor,

+1 ≡ (+1 − ) = ln(+1)

The proof of the proposition, (45), follows immediately from (14). First, we update

the formula for +1. We then take the different between +1 and , and the result will

be delivered.

A.3 Proof of (15)

To address the stationarity of the output, we first recall a well known result from Wold.

Theorem 2 Wold’s Decomposition Theorem (Hamilton, 1994, p.109). Any covariance-

stationary process Ψ can be represented in the form

Ψ =

∞X
=0

− + 

where the finite square summation condition holds,

∞X
=0

¯̄


¯̄2
∞ (46)

and the term  is a white noise and represents the forecasting error of Ψ

 ≡ Ψ − (Ψ|Ψ−1, Ψ−2, ...) 

with  un-correlated with − for any .
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Now, recall from equation (6) that

 = −1 + 

where  = ln(), 0   ≤ 1, and  is a white noise process. Clearly, for 0    1,

 =  +

∞X
=1

−  (47)

and hence (14) can be written as

 = 00 +  +

∞X
=1

Ã
 +

Ã
()

 − (1−  + )

− (1−  + )

!!
−

= 00 +  +

∞X
=1

µ


− 1 + 

− (1−  + )
+

()

− (1−  + )
(1−  + )

¶
− (48)

Based on (48) and the Wold’s theorem, the stationarity of  will depend on whether the

following expression is finite or not,

∞X
=1

¯̄̄̄


− 1 + 

− (1−  + )
+

()

− (1−  + )
(1−  + )

¯̄̄̄2
 (49)

A few observations are in order. First, since 0  , (1−  + )  1, 0  , (1−  + ) 

1, ∀ ≥ 1. Second, define  ≡ max
n¯̄̄

−1+
−(1−+)

¯̄̄
,
¯̄̄

()

−(1−+)
¯̄̄o
. Clearly,  is real and

finite, and by construction,   0. Similarly, define  ≡ max {, (1−  + )}. Clearly,
since 0  , (1−  + )  1, 0    1. Thus, (49) can be re-written as,

∞X
=1

¯̄̄̄


− 1 + 

− (1−  + )
+

()

− (1−  + )
(1−  + )

¯̄̄̄2


∞X
=1

()
2

¯̄̄̄
− 1 + 

− (1−  + )
+

()

− (1−  + )

¯̄̄̄2
 (2)

2
∞X
=1

()
2 

Notice that (2)
2 is a positive constant. By Bartle and Sherbert (2011), it is easy to show

that the series
n
()

2
o
is Cauchy. In fact, the infinite sum

P∞
=1 ()

2 = ()
2 (1−()2),

which is finite. Hence,  is stationary. And it proves (15).
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A.4 Proof of (16)

The proof of this proposition is not that difficult. Combining (26), (27), (31), (10), we

have

1 = 

∙


+1
+ 1+1+1 (1− )

µ
+2

+1

¶¸
 (50)

We conjecture that

1+1 = , ∀, (51)

where  is some constant. Under this conjecture, (50) can be reduced to

 =


1−  (1− )
 (52)

and the right hand side is indeed a constant. Now combining (51), (52) with (26), (11),

we get

+1 =


1−  (1− )






or, in log form,

+1 =  +  − 

where  is a constant, and is equivalent to

 =  +  − +1

which is the first statement of (16).

Now recall (43) that

 = 0 + [1− (1− )]−1 

= 
(2)

 + 

∞X
=0

(1− ) −1−

where 
(2)

 is a constant term. Thus, the term ( − +1) can be written as

 − +1 =  −
"

(2)

 + 

∞X
=0

(1− ) −

#

= −(2) + (1− )  − 

∞X
=1

(1− ) −

= −(2) + (1− )

"
 − 

∞X
=1

(1− )−1 −

#


This implies that

 = 0 + (1− )

"
 − 

∞X
=1

(1− )−1 −

#
 (53)
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Notice that



∞X
=1

(1− )−1 = 1

Hence, we can write

 = 

∞X
=1

(1− )−1 

and (53) becomes

 = 0 + (1− )

"


∞X
=1

(1− )−1 ( − −)

#

= 0 + 

∞X
=1

(1− ) ( − −) 

which is the second statement of (16).

A.5 Proof of (17)

The proof proceeds in a few steps. First, we need to obtain an expression of the house

price in terms of the productivity shocks {}. Notice that by (16), we have

 = 0 + (1− )

"
 − 

∞X
=1

(1− )−1 −

#


and by (14), we have

 = 00 +  + ()

∞X
=0

(1−  + ) −1−

Together, we have

 = 
00
 + (1− )  + (1− ) [ − ] −1
+(1− ) [() (1−  + )−  ()−  (1− )] −2

+(1− )
n
() (1−  + )2 −  () [(1−  + ) + (1− )]

− (1− )2
o
−3

+

+(1− )

⎧⎨⎩() (1−  + )−1 −  ()

−2X
=0

h
(1−  + )−2− (1− )

i
− (1− )−1

o
−

+
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where 
00
 is some constant. Observe that for any , , ,

P
=0 

− =
£
+1 − +1

¤
 (− ) 

Thus,

 = 
00
 + (1− )  + (1− ) [ − ] −1
+(1− ) [() (1−  + )−  ()−  (1− )] −2

+

∞X
=3

(1− )

(
() (1−  + )−1 −  ()

(1−  + )−1 − (1− )−1

(1−  + )− (1− )

− (1− )−1
o
−

= 
00
 + (1− )  + (1− ) [ − ] −1
+(1− ) [() (1−  + )−  ()−  (1− )] −2

+

∞X
=3

(1− )

½
() (1−  + )−1

µ
1− 

(1−  + )− (1− )

¶
− (1− )−1

µ
1− ()

(1−  + )− (1− )

¶¾
−

Notice that(
() (1−  + )−1 −  ()

(1−  + )−1 − (1− )−1

(1−  + )− (1− )
− (1− )−1

o
= ()

µ
 − 

 −  − 

¶
(1−  + )−1 − 

µ
 − 

 −  − 

¶
(1− )−1 

And for future reference, we define a new term  (),

 () ≡ (1− )

∙
()

µ
 − 

 −  − 

¶
(1−  + )−1 − 

µ
 − 

 −  − 

¶
(1− )−1

¸


(54)

We further observe that if we use the following notations,

 = (1− )

 = (1−  + )

A = (1− ) ()

µ
 − 

 −  − 

¶
B = (1− ) 

µ
 − 

 −  − 

¶
(55)

Notice that

0     1 (56)

Then,

 () = A ()−1 − B ()−1  (57)
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Hence

 = 
00
 + (1− )  + (1− ) [ − ] −1
+(1− ) [() (1−  + )−  ()−  (1− )] −2

+

∞X
=3

 () − (58)

To verify the stationarity of , it suffices to check whether
P∞

=3 
 () − is stationary

or not. Again, recall from equation (6) that

 = −1 + 

where  = ln(), 0   ≤ 1, and  is a white noise process. Clearly, when 0    1

we have  =  +
P∞

=1 
− , and hence

∞X
=3

 () −

=

∞X
=3

⎛⎝ X
=3

− ()

⎞⎠ −

By the Wold’s decomposition theorem,  is stationary if
P∞

=3

¯̄̄P
=3 

− ()
¯̄̄2

 ∞.
As we discussed before,

P∞
=3

¯̄̄P
=3 

 ()
¯̄̄2
∞ if and only if ∀  0, ∃  0 such that

∀     ,
P

=

¯̄̄P
=3 

 ()
¯̄̄2
  (see Bartle and Sherbert, 2011).

By (57), (55),

X
=3

− ()

= A
µ
2
−2 − −2

− 

¶
− B

µ
2

−2 − −2

− 

¶


Thus, ¯̄̄̄
¯̄ X
=3

− ()

¯̄̄̄
¯̄
2

=

¯̄̄̄
A
µ
2
−2 − −2

− 

¶
− B

µ
2

−2 − −2

− 

¶¯̄̄̄2
≤

¯̄̄̄
A
µ
2
−2 − −2

− 

¶¯̄̄̄2
+

¯̄̄̄
B
µ
2

−2 − −2

− 

¶¯̄̄̄2
+2

¯̄̄̄
A
µ
2
−2 − −2

− 

¶¯̄̄̄ ¯̄̄̄
B
µ
2

−2 − −2

− 

¶¯̄̄̄
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Let  = max
n¯̄̄
A
³

2

−
´¯̄̄


¯̄̄
B
³

2

−
´¯̄̄o

 Clearly,  is a real number, does not depend

on  and   0 Thus,¯̄̄̄
¯̄ X
=3

− ()

¯̄̄̄
¯̄
2

≤
¯̄̄̄
A
µ
2
−2 − −2

− 

¶¯̄̄̄2
+

¯̄̄̄
B
µ
2

−2 − −2

− 

¶¯̄̄̄2
+2

¯̄̄̄
A
µ
2
−2 − −2

− 

¶¯̄̄̄ ¯̄̄̄
B
µ
2

−2 − −2

− 

¶¯̄̄̄
 ()2

n¯̄
−2 − −2

¯̄2
+
¯̄
−2 − −2

¯̄2
+ 2

¯̄
−2 − −2

¯̄ ¯̄
−2 − −2

¯̄o
Notice that 0      1 It follows that as  → ∞, −2 −2 −2 → 0 Let  =

max {  }. Thus, ∀  0, ∃  0, ∀   , ()−2 
√
(4) Thus,

¯̄
−2 − −2

¯̄

¯̄̄
2 ()−2

¯̄̄

√
(2). It follows that

¯̄
−2 − −2

¯̄2
 (2)2 By the same token,¯̄

−2 − −2
¯̄2
 (2)2, and 2

¯̄
−2 − −2

¯̄ ¯̄
−2 − −2

¯̄
 

¡
2()2

¢
 Therefore,¯̄̄̄

¯̄ X
=3

− ()

¯̄̄̄
¯̄
2

 ()2
n¯̄
−2 − −2

¯̄2
+
¯̄
−2 − −2

¯̄2
+ 2

¯̄
−2 − −2

¯̄ ¯̄
−2 − −2

¯̄o
≤ ()2

½


4()2
+



4()2
+



2()2

¾
= 

Consequently,
P

=

¯̄̄P
=3 

− ()
¯̄̄2


P

=  = (−) ∗  This implies that 
is stationary. This completes the proof of (17).

A.6 Proof of (18)

From (12), we have

+1 = 0 + (1− ) + 

where 0 is a constant.
Recall from (16) that

 =  +  − +1

Thus, we have

 =  +  −
¡
0 + (1− ) + 

¢
=  +  −

£
0 + (1− ) ( + −1 − −1) + 

¤
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which implies that

( − ) =  + (1− ) (−1 − −1) +  (59)

where  = (
0
 − ) is a constant. If we subtract  from both sides, we have

( − )−  =  + (1− ) (−1 − −1) +  ( − ) 

or

(1− ) ( − )−  =  + (1− ) (−1 − −1)  (60)

We now update the last expression,

(1− ) (+1 − +1)− +1 =  + (1− ) ( − )  (61)

Combining (60) and (61), we have

+1 ≡ (+1 − )

=
(1− )


{[κ+1 − κ]− [κ − κ−1]} 

where

κ ≡  − 

which is the income-house price ratio.

A.7 Proof of (21)

Recall (18) that

+1 =
(1− )


{[κ+1 − κ]− [κ − κ−1]} 

where +1 ≡ (+1 − ), κ ≡  − . The expression above can be re-written as

+1 − (2− )  + (1− ) −1 = (1− ) {+1 − }  (62)

where +1 ≡ (+1 − ), which is (21).

Following Elaydi (2005) or other standard textbooks, the characteristic equation for

the left hand side is simply,

2 − (2− )+ (1− )

= (− (1− )) (− 1) 

Thus, the solution for the homogeneous equation associated with (62) is of the form

 = (A1 +A2) (1− ) 
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where A1, A2 are parameters. If the right hand side of (62) were a polynominal of , then
we can solve the general solution by using textbook methods. Unfortunately, the right

hand side of (62) is (1− ) {+1 − }, which is stochastic and rather complicated.
Hence, a general, closed form solution for (62) may not be available.

To see that, let us separate the two cases, which are  = 1 and 0    1

• Case 1:  = 1
In this case, by (74), we have

+1 = +1 − 

= +1 + ()

∞X
=1

(1−  + )−1 +1− 

Similar,  =  + ()

∞X
=1

(1−  + )−1 − . Thus,

+1 − 

= +1 − (1− )  −
¡
2

¢
(1− )

∞X
=1

(1−  + )−1 − 

• Case 2: 0    1

In this case, by (48), we have

+1 = +1 − 

= +1 + (D1+D2 − 1)  −
∞X
=1

¡D1 (1− ) +D2 (1− )
¢
− 

where D1 ≡ −1+
−(1−+) , D2 ≡ 

−(1−+) ,  = (1−  + ). Clearly, 0     1.

Similar,  =  + (D1+D2 − 1) −1 −
∞X
=1

¡D1 (1− ) +D2 (1− )
¢
−1− .

Thus,

+1 − 

= +1 − (D1+D2 − 2) 
+
¡
1− 2D1− 2D2 +D12 +D22

¢
−1

+

∞X
=2

³
D1−1 (1− )2 +D2−2 (1− )2

´
− 
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A.8 Proof of (23)

Recall from equation (16), we have

 −  = − + +1

and since from (14), we know that

 = 
(2)

 + 

∞X
=0

(1− )

⎛⎝00 + −1− + ()
∞X
=0

(1−  + ) −2−−

⎞⎠
= 

00
 + −1 + 

∞X
=0

 () −2−

where 
00
 is a constant,


00
 = 

(2)

 + 00

and by (44),

 () = (1− )+1 + ()

X
=0

(1− )− (1−  + ) 

Thus,

 −  = − + +1

=
³
− + 

00


´
+  + 

∞X
=0

 () −1− (63)

A.9 Proof of (24), (25)

Since the addition or subtraction of a constant term will not affect the stationarity prop-

erty, in order to verify the stationarity of the house price-to-income ratio ( − ), it

suffices to verify that the de-meaned +1 i.e. b+1,
b+1 ≡  + 

∞X
=0

 () −1− (64)

is stationary, where  () is given by (44),

 −  = b + b+1
with b being a constant.
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Before we proceed, we observe that the term
P

=0 (1− )− (1−  + ) is of the

form
P

=0 
−, which is well known to be equal to +1−+1

− . Thus, we have19

X
=0

(1− )− (1−  + )

=
(1− )+1 − (1−  + )+1

(1− )− (1−  + )

=
(1− )+1 − (1−  + )+1

 −  − 


Hence, (44) can be further simplified,

 () = (1− )+1 + ()

X
=0

(1− )− (1−  + )

= (1− )+1 + ()
(1− )+1 − (1−  + )+1

 −  − 

= (1− )+1
µ

 − 

 −  − 

¶
+ (1−  + )+1

µ −
 −  − 

¶


Thus, we can interpret  () as a “weighted average” of two terms, (1− )+1 and

(1−  + )+1  Furthermore, since  and  are strictly between 0 and 1, 0  (1−  + ) =

(1− (1− ))  1. Therefore, 0  (1−  + )+1  (1−  + )  1,  = 0, 1, 2,....

Similarly, since 0    1, 0  (1− )  1. Therefore, we also have 0  (1− )+1 

(1− )  1. The following lemma summarizes our discussion,

Lemma 2 Since 0  , ,   1, we can express  () is a weighted average of two

functions which depend on ,

 () =

µ
 − 

 −  − 

¶
(1− )+1 +

µ −
 −  − 

¶
(1−  + )+1  (65)

where

0  (1− )+1 , (1−  + )+1  1

(1−  + )+1  (1−  + ) , (1− )+1  (1− ) . (66)

In fact, we can say more of the properties of the series { ()}  Notice from (65), it is

of the form

 () = +1 + (1− ) +1 (67)

19Notice that if the business capital and residential housing have the same depreciation rate,  ≈  then

 −  (1− ) ≈ .
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where 0  ,   1, with the roles of  and  being symmetric, and the roles for  and

(1− ) are symmetric as well. Thus, without loss of generality, we assume that

 =

µ
 − 

 −  − 

¶
 = (1− )

 = (1−  + )  (68)

Notice that if      (1− ), then   0 Thus, in general, the sign of  is not

known. Now, recall from equation (6) that

 = −1 + 

where  = ln(), 0   ≤ 1, and  is a white noise process. Now, 0    1,

 =  +

∞X
=1

−  (69)

Substitute (69) into (64), we have

b+1 =  + 

∞X
=0

0 () −1−

where

0 () =
+1X
=0

+1− ( ( − 1))  (70)

with  (−1) ≡ 1. Clearly, it is in the form of (24).

By the Wold theorem, we need to check whether the following expression is finite,¯̄̄̄
¯
Ã
1 +

∞X
=0

0 ()

!¯̄̄̄
¯
2



Notice that  is a constant. Thus,
¯̄

¡
1 +

P∞
=0 

0
 ()

¢¯̄2
is finite if and only if

¯̄P∞
=0 

0
 ()

¯̄2
is finite.
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By definition, i.e. (70), (67),

0 () =

+1X
=0

+1− ( ( − 1))

= +1 +  ·  (0) + −1 ·  (1)
++  ·  (− 1) +  ()

= +1 +  (+ (1− ) ) + −1
¡
2 + (1− ) 2

¢
++ 

¡
 + (1− ) 

¢
+
¡
+1 + (1− ) +1

¢
= 

¡
+1 + + −12 + +  + +1

¢
+(1− )

¡
+1 +  + −12 + +  + +1

¢
= 

µ
+2 − +2

− 

¶
+ (1− )

µ
+2 − +2

 − 

¶
=

µ


− 

¶
+2 +

µ
1− 

 − 

¶
+2 − +2

∙µ


− 

¶
+

µ
1− 

 − 

¶¸
(71)

Equipped with this result, let us define both the infinite sum and the partial sum,

0 (∞) ≡
∞X
=0

¯̄
0 ()

¯̄2


0 () ≡
X
=0

¯̄
0 ()

¯̄2


It is well known that 0 (∞) if and only if 0 () converges. And 0 () converges if it is a
Cauchy sequence, meaning that ∀  0, ∃  0, such that ∀   , |0 ()− 0()|  

(See Bartle and Sherbert, 2011, among others, for more details). Without loss of generality,

let us assume that   . By definition,

0 ()− 0()

=

X
=+1

¯̄̄̄
¯̄ X
=0

0 ()

¯̄̄̄
¯̄
2



Now define

0 = max
µ¯̄̄̄



− 

¯̄̄̄


¯̄̄̄
1− 

 − 

¯̄̄̄¶


Since , , ,  are all constant, 0 is a constant. Observe also that 0      1. It

implies that for any integer , 0      1,  = 1 2 . Now define

 = max (  ) 
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Clearly,  is still a constant and 0    1. Recall (71) that

0 () =
µ



− 

¶
+2 +

µ
1− 

 − 

¶
+2 − +2

∙µ


− 

¶
+

µ
1− 

 − 

¶¸


Following Hardy, Littlewood and Polya (1934), Steele (2004), we have

¯̄
0 ()

¯̄
≤

¯̄̄̄


− 

¯̄̄̄
+2 +

¯̄̄̄
1− 

 − 

¯̄̄̄
+2 + +2

∙¯̄̄̄


− 

¯̄̄̄
+

¯̄̄̄
1− 

 − 

¯̄̄̄¸
 40 ()+2 

which implies that ¯̄
0 ()

¯̄2
 16

¡
0
¢2
()2+4 

Thus,

0 ()− 0()

=

X
=+1

¯̄
0 ()

¯̄2


X
=+1

16
¡
0
¢2
()2+4

= 16
¡
0
¢2
()2+6

Ã
1− ()2(−−1)

1− ()2
!



Ã
16 (0)2

1− ()2
!
()2+6 

Notice that 0    1, ()2+6  ()2
+6 if     In addition, ln   0. Now define

 ≡
Ã
16 (0)2

1− ()2
!


It is then clear that ∀  0, ∀   , |0 ()− 0()|   ()2+6   ()2
+6 

, where

  
1

2

(
ln
£




¤
ln 

− 6
)


In other words, 0 (∞) converges and the log house price-to-income ratio, ( − )  is

stationary, which also proves (25).
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B The case of persistent productivity shock,  = 1

In this appendix, we will study how the results in the text will be modified when the

productivity shock is persistent,  = 1

First, notice that results up to (14) are valid, whether the productivity shock is mean-

reverting, 0    1, or when the productivity shock is persistent,  = 1.

Second, some results need to be modified as the productivity shock becomes persistent.

We will appraoch them in order.

• (15) needs to be modified as follows:

Proposition 9 The stationarity of  depends on the persistency of the productivity shock

 which is defined in (6). In particular, when we express  in the form of
P∞

=0 
()
 −,

if  = 1 i.e. the productivity shock  is a permanent shock, then the income  is

non-stationary,
∞X
=0

¯̄̄

()


¯̄̄2
=∞ (72)

Proof. By (6), we can re-write  as a function of previous period innovation terms,

{−}=0 

 =

∞X
=0

−  (73)

and hence (14) can be written as

 = 00 +  +

∞X
=1

⎛⎝1 + () −1X
=0

(1−  + )

⎞⎠ − (74)

By Wold’s Decomposition Theorem, to verify the stationarity of the income process , it

suffices to check whether

∞X
=1

¯̄̄̄
¯̄1 + () −1X

=0

(1−  + )

¯̄̄̄
¯̄
2

∞

Clearly,

∞X
=1

¯̄̄̄
¯̄1 + () −1X

=0

(1−  + )

¯̄̄̄
¯̄
2



∞X
=1

|1|2 as () , (1−  + )  0

= ∞
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Thus, the income process is non-stationary, and it proves (72).

• And while (16) is still valid, (17) needs to be modified.

Proposition 10 The stationarity of  depends on the persistency of the productivity

shock  which is defined in (6) In particular, when we express  in the form of
P∞

=0 
()
 −,

and if  = 1, i.e. the productivity shock  is persistent, then the house price  is non-

stationary,
∞X
=0

¯̄̄

()


¯̄̄2
∞ (75)

Proof. The proof here is similar to the proof of (17). As in the case when the

productivity shock is mean-reverting, i.e. 0    1 we need to first obtain an expression

of the house price in terms of the productivity shocks {}. The proof of (17) shows that
(58),

 = 
00
 + (1− )  + (1− ) [ − ] −1
+(1− ) [() (1−  + )−  ()−  (1− )] −2

+

∞X
=3

 () −

with (54),

where  () ≡ (1− )

∙
()

µ
 − 

 −  − 

¶
(1−  + )−1 − 

µ
 − 

 −  − 

¶
(1− )−1

¸


We further observe that if we use the following notations, (55),

 = (1− )

 = (1−  + )

A = (1− ) ()

µ
 − 

 −  − 

¶
B = (1− ) 

µ
 − 

 −  − 

¶


then we have (56) and (57),

0     1

 () = A ()−1 − B ()−1 
Hence, to verify the stationarity of , it suffices to check whether

P∞
=3 

 () − is
stationary or not. Again, recall from equation (6) that

 = −1 + 
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where  = ln(), 0   ≤ 1, and  is a white noise process. Now, with  = 1 we have

(73), and hence

∞X
=3

 () −

=

∞X
=3

⎛⎝ X
=3

 ()

⎞⎠ −

By the Wold’s decomposition theorem,  is stationary if
P∞

=3

¯̄̄P
=3 

 ()
¯̄̄2

 ∞. It
is well known that

P∞
=3

¯̄̄P
=3 

 ()
¯̄̄2

 ∞ if and only if ∀  0, ∃  0 such that

∀     ,
P

=

¯̄̄P
=3 

 ()
¯̄̄2
  (see Bartle and Sherbert, 2011). By (57), (55),

X
=3

 ()

= A
µ
2
1− −2

1− 

¶
− B

µ
2
1− −2

1− 

¶


Recall that (for instance, see Hardy, Littlewood and Polya, 1934; Steele, 2004)

2 + 2 − 2 || || ≤ |− |2 ≤ 2 + 2 + 2 || || 

Therefore, ¯̄̄̄
¯̄ X
=3

 ()

¯̄̄̄
¯̄
2

=

¯̄̄̄
A
µ
2
1− −2

1− 

¶
− B

µ
2
1− −2

1− 

¶¯̄̄̄2
≥

¯̄̄̄
A
µ
2
1− −2

1− 

¶¯̄̄̄2
+

¯̄̄̄
B
µ
2
1− −2

1− 

¶¯̄̄̄2
−2
¯̄̄̄
A
µ
2
1− −2

1− 

¶¯̄̄̄ ¯̄̄̄
B
µ
2
1− −2

1− 

¶¯̄̄̄
= |A|2

¯̄̄̄
2
1− −2

1− 

¯̄̄̄2
+ |B|2

¯̄̄̄
2
1− −2

1− 

¯̄̄̄2
−2 |A| |B|

µ
2
1− −2

1− 

¶µ
2
1− −2

1− 

¶


as (56) implies that
³
2 1−

−2
1−

´
,
³
2 1−

−2
1−

´
 0 In fact, due to (56), 0     1,
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∀ ≥ 3 Thus,¯̄̄̄
¯̄ X
=3

 ()

¯̄̄̄
¯̄
2

≥ |A|2
¯̄̄̄
2
1− −2

1− 

¯̄̄̄2
+ |B|2

¯̄̄̄
2
1− −2

1− 

¯̄̄̄2
− 2 |A| |B|

µ
2
1− −2

1− 

¶µ
2
1− −2

1− 

¶
= |A|2

¯̄̄̄
2 − 

1− 

¯̄̄̄2
+ |B|2

¯̄̄̄
2 − 

1− 

¯̄̄̄2
− 2 |A| |B|

µ
2 − 

1− 

¶µ
2 − 

1− 

¶
≡ A

Notice that
¯̄̄
2 1−

−2
1−

¯̄̄2
=
¯̄̄
2−
1−

¯̄̄2
. Notice also that as  → ∞,  and  both converges

to zero by (56). Thus, A → A as →∞, where

A ≡ |A|2
(µ

2

1− 

¶2)
+ |B|2

(µ
2

1− 

¶2)
− 2 |A| |B|

µ
2

1− 

¶µ
2

1− 

¶

=

½
A
µ

2

1− 

¶
− B

µ
2

1− 

¶¾2


Notice that by (55), A
³

2

1−
´
= (1− ) () (1−  + )2 ( −  − )−1, and B

³
2

1−
´
=

(1− )3
³

−
−−

´
 Thus,

A =

½
(1− )

( −  − )

h
() (1−  + )2 − (1− )2 ( − )

i¾2
which is positive except when the combination of the parameters is such that () (1−  + )2 =

(1− )2 ( − ). Therefore, with all these results, ∃  0, such that for all      ,

|A −A|, |A −A|  Thus,
P

=

¯̄̄P
=3 

 ()
¯̄̄2

P

= (A − ) = (−) (A − ) 

0 Thus,
P∞

=3

¯̄̄P
=3 

 ()
¯̄̄2
≮ ∞ and  is not stationary. This completes the proof of

(75).

• Most of the main results are valid. However, (25) needs to be modified:

Proposition 11 Assume that (6) holds. We can then write the house price-to-income

ratio in the following form,

( − ) = b + ∞X
=0

0 () −
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where  is a white noise. Furthermore, if  = 1, i.e. the productivity shock  is a

permanent shock, the stochastic process of log house price-to-income ratio is not stationary

∞X
=0

¯̄
0 ()

¯̄2
=∞ (76)

Proof. In the proof (25), we already verify that

( − ) = b + ∞X
=0

0 () −

where

 () =

µ
 − 

 −  − 

¶
(1− )+1 +

µ −
 −  − 

¶
(1−  + )+1 

and

0  (1− )+1 , (1−  + )+1  1

(1−  + )+1  (1−  + ) , (1− )+1  (1− ) .

Recall that

b+1 = ( − )−b
≡  + 

∞X
=0

 () −1−

where b being a constantis stationary, where  () is given by (44). When  = 1 we

have  =

∞X
=0

−  and when we substitute this into this expression,

b+1 ≡ 

⎛⎝ ∞X
=0

−

⎞⎠+ 

∞X
=0

 ()

⎛⎝ ∞X
=0

−1−−

⎞⎠
= 

⎡⎣ ∞X
=0

⎛⎝ X
=0

 ( − 1)
⎞⎠ −

⎤⎦ 
with  (−1) ≡ 1. Hence

 −  = b + b+1
= b + 

⎡⎣ ∞X
=0

⎛⎝ X
=0

 ( − 1)
⎞⎠ −

⎤⎦ 
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which is of the form of (24). Since  is white noise, b+1 is stationary if (46) holds, by the
Wold theorem. It means that we need to check whether the following expression is finite,

∞X
=0

¯̄̄̄
¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2



For future reference, let us define both the infinite sum and the partial sum,

 (∞) ≡
∞X
=0

¯̄̄̄
¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2



 () ≡
X
=0

¯̄̄̄
¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2



It is well known that  (∞) if and only if  () converges. And  () converges if it is a

Cauchy sequence, meaning that ∀  0, ∃  0, such that ∀   , | ()− ()|  

(See Bartle and Sherbert, 2011, among others, for more details). Without loss of generality,

let us assume that   . By definition,

 ()− ()

=

X
=+1

¯̄̄̄
¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2



By (65), (67), for  = (+ 1) ,

X
=0

 ( − 1)

=  (−1) +  (0) + +  (− 1)
= 1 + + (1− )  + 

+ + (1− ) 

= 1 + 
1− 

1− 
+ (1− ) 

1− 

1− 
 (77)

Notice that 0  ,   1, and hence 0      1, 0      1, where   are (1− ),

(1−  + ). Also, recall that |+ + | ≥ ||2+||2+||2−2 || ||−2 || ||−2 || || (for
instance, see Hardy, Littlewood and Polya, 1934; Steele, 2004). Thus,¯̄̄̄

¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2

=

¯̄̄̄
1 + 

1− 

1− 
+ (1− ) 

1− 

1− 

¯̄̄̄2
≡ A
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Since 0     1, A → A as  −→∞, where

A ≡
¯̄̄̄
1 + 

1

1− 
+ (1− ) 

1

1− 

¯̄̄̄2


Clearly, A is independent of  and by (68), 
1
1− =

³
−

−−
´³

1−


´
and (1− )  1

1− =³
−

−−
´³

1−+
−

´
, and hence

A ≡
¯̄̄̄

1

 (1− )

¯̄̄̄2
 0

Thus, ∀  0, there exists   0, such that ∀   , |A −A|   And

 ()− ()

=

X
=+1

¯̄̄̄
¯̄ X
=0

 ( − 1)
¯̄̄̄
¯̄
2

=

X
=+1

A



X
=+1

(A − )

= (− ) (A − )  0

which is not converging. In other words,  (∞) does not converge, which proves (76).

• In the main text, we have proved the cointegration of output  and house price
 when the productivity shock is mean-reverting, 0    1 Now we will show

that output and house price are cointegrated even when the productivity shock is

permanent, i.e.  = 1

Proposition 12 Assume that (6) holds and  = 1 There exists a constant ∗ such that
( − ∗) is stationary. It means that if ( − ∗) =

P∞
=0  () − where  is a white

noise, then
∞X
=0

| ()|2 ∞ (78)

Proof. To verify whether  and  are cointegrated, we need to find a constant , at

which the expression ( − ) is stationary. Thus, we need to obtain an expression of

( − ) based on some previous results. Recall (14) that

 = 
00
 + −1 + 

∞X
=0

 () −2−
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and (16) that

 =  +  − +1

Together, they yield

 =  +  −
Ã

00
 +  + 

∞X
=0

 () −1−

!


Thus, ( − ),   0, can be expressed as

 − 

=  + (1− )  + 

Ã
 +

∞X
=0

 () −1−

!
 (79)

where  is a constant term,  ≡ −
³
 − 

00


´
. By (41), we have

 = 00 +  + ()

∞X
=0

(1−  + ) −1−

Combining (79) and (41), we have

 − 

= 0

+(1− )

"
 + ()

∞X
=0

(1−  + ) −1−

#

+

Ã
 +

∞X
=0

 () −1−

!
= 0 + [(1− ) + ] 

+

∞X
=0

 () −1− (80)

where 0 is a constant, 0 ≡ (1− ) 00 + , and

 () = (1− ) () (1−  + ) +  ()  (81)

Remark 1 If  = 1, (80) is equivalent to (23).
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Proof. If  = 1, [(1− ) + ] = ,  () = (1− 1) () (1−  + ) + 1 ·  () =
 (), and hence (80) is reduced to (23).

Since we already know that if 0    1, ( − ) is stationary (i.e.  = 1). Now we

focus on the case  = 1 In that case, by (73), (80) can be re-written as

 −  = 0 + [(1− ) + ]  +

∞X
=0

 () −1−

= 0 + [(1− ) + ]

∞X
=0

− +
∞X
=0

 ()

∞X
=0

−1−−

= 0 + [(1− ) + ] 

+

∞X
=1

⎡⎣[(1− ) + ] +

X
=1

 ( − 1)
⎤⎦ −

where
P1

=1  ( − 1) ≡ 1. By Wold’s Decomposition Theorem, { − } is stationary ifP∞
=1

¯̄̄
[(1− ) + ] +

P
=1  ( − 1)

¯̄̄2
+[(1− ) + ]2 is finite. Since [(1− ) + ]2 is a

constant and finite, the condition will translate into “if
P∞

=1

¯̄̄
[(1− ) + ] +

P
=1  ( − 1)

¯̄̄2
is finite.” Following the same procedure of the previous proof, we define both the infinite

sum and the partial sum,

 (∞) ≡
∞X
=1

¯̄̄̄
¯̄[(1− ) + ] +

X
=1

 ( − 1)
¯̄̄̄
¯̄
2



 () ≡
X
=1

¯̄̄̄
¯̄[(1− ) + ] +

X
=1

 ( − 1)
¯̄̄̄
¯̄
2



It is well known that  (∞) is finite if and only if  () converges. And  () con-

verges if it is a Cauchy sequence, meaning that ∀  0, ∃  0, such that ∀   ,

| ()− ()|   (See Bartle and Sherbert, 2011, among others, for more details).

Without loss of generality, let us assume that   . By definition,

 ()− ()

=

X
=+1

¯̄̄̄
¯̄[(1− ) + ] +

X
=1

 ( − 1)
¯̄̄̄
¯̄
2

 (82)

Recall (67), (68) that

 () = +1 + (1− ) +1
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where

 =

µ
 − 

 −  − 

¶
 = (1− )  0

 = (1−  + )  0

Thus, (81) can be re-written as

 () = (1− ) () (1−  + ) +  ()

= (1− ) ()  + 
£
+1 + (1− ) +1

¤


and we can re-write (82),

 ()− () =

X
=+1

||2 (83)

where  is defined as the following,

 ≡ [(1− ) + ] +

X
=1

 ( − 1)

= [(1− ) + ]

+ (1− ) () +  [+ (1− ) ]

+ (1− ) ()  + 
£
2 + (1− ) 2

¤
+

+(1− ) () −1 + 
£
 + (1− ) 

¤
= [(1− ) + ] + (1− ) ()

1− 

1− 

+

∙

1− 

1− 
+ (1− ) 

1− 

1− 

¸
= [(1− ) + ] + 

∙

1− 

1− 

¸
+ [(1− ) () +  (1− ) ]

µ
1− 

1− 

¶
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Notice that  can be re-written as

 = [(1− ) + ] + 

∙

1− 

1− 

¸
+ [(1− ) () +  (1− ) ]

µ
1− 

1− 

¶
= [(1− ) + ] + 

∙


1

1− 

¸
+ [(1− ) () +  (1− ) ]

µ
1

1− 

¶
−
½


∙




1− 

¸
+ [(1− ) () +  (1− ) ]

µ


1− 

¶¾
 (84)

Intuitively, if

[(1− ) + ] + 

∙


1

1− 

¸
+ [(1− ) () +  (1− ) ]

µ
1

1− 

¶
= 0 (85)

then  will be significantly simplified,

 = −
½


∙




1− 

¸
+ [(1− ) () +  (1− ) ]

µ


1− 

¶¾
and since 0     1,   → 0 as →∞ and hence  → 0. Thus, we need to choose

 such that (85) holds. Clearly, (85) holds if and only ifµ
1 +

()

1− 

¶
= 

½µ
1 +

()

1− 

¶
− 

∙
(1− )



1− 
+ 



1− 

¸¾
 (86)

By (68),



1− 
=

1− 



1

1− 
=

1

 (1− )



1− 
=

1− (1− )

(1− )

 =

µ
 − 

 −  − 

¶


which means that (86) can be further simplified as

1

1− 
= 

½µ
1

1− 

¶
− 

∙µ −
1− 

¶µ
1− (1− )

 −  − 

¶
+

µ
 − 

 −  − 

¶µ
1− 



¶¸¾
= 

½
2 +  +  −  − 2
(1− ) ( −  − )

¾
 (87)
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Since 0    1, (87) implies that

 =
( −  − )

2 +  −  + ( −  − )

=
1

1− 
 (88)

As 0    1,   1. Also, since  = 1
1− , 1−  = −

1− = −
Observe further that as (85) holds, (84) can be simplified as

 = −
½


∙




1− 

¸
+ [(1− ) () +  (1− ) ]

µ


1− 

¶¾
= D1 +D2 (89)

where

D1 ≡ − 

1− 

=

µ
1− 

1− 

¶µ
 − 

 −  − 

¶


D2 ≡ − [(1− ) () +  (1− ) ]
1

1− 

=
−

(1− )2

∙
+ 

µ
1−  + 

 −  − 

¶¸


and hence both D1 and D2 are constant. For future reference, let us define

 = max { } 

Since 0     1, 0    1 Hence,

0  ()
  ()

    1, ∀    1 (90)

Similarly, define

 = max {|D1| , |D2|} 
Now combine (89) with (83), and follow Hardy, Littlewood and Polya (1934), Steele (2004),
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we have

 ()− ()

=

X
=+1

||2

=

X
=+1

¯̄
D1 +D2

¯̄2
=

X
=+1

¯̄̄¡
D1

¢2
+
¡
D2

¢2
+ 2

¡
D1

¢ ¡
D2

¢¯̄̄


X
=+1

n¯̄



¯̄2
+
¯̄



¯̄2
+ 2

¡

¢ ¡

¢ |D1| |D2|o

 ||2
X

=+1

¯̄
 + 

¯̄2
≤ ||2

X
=+1

¯̄̄
2 ()


¯̄̄2

= 

X
=+1

()
2 

where

 ≡ 4 ||2 
Therefore, ∀  0, ∀   ,

 ()− ()

≤ 

X
=+1

()
2

 

∞X
=+1

()
2 as 0    1

= 

µ
1

1− ()2
¶
()

2(+1)

 

µ
1

1− ()2
¶
()

2(+1) as 0    1

Now define

 ≡ 

µ
1

1− ()2
¶
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And since 0    1, ln   0. Thus, | ()− ()|   ()
2(+1)  ,

if   
1

2

Ã
ln
¡


¢
ln 

!
− 1

Thus,  () converges and hence ( − ) is stationary.

C More Discussion on  and 

Throughout the paper, the relative magnitude of two parameters,  and  are of great

importance. For instance, in the previous proof,

 () = (1− )+1 + ()

X
=0

(1− )− (1−  + )

= (1− )+1 + ()
(1− )+1 − (1−  + )+1

 −  − 

= (1− )+1
µ

 − 

 −  − 

¶
+ (1−  + )+1

µ −
 −  − 

¶


Thus, we can interpret  () as a “weighted average” of two terms, (1− )+1 and

(1−  + )+1  Furthermore, since  and  are strictly between 0 and 1, 0  (1−  + ) =

(1− (1− ))  1. Therefore, 0  (1−  + )+1  (1−  + )  1,  = 0, 1, 2,....

Similarly, since 0    1, 0  (1− )  1. Therefore, we also have 0  (1− )+1 

(1− )  1.

How about the “weights,” i.e.
³

−
−−

´
and

³
−

−−
´
? Clearly, if ( −  − )  0,³

−
−−

´
 1 and

³
−

−−
´
 0 In the macroeconomic literature, the capital share of

output,  has been estimated many times and it is typically around 03 to 035 (Cooley,

1995). For simplicity, let us assume that  = 13 On the other hand, empirical estimates

for the parameters  and  are quite different that it may affect how we proceed. Let us

take a few examples to illustrate.

1. According to Greenwood and Hercowitz (1991),  =  = 0078 on quarterly basis.

In that case,  −  = 0 and hence

 () = (1−  + )+1 

which is clearly a converging sequence as 0  (1−  + )  1
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2. According to Davis and Heathcote (2005),  = 0056,  = 0016 on quarterly basis.

In that case, −  = 004, −  −  = 0056− 0016− (0056) ∗ (13) = 002 1  0
Hence

 () ≈ 2 (1− )+1 − (1−  + )+1 

From this point on, we impose the following assumption,

 ≥   0 (91)

for future reference.

On the other hand, while both previous studies and causal observations support (91),

we do not know in general whether ( −  − )  0 or not. Notice that

( −  − )  0

⇔  (1− )  

⇔ (1− )  

 (92)

The left hand side of the last expression is the labor share, or unity minus the capital

share. The right hand side of the same expression is the ratio of the depreciation rate of

residential housing relative to the depreciation rate of business capital. Thus, equation

(92) comapres the relative magnitude of two forces. One is the share of factors (which is

labor in this model) other than business capital. The second force is the relative speed

of business capital depreciation relative to the counterpart of another stock (which is

residential housing in this model). Theoretically, there is no clear reason of why one

should dominate the other. Since we cannot be sure whether ( −  − )  0 or not, we

cannot be sure whether
³

−
−−

´
is larger than unity or not.

In terms of the dynamics of  (), we can actually say a few more words. Notice that

(+ )  ()

= (+ )
¡
+1 + (1− ) +1

¢
= +2 + (1− ) +1+ +1 + (1− ) +2

=  (+ 1) + 
¡
(1− )  + 

¢
=  (+ 1) +  (− 1) 

We re-state the result in the following lemma.

Lemma 3  () evolves according to the following formula,

 (+ 1) = (+ )  ()−  ·  (− 1)  (93)

Notice that for empirically plausible parameterization, (+ ) = (1− )+(1−  + ) 

1 whereas  = (1− ) · (1−  + )  hence 0    1.
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