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estimate this VAR specification—we name it NOEM-BVAR—and pseudo-out-of-sample 
forecasts to assess its forecasting performance at different horizons in a diverse set of 18 
countries. On average, the NOEM-BVAR specification produces a similar or even lower 
root mean square prediction error (RMSPE) than its standard competitors, which include 
both purely statistical models and theoretically-based forecasting models (e.g., Phillips-
curve-type alternatives and others with global inflation measures). In a number of cases, 
the gains in smaller RMSPEs are statistically significant, especially at short horizons. The 
NOEM-BVAR model is also accurate in predicting the direction of change for inflation and 
is often better than its competitors along this dimension as well. Even though purely 
statistical models can be useful prediction tools, the NOEM-BVAR is attractive among 
those forecasting models motivated by economic theory. 
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1 Introduction

The idea that domestic inflation may depend on international conditions is not new. A major risk from

ignoring international developments is to misinterpret the effect of domestic economic conditions, and, as

a result, pursuing suboptimal macroeconomic policies based on erroneous forecasts. Understanding the

international links that affect inflation is, therefore, fundamental to develop better models– not just for

policy analysis, but also for forecasting. Our paper presents a two-country New Keynesian model that

explicitly links domestic inflation to global developments in a globally integrated world economy. We argue

that the economic forces driving inflation in one country will permeate inflation everywhere else to a certain

degree. Hence, we explore the importance of those international linkages on inflation forecasting along two

dimensions: theoretical and empirical.

Our paper is related to the literature that uses dynamic stochastic general equilibrium (DSGE) models

with explicit microfoundations and optimizing agents for forecasting. We study the dynamics of inflation

in the context of the workhorse New Open Economy Macro Model (NOEM) that has become a cornerstone

of modern international macro (see, e.g., Clarida et al. (2002), Martínez-García and Wynne (2010), and

Martínez-García (2017)). Del Negro et al. (2007), Del Negro and Schorfheide (2013), and Martínez-García

(2015) provide a thorough review of a class of New Keynesian DSGE model with nominal rigidities and a

rich economic structure of which the NOEM model is the workhorse two-country variant.1

Microfounded DSGE models connect the deep parameters to the main features and relationships that

characterize the economy and are more suitable for macroeconomic policy evaluation (see Lucas (1976)).

However, in spite of the popularity of DSGE models, trade-offs between theoretical coherence and empirical fit

persist as well as concerns about misspecification and omitted variables (Schorfheide (2013), Martínez-García

and Wynne (2014)). Hence, what we do in our benchmark is to incorporate the key open-economy features

of the NOEM model and map its reduced-form solution into a tractable finite-order VAR specification that

captures the international linkages implied by the theory without imposing its cross-equation restrictions.

To exploit the reduced-form VAR representation of the workhorse NOEM model solution in order to

more accurately forecast domestic inflation, we propose a Bayesian VAR (BVAR)– our benchmark NOEM-

BVAR specification– which incorporates all relevant information pertaining to the dynamics of key domestic

and rest-of-the-world variables (inflation and output).2 Most of the existing DSGE model-based forecast-

ing frameworks omit important channels for international spillovers, particularly so when looking at large

economies such as the U.S. which tend to be treated as ‘effectively’ closed-economies. Our benchmark

NOEM-BVAR offers us a parsimonious way to explicitly allow for non-trivial international linkages to play a

1 Increasing efforts have been made to develop, assess, and use DSGE models as forecasting tools (Smets and Wouters
(2003), Smets and Wouters (2004), and Edge and Gürkaynak (2010)). In fact, DSGE models have become an integral part
of the toolkit for macroeconomic forecasting and policy analysis of many central banks. Examples include the DSGE models
developed by the Sveriges Riksbank (Adolfson et al. (2007)), the European Central Bank (Christoffel et al. (2011)), and the
Federal Reserve Board (Edge et al. (2010)). Small open-economy DSGE models are already pretty common for forecasting
too– more recently, Marcellino and Rychalovska (2014). Our paper focuses, in turn, on inflation forecasting in relatively
large and internationally-connected economies– for that purpose, we put the emphasis on modelling international spillovers
explicitly for forecasting inflation (see also Martínez-García et al. (2012) and Martínez-García and Wynne (2014)). In our
preferred multi-country framework, we incorporate explicitly the (direct) spillover effects on the domestic economy arising from
foreign-originated shocks. We also recognize the (indirect) feedback effects that arise from domestic- or foreign-originated shocks
impacting international relative prices (terms of trade) and the global economy and feeding back to the domestic economy.

2 In our preferred two-country NOEM framework, we incorporate explicitly the (direct) spillover effects on the domestic
economy arising from foreign-originated shocks. We also recognize the (indirect) feedback effects that arise from domestic- or
foreign-originated shocks impacting international relative prices (terms of trade) and the global economy and feeding back to
the domestic economy.
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role in helping us improve the inflation forecasting performance of more standard (closed-economy) empirical

forecasting models.

We provide novel pseudo-out-of-sample forecasting evidence suggesting those international linkages can

be important for forecasting inflation when we look at 18 major, highly-interconnected economies (including

the U.S.). We focus on headline CPI inflation as our measure of inflation– as it is less subject to revisions

than, e.g., the GDP deflator– and run a very extensive model comparison exercise including up to 10 different

specifications widely-used in the literature. We collect quarterly data on headline CPI inflation, real GDP,

industrial production, and monetary aggregates (M2) for those 18 economies from the Federal Reserve Bank

of Dallas’Database of Global Economic Indicators (DGEI)– whose sources are documented in greater detail

by Grossman et al. (2014).3 This sample provides a reasonable approximation of the global economic forces

at play since the country selection we work with represents a large share of world output.

Our main results can be summarized as follows. First, we build on the existing literature on inflation

forecasting and, particularly, on the seminal contributions of Atkeson and Ohanian (2001), Stock and Watson

(2007), and Faust and Wright (2013), among others, as they explore the performance of theoretically-based

models.4 We argue that the NOEM-BVAR allows us to obtain a 4-variable specification accounting for

cross-country spillovers, which is parsimonious as suggested by the best practices in forecasting.

Second, on average, the findings in our paper reveal that the NOEM-BVAR specification produces similar

or lower root mean square prediction errors (RMSPEs) than its competitors. Our tests suggest that the

NOEM-BVAR specification generally performs as good as the current crop of inflation forecasting models

with factor components and even as good or better than standard closed-economy Phillips-curve-based

specifications. In a number of cases, the gains in smaller RMSPEs are statistically significant. In particular,

the NOEM-BVAR outperforms or shows a predictive ability similar to theoretically-based forecasting models.

Third, we also consider the performance of the NOEM-BVAR with an alternative measure of predictive

success. The model produces success ratios– assessing the ability of the forecast to correctly anticipate the

direction of change in inflation– that are comparable or higher than those of its competitors. For most

countries, our findings suggest that the NOEM-BVAR produces statistically significant improvements in the

accuracy of the direction of change forecast for inflation.

Finally, we also provide additional robustness checks comparing the predictions of the NOEM-BVAR

against those of a random walk specification, a time-varying parameter model with stochastic volatility

based on the closed-economy Phillips curve, and even against dynamic moving averaging. In all these

robustness checks, we illustrate that overcoming some aspect or shortcoming of the competing forecasting

models that we have considered does not fundamentally alter our findings about the NOEM-BVAR. While

our forecasting evaluation is by no means exhaustive, the evidence on the NOEM-BVAR highlights the

importance of modeling cross-country spillovers and incorporating them fully into our inflation forecasting

models. We view the NOEM-BVAR as a flexible specification that presents us with a plausible benchmark

for forecasting inflation allowing for non-negligible cross-country spillovers across a diverse group of countries

around the world.
3The 18 economies included in our empirical work represent more than 50 percent of world output in the 1980s and even

during most of the 1990s according to their PPP-adjusted shares of world GDP total from International Monetary Fund (IMF)
data. Their combined share of world output has declined to around 40 percent since 2004, though, as emerging economies’share
has grown rapidly. Key global indicators from the Federal Reserve Bank of Dallas’Database of Global Economic Indicators
(DGEI) can be publicly accessed at: https://www.dallasfed.org/institute/dgei.

4Related contributions include Kishor and Koenig (2016), Medel (2016), and Monache and Petrella (2017).
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We also find that the forecasting performance of the NOEM-BVAR is similar to that obtained using the

semi-structural approach of Del Negro and Schorfheide (2004) or the structural method based on forecasting

directly with the NOEMmodel. Both approaches incorporate more of the cross-equation restrictions imposed

by theory than the NOEM-BVAR. While this does not imply that the NOEM model is the better description

of those cross-country spillovers captured by the NOEM-BVAR, it suggests that theory can be used to

complement the NOEM-BVAR forecasts for policy analysis. Having the theoretical model as a reference

does not generally improve the forecasting performance as it imposes more restrictions on the relationships

that characterize the data, but can be helpful to gain insight about what domestic and foreign sources

explains the evolution of the inflation forecasts.

In Section 2, we formulate the theoretical case for the NOEM model and discuss its implications for

forecasting. We derive the general state-space form solution of the NOEM model and show how such a

solution can be represented with a finite-order VAR under general conditions. This VAR structure constitutes

the basis of our NOEM-BVAR forecasting specification. In Section 3, we describe the data, formulate a broad

range of competing models for inflation forecasting, and outline the forecast evaluation approach. In Section

4 we discuss the main results and robustness checks. Section 5 concludes with some final remarks. Appendix

A provides all relevant tables, while Appendix B has all the additional technical details on the derivations

of the NOEM model solution.5

2 The Workhorse New Open Economy Macro Model

The workhorse NOEM model (Martínez-García and Wynne (2010), Martínez-García (2019)) allows us, first,

a better understanding of the role that global factors can play in domestic inflation and the international

transmission channels; and, second, to derive a theoretically consistent, finite-order VAR representation

of the model’s reduced-form solution that can be easily estimated and used to forecast inflation. To be

more precise, the reduced-form solution of the workhorse NOEM model can be cast in state-space form and

approximated with a finite-order VAR which can then be exploited for inflation forecasting. In this section,

we lay the groundwork for our investigation into inflation forecasting by describing the building blocks of

the NOEM model.

2.1 The Model

The standard closed-economy New Keynesian model is given by a log-linearized system of three-equations– a

closed-economy Phillips curve, a closed-economy investment-savings (IS) curve, and an interest rate-based

monetary policy rule– that characterize the dynamics of output, inflation, and the short-term nominal

interest rate around the deterministic zero-inflation steady state.6 Goodfriend and King (1997), Clarida

et al. (1999), and Woodford (2003), among others, contributed to developing this framework from explicitly

optimizing behavior by households and price-setting firms in the presence of monopolistic competition and

sticky prices (nominal rigidities) and from a rule-based description of the practice of central banking.

5There is also a not-for-publication Online Appendix which reports more detailed results (Duncan and Martínez-García
(2022)).

6The assumption of a zero-inflation steady state rules out the existence of a long-run Phillips curve relating inflation to
global economic activity. For a detailed discussion on the role of a non-zero steady state inflation rate within related New
Keynesian models, the interested reader is referred to Ascari and Sbordone (2014).
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Building on the earlier work of Clarida et al. (2002), Martínez-García and Wynne (2010) and Martínez-

García (2019) show that the same basic structure of three log-linearized equations that constitutes the basis

of the closed-economy New Keynesian framework can be generalized to a two-country setting to describe the

dynamics of output, inflation, and the short-term policy rate and the trade linkages between a domestic and

a foreign economy. The full details of the two-country New Open-Economy Macro (NOEM) specification

and the key structural parameters can be found in Table 1 and Table 2.

Since the building blocks of the NOEM model are otherwise extensively discussed in Martínez-García

and Wynne (2010) and Martínez-García (2019), here we put the emphasis instead on understanding the

model implications for explaining and predicting inflation. We denote ĝt ≡ lnGt − lnG the deviation of a

variable in logs from its steady-state. Hence, all variables are defined in log-deviations from steady-state.

The open-economy Phillips curve can be written for each country as follows:

π̂t = βEt (π̂t+1) + Φ (ϕ+ γ) [κx̂t + (1− κ) x̂∗t + v̂t] , (1)

π̂∗t = βEt
(
π̂∗t+1

)
+ Φ (ϕ+ γ) [(1− κ) x̂t + κx̂∗t + v̂∗t ] , (2)

where π̂t ≡ p̂t − p̂t−1 and π̂∗t ≡ p̂∗t − p̂∗t−1 denote Home and Foreign inflation (that is, quarter-over-quarter
changes in the consumption price index, CPI), and p̂t and p̂∗t denote the corresponding Home and Foreign

CPI. We define x̂t ≡ ŷt− ŷt and x̂∗t ≡ ŷ∗t − ŷ
∗
t as the Home and Foreign output gaps defined as the deviation of

local output (ŷt and ŷ∗t , respectively) from local output potential under flexible prices and perfect competition

(ŷt and ŷ
∗
t , respectively).

The composite coeffi cient Φ (ϕ+ γ) where Φ ≡
(
(1−α)(1−βα)

α

)
is the common component of the slope of

the open-economy Phillips curve (which equals the slope of the Phillips curve in the closed-economy case),

0 < β < 1 is the intertemporal discount factor, 0 < α < 1 is the Calvo (1983) price stickiness parameter,

γ > 0 is the inverse of the intertemporal elasticity of substitution, and ϕ > 0 is the inverse of the Frisch

elasticity of labor supply. The differences in slope coeffi cients for Home and Foreign slack that arise in

(1) − (2) are related to the composite coeffi cient κ ≡ (1− ξ)
[
1− (σγ − 1)

(
γ

ϕ+γ

)(
(2ξ)(1−2ξ)

1+(σγ−1)(2ξ)(2(1−ξ))

)]
which is itself a function of the elasticity of intratemporal substitution between Home and Foreign goods (or

trade elasticity) σ > 0 and the share of imported goods 0 ≤ ξ < 1
2 .

We define the Home and Foreign cost-push shocks shifting the marginal costs for local producers as ût
and û∗t , respectively– these cost-push shocks enter weighted by the import share 0 ≤ ξ < 1

2 into the Home

Phillips curve as v̂t = (1− ξ) ût + ξû∗t and into the Foreign Phillips curve as v̂
∗
t = ξût + (1− ξ) û∗t . The

stochastic process for the Home and Foreign cost-push shocks, ût and û∗t , evolves according to the following

bivariate autoregressive process:(
ût

û∗t

)
=

(
δu 0

0 δu

)(
ût−1

û∗t−1

)
+

(
ε̂ut

ε̂u∗t

)
, (3)(

ε̂ut

ε̂u∗t

)
∼ N

((
0

0

)
,

(
σ2u ρu,u∗σ

2
u

ρu,u∗σ
2
u σ2u

))
. (4)

The Home and Foreign cost-push shock innovations are labeled ε̂ut and ε̂u∗t , respectively. We assume a

common volatility σ2u ≥ 0 and a common autoregressive parameter 0 < δu < 1. We allow the cross-

correlation of cost-push innovations between the two countries to be −1 < ρu,u∗ < 1.
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The open-economy IS equations in (5) − (6) illustrate that the Home and Foreign output gaps, x̂t and

x̂∗t , are tied to shifts in consumption demand over time and across countries:

γ (Et [x̂t+1]− x̂t) = Ω
[̂
it − Et (π̂t+1)− r̂t

]
+ (1− Ω)

[̂
i∗t − Et

(
π̂∗t+1

)
− r̂∗t

]
, (5)

γ
(
Et
[
x̂∗t+1

]
− x̂∗t

)
= (1− Ω)

[̂
it − Et (π̂t+1)− r̂t

]
+ Ω

[̂
i∗t − Et

(
π̂∗t+1

)
− r̂∗t

]
, (6)

where Ω ≡ (1− ξ)
(
1−2ξ(1−σγ)

1−2ξ

)
. The real interest rates in the Home and Foreign country are defined by

the Fisher equation as r̂t ≡ ît − Et [π̂t+1] and r̂∗t ≡ î∗t − Et
[
π̂∗t+1

]
respectively, while ît and î∗t denote the

Home and Foreign short-term nominal interest rates. The natural rates of interest– those that would prevail

under flexible prices and perfect competition– are denoted r̂t for the Home country and r̂
∗
t for the Foreign

country. As implied by (5)− (6), the wedges between each country’s real interest rate and its corresponding

natural real rate of interest capture the distortionary effects of nominal rigidities on aggregate demand.7

The Home and Foreign Taylor (1993)-type monetary policy rules complete the NOEM model. Monetary

policy pursues the goal of domestic stabilization responding solely to changes in local economic conditions

as determined by each country’s inflation and output gap in equations (7)− (8):

ît = ψππ̂t + ψxx̂t + m̂t, (7)

î∗t = ψππ̂
∗
t + ψxx̂

∗
t + m̂∗t , (8)

where m̂t and m̂∗t are the Home and Foreign monetary policy shocks. The policy parameters ψπ > 0 and

ψx ≥ 0 represent the sensitivity of the monetary policy rule to deviations in inflation and the output gap,

respectively.8

We introduce persistence through the monetary policy shocks themselves– a form of exogenous inertia in

the policy rule consistent with the yield-curve evidence documented in Rudebusch (2006).9 The stochastic

process for the Home and Foreign monetary policy shocks, m̂t and m̂∗t , in each country evolves according to

the following bivariate autoregressive process:(
m̂t

m̂∗t

)
=

(
δm 0

0 δm

)(
m̂t−1

m̂∗t−1

)
+

(
ε̂mt

ε̂m∗t

)
, (9)(

ε̂mt

ε̂m∗t

)
∼ N

((
0

0

)
,

(
σ2m ρm,m∗σ2m

ρm,m∗σ2m σ2m

))
. (10)

7These real interest rate wedges describe the gap between the actual opportunity cost of consumption today versus con-
sumption tomorrow in the presence of monopolistic competition and sticky prices and the opportunity cost that would prevail
under flexible prices and perfect competition.

8A discussion of the condition on the policy parameters that ensures the existence and uniqueness of the solution to the
NOEM model can be found in Martínez-García (2019).

9We adopt this particular representation (often referred as extrinsic monetary policy inertia), abstracting from partial
adjustment arising from policy smoothing (intrinsic policy inertia). We argue that this is consistent with the evidence gathered
by Rudebusch (2006) which points to fairly rapid central bank reactions to current information and news and provides little
empirical support for the intrinsic policy inertia representation. Moreover, the extrinsic policy inertia representation also seems
most in accord with the conventional policymakers’view that current policy actions are contingent largely on incoming current
data.

5



The Home and Foreign monetary policy shock innovations are labeled ε̂mt and ε̂
m∗
t , respectively. We assume a

common volatility σ2m ≥ 0, a common autoregressive parameter −1 < δm < 1, and allow the cross-correlation

of monetary innovations between the two countries to be −1 < ρm,m∗ < 1.

The Home and Foreign natural rates of interest r̂t and r̂
∗
t can be expressed as functions of expected

changes in Home and Foreign potential output:

r̂t = γ
[
Θ
(
Et
[
ŷt+1

]
− ŷt

)
+ (1−Θ)

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
, (11)

r̂
∗
t = γ

[
(1−Θ)

(
Et
[
ŷt+1

]
− ŷt

)
+ Θ

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
, (12)

where the composite coeffi cient Θ ≡ (1− ξ)
(
σγ−(σγ−1)(1−2ξ)
σγ−(σγ−1)(1−2ξ)2

)
is a function of: (a) the elasticity of in-

tratemporal substitution between Home and Foreign goods (or trade elasticity) σ > 0 times the inverse of

the intertemporal elasticity of substitution γ > 0, and (b) the import share 0 ≤ ξ < 1
2 . Home and Foreign

potential output, ŷt and ŷ
∗
t , can in turn be expressed as follows:

ŷt =

(
1 + ϕ

γ + ϕ

)
[Λât + (1− Λ) â∗t ] , (13)

ŷ
∗
t =

(
1 + ϕ

γ + ϕ

)
[(1− Λ) ât + Λâ∗t ] , (14)

where the composite coeffi cient Λ ≡ 1 + 1
2

(
( γ
ϕ+γ )(σγ−1)(2ξ)(2(1−ξ))

1+(1− γ
ϕ+γ )(σγ−1)(2ξ)(2(1−ξ))

)
depends on a number of deep

structural parameters: the elasticity of intratemporal substitution between Home and Foreign goods (or

trade elasticity) σ > 0, the inverse of the intertemporal elasticity of substitution γ > 0, the import share

0 ≤ ξ < 1
2 , and the inverse of the Frisch elasticity of labor supply ϕ > 0. Output potential changes in

response to realizations of ât and â∗t which denote the corresponding Home and Foreign productivity shocks.

The stochastic process for Home and Foreign aggregate productivity, ât and â∗t , evolves according to the

following bivariate autoregressive process:(
ât

â∗t

)
=

(
δa δa,a∗

δa,a∗ δa

)(
ât−1

â∗t−1

)
+

(
ε̂at

ε̂a∗t

)
, (15)(

ε̂at

ε̂a∗t

)
∼ N

((
0

0

)
,

(
σ2a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2a

))
. (16)

The Home and Foreign productivity shock innovations are labeled ε̂at and ε̂a∗t , respectively. We assume

a common volatility σ2a ≥ 0, a common autoregressive parameter 0 < δa < 1, and a common spillover

parameter −1 < δa,a∗ < 1.10 We allow the cross-correlation of productivity innovations between the two

countries to be −1 < ρa,a∗ < 1.

10The eigenvalues corresponding to the matrix
(

δa δa,a∗
δa,a∗ δa

)
are δa − δa,a∗ and δa + δa,a∗ . Hence, both eigenvalues lie

inside the unit circle ensuring the stationarity of the productivity process whenever
∣∣δa + δa,a∗

∣∣ < 1 and
∣∣δa − δa,a∗ ∣∣ < 1.
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2.2 Reduced-Form Solution

The forcing processes of the NOEM model are the cost-push shocks, ût and û∗t , in (3)− (4), the productivity

shocks, ât and â∗t , in (15) − (16), and the monetary policy shocks, m̂t and m̂∗t , in (9) − (10). We replace

the policy rules in (7) − (8) together with the definitions of the natural rates of interest in (11) − (12) and

potential output in (13) − (14) into the structural relationships in (1) − (2) and (5) − (6) to express the

generalized system of equations that describes the NOEM model as follows:

M (θ) Ẑt = N (θ)Et
[
Ẑt+1

]
+Q (θ) ε̂t, (17)

where

Ẑt =
(
π̂t, π̂

∗
t , ŷt, ŷ

∗
t , ût−1, û

∗
t−1, ât−1, â

∗
t−1, m̂t−1, m̂

∗
t−1
)T
, (18)

ε̂t = (ε̂ut , ε̂
u∗
t , ε̂

a
t , ε̂

a∗
t , ε̂

m
t , ε̂

m∗
t )

T
, (19)

andM (θ), N (θ), and Q (θ) are conforming matrices whose entries are a function of the structural parameters

given by the vector θ = (β, γ, ϕ, α, σ, ξ, ψπ, ψx, δa, δa,a∗ , σa, ρa,a∗ , δu, σu, ρu,u∗ , δm, σm, ρm,m∗). The mapping

between M (θ), N (θ), and Q (θ) and the vector of structural parameters θ is derived explicitly in Appendix

B.

For reasonable parameter values, the matrix M (θ) is invertible and (17) can be re-written as:

Ẑt = Γ (θ)Et
[
Ẑt+1

]
+ Ψ (θ) ε̂t, (20)

where Γ (θ) = (M (θ))
−1
N (θ) and Ψ (θ) = (M (θ))

−1
Q (θ). Blanchard and Kahn (1980) provide general

conditions under which a unique stable solution exists for (20). In the NOEM model case, we see that a

close variant of the Taylor principle arises from the Blanchard and Kahn (1980) determinacy conditions for a

wide range of plausible values of the structural and policy parameters.11 We consider here only values of the

parameter space for which uniqueness and existence can be guaranteed and abstract from further discussion

of other scenarios where indeterminacy or no-solutions could emerge as an outcome.

We further partition Ẑt into two blocks in order to analyze the NOEMmodel: a block of observed variables

Ẑ1t = (π̂t, π̂
∗
t , ŷt, ŷ

∗
t )
T and a block with the unobserved states Ẑ2t =

(
ût−1, û

∗
t−1, ât−1, â

∗
t−1, m̂t−1, m̂

∗
t−1
)T
.

Imposing lim
τ→+∞

(Γ (θ))
τ Et

[
Ẑt+τ

]
= 0, we characterize the solution of the system of equations in (20) in

state-space form as follows:

Ẑ2t+1 = A (θ) Ẑ2t +B (θ) ε̂t, (21)

Ẑ1t = C (θ) Ẑ2t +D (θ) ε̂t, (22)

where A (θ), B (θ), C (θ), and D (θ) are conforming square matrices, and θ is the vector of structural

parameters that enter those matrices.12 Following on the footsteps of Martínez-García (2020), we show in

11Martínez-García (2019) provides an analytical derivation of the exact variant of the Taylor principle under which the
solution to the NOEM model exists and is unique. The policy parameter ψπ is key for determinacy, but we note that the lower
bound on ψπ above which the NOEM model attains determinacy depends on the policy parameter ψx.
12The solution in (21)− (22) shows that inflation and output in both countries, Ẑ1t, can be characterized as linear functions

of the vector of state variables, Ẑ2t, and the vector of structural shock innovations, ε̂t. Since the vector of structural shock
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Appendix B that the NOEM solution given by (21)−(22) can be represented under rather general conditions

with a finite-order VAR specification of the following form:

Ẑ1t = Ã (θ) Ẑ1t−1 +D (θ) ε̂t, (23)

where Ã (θ) = C (θ)A (θ) (C (θ))
+ and D (θ) = C (θ) (A (θ))

−1
B (θ).13

The theoretical mapping in (23) explicitly incorporates the interconnectedness between the domestic

and foreign economies implied by the NOEM model. We should note that a richer specification with more

complex dynamics for the shock processes driving the economy– which we have described with a VAR(1)

structure– would likely imply a dynamic solution that requires a higher-order VAR representation. For that

reason, in our empirical implementation we take the simple VAR(1) representation as a starting point but

consider specifications of the VAR model with an order higher than one as well.

We should also note that the VAR(1) representation implied by (23) holds under general conditions (as

discussed in Appendix B) and that this holds whether the NOEM solution is fundamental or not. The

fact that we have more shock innovations (6 in total) than observables (only 4) in the benchmark NOEM

model implies that the solution is non-fundamental in the sense that we cannot recover all structural shock

innovations from the residuals of the conforming VAR(1) specification. However, although the residuals from

a fitted VAR(1) are not structural for our benchmark specification of the NOEM model solution, we argue

that such a VAR(1) specification as given in (23) can still be estimated and exploited for forecasting. This

is the basis of our preferred empirical forecasting specification in the remainder of the paper.

3 The Forecasting Exercise

3.1 Data

We use end-of-quarter and seasonally-adjusted data for a sample of 18 countries (Australia, Austria, Bel-

gium, Canada, France, Germany, Greece, Italy, Japan, South Korea, Netherlands, Portugal, Spain, Sweden,

Switzerland, Taiwan, United Kingdom, and the United States) from the Federal Reserve Bank of Dallas’

DGEI dataset over the 1980:Q1-2016:Q4 period. We focus on the quarter-on-quarter inflation rate, πt,

as measured with the headline Consumer Price Index (CPI). One reason to employ headline CPI rather

than other price indices is that CPI revisions are relatively small compared to those of, for example, the

GDP price deflator (see, e.g., Faust and Wright (2013)). To lighten the notation, we omit the coun-

try subscript for each variable used in this section. Thus, for every country in our sample, we define

πt ≡ 400 · (lnCPIt − lnCPIt−1), for every quarter t. Table 3 reports the data sources and the transforma-

tions of variables. Further details on the variables used in each model are included in the next subsection.

For a given country, say i, variables that measure rest-of-the-world aggregates (e.g., π∗t , y
∗
t to be in-

troduced below) are calculated as the arithmetic averages of the rest of the countries in our sample for

innovations is assumed normally distributed, then the Gaussian state-space representation of the solution in (21)− (22) implies
that inflation and output are also normally-distributed processes (see Hamilton (1994) for further discussion on the Gaussian
state-space framework).
13 (C (θ))+ denotes the Moore-Penrose left inverse of C (θ). See Appendix B for further details.

8



j = 1, ..., 18 and j 6= i. Whenever there is a missing value in a given period, averages are computed over all

the available values.14

3.2 Null Model

There is evidence of (strong) comovement in the inflation data across countries. To quantify this, we follow

the suggestion of David (1949) to compute a single summary statistic of the degree of comovement across all

countries in our sample. If we let corrk denote the simple pairwise correlation between the series for country

i and country j or the series for country i and an aggregate of all countries −i, then the proposed summary
measure for all K pairwise correlations is given by:

corr ≡ tanh

(∑K
k=1 Tk tanh−1 (corrk)∑K

k=1 Tk

)
, (24)

where tanh (·) is the standard hyperbolic tangent function and Tk is the sample size for the k-th pairwise
correlation corrk. With the summary statistic given by (24), we can compute the aggregate correlation

between the inflation rates across the 18 countries which comes at 0.61.

We can go a step further and compute the aggregate correlations of inflation across all 18 countries with

respect to lagged domestic inflation (πt), foreign inflation (π∗t ), domestic HP-detrended output (yt), and

foreign HP-detrended output (y∗t ) (see also next subsection for further details). The aggregate correlations

indicate that corr (πt, πt−1) = 0.75, corr
(
πt, π

∗
t−1
)

= 0.30, corr (πt, yt−1) = 0.21, and corr
(
πt, y

∗
t−1
)

=

0.19. This evidence is purely descriptive and does not necessarily indicate causality, but it suggests that

the comovement between domestic inflation and foreign measures of inflation and economic activity are

important. Therefore, such foreign variables can potentially be exploited to improve inflation forecasting.

That is, in fact, the rationale for our preferred forecasting specification based on the reduced-form VAR

solution to the NOEM model in (23)– as this offers a way to incorporate the international spillovers into a

simple forecasting framework.

In our robustness checks, we also incorporate more of the theoretical cross-equation restrictions of the

NOEM model that motivated the exercise in the first place. That comes with the advantage that imposing

the constraints arising from theory allows us to investigate causal relationships. Therefore, it permits us to

use the framework for purposes other than forecasting, such as for policy analysis. In turn, doing so comes

often at the expense of limiting the forecasting performance of the model if those cross-equation restrictions

that theory brings forth are harder to reconcile with the true data-generating process for inflation. Those

are the types of question that we investigate in the remainder of the paper.

The Hybrid NOEM-BVAR. Our null model, which we refer to as the NOEM-BVAR, is based on the

VAR specification implied by the reduced-form solution of the NOEM model given in Section 2 (described by

equation (23)). Omitting country subscripts, we define xt = (πt, π
∗
t , yt, y

∗
t )
T , where πt is domestic inflation,

14We have fully balanced panels for CPI and the industrial production index and strongly balanced panels for the other macro-
economic indicators. There are some missing values at the beginning of period of study in the following series (countries): GDP
(Taiwan (1980:Q1-1980:Q4)), M1 (Belgium (1980:Q1-1996:Q3), Netherlands (1980:Q1-1982:Q3), Sweden (1980:Q1-1997:Q4)),
M2 (Australia (1980:Q1-1984:Q1), Belgium (1980:Q1-1996:Q3), Sweden (1980:Q1-1997:Q4), Switzerland (1980:Q1-1984:Q3)),
and M3 (Belgium (1980:Q1-1996:Q3), Netherlands (1980:Q1-1982:Q3), Taiwan (1980:Q1-1996:Q4)). We do not have any missing
values in our commodity prices data.
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π∗t is the rest-of-the-world inflation, yt is domestic HP-detrended (logged) real GDP, and y
∗
t is the rest-of-

the-world HP-detrended (logged) real GDP. The VAR model for xt can then be written as:

M0 : xt+h = Φ0 + Φ1xt + εt+h, (25)

where Φ0 is a column vector of parameters, and Φ1 is a matrix of auto-regressive coeffi cients. We estimate

the VAR using Bayesian techniques. Following Sims and Zha (1998), the VAR is estimated using Minnesota

priors. In this model– as well as the competing BVAR models that use this sort of priors– the hyper-

parameters adopted are µ1 = 1 (AR(1) coeffi cient dummies), λ1 = 0.5 (overall tightness), λ2 = 1 (relative

cross-variable weight), and λ3 = 1 (lag decay).

Some technical considerations on the implementation of the NOEM-BVAR model for forecasting:

- Mapping data to theory : We conform with the best practices in mapping data to theory for the

estimation of linearized DSGE models adding an intercept in our VAR specification to demean inflation

and removing the output trend with a standard two-sided HP-filter (see, e.g., Pfeifer (2018)).15 Unlike

the variables characterized by the NOEM model solution in (23), the observed data is not constructed

in deviations from a constant (to account for the steady state) prior to estimation. Instead, we demean

HP filtered-output and inflation during the estimation of the intercept-augmented VAR specification

shown above ensuring in this way that the variables in theory and the observed data are consistent

with each other.

- Modelling choices: We aim to balance theory, parsimony, and predictive accuracy using a hybrid

approach. We borrow from the theoretical NOEM model investigated in Section 2 the following: (i)

the VAR structure (the linearity and vector autoregressive nature of the specification), and (ii) the

economically-relevant variables xt = (πt, π
∗
t , yt, y

∗
t )
T that enter into the VAR specification. To the best

of our knowledge, this simple four-variable VAR has not been proposed to forecast inflation across

countries before. This particular specification is motivated by the theoretical model, but does not

impose the cross-equation restrictions that arise from theory. Put differently, the key contribution of our

NOEM-BVAR implementation is that our empirical approach explicitly recognizes the importance of

the international linkages between domestic and foreign variables (inflation and output) for forecasting

implied by theory. From this point onwards, we adopt an agnostic stand about parameter restrictions

since our theoretical model remains a stylized description of the dynamics of an open economy in a

multi-country setting. Furthermore, for the same reasons we also use the atheoretical normal-flat priors

proposed by Sims and Zha (1998) in the robustness checks section.

- Filtering the data: We employ the standard two-sided HP filter on the data used in our experiments.

The recursive implementation of our forecasting exercise means that for each forecast only the corre-

sponding forecasting sample is HP-filtered. Hence, even without using the alternative one-sided HP

15The full NOEM model described in Section 2 is stationary, and evolves as a finite-order VAR process which describes the
cyclical behavior of the economy for a vector of endogenous variables Ẑ1t and innovations ε̂t around the deterministic zero-
inflation steady state (equation (23)). In other words, the NOEM model describes the output and inflation of the domestic
and rest-of-the-world economies in deviations from the output trend and zero-inflation steady state, respectively. Theory
is, therefore, agnostic about long-run growth and long-run inflation which must be handled through an additional set or
measurement equations (or removed from the data directly) in order to make the model variables comparable with the actual
data that we observe. Pfeifer (2018) provides an extensive discussion on specifying observation equations for the estimation of
DSGE or related models which we follow here in our implementation of the NOEM-BVAR forecasting benchmark.
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filter, there is no information about the future that gets embedded into the forecast at time t. In

this way (via the recursive implementation of the forecasting exercise), we are taking into account the

well-known observation about the perils of filtering made in Stock and Watson (1999).

- Aggregation measures: For every country, say i, the rest-of-the-world aggregates π∗t and y
∗
t are calcu-

lated as the simple average of the inflation rates and detrended outputs, respectively, of the rest of the

countries in our sample (i.e., for j = 1, ..., 18 and j 6= i).

3.3 Competing Models

We confront our null model with a wide variety of competitors. Most of these models are suggested by

the literature on inflation forecasting. Aside from univariate specifications and frequentist techniques, we

consider other elements and methods that have proved to be useful in inflation forecasting, such as factor

components (Stock and Watson (2002), Ciccarelli and Mojon (2010)), Phillips-curve-type specifications and

commodity price indexes (Stock and Watson (1999)), and Bayesian vector autoregressions (Doan et al.

(1984), Litterman (1986)).

We employ the direct method to produce forecasts with most of our models. Ing (2003) finds that

when the model is misspecified, the RMSPE of the direct approach is not greater than that of the iterated

approach. In theory, iterated forecasts are more effi cient if the one-period ahead model is correctly specified,

but direct forecasts are more robust to model misspecification. This can be viewed as a sound argument

for using the direct method whenever we suspect that the models we are using are misspecified. That said,

Marcellino et al. (2006) argue that which approach is better remains a largely empirical matter. We explore

the iterated method in one of our subsequent models because Marcellino et al. (2006) find that the iterated

method tends to have smaller RMSPE when assessing the out-of-sample forecasting performance of U.S.

macroeconomic time series. These authors also find that the relative performance of the iterated forecasts

improves with the forecast horizon.

The set of competing forecasting models is the following:

1. Recursive autoregression, AR(p) model (RAR).

M1 : πt = φ0 +

p∑
i=1

φiπt−i + εt, (26)

where p is the degree of the polynomial, φ0 is the intercept, and φi for all i = 1, ..., p the autoregressive

coeffi cients. For every h > 1, the h-quarter-ahead forecast is computed by recursively iterating the

one-step forecast forward. The objective here is to use the iterated method as an alternative to the

direct method employed in the other models.

2. Direct forecast, AR(p) model (DAR).

M2 : πt+h = φ0 +

p∑
i=1

φiπt−i+1 + εt+h, (27)

It is straightforward to show that when h = 1 (h > 1), RAR and DAR provide the same (different)

forecasts.
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3. Random Walk (RW-AO).

M3 : πt+h =
1

4

∑4

i=1
πt−i+1, (28)

This is a variant of the random walk model along the lines of Atkeson and Ohanian (2001) and Faust

and Wright (2013).

4. Factor-Augmented AR(p) model (FAR).

M4 : πt+h = φ0 +

p∑
i=1

φiπt−i+1 +

p∑
i=1

θiF̃t−i+1 + εt+h, (29)

where F̃t denotes an estimated static factor component based on the inflation rates of the countries

in the sample except the country’s inflation rate to be forecast. Here, φ0 is the intercept, φi for all

i = 1, ..., p the autoregressive coeffi cient, and θi for all i = 1, ..., p the coeffi cients on the current and

lagged factor component.

5. Bivariate BVAR (BVAR2).

M5 : xt+h = Ψ0 + Ψ (L)xt + εt+h, (30)

where, in this case, xt =
(
πt, F̃t

)T
, Ψ0 is a column vector of parameters, and Ψ (L) = Ψ1 + Ψ2L +

... + ΨpL
p−1 denotes a 2 × 2 matrix of lag polynomials. Following Sims and Zha (1998), the VAR

is estimated with Bayesian methods using Minnesota priors. The hyper-parameters used (in this and

the next BVAR models) are µ1 = 1 (AR(1) coeffi cient dummies), λ1 = 0.5 (overall tightness), λ2 = 1

(relative cross-variable weight), and λ3 = 1 (lag decay).

6. Time-Varying Parameter (TVP) specification.

M6 : πt+h = φ0,t + φ1,tπt + εt+h, (31)

φ0,t+h = φ0,t + ν0,t+h,

φ1,t+h = φ1,t + ν1,t+h,

where φ0,t and φ1,t are random walk coeffi cients such that and ν0,t+h and ν1,t+h are uncorrelated i.i.d.

shocks.

7. Augmented Phillips Curve (APC).

M7 : πt+h = φ0 + Φ (L)xt + εt+h, (32)

where xt =
(
πt,∆IPIt,∆M2t,∆P

Com
t

)T
, with IPI, M2, and PCom denoting the corresponding

logarithms of the industrial production index, the monetary aggregate M2, and a commodity price

index, respectively.16 The latter is measured by a simple average of the price indexes of agricultural

raw materials, beverages, metals, and crude oil produced by the IMF. In addition, we define Φ (L) =

16We follow Stock and Watson (1999) here. They find that forecasts with a Phillips curve based on measures of real aggregate
activity (e.g., the industrial production index) outperform those that use unemployment rates.
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(φ (L) , A (L) , B (L) , C (L)), with φ (L) = φ1 + φ2L + ... + φpL
p−1, A (L) = a1 + a2L + ... + apL

p−1,

B (L) = b1 + b2L+ ...+ bpL
p−1, and C (L) = c1 + c2L+ ...+ cpL

p−1, as lag polynomials.

8. Augmented Phillips Curve in first differences (APC-FD).

M8 : πt+h − πt = φ0 + Φ(L)xt + εt+h, (33)

where, in this case, xt =
(
∆πt,∆IPIt,∆M2t,∆P

Com
t

)T
is a column vector of lag polynomials similar

to the ones defined above.

9. Multivariate BVAR (BVAR4).

M9 : xt+h = Ψ0 + Ψ (L)xt + εt+h, (34)

where, in this case, xt =
(
πt,∆IPIt,∆M2t,∆P

Com
t

)T
, Ψ0 is a column-vector of parameters, and

Ψ (L) = Ψ1 + Ψ2L + ... + ΨpL
p−1 denotes a 4 × 4 matrix of lag polynomials. The Bayesian VAR is

estimated using Minnesota priors and the same hyper-parameter values as reported above.

10. Bivariate BVAR with commodity price indexes (BVAR2-COM).

M10 : xt+h = Ψ0 + Ψ (L)xt + εt+h, (35)

where, in this case, xt =
(
πt,∆P

Com
t

)T
, Ψ0 is a column-vector of parameters, and Ψ (L) is a 2 × 2

matrix of lag polynomials.

In order to minimize the effect of the number of lags on the forecasting performance of the models, we

set p = 2 in the baseline exercise for the competing models (M1−M10) as in Faust and Wright (2013).

3.4 Forecast Comparison

Pseudo out-of-sample forecasts are constructed by estimating recursively each model. The forecast horizons

are 1, 2, 4, and 12 quarters, similarly to those used by inflation-targeting central banks. For h = 1, for

instance, the initial training sample is 1980:Q2-2008:Q3, whereas the last one corresponds to the 1980:Q2-

2016:Q3 period. This implies that, for such a horizon, the first value in the forecasting sample is in 2008:Q4

and the last one appears in 2016:Q4. Hence, we are putting the light on the forecasting performance of the

NOEM-BVAR and the competing models during the period of the 2007 − 09 global financial crisis and its

aftermath where inflation for many advanced economies tended to fall below target (as noted in Caldara

et al. (2021)).

The prediction error is defined as the difference between actual and predicted values. Based on them, we

compute the root mean squared prediction error (RMSPE) for each country, model, and forecast horizon.

Then, we report the Theil-U statistic, that is, the ratio of the RMSPE of our NOEM-BVAR relative to the

RMSPE of each competitor (M1 −M10). Values less than one imply that the NOEM-BVAR model has

a lower RMSPE than does the competing alternative model. To assess the statistical significance of the

difference of the Theil’s U-statistics from one, we use a simple one-sided Diebold-Mariano-West test and

adjust the statistic if the models are nested according to Clark and West (2007). In contrast to most of
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the previous studies on inflation forecasting with DSGE-related models, we use the adjustment proposed

by Harvey et al. (1997) for small samples. The test statistics are constructed using heteroscedasticity and

autocorrelation robust (HAC) standard errors. Values larger than 1.282 indicate that the null hypothesis of

equal predictive accuracy is rejected at the 10% statistical level.

Contrasting with the literature that uses DSGE-related models to predict inflation, we also assess the

directional accuracy of prediction by using the success ratio. This measure captures an estimate of the

probability with which the forecast produced by a given model correctly anticipates the direction of change

in inflation at a given forecast horizon. Tossing a fair coin on a suffi ciently long sample already predicts the

direction of change correctly about 50% of the time. Thus, a model needs to attain a success ratio greater

than 0.5 to provide an improvement in directional accuracy over pure chance. The statistical significance

of the directional accuracy relative to pure chance is assessed based on an implementation of the test of

Pesaran and Timmermann (2009).

4 Empirical Findings

4.1 Main Results

The summary statistics of the relative RMSPEs by groups of model (purely statistical specifications and

theoretically-based models) and forecast horizon (1, 2, 4, and 12) for our full sample of economies is reported

in Table 4. A similar set of statistics for each of the ten models is displayed in Table 5.17 Summary statistics

related to the success ratios to assess the directional accuracy of the forecasts by groups of models are

reported in Table 6. The same information disaggregated at the level of each model is provided in Table 7.18

Our main conclusions are the following:

- First, on average, the NOEM-BVAR model produces slightly lower median RMSPEs than its competi-

tors (see last column, bottom panel of Table 4). That said, most of the gains in lower relative RMSPEs

are not statistically significant. Notably, the gains in smaller RMSPEs appear more often among the

very short-run forecasts, when h = 1 (the average of medians is about 0.943). Across countries and

models, the median Theil’s U-statistic favors, on average, the NOEM-BVAR in thirteen out of eighteen

countries at the 1-quarter forecast horizon. This statistic– labeled as “# < 1”in the tables– fluctuates

between 8 and 11 at other horizons. On the other hand, the (average) number of economies that show

a p-value lower than 0.1 for the null of equal predictive accuracy ranges between 2 (h = 12) and 5

(h = 1) as Table 4 shows. Statistically speaking, the null model’s relative performance is more salient

in the very short run. One possible reason is that when external spillovers are short-lived, one would

expect that inflation models that incorporate such spillovers would tend to do better precisely at short

horizons as is our case. We believe also that errors in forecasting inflation in the short-run may be

quite important especially when we find ourselves at a turning point. So getting better accuracy in

the short-run can be very helpful in order to predict those inflation turning points more accurately.

17Tables A1−A4 in the Online Appendix contain detailed information for each economy (Duncan and Martínez-García
(2022)). In Table A1 we have nine (rather than ten) different forecasts because the iterated and direct methods are equivalent
when h = 1. That is, M1 and M2 provide the same forecasts and, therefore, their relative RMSPEs are equal.
18Tables A5−A8 in the Online Appendix (Duncan and Martínez-García (2022)) report additional information at the country

level for the four forecast horizons used in the exercise.
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- Second, the NOEM-BVAR produces success ratios generally above the 0.5 threshold (see Table 6).

Table 7 show that the differences between the ratios and the 0.5 cut-off value are often statistically

significant.19 The likelihood with which the null model correctly anticipates the direction of change

in inflation tends to be comparable or better than that of its competitors. On average, the median

success ratio of the null model is 0.657, whereas the average of the competitors’medians is about 0.63.

The ratio of the number of statistically significant cases as a share of the total cases (net of the number

of undefined cases) is 0.89. That is, 89% of all the relevant success ratios across countries and horizons

are statistically above the 0.5-threshold value. Such a percentage is above the average across models

(72%; see bottom panel, last column in Table 6)

- Third, regarding the average medians across models at all horizons, Table 5 shows that the NOEM-

BVAR specification (slightly) outperforms models like the TVP (M6), one of the versions of the aug-

mented Phillips curve (M8), and the BVAR4 model (M9). The null model shows more similar predictive

ability to the rest of models with the exception of the DAR (M2). However, the evidence of statistically

different cases is reduced (see Table 4 and Table 5, bottom panel).

- Fourth, in terms of directional accuracy, the NOEM-BVAR seems to be competitive or has a slight

edge against all the models except for the FAR (M4) and BVAR2 (M5) as Table 7 (All horizons)

suggests. Looking at the number of statistically significant cases as a share of the total cases, the null

model is only beaten by the RAR (M1; see Table 7). Notice that the FAR and BVAR2 models are

the ones that include an estimated static factor component based on the inflation rates of the other

countries in the sample– these are the models that come closest to the global inflation specifications

documented empirically, among others, by Ciccarelli and Mojon (2010), Ferroni and Mojon (2016), and

Kabukcuoglu and Martínez-García (2018). As argued by Martínez-García (2019), the open-economy

aspects of the theoretical NOEM model imply that the gap between domestic and global inflation is

stationary (mean-reverting) which explains the apparent role of global inflation as a pull for domestic

inflation and the global inflation’s value as a predictor of local inflation across countries and at varying

horizons and sample periods.

- Fifth, if we look at the relative RMSPEs across economies, the NOEM-BVAR tends to outperform

its competitors especially in Switzerland (25 statistically significant cases across all forecast horizons),

Belgium (17 cases), Australia (12 cases), Portugal (12 cases), and Spain (11 cases), among others.20

Regarding directional accuracy, the NOEM-BVAR’s success ratio is, on average, particularly higher in

Taiwan (an average of 0.74 across all forecast horizons), Canada (0.73), Japan (0.72), and Spain (0.70)

than in other economies.21

Overall, our NOEM-BVAR model seems to have a slight relative advantage over the specifications inspired

by economic theory. In turn, there is usually at least one purely statistical model– often RAR or DAR– that

outperforms it. This suggests that the more parsimonious forecasting models still offer a tough benchmark

to beat for more complex models that incorporate economic predictors and more complex structures such as

our NOEM-BVAR during the period that we explore covering the aftermath of the 2007−09 global financial

19See also Tables A5−A8 in the Online Appendix (Duncan and Martínez-García (2022)).
20See Tables A1−A4 in the Online Appendix (Duncan and Martínez-García (2022)).
21See Tables A5−A8 in the Online Appendix (Duncan and Martínez-García (2022)).
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crisis. Even so, NOEM-BVAR is shown to be competitive among the alternative models under consideration

and in some cases produces statistically significant gains.

4.2 Robustness Checks

We perform a number of robustness checks whose results are not always reported to economize on space, but

are available upon request from the authors. Some conclusions from our robustness checks are nonetheless

worth mentioning.

4.2.1 The Null Model: Detrending

We also run the forecasting horserace using a deterministic trend (DT) filter with a cubic polynomial and

a first-difference (FD) filter for the real GDP series in our null model. The DT filter allows us to capture

smooth shifts in the trend components. The FD transformation is the simplest filter and performs well

especially in the presence of first-order integrated processes. It is well-known that the FD detrending is used

when one seeks to remove a unit root component from a time series. Both filters do not take into account

future values and, thus, we do not need to truncate it and lose observations.22

Overall, the results indicate that there are no substantial differences between employing an HP filter and

those alternative filters. On average, we observe a slight deterioration in the predictive accuracy against

the NOEM-BVAR model in terms of both the relative RMSPEs and the number of statistically significant

cases when we use the DT filter. The differences are around 1 p.p. of the NOEM-BVAR’s RMSPE.23 The

differences are of a smaller order (0.1 p.p.) when we compare the success ratios. That is, the directional

accuracy of our model is virtually unchanged. Regarding the FD filter, we note a slight improvement in the

number of statistically significant cases and the relative RMSPE in favor of the NOEM-BVAR model (1 p.p.

approximately). Similarly, there is a modest increase in the average success ratio of our model. Note that in

the case of directional accuracy statistics, the only ones that are affected by the use of alternative filters are

those related to the NOEM-BVAR model since the other competing models do not use filtered variables.

4.2.2 The Null Model: Priors

Overall, the use of Sims and Zha (1998) normal-flat priors in both the NOEM-BVAR and the main BVAR

specifications (M5 and M9) provides a small gain in the predictive ability of our preferred model. The

use of such priors might be motivated by the shortcomings of the Minnesota priors, namely the forced

posterior independence between equations and the fixed residual variance-covariance matrix, as highlighted

by Kadiyala and Karlsson (1997).24 Across all horizons and countries, we observe a modest reduction in the

average median U-Theil ratio in favor of our model. This is related to the forecasting improvement with

respect to the purely statistical models.25 This is consistent with the results in directional accuracy that

show an increased success ratio slightly above 67%.26

22The results from using these filters in our NOEM-BVAR can be seen in the Online Appendix Tables A9−A12 and A13−A16,
respectively (Duncan and Martínez-García (2022)).
23See Table A9 of the Online Appendix (Duncan and Martínez-García (2022)).
24The Online Appendix Tables A17−A20 show the corresponding results (Duncan and Martínez-García (2022)).
25See Table A17 of the Online Appendix (Duncan and Martínez-García (2022)).
26See Table A19 of the Online Appendix (Duncan and Martínez-García (2022)).
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4.2.3 The Null Model: Additional Predictors

The inclusion in the null model of an additional predictor to capture international shocks to commodity

prices does not help achieve higher predictive power or directional accuracy. We estimate the NOEM-BVAR

as shown in Subsection 3.2 but incorporating the average of the percent changes in the commodity price

indices. We might see this as a possible extension of our theoretical model which could be relevant for

small-open economies such as many of those in our sample.27 Perhaps not surprisingly, we find a drastic

deterioration of all the statistics at every forecast horizon. We interpret this result as a piece of evidence

that backs the formulation of our original NOEM-BVAR framework that does not contain this additional

source of inflation fluctuations.

We realize that the workhorse model that is the basis of our strategy may omit some important variables

with relevant information content that could be exploited for forecasting purposes. However, adding more

variables to our benchmark would imply a departure from the workhorse model. We should also point out

that including one more endogenous variable does not necessarily imply that the VAR structure or solution

that we got would fundamentally change unless we change the structural relationships of the model. An

example of this is that the interest rate is an endogenous variable but it does not show up in the reduced-form

VAR we use because it can be expressed as a function of the variables and the shocks that enter into the

reduced-form solution indicated in the paper. Including interest rates among the observables, therefore, in

general should not affect the forecasting performance of the model much.

Moreover, large models do not tend to produce better forecasts (see, for instance, the so-called KISS

principle that Diebold (1998) mentions in his book).28

4.2.4 Training Sample

We looked at the results when we shrink the training sample by 20% to increase the number of predictions.29

In general, our conclusions do not vary strongly. On the one hand, we observe a slight advantage in favor of the

competing models if we look at the relative RMSPEs. Across horizons, countries, and models, the average

median U-Theil ratio increases from 0.977 to 0.992.30 This is consistent with a reduction in the average

median success ratio from 0.657 to 0.641.31 On the other hand, however, we note a rise in the number of

statistically significant cases (average number of p-values below the significance level), especially when we

compare the NOEM-BVAR with the theoretically-based models (M7 −M10). This might be related to the

fact that here we are shortening the estimation window by excluding observations from the globalization and

27The results are summarized in Table A21 in the Online Appendix (Duncan and Martínez-García (2022)).
28 In addition, we perform sensitivity analysis along other dimensions. In general, the results in terms of RMSPEs are

qualitatively similar with just one lag in the NOEM-BVAR, which is in line with the lag order of the exogenous shocks usually
assumed in the DSGE literature. A GDP-weighted average of the inflation rates as a measure of global inflation or rest-of-the-
world inflation and a similarly constructed measure of GDP-weighted output for the global output can be used to estimate and
forecast the NOEM-BVAR instead of the simple averages that we in our baseline specification. Doing so does not significantly
change the main conclusions on the NOEM-BVAR outlined above. Forecasts with unrestricted VARs estimated with frequentist
methods do not tend to provide lower RMSPEs than those with BVARs in our sample. Moreover, unrestricted VARs generally
do not attain improvement in directional accuracy either. It is worth adding that in the Augmented Phillips Curve models
(M7, M8), we evaluate other monetary aggregates apart from M2, but data availability for these alternative measures is an
issue in some economies. We find that the specification with the M2 money aggregate mostly outperforms those with M1 or M3
in terms of RMSPE. Not surprisingly, our findings on the relative forecasting performance of the NOEM-BVAR are robust to
both narrower and broader definitions of the monetary aggregates. These results are available from the authors upon request.
29Our findings are presented in Tables A22−A23 in the Online Appendix (Duncan and Martínez-García (2022)).
30See Table A22 in the Online Appendix (Duncan and Martínez-García (2022)).
31See Table A23 in the Online Appendix (Duncan and Martínez-García (2022)).
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the Great Moderation era. Consequently, our model might carry less relevant information and yield more

imprecise estimates. In turn, increasing the number of observations for the prediction statistics could reduce

their variances, other things equal, and lead to more statistically significant cases.

4.3 Refinements and Other Competing Methods and Models

4.3.1 On Random Walk Models

We report the Faust and Wright (2013) version of the Atkeson and Ohanian (2001) model in M3 because it

usually outperforms the typical random-walk specification without drift in our sample and other studies (see

Duncan and Martínez-García (2019)). That is, our findings on the relative forecasting performance of the

NOEM-BVAR are not sensitive if we use this alternative version. Table 8 supports this claim. Moreover,

in the majority of the cases, the NOEM-BVAR yields lower RMSPEs and most of them are statistically

significant.

4.3.2 The Structural NOEM Model

We consider alternative specifications of the NOEM-BVAR model that incorporate more of the cross-equation

restrictions inferred from the theoretical NOEM model. To do this, we implement two methods: (i) the

semi-structural approach of Del Negro and Schorfheide (2004) that employs the NOEM model to form priors

for a BVAR with the same structure as our NOEM-BVAR, and (ii) the structural NOEM model itself

(our workhorse linearized DSGE model). Both methods produce iterative forecasts whose performance is

reported in Table 8 together with the relative performance of a combination of the forecasts produced by

both methods. As can be seen, in many cases there is not much difference in the statistical significance

across all these methods– especially at shorter horizons– with the forecasting combination providing some

improvement as is often the case.

The results in Table 9 have a two-fold interpretation. First, they suggest that specifications of the

NOEM-BVAR that incorporate more of the cross-equation restrictions imposed by theory can still produce

competitive forecasts in many cases, especially in the short run, comparable to those with the more agnostic

specification that we use as our preferred benchmark. The advantage in these cases is that those specifications

more closely tied to the causal relationships implied by theory can be used for forecasting, but also for policy

analysis. Second, our agnostic specification of the NOEM-BVAR is more flexible because it is consistent

with any theory that can be cast in the form of the null model. The NOEM model is one such theory

that allows for cross-country spillovers to be captured by the dynamics described by the null model, but

it does not necessarily have to be the correct data generating process. If the true data generating process

is different than the NOEM model, then imposing more of the cross-equations restrictions that arise from

theory could lead to a deterioration of its forecasting performance. In some cases, that might be what is

happening. However, in general, the fact that the different specifications proposed in Table 8 appear to be

competitive with the agnostic NOEM-BVAR does not necessarily prove but it is at least consistent with

the theory behind the NOEM model. In that regard, the pseudo-out-of-sample forecasting performance

presented here can be said to provide some support for the class of open-economy New Keynesian models

that we are exploring by means of the workhorse NOEM model.
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Note that if we consider our findings related to the structural DSGE model jointly with the main results

(recall the fifth finding commented in Subsection 4.1), we can conclude that the NOEM-BVAR and its

structural counterpart, the DSGE model, tend to outperform its competitors especially in the short run and

in economies such as Australia, Belgium, Canada, and Spain (see Table 9).32 In these economies, we can be

confident that the use of the structural DSGE model to carry out counterfactual analysis of macroeconomic

policies and out-of-sample prediction is appropriate and well supported by the empirical evidence collected

in this section.

4.3.3 Time-Varying Parameters and Stochastic Volatility Model

Our NOEM-BVAR model is based on a reduced-form representation of the solution to the workhorse open-

economy New Keynesian model. This specification explicitly allows for the possibility of endogenous cross-

country spillovers arising through trade, and generally produces competitive inflation forecasts. In particular,

the NOEM-BVAR model tends to outperform other theoretically-motivated models such as those models

based on a (reduced-form) closed-economy version of the Phillips curve relationship.

As is well known, theoretical models pose a number of shortcomings when fitting the data that can also

affect their forecasting performance. One of the possible explanations for the NOEM-BVAR forecasting

performance relative to that of other model-based frameworks is that foreign factors could be proxying for

unmodelled features of the true data-generating process such as structural breaks. One way in which we can

investigate whether the relative forecasting performance of the NOEM-BVAR is just the result of comparing

it with a parsimonious closed-economy Phillips curve model with constant parameters is if we allow for a

more flexible representation of the Phillips curve model to capture time-variation in the parameters and

stochastic volatility.

For that, we simply modify the Phillips curve forecasting model in the spirit of Chan et al. (2016). The

time-varying parameter stochastic volatility (TVPSV) model that we estimate is then based on the following

equations:

(πt − τπt ) = ρπt
(
πt−1 − τπt−1

)
+ λt (gt − τgt ) + επt , (36)

(gt − τgt ) = ρg1
(
gt−1 − τgt−1

)
+ ρg2

(
gt−2 − τgt−2

)
+ εgt , (37)

τπt = τπt−1 + ετ
π

t , (38)

τgt = τgt−1 + ετ
g

t , (39)

ρπt = ρπt−1 + ερ
π

t , (40)

λt = λt−1 + ελt , (41)

with

επt ∼ N
(
0, eht

)
, (42)

ht = ht−1 + εht , (43)

εht ∼ N
(
0, σ2h

)
, (44)

32See also Tables A1−A9 in the Online Appendix (Duncan and Martínez-García (2022)).
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and

εgt ∼ N
(
0, σ2g

)
. (45)

Equation (36) describes the reduced-form Phillips curve relationship where πt ≡ 400 · ln
(

CPIt
CPIt−1

)
is the

approximate quarter-over-quarter (annualized) inflation rate and gt ≡ ∆IPIt = 400 · ln
(

IPIt
IPIt−1

)
the ap-

proximate quarter-over-quarter (annualized) growth rate in the industrial production index. Moreover, ρπt
defines the time-varying first-order autocorrelation of inflation, and λt is the time-varying (reduced-form)

slope of the Phillips curve. The model allows the parameters of the Phillips curve relationship to vary over

time as a random walk while it also permits the log-volatility ht of the residual in that relationship επt to

also behave as a random walk.

The specification presented here also introduces two more time-varying parameters, τπt and τ
g
t , to capture

the trend component of inflation and industrial production growth. Furthermore, the model is complemented

with equation (37) which describes the dynamics of industrial production growth in deviations from its own

trend component as an AR(2) process. In other words, detrended growth based on industrial production

data is inferred within the model rather than exogenously added and for its estimation we adopt a flexible

representation of the data-generating process given by equation (37).

Finally, the time-varying trend components on inflation and growth are bounded with:

ετ
π

t ∼ TN
(
aπ − τπt−1, bπ − τπt−1; 0, σ2τπ

)
, (46)

ετ
g

t ∼ TN
(
ag − τgt−1, bg − τ

g
t−1; 0, σ2τg

)
, (47)

as well as the time-varying parameters of the Phillips curve relationship with:

ερ
π

t ∼ TN
(
−ρπt−1, 1− ρπt−1; 0, σ2ρπ

)
, (48)

ελt ∼ TN
(
aλ − λt−1, bλ − λt−1; 0, σ2λ

)
.

We also impose stationarity on equation (37) by assuming that ρg1 + ρg2 < 1, ρg2 − ρ
g
1 < 1, and |ρg2| < 1. We

adopt here fairly lax bounds set at aπ = 0, bπ = 10, ag = −5, bg = 5, aλ = −5, and bλ → +∞.
As in Chan et al. (2016), the estimation is achieved using their extension of the MCMC sampler developed

in Chan et al. (2013). For that, we adopt the following priors for the initial condition of every state equation:

τπ1 ∼ TN
(
aπ, bπ; τπ0 , ω

2
τπ
)
, (49)

τg1 ∼ TN
(
ag, bg; τ

g
0 , ω

2
τg
)
, (50)

ρπ1 ∼ TN
(
0, 1; ρπ0 , ω

2
ρπ
)
, (51)

λ1 ∼ TN
(
aλ, bλ;λ0, ω

2
λ

)
, (52)

h1 ∼ TN
(
h0, ω

2
h

)
, (53)

where τπ0 , ω
2
τπ , τ

g
0 , τ

g
−1, ω

2
τg , ρ

π
0 , ω

2
ρπ , λ0, ω

2
λ, h0, and ω

2
h are known constants. Furthermore, we choose the

relatively non-informative values of τπ0 = 3, τg0 = τg−1 = 3, h0 = ρπ0 = λ0 = 0, ω2τπ = ω2τg = ω2h = 5 and

ω2ρπ = ω2λ = 1.

Before we proceed with the results of TVPSV, it is worth pointing out that our specification is similar

to M7. Unlike M7, TVPSV does not include data from the monetary aggregate M2 and from a commodity
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price index, but the estimation permits variation in the parameters of the Phillips curve and adds trend

inflation and stochastic volatility. However, in most country experiences the slope of the Phillips curve

parameter λt becomes insignificant over time suggesting that industrial production growth ∆IPIt tends to

lose its predictive power for inflation.

Hence, the results generally suggest that the model in practice reduces to an AR(1) process for inflation

with time-varying inertia and stochastic volatility (similar to M6 but with stochastic volatility and trend

inflation). The fact that domestic variables play such a limited role may, in turn, explain why a more

complex specification like that of the NOEM-BVAR– even though its parameters are not time-varying– can

do well in forecasting inflation by incorporating international spillovers when those have meaningful effects

on domestic inflation that are not being fully captured by measures of domestic economic activity alone.

Table 10 presents our findings. We can see that the average median of the U-Theil statistic is relatively

higher than one at short forecast horizons (h = 1, 2), and becomes smaller than one at longer horizons

(h = 8, 12) favoring the NOEM-BVAR in the latter cases. On average, our NOEM-BVAR model shows

its best predictive performance at the one-year-ahead forecasts (h = 4) with a median of 0.87 and relative

RMSPEs below one in twelve economies. The largest number of statistically significant cases is reached when

h = 8 as well. If we look at each economy individually, we observe significant gains particularly in Japan,

Taiwan, and Switzerland.

4.3.4 Dynamic Model Averaging

In a forecasting exercise with many competing models like ours, it can be argued that a combination of all

or a subset of predictors can provide a useful method to forecast inflation. Moreover, it is possible to think

of a setup characterized by different sets of predictors inspired on economic theory with varying parameters

that can capture instabilities over time. One alternative to deal with this general case is dynamic model

averaging (DMA) which was originally proposed by Raftery et al. (2010) in an industrial application and

later adapted for macroeconomic forecasting by Koop and Korobilis (2012). The idea of DMA is to capture

both model uncertainty and parameter uncertainty in a relatively parsimonious way. This is an adequate

alternative in our case because, as we have seen in previous sections, we have several possible exogenous

variables (including lags of the inflation rate) and parameter instabilities are also common place since the

1980s.33

In this section, we follow the state-space specifications and notation proposed by Koop and Korobilis

(2012) and Catania and Nonejad (2018). Consider a set of K models that can have a vector of potentially

different predictors x(k)t with k = 1, 2, ...,K. Then, we can represent the k-th dynamic linear model as:

πt = x
(k)
t θ

(k)
t + ε

(k)
t , ε

(k)
t ∼ N

(
0, V

(k)
t

)
, (54)

θ
(k)
t = θ

(k)
t−1 + η

(k)
t , η

(k)
t ∼ N

(
0,W

(k)
t

)
, (55)

where θ(k)t is the vector of (stochastic) parameters for the model with k regressors. V (k)t and W (k)
t are the

corresponding conditional variances of the error terms ε(k)t and η(k)t , and these satisfy that E[ε
(k)
t η

(k)
t ] = 0.

Note that all these elements of the system are allowed to vary over time.

33For additional technical details and the multiple applications of DMA in macroeconomics forecasting, see also Catania and
Nonejad (2018) and Nonejad (2021).
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The label of dynamic model averaging is justified because the state-space system above allows different

models holding at each period, and those models are averaged using conditional probabilities, and the

marginal effects of the predictors can change over time (Koop and Korobilis (2012)). For a computationally

effi cient and feasible estimation, Raftery et al. (2010) suggest an approximation within a Bayesian approach.

Leaving some technical details aside, this approximation entails three hyper-parameters, 0 < δ ≤ 1, 0 <

β ≤ 1, and 0 < α ≤ 1 that are known as forgetting factors. The first two govern the motion of V (k)t and

W
(k)
t over time. For example, if δ = 1, then W (k)

t = 0 and, thus, θ(k)t = θ
(k)
t−1. That is, there is no time

variation in the coeffi cients and we go back to a standard model with constant slopes. On the other hand,

if δ is close to zero, then we induce (extremely) large time variation in the vector of slopes. Similarly, when

β = 1, then V (k)t = V (k) and we recover the constant-variance model. Values of this parameter close to zero

imply (extremely) large observational volatility. In turn, the parameter δ generates time variation in the

full model set (Catania and Nonejad (2018); Nonejad (2021)). Values of this parameter close to zero induce

(extremely) fast switches among models. Thus, practitioners tend to pick values close to one for all those

parameters. Based on simulations, Catania and Nonejad (2018) suggest fixing δ close to 1 if the practitioner

chooses β < 1.

For the purpose of our study, we assume β = 0.96 and α = 0.99, while we fix a grid such that δ ∈
{0.90, 0.91, ..., 1} as in Catania and Nonejad (2018). For the vector of predictors we include an intercept,
the first two lags of the inflation rate, the percent change in real GDP, the percent change in the industrial

production index, the percent change in the monetary aggregate M2, the average percent change in the

commodity price indices, and the average of the inflation rates in the rest of countries. This is a richer

set of predictors than the subset of covariantes used with M7. Given that we have K = 7 predictors,

we consider a total of 27 = 128 possible combinations at each point in time for a given value of δ, while

contemporaneously allowing that their coeffi cients evolve over time. If we consider the values of the grid of

δ, we have 27(11) = 1408 possible model combinations including averaging over δ.

Table 11 displays the main outputs of this exercise. The average median suggests an important gain

in the DMA’s RMSPE especially when h = 1 and h = 2. The extreme flexibility of DMA to find the

best predictor(s) in a parsimonious model plays a key role here. That said, the NOEM-BVAR tends to

predict better, on average, at four-quarter-ahead forecasts (h = 4). When h = 1, our NOEM-BVAR model

outperforms DMA in six economies and the gains are statistically significant in only three of them. Similarly,

when h = 2, the NOEM-BVAR produces lower RMSPEs in five economies and the gains are statistically

significant in only four of them. The average gains tend to vanish for both models at the longest forecast

horizon (h = 12). Interestingly, across countries, the NOEM-BVAR leads to better predictive accuracy in

Japan, Taiwan, and Switzerland, usually at one-, two- and four-quarter ahead horizons, with statistically

significant gains in most of them.

The attentive reader would realize that the results and conclusions here are similar to those discussed

in the previous subsection related to the TVPSV model. If we look at Table 10 and Table 11 we find

similar results and patterns. This might be due to the flexibility of DMA and its ability to embed a system

with time-varying parameters and variances like the TVPSV, especially during those periods when the main

predictor in the latter (the growth of the industrial production index) has low forecasting power. Finally,
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note that the NOEM-BVAR outperforms DMA in forecasting the U.S. inflation rate at every forecast horizon

with a statistically significant gain when h = 2.34

4.4 A Brief Comparison with Other DSGE Model-Based Studies

At this point, it could be useful to make a brief comparison between our study and other DSGE model-based

forecasting studies. Table 12 summarizes the most important features of some of the well-known studies and

ours. Let us begin highlighting certain important differences that allow us to start filling some voids in the

literature. First, our forecasting exercise includes more economies (18) than any other study listed in the

table. Even though we include a large economy like the U.S., we cover (seventeen) internationally connected

and relatively small open economies that represent about 40% of world’s PPP-adjusted GDP. The other

articles usually focus on a single large economy, typically the U.S. or the Euro Zone. Second, we forecast

CPI inflation instead of that of the GDP price deflator, which is the index commonly used by almost all the

other articles. Third, we propose another metric to evaluate our forecasts– the success ratio– aside from the

traditional RMSPE. The use of this metric coupled with the measure of CPI could be especially helpful for

policymakers, such as central bankers, since they tend to target CPI inflation and might be also interested

in the directional accuracy aside from standard predictive measures.

Likewise, a couple of other advantages are worth mentioning. Our forecasting exercise seems more

challenging in terms of the number of competing models (10 specifications in the main exercise or about 15

if we consider all the robustness checks, extensions, and refinements we investigate) compared with a value

that ranges between 1 and 7 (average of 3 approximately) in other DSGE model-based forecasting analyses.

Moreover, our exercise might be seen as a more demanding one with respect to the forecast evaluation.

Only very few works use the Diebold-Mariano-West test jointly with the Harvey et al. (1997) small-sample

correction. We consider that this choice is important to perform a more rigorous inference.

5 Concluding Remarks

The workhorse open-economy New Keynesian model suggests that a simple VAR specification with domestic

and rest-of-the-world inflation and output can be used to approximate the complex international linkages

that influence local inflation dynamics and can also improve inflation forecasting performance. Our empirical

findings, based on a varied cross-section of country experiences, show that a parsimonious VAR forecasting

model of inflation that exploits those cross-country linkages as motivated by theory and estimated with

Bayesian techniques– our preferred NOEM-BVAR specification– tends to perform as well as many other

more conventional forecasting models of inflation.

Even though we find that certain purely statistical models can be very helpful prediction tools, the

NOEM-BVAR offers an interesting new benchmark among those forecasting models derived from macro-

economic theory. The advantages of a theoretically-based and competitive forecasting model should not be

undervalued. Theory can be used to gain insight on the inflation dynamics and forecasts and can help us

34We also computed RMSPEs for particular cases of DMA like Bayesian model averaging (DMA with α = β = δ = 1) and
dynamic model selection. In the latter, the algorithm picks one, perhaps different, forecasting specification at each quarter
(Koop and Korobilis (2012)). On average, none of these alternatives provides lower RMSPEs than does DMA. The results are
available from the authors upon request.
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evaluate counterfactual policies. Furthermore, with the aid of theory we can also recognize the role of open-

ness and, in doing so, avoid the wrong inferences and policies that could come into play if we misunderstand

the determinants of domestic inflation. For example, Martínez-García and Wynne (2014) warn us about

the possibility of adopting a closed-economy specification which could lead to erroneous inferences about

the effects of monetary policy. Martínez-García (2015) notes that ignoring the open-economy dimension can

lead us to confound shocks that originate domestically with shocks that originate abroad which, in turn,

makes the sources of business cycles murkier for policy analysis.

This paper suggests that understanding the global drivers of inflation and how global developments get

incorporated into local inflation is important for accurately forecasting inflation and for the appropriate

conduct of monetary policy as well. However, needless to say, more work still is needed to investigate further

and more deeply the significance of modeling the international linkages highlighted in this paper for inflation

forecasting. For that purpose, two notable avenues of future reserach stand out to us:

First, our preferred NOEM-BVAR is essentially equivalent to a global Bayesian VAR (GBVAR) in the

spirit of Pesaran et al. (2004), Crespo Cuaresma et al. (2016), and Feldkircher and Huber (2016) when

the economy is composed of just two countries and the foreign economy is an aggregate of the rest of the

world. The difference in practice is that the GBVAR models, to the extent that they describe all trading

partners individually, are better suited to account for third country effects– substitution across countries– in

the international transmission of shocks while the NOEM-BVAR relies on direct linkages with the trading

partners through aggregates. The advantage of the NOEM-BVAR approach is that it requires the estimation

of fewer parameters and is more parsimonious, with a modest loss of generality so long as those third-country

effects are of second-order importance. We leave for future research a more thorough exploration of third-

country effects using the GBVAR approach for forecasting.

Finally, our robustness checks suggest that the use of methods that capture parameter uncertainty and

model uncertainty like dynamic model averaging (DMA) could be useful to forecast inflation for certain

economies and forecast horizons. On the one hand, the flexibility of DMA to find the best predictor(s)

and capture parameter instabilities in a parsimonious model plays a key role here. On the other hand,

there is a new vintage of New Keynesian models with non-zero steady-state inflation rates and endogenous

Phillips-Curve parameters, such as those proposed by Ascari and Sbordone (2014), that might be extended

to an open-economy setting with international linkages. We believe that a combination of dynamic model

averaging and such theoretical extensions could result in another very interesting avenue for the future

research in inflation forecasting.
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Appendix

A Tables

Table 1 - New Open-Economy Macro (NOEM) Model: Core Equations

Home Country

NKPC
π̂t ≈ βEt (π̂t+1) + Φ (ϕ+ γ) [κx̂t + (1− κ) x̂∗t + v̂t]

v̂t = (1− ξ) ût + ξû∗t

Dynamic IS γ (Et [x̂t+1]− x̂t) ≈ Ω
[
r̂t − r̂t

]
+ (1− Ω)

[
r̂∗t − r̂

∗
t

]
Monetary policy ît ≈ ψππ̂t + ψxx̂t + m̂t

Fisher equation r̂t ≡ ît − Et [π̂t+1]

Output decomposition ŷt = ŷt + x̂t

Natural interest rate r̂t ≈ γ
[
Θ
(
Et
[
ŷt+1

]
− ŷt

)
+ (1−Θ)

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Potential output ŷt ≈

(
1+ϕ
γ+ϕ

)
[Λât + (1− Λ) â∗t ]

Foreign Country

NKPC
π̂∗t ≈ βEt

(
π̂∗t+1

)
+ Φ (ϕ+ γ) [(1− κ) x̂t + κx̂∗t + v̂∗t ]

v̂∗t = ξût + (1− ξ) û∗t
Dynamic IS γ

(
Et
[
x̂∗t+1

]
− x̂∗t

)
≈ (1− Ω)

[
r̂t − r̂t

]
+ Ω

[
r̂∗t − r̂

∗
t

]
Monetary policy î∗t ≈ ψππ̂∗t + ψxx̂

∗
t + m̂∗t

Fisher equation r̂∗t ≡ î∗t − Et
[
π̂∗t+1

]
Output decomposition ŷ∗t = ŷ

∗
t + x̂∗t

Natural interest rate r̂
∗
t ≈ γ

[
(1−Θ)

(
Et
[
ŷt+1

]
− ŷt

)
+ Θ

(
Et
[
ŷ
∗
t+1

]
− ŷ∗t

)]
Potential output ŷ

∗
t ≈

(
1+ϕ
γ+ϕ

)
[(1− Λ) ât + Λâ∗t ]

Exogenous, Country-Specific Shocks

Productivity shock

(
ât

â∗t

)
≈
(

δa δa,a∗

δa,a∗ δa

)(
ât−1

â∗t−1

)
+

(
ε̂at

ε̂a∗t

)
(

ε̂at

ε̂a∗t

)
∼ N

((
0

0

)
,

(
σ2a ρa,a∗σ

2
a

ρa,a∗σ
2
a σ2a

))

Cost-push shock

(
ût

û∗t

)
≈
(
δu 0

0 δu

)(
ût−1

û∗t−1

)
+

(
ε̂ut

ε̂u∗t

)
(

ε̂ut

ε̂u∗t

)
∼ N

((
0

0

)
,

(
σ2u ρu,u∗σ

2
u

ρu,u∗σ
2
u σ2u

))

Monetary shock

(
m̂t

m̂∗t

)
≈
(
δm 0

0 δm

)(
m̂t−1

m̂∗t−1

)
+

(
ε̂mt

ε̂m∗t

)
(

ε̂mt

ε̂m∗t

)
∼ N

((
0

0

)
,

(
σ2m ρm,m∗σ2m

ρm,m∗σ2m σ2m

))
Composite Parameters

Φ ≡
(
(1−α)(1−βα)

α

)
κ ≡ (1− ξ)

[
1− (σγ − 1)

(
γ

ϕ+γ

)(
(2ξ)(1−2ξ)

1+(σγ−1)(2ξ)(2(1−ξ))

)]
Θ ≡ (1− ξ)

[
σγ−(σγ−1)(1−2ξ)
σγ−(σγ−1)(1−2ξ)2

]
= (1− ξ)

[
1+(σγ−1)(2ξ)

1+(σγ−1)(2ξ)(2(1−ξ))

]
Ω ≡ (1− ξ)

(
1−2ξ(1−σγ)

1−2ξ

)
Λ ≡ 1 + 1

2

[
( γ
ϕ+γ )(σγ−1)(2ξ)(2(1−ξ))

1+(1− γ
ϕ+γ )(σγ−1)(2ξ)(2(1−ξ))

]30



Table 2 - New Open-Economy Macro (NOEM) Model: Parameters

Structural parameters
Non-policy parameters

0 < β < 1 Intertemporal discount factor
γ > 0 Inverse intertemporal elasticity of substitution
ϕ > 0 Inverse Frisch elasticity of labor supply

0 < α < 1 Calvo (1983) price stickiness parameter
σ Elasticity of substitution btw. Home and Foreign bundles of varieties

0 ≤ ξ < 1
2 Share of imported goods in the local consumption basket

Policy parameters
ψπ> 0 Policy response to inflation
ψx≥ 0 Policy response to the output gap

Shock parameters
−1 < δa< 1 Persistence parameter in productivity
−1 < δa,a∗< 1 Spillover parameter in productivity (technological diffusion)

σa≥ 0 Std. deviation of productivity innovations
−1 < ρa,a∗< 1 Cross-correlation of productivity innovations
−1 < δu< 1 Persistence parameter in the cost-push shock
σu≥ 0 Std. deviation of cost-push shock innovations

−1 < ρu,u∗< 1 Cross-correlation of cost-push shock innovations
−1 < δm< 1 Persistence parameter in the monetary shock
σm≥ 0 Std. deviation of monetary shock innovations

−1 < ρm,m∗< 1 Cross-correlation of monetary shock innovations

This table reports a list of the 18 structural (policy and non-policy) and shock parameters of the NOEM model that
influence its short-run dynamics. The shock process parameters are assumed to fall within the range that would be
consistent with the stationarity of the shock processes.
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Table 3 - Data Sources for the Different Forecasting Models
Concept Data sources Transformation
Headline CPI National statistical offi ces and central banks; OECD; Quarter-over-quarter (%)

Grossman et al. (2014)
GDP National statistical offi ces and central banks; OECD; Quarter-over-quarter (%)

Grossman et al. (2014)
Industrial production National statistical offi ces and central banks; Quarter-over-quarter (%)

OECD; IMF; Grossman et al. (2014)
Money supply (M1, M2, M3) Central banks; OECD; IMF Quarter-over-quarter (%)
Commodity price index IMF Quarter-over-quarter (%)

This table reports the basic information about the data used in the forecasting exercise. The countries included in our forecasting
exercises are: Australia, Austria, Belgium, Canada, France, Germany, Greece, Italy, Japan, Korea, Netherlands Portugal, Spain,
Sweden, Switzerland, Taiwan, United Kingdom, and United States. The time series coverage spans the period between the first
quarter of 1980 and the fourth quarter of 2016 across all variables and countries, with few exceptions. The monetary aggregates
M1, M2, and M3 are, however, generally shorter time series.
The commodity price index is computed as a simple average of the price indexes of agricultural raw materials, beverages, metals
and crude oil from the IMF. Country aggregation for the rest of the world is obtained with an arithmetic mean of the country
variables. For model M7, we use the PPP-GDP weighted aggregates from Grossman et al. (2014). The data used to compute
those weights for aggregation comes from the IMF.

All series are seasonally adjusted.
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One-quarter ahead
Mean 0.949 0.949 0.949
Median 0.945 0.940 0.943
#<1 13 14 13
#pv<.1 6 5 5
Two-quarter ahead
Mean 0.976 0.963 0.971
Median 0.980 0.964 0.973
#<1 10 12 11
#pv<.1 3 4 4
Four-quarter ahead
Mean 1.025 0.993 1.012
Median 1.024 0.992 1.011
#<1 7 10 8
#pv<.1 3 3 3
Twelve-quarter ahead
Mean 0.981 0.956 0.971
Median 0.988 0.968 0.980
#<1 9 13 11
#pv<.1 3 1 2
Averages (all horizons)
Mean 0.983 0.965 0.976
Median 0.984 0.966 0.977
#<1 10 12 11
#pv<.1 4 3 3
Notes: Rows for means and medians report the average/median ratio of root mean squared prediction error (RMSPE) from the NOEM-BVAR 
model relative to the RMSPE of competing forecasting models calculated over the 18 countries. Values less than one imply that the NOEM-
BVAR model has a lower RMSPE than does the competitive benchmark. The row #<1 reports the number of economies that show relative 
RMSPE lower than 1  for a particular model.  The row #pv<.1 reports the number of economies that show a p-value lower than 0.1 for the null 
of equal predictive accuracy measured by the RMSPEs of the NOEM-BVAR and the alternative model. We use the Diebold-Mariano-West 
statistic or the adjusted Clark-West statistic when models are nested. See Table 1 for the data sources. 

Purely statistical models 
(Average of M1 - M6)

Theoretically based 
models (Average of M7-

M10)
All models (Averages of 

M1-M10)

Table 4 - RMSPE of the NOEM-BVAR Model Relative to Competing Models (Averages of 
Groups of Models)
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M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

RAR DAR RW-AO FAR BVAR2 TVP APC APC-FD BVAR4
BVAR2-

COM
One-quarter ahead
Mean 0.969 0.969 0.896 0.977 0.982 0.903 0.958 0.894 0.967 0.979
Median 0.955 0.955 0.905 0.979 0.990 0.888 0.950 0.859 0.965 0.986
#<1 13 13 15 11 9 16 14 16 15 11
#pv<.1 4 4 7 4 4 10 2 10 2 4
Two-quarter ahead
Mean 1.005 1.002 0.970 0.985 0.992 0.904 0.986 0.875 0.987 1.002
Median 1.010 1.012 0.958 0.995 1.003 0.901 0.982 0.898 0.975 1.000
#<1 8 7 13 10 8 12 10 18 12 9
#pv<.1 2 2 2 2 0 12 5 7 1 2
Four-quarter ahead
Mean 1.052 1.072 1.057 1.043 1.024 0.903 1.049 0.878 1.021 1.025
Median 1.049 1.072 1.036 1.066 1.029 0.891 1.052 0.877 1.015 1.023
#<1 6 4 5 6 6 13 8 17 8 6
#pv<.1 1 1 1 1 1 11 2 8 1 1
Twelve-quarter ahead
Mean 0.933 1.036 1.027 1.035 0.975 0.883 1.030 0.845 0.962 0.988
Median 0.934 1.045 1.032 1.060 0.975 0.879 1.047 0.876 0.968 0.981
#<1 10 6 7 6 12 14 7 16 15 13
#pv<.1 3 1 0 1 1 13 1 0 3 1
Averages (all horizons)
Mean 0.990 1.020 0.987 1.010 0.993 0.898 1.006 0.873 0.984 0.998
Median 0.987 1.021 0.983 1.025 0.999 0.890 1.008 0.877 0.981 0.997
#<1 9 8 10 8 9 14 10 17 13 10
#pv<.1 3 2 3 2 2 12 3 6 2 2
Notes: Rows for means and medians report the average/median ratio of root mean squared prediction error (RMSPE) from the NOEM-BVAR model relative to the RMSPE of competing forecasting models 
calculated over the 18 countries. Values less than one imply that the NOEM-BVAR model has a lower RMSPE than does the competitive benchmark. The row #<1 reports the number of economies that 
show relative RMSPE lower than 1  for a particular model.  The row #pv<.1 reports the number of economies that show a p-value lower than 0.1 for the null of equal predictive accuracy measured by the 
RMSPEs of the NOEM-BVAR and the alternative model. We use the Diebold-Mariano-West statistic or the adjusted Clark-West statistic when models are nested. See Table 1 for the data sources. RAR 
and DAR denote AR(2) model using the iterative and direct methods to forecast, RW-AO is the random walk model á la  Atkeson and Ohanian (2001), FAR is the Factor-Augmented AR(2) model, APC is 
the Augmented Phillips Curve, APC-FD is an Augmented Phillips Curve in first differences, BVAR2 is the bivariate Bayesian VAR(2), BVAR4 is the 4-variable Bayesian VAR(2), BVAR2-COM is the 
bivariate Bayesian VAR(2) with commodity price indexes, and TVP is the time-varying parameter specifi cation.

Table 5 - RMSPE of the NOEM-BVAR Model Relative to Competing Models (Summary by Forecasting Model)
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One-quarter ahead
Mean 0.627 0.611 0.599 0.606
Median 0.620 0.594 0.587 0.591
#>0.5 17 17 15 16
StatSignif/Total 0.80 0.67 0.53 0.61
Two-quarter ahead
Mean 0.649 0.649 0.619 0.637
Median 0.644 0.654 0.625 0.642
#>0.5 18 17 16 17
StatSignif/Total 0.83 0.81 0.67 0.75
Four-quarter ahead
Mean 0.651 0.648 0.632 0.642
Median 0.651 0.659 0.637 0.650
#>0.5 18 17 17 17
StatSignif/Total 0.94 0.79 0.71 0.76
Twelve-quarter ahead
Mean 0.700 0.624 0.664 0.640
Median 0.714 0.624 0.657 0.637
#>0.5 18 16 17 16
StatSignif/Total 1.00 0.74 0.79 0.76
Averages (all horizons)
Mean 0.657 0.633 0.629 0.631
Median 0.657 0.633 0.626 0.630
#>0.5 18 17 16 17
StatSignif/Total 0.89 0.75 0.67 0.72
Notes: Rows for means and medians report the average and median ratio of success in directional accuracy over the 18 countries. The row #>0.5 reports the number of 
economies that show a success ratio higher than 0.5  for a particular model. StatSignif/Total represents the ratio of the number of statistically significant cases as a share 
of the total number of cases net of the number of undefined cases. See Table 1 for the data sources. 

Theoretically based 
models (Average of M7-

M10)
All models (Averages of 

M1-M10)

Table 6 - Directional Accuracy: Success Ratios (Averages of Groups of Models)

NOEM-BVAR
Purely statistical models 

(Average of M1 - M6)
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M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

NOEM-
BVAR RAR DAR RW-AO FAR BVAR2 TVP APC

APC-
FD BVAR4

BVAR2-
COM

One-quarter ahead
Mean 0.627 0.620 0.620 0.620 0.633 0.645 0.530 0.593 0.569 0.603 0.630
Median 0.620 0.609 0.609 0.609 0.609 0.609 0.522 0.598 0.554 0.576 0.620
#>0.5 17 17 17 18 17 18 13 13 13 16 17
StatSignif/Total 0.80 0.80 0.72 0.78 0.78 0.83 0.11 0.50 0.33 0.50 0.78
Two-quarter ahead
Mean 0.649 0.672 0.660 0.640 0.683 0.685 0.556 0.640 0.563 0.626 0.648
Median 0.644 0.656 0.656 0.644 0.700 0.711 0.556 0.656 0.578 0.633 0.633
#>0.5 18 18 18 17 18 18 15 16 13 17 18
StatSignif/Total 0.83 0.94 0.89 0.89 0.83 0.78 0.50 0.72 0.39 0.78 0.78
Four-quarter ahead
Mean 0.651 0.650 0.678 0.658 0.677 0.680 0.548 0.659 0.578 0.643 0.649
Median 0.651 0.651 0.686 0.663 0.686 0.709 0.558 0.686 0.570 0.651 0.640
#>0.5 18 17 18 16 18 18 15 16 15 18 18
StatSignif/Total 0.94 0.93 0.94 0.78 0.89 0.94 0.28 0.78 0.44 0.78 0.82
Twelve-quarter ahead
Mean 0.700 0.565 0.643 0.652 0.638 0.652 0.592 0.659 0.616 0.665 0.717
Median 0.714 0.543 0.657 0.657 0.657 0.629 0.600 0.657 0.614 0.643 0.714
#>0.5 18 13 17 18 15 17 16 17 16 17 18
StatSignif/Total 1.00 1.00 1.00 0.67 0.82 0.87 0.11 0.94 0.35 0.86 1.00
Averages (all horizons)
Mean 0.657 0.627 0.650 0.642 0.658 0.666 0.556 0.638 0.581 0.634 0.661
Median 0.657 0.615 0.652 0.643 0.663 0.664 0.559 0.649 0.579 0.626 0.652
#>0.5 18 16 18 17 17 18 15 16 14 17 18
StatSignif/Total 0.89 0.92 0.89 0.78 0.83 0.86 0.25 0.74 0.38 0.73 0.84
Notes: Rows for means and medians report the average and median ratio of success in directional accuracy over the 18 countries. The row #>0.5 reports the number of economies that show a success 
ratio higher than 0.5  for a particular model. StatSignif/Total represents the ratio of the number of statistically significant cases as a share of the total number of cases net of the number of undefined 
cases. See Table 1 for the data sources. RAR and DAR denote AR(2) model using the iterative and direct methods to forecast, RW-AO is the random walk model á la Atkeson and Ohanian (2001), FAR 
is the Factor-Augmented AR(2) model, APC is the Augmented Phillips Curve, APC-FD is an Augmented Phillips Curve in first differences, BVAR2 is the bivariate Bayesian VAR(2), BVAR4 is the 4-
variable Bayesian VAR(2), BVAR2-COM is the bivariate Bayesian VAR(2) with commodity price indexes, and TVP is the time-varying parameter specifi cation.

Table 7 - Directional Accuracy: Success Ratios (Summary by Forecasting Model)

36



h=1 h=4 h=8 h=12

Australia 0.798 * 0.852 * 0.874 * 0.892 *
Austria 0.839 * 0.883 * 0.892 0.887 *
Belgium 0.877 * 0.835 * 0.859 * 0.879 *
Canada 0.856 * 0.794 * 0.813 * 0.871
France 1.026 0.987 0.873 * 0.806
Germany 0.847 * 0.829 * 0.920 0.882 *
Greece 0.983 1.000 0.939 1.015
Italy 1.053 0.961 0.875 * 0.788
Japan 0.812 * 0.811 * 0.774 * 0.914 *
Korea 0.931 0.990 1.109 0.887 *
Netherlands 0.821 * 0.801 * 0.880 * 0.908 *
Portugal 0.978 0.965 0.886 * 0.899
Spain 0.964 0.919 * 0.867 * 0.919
Sweden 0.916 0.901 * 0.884 * 0.890
Switzerland 0.922 0.848 * 0.805 * 0.889 *
Taiwan 0.774 * 0.710 * 0.770 * 0.907
United Kingdom 0.889 * 0.868 * 0.940 0.882 *
United States 0.832 * 0.743 * 0.794 * 0.898 *

Mean 0.895 0.872 0.875 0.890
Median 0.883 0.860 0.875 0.889
#<1 16 17 17 17
#pv<.1 10 13 13 10

Table 8 - RMSPE of the NOEM-BVAR Model Relative to 
the Naïve Random Walk Model

Notes: Columns report the ratio of root mean squared prediction error (RMSPE) from the 
NOEM-BVAR model relative to the RMSPE of naive random walk. Values less than one imply 
that the NOEM-BVAR model has a lower RMSPE than does the RW. Values in bold indicate 
that the null hypothesis of equal predictive accuracy is rejected at 10% level. See Table 1 for the 
data sources.
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h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12 h=1 h=4 h=8 h=12

Australia 0.980 0.918 0.799 0.652 0.980 0.923 0.821 0.677 0.980 0.921 0.810 0.664
Austria 0.986 1.015 1.163 0.837 0.990 1.019 1.203 0.880 0.988 1.017 1.183 0.858
Belgium 0.987 1.142 1.215 0.991 0.987 1.154 1.239 1.023 0.987 1.149 1.227 1.007
Canada 1.005 0.976 0.908 0.739 1.013 0.958 0.905 0.747 1.009 0.968 0.907 0.743
France 0.978 0.841 0.629 0.543 0.952 0.809 0.618 0.546 0.966 0.825 0.624 0.545
Germany 0.933 0.963 1.000 0.845 0.941 0.940 1.008 0.867 0.938 0.952 1.004 0.856
Greece 0.815 0.463 0.365 0.341 0.777 0.446 0.363 0.344 0.796 0.454 0.364 0.343
Italy 0.835 0.583 0.486 0.415 0.796 0.556 0.480 0.417 0.816 0.569 0.483 0.416
Japan 0.880 0.934 1.005 0.947 0.884 0.938 1.019 0.967 0.882 0.936 1.012 0.957
Korea 0.544 0.758 0.888 0.822 1.021 0.694 0.621 0.549 0.902 1.088 1.150 0.902
Netherlands 0.982 0.990 0.956 0.961 0.988 0.983 0.967 0.984 0.985 0.987 0.961 0.972
Portugal 0.876 0.538 0.496 0.443 0.839 0.511 0.488 0.443 0.858 0.524 0.492 0.443
Spain 0.976 0.771 0.632 0.534 0.958 0.753 0.631 0.539 0.967 0.762 0.632 0.537
Sweden 0.968 0.866 0.780 0.527 0.957 0.841 0.776 0.533 0.963 0.853 0.778 0.530
Switzerland 1.034 0.901 0.697 0.626 1.027 0.885 0.696 0.634 1.032 0.893 0.697 0.630
Taiwan 0.848 0.904 0.931 0.807 0.849 0.909 0.944 0.824 0.849 0.907 0.938 0.815
United Kingdom 1.057 1.195 1.008 0.832 1.063 1.224 1.071 0.890 1.060 1.210 1.039 0.861
United States 0.930 1.013 0.994 0.970 0.939 1.028 1.019 1.007 0.934 1.021 1.007 0.988

Mean 0.923 0.876 0.831 0.713 0.942 0.865 0.826 0.715 0.940 0.891 0.850 0.726
Median 0.972 0.911 0.898 0.773 0.958 0.916 0.863 0.712 0.965 0.929 0.923 0.779
#<1 15 14 13 18 14 14 12 16 15 13 11 17
#>1 3 4 5 0 4 4 6 2 3 5 7 1

Table 9 - RMSPE of the NOEM-BVAR Model Relative to the DSGE BVAR, DGSE Model, and a Forecast Combination
Mean DSGE BVAR Mean DSGE Forecast combination

Notes: Rows for means and medians report the average/median of the root mean squared prediction error (RMSPE) from the NOEM-BVAR model relative to the RMSPE of the DSGE BVAR, DGSE, or a 
forecast combination calculated over the 18 countries. Values less than one imply that the NOEM-BVAR model has a lower RMSPE than does the competitive benchmark. The row #<1  (#>1) reports the 
number of economies that show relative RMSPE lower (higher) than 1  for a particular forecast horizon (h ).
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h=1 h=2 h=4 h=12

Australia 0.955 1.024 1.397 1.317
Austria 0.995 1.007 2.211 1.532
Belgium 1.675 0.889 0.914 1.309
Canada 1.288 1.089 1.143 1.155
France 1.390 2.281 1.113 0.586
Germany 0.989 1.058 0.814 1.049
Greece 1.447 1.005 0.792 0.823
Italy 2.053 1.515 1.018 0.646 *
Japan 0.585 * 0.643 * 0.499 * 0.598
Korea 1.493 0.995 0.501 * 0.920
Netherlands 1.465 1.290 0.784 * 0.903
Portugal 1.421 1.292 1.010 0.875
Spain 1.422 1.131 0.885 0.789
Sweden 1.384 1.140 0.858 0.934
Switzerland 0.898 0.630 * 0.540 * 0.664 *
Taiwan 0.418 * 0.354 * 0.688 * 1.147
United Kingdom 1.673 1.352 0.991 1.168
United States 0.699 0.630 0.600 0.946

Mean 1.236 1.074 0.931 0.964
Median 1.387 1.041 0.872 0.927
#<1 7 6 12 11
#pv<.1 2 3 5 2

Table 10 - Relative RMSPE of the NOEM-BVAR Model Relative to the Time-
Varying Parameter with Stochastic Volatility Model

Notes: Columns report the ratio of root mean squared prediction error (RMSPE) from the NOEM-BVAR 
model relative to the RMSPE of the time-varying parameter model with stochastic volatility (TVPSV). Values 
less than one imply that the NOEM-BVAR model has a lower RMSPE than does the TVPSV model. Values in 
bold indicate that the null hypothesis of equal predictive accuracy is rejected at 10% level. See Table 1 for the 
data sources.
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h=1 h=2 h=4 h=12

Australia 0.912 * 1.025 1.446 1.408
Austria 0.975 1.074 2.331 1.555
Belgium 1.621 0.909 1.011 1.361
Canada 1.335 1.159 1.253 1.318
France 1.450 2.344 1.159 0.675
Germany 1.071 1.171 0.850 1.067
Greece 1.478 1.084 1.003 1.187
Italy 1.986 1.664 1.230 0.793
Japan 0.586 * 0.689 * 0.515 * 0.599
Korea 1.477 1.042 0.548 * 1.108
Netherlands 1.429 1.267 0.795 * 0.986
Portugal 1.409 1.366 1.074 1.079
Spain 1.348 1.193 0.896 1.007
Sweden 1.309 1.148 0.898 1.021
Switzerland 0.896 0.680 * 0.583 * 0.804
Taiwan 0.480 * 0.359 * 0.665 * 1.248
United Kingdom 1.549 1.301 1.012 1.409
United States 0.691 0.586 * 0.604 0.949

Mean 1.222 1.114 0.993 1.087
Median 1.341 1.116 0.951 1.073
#<1 6 5 9 6
#pv<.1 3 4 5 0

Table 11 - Relative RMSPE of the NOEM-BVAR Model Relative to Dynamic Model 
Averaging

Notes: Columns report the ratio of root mean squared prediction error (RMSPE) from the NOEM-BVAR 
model relative to the RMSPE of dynamic model averaging (DMA). Values less than one imply that the NOEM-
BVAR model has a lower RMSPE than does the DMA. Values in bold indicate that the null hypothesis of 
equal predictive accuracy is rejected at 10% level. See Table 1 for the data sources.
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Table 12 - A Comparison with Other Studies on Inflation Forecasting with DSGE Models

Study Price index used SOE?
No. of 

competing 
models

DMW test and 
HLN correction?

Direcctional 
accuracy?

Forecast 
horizons

Countries or 
regions

Adolfson et al. (2007) GDPDef, CDef, IDef Yes 2 No No 1-8 Q Sweden
Christoffel et al. (2011) GDPDef No 6 No No 1-8 Q Euro Area
Del Negro and Schorfheide (2013) GDPDef No 1 No No 1-8 Q US
Del Negro et al. (2015) GDPDef No 2 No No 1-20 Q US
Dib et al. (2008) GDPDef Yes 1 Yes No 1-8 Q Canada
Edge and Gürkaynak (2010) GDPDef No 2 No No 1-8 Q US
Edge et al. (2010) GDPDef No 5 No No 1-8 Q US
Kolasa and Rubaszek (2015) GDPDef No 3 No No 1-16 Q US
Kolasa et al. (2012) GDPDef No 2 Yes No 0-4 Q US
Korenok and Swanson (2005) CPI, GDPDef No 5 No No 4, 8, 12 Q US
Liu et al. (2009) GDPDef Yes 3 No No 1-4 Q South Africa
Marcellino and Rychalovska (2014) CPI Yes 3 No No 1, 4, 8 Q Luxembourg
Rubaszek and Skrzypczynski (2008) GDPDef No 3 No No 1-4 Q US
Schorfheide et al. (2010) PCE No 2 Yes No 1, 2, 4, 12 Q US
Smets and Wouters (2004) GDPDef No 7 No No 1-4 Q Euro Area
Wieland and Wolters (2011) GDPDef No 6 No No 1-4 Q US
Wolters (2011) GDP/GNPDef No 5 No No 0-5 Q US
This study CPI Yes 10 (15) Yes Yes 1, 2, 4, 12 Q 17 SOEs & US
Notes: SOE denotes small open economy, GDPDef/CDef/IDef denote GDP/consumption/investment price deflator. PCE denotes the personal consumption expenditures index. DMW refers to the Diebold-
Mariano-West test. HLN denotes the Harvey, Leybourne, and Newbold (1997) correction. Our study includes 10 competing models and about 15 if we consider the robustness checks and extensions.
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B Characterizing the NOEM Model Solution

Structural Relationships Implied by the NOEM Model. Using the definitions of the Home and

Foreign natural rates of interest and the Home and Foreign potential output in (11)− (14) together with the

bivariate stochastic process driving the productivity shocks in (15)− (16), we derive the following mapping

between the corresponding endogenous variables and the productivity shocks:(
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The key equations of the NOEM model– that is, equations (1) − (16) in the paper (Table 1)– can be

summarized with the following stochastic system of equations:

M10×10 (θ) Ẑt = N10×10 (θ)Et
[
Ẑt+1

]
+Q10×6 (θ) ε̂t, (60)

ε̂t ∼ N
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0
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0
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, (61)
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which describes the dynamics of the vector of variables Ẑt =
(
π̂t, π̂

∗
t , ŷt, ŷ

∗
t , ût−1, û

∗
t−1, ât−1, â

∗
t−1, m̂t−1, m̂

∗
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in relation to the vector of innovations ε̂t = (ε̂ut , ε̂
u∗
t , ε̂

a
t , ε̂
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t , ε̂
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t )

T in the following terms:
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. (62)

We can define the matrices M10×10 (θ), N10×10 (θ), and Q10×6 (θ) of this system as follows:

M10×10 (θ) =

[
Ma

4×4 (θ) 04×6

06×4 −Md
6×6 (θ)

]
, N10×10 (θ) =

(
Na
4×4 (θ) Nb

4×6 (θ)

06×4 −I6×6

)
, Q10×6 (θ) =

(
04×6
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)
,

(63)

and

Ma
4×4 (θ) ≡


1 0 −Φ (ϕ+ γ)κ −Φ (ϕ+ γ) (1− κ)

0 1 −Φ (ϕ+ γ) (1− κ) −Φ (ϕ+ γ)κ

−Ωψπ − (1− Ω)ψπ − (Ωψx + γ) − (1− Ω)ψx

− (1− Ω)ψπ −Ωψπ − (1− Ω)ψx − (Ωψx + γ)

 , (64)

Md
6×6 (θ) ≡



δu 0 0 0 0 0

0 δu 0 0 0 0

0 0 δa δa,a∗ 0 0

0 0 δa,a∗ δa 0 0

0 0 0 0 δm 0

0 0 0 0 0 δm


, (65)

Na
4×4 (θ) ≡


β 0 0 0

0 β 0 0

−Ω − (1− Ω) −γ 0

− (1− Ω) −Ω 0 −γ

 , (66)

Nb
4×6 (θ) ≡


Φ (ϕ+ γ) (1− ξ) Φ (ϕ+ γ) ξ −Φ (1 + ϕ)K −Φ (1 + ϕ) (1−K) 0 0

Φ (ϕ+ γ) ξ Φ (ϕ+ γ) (1− ξ) −Φ (1 + ϕ) (1−K) −Φ (1 + ϕ)K 0 0

0 0 −
(
1+ϕ
γ+ϕ

)
ψxΣ −

(
1+ϕ
γ+ϕ

)
ψx (1− Σ) Ω (1− Ω)

0 0 −
(
1+ϕ
γ+ϕ

)
ψx (1− Σ) −

(
1+ϕ
γ+ϕ

)
ψxΣ (1− Ω) Ω

 ,

(67)
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where 0 is a conforming (possibly non-square) matrix filled with zeroes and I is a square identity matrix

with ones on the main diagonal and zeroes elsewhere. We define the corresponding composite parameters

for matrices M10×10 (θ), N10×10 (θ), and Q10×6 (θ) as follows:

K ≡ κΛ + (1− κ) (1− Λ) ,

Σ ≡ ΩΛ + (1− Ω) (1− Λ)− γ

ψx
(2Λ− 1) (Ω + Θ− 2ΩΘ) ((δa − 1)− δa,a∗) ,

Φ ≡
(

(1− α) (1− βα)

α

)
,

κ ≡ (1− ξ)
(

1− (σγ − 1)

(
γ

ϕ+ γ

)(
(2ξ) (1− 2ξ)

1 + (σγ − 1) (2ξ) (2 (1− ξ))

))
,

Θ ≡ (1− ξ)
(
σγ − (σγ − 1) (1− 2ξ)

σγ − (σγ − 1) (1− 2ξ)
2

)
,

Ω ≡ (1− ξ)
(

1− 2ξ (1− σγ)

1− 2ξ

)
,

Λ ≡ 1 +
1

2


(

γ
ϕ+γ

)
(σγ − 1) (2ξ) (2 (1− ξ))

1 +
(

1− γ
ϕ+γ

)
(σγ − 1) (2ξ) (2 (1− ξ))

 .

From here, it follows that if the matrix M10×10 (θ) is invertible, the solution of the NOEM model in (60)

together with the corresponding transversality conditions (that is, lim
τ→+∞

(Γ10×10 (θ))
τ Et

[
Ẑt+τ

]
= 0) can

be re-written as:

Ẑt = Γ10×10 (θ)Et
[
Ẑt+1

]
+ Ψ10×6 (θ) ε̂t, (68)

where Γ10×10 (θ) = (M10×10 (θ))
−1
N10×10 (θ) and Ψ10×6 (θ) = (M10×10 (θ))

−1
Q10×6 (θ). Given the partic-

ular form of M10×10 (θ), wheneverMa
4×4 (θ) andMd

6×6 (θ) are invertible, the inverse matrix (M10×10 (θ))
−1

reduces to:

(M10×10 (θ))
−1

=

[ (
Ma

4×4 (θ)
)−1

04×6

06×4 −
(
Md

6×6 (θ)
)−1

]
, (69)

(
Md

6×6 (θ)
)−1 ≡



1
δu

0 0 0 0 0

0 1
δu

0 0 0 0

0 0 δa
δ2a−δ2a,a∗

− δa,a∗

δ2a−δ2a,a∗
0 0

0 0 − δa,a∗

δ2a−δ2a,a∗
δa

δ2a−δ2a,a∗
0 0

0 0 0 0 1
δm

0

0 0 0 0 0 1
δm


. (70)
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The corresponding matrices Γ10×10 (θ) and Ψ10×6 (θ) of the solution in (68) can then be expressed as:

Γ10×10 (θ) ≡ (M10×10 (θ))
−1
N10×10 (θ) =

( (
Ma

4×4 (θ)
)−1

04×6

06×4 −
(
Md

6×6 (θ)
)−1

)(
Na
4×4 (θ) Nb

4×6 (θ)

06×4 −I6×6

)

=

( (
Ma

4×4 (θ)
)−1

Na
4×4 (θ)

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

06×4
(
Md

6×6 (θ)
)−1

)
, (71)

Ψ10×6 (θ) ≡ (M10×10 (θ))
−1
Q10×6 (θ) =

( (
Ma

4×4 (θ)
)−1

04×6

06×4 −
(
Md

6×6 (θ)
)−1

)(
04×6

I6×6

)
=

(
04×6

−
(
Md

6×6 (θ)
)−1

)
.

(72)

The Solution of the NOEM Model in VAR Form. We can further partition Ẑt into two blocks

defined as Ẑ1t = (π̂t, π̂
∗
t , ŷt, ŷ

∗
t )
T for the observable variables and Ẑ2t =

(
ût−1, û

∗
t−1, ât−1, â

∗
t−1, m̂t−1, m̂

∗
t−1
)T

for the unobserved states of the NOEM model. Following on the footsteps of Fernández-Villaverde et al.

(2007), we note that the state-space representation of the NOEM model solution can be given as:

Ẑ2t+1 = A6×6 (θ) Ẑ2t +B6×6 (θ) ε̂t, (73)

Ẑ1t = C4×6 (θ) Ẑ2t +D4×6 (θ) ε̂t. (74)

Here, A6×6 (θ), B6×6 (θ), C4×6 (θ), andD4×6 (θ) are conforming matrices, and θ = (β, γ, ϕ, α, σ, ξ, ψπ, ψx, δa, δa,a∗ , σa, ρa,a∗ , δu, σu, ρu,u∗ , δm, σm, ρm,m∗)

is the vector of the structural parameters that enter those matrices.

Accordingly, the system of equations described in (68) can be re-written as:

(
Ẑ1t

Ẑ2t

)
=

( (
Ma

4×4 (θ)
)−1

Na
4×4 (θ)

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

06×4
(
Md

6×6 (θ)
)−1

) Et
[
Ẑ1t+1

]
Et
[
Ẑ2t+1

] +

(
04×6

−
(
Md

6×6 (θ)
)−1

)
ε̂t,

(75)

or, given that Et
[
Ẑ2t+1

]
= Ẑ2t+1, simply as:

Ẑ1t =
(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)Et

[
Ẑ1t+1

]
+
(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ) Ẑ2t+1, (76)

Ẑ2t =
(
Md

6×6 (θ)
)−1

Ẑ2t+1 −
(
Md

6×6 (θ)
)−1

ε̂t. (77)

The state-space solution of the NOEM model in (76)− (77) can be described in canonical state-space form

with equations (73) − (74). A straightforward manipulation of condition (77) implies that the conforming

matrices A6×6 (θ) and B6×6 (θ) for the state-space solution must be given by:

A6×6 (θ) = Md
6×6 (θ) , B6×6 (θ) = I6×6. (78)

Then, replacing the functional form of the solution given in (74) into the system of equations for the NOEM

model in (76) implies that:

Ẑ1t =
[(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ) +

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

]
Ẑ2t+1, (79)
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which, given the form of the matrices A6×6 (θ) and B6×6 (θ) derived in (78), becomes:

Ẑ1t =
[(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ) +

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

]
Md

6×6 (θ) Ẑ2t + ... (80)[(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ) +

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

]
ε̂t. (81)

By the method of undetermined coeffi cients, matching (80) and (74), it now follows that the conforming

matrices C4×6 (θ) and D4×6 (θ) must satisfy the following conditions:

C4×6 (θ) =
[(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ) +

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

]
Md

6×6 (θ) , (82)

D4×6 (θ) =
[(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ) +

(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)

]
= C4×6 (θ)

(
Md

6×6 (θ)
)−1

, (83)

or, simply,

C4×6 (θ)−
(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ)Md

6×6 (θ) =
(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ) , (84)

D4×6 (θ) = C4×6 (θ)
(
Md

6×6 (θ)
)−1

. (85)

The existence and uniqueness of a solution to C4×6 (θ) in (84) suffi ces to ensure the existence and uniqueness

of the NOEM model’s solution in (73)− (74).

Re-writing equation (84) as:

C4×6 (θ) =
(
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ)Md

6×6 (θ) +
(
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ) , (86)

and applying the relevant properties for the vectorization of a matrix it follows that:35

vec (C4×6 (θ)) = vec
((
Ma

4×4 (θ)
)−1

Na
4×4 (θ)C4×6 (θ)Md

6×6 (θ)
)

+ vec
((
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ)
)

=
((
Md

6×6 (θ)
)T ⊗ (Ma

4×4 (θ)
)−1

Na
4×4 (θ)

)
vec (C4×6 (θ)) + vec

((
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ)
)
.

(87)

Further re-arranging, we can show that the solution for C4×6 (θ) becomes:[
I24×24 −

((
Md

6×6 (θ)
)T ⊗ (Ma

4×4 (θ)
)−1

Na
4×4 (θ)

)]
vec (C4×6 (θ)) = vec

((
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ)
)
,

(88)

and

vec (C4×6 (θ)) =
[
I24×24 −

((
Md

6×6 (θ)
)T ⊗ (Ma

4×4 (θ)
)−1

Na
4×4 (θ)

)]−1
vec

((
Ma

4×4 (θ)
)−1

Nb
4×6 (θ)Md

6×6 (θ)
)
,

(89)

where I24×24 is the conforming identity matrix which in this case must be a 24× 24 square matrix. Hence,

the existence and uniqueness of the solution for C4×6 (θ) requires the invertibility of Ma
4×4 (θ) but also the

invertibility of I24×24 −
((
Md

6×6 (θ)
)T ⊗ (Ma

4×4 (θ)
)−1

Na
4×4 (θ)

)
.

35The vectorization is a linear transformation that converts a given matrix into a column-vector. The relevant proper-
ties are: (a) vec (Yj×i + Zj×i) = vec (Yj×i) + vec (Zj×i) for any given conforming matrices of dimension j × i; and (b)
vec (Xk×lYl×mZm×n) =

(
ZTn×m ⊗Xk×l

)
vec (Yl×m), where ⊗ refers to the Kronecker product, for any given matrices Xk×l,

Yl×m, and Zm×n of dimensions k × l, l ×m, and m× n, respectively.
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Finally, the state-space solution for the NOEM model in (73)−(74) can be expressed as follows: Equation

(73) becomes

Ẑ2t+1 = Md
6×6 (θ) Ẑ2t + ε̂t, (90)

and, replacing out the vector Ẑ2t =
(
Md

6×6 (θ)
)−1

Ẑ2t+1 −
(
Md

6×6 (θ)
)−1

ε̂t derived from (73) whenever

Md
6×6 (θ) is invertible into (74), we obtain that:

Ẑ1t = C4×6 (θ)
(
Md

6×6 (θ)
)−1

Ẑ2t+1 +
[
D4×6 (θ)− C4×6 (θ)

(
Md

6×6 (θ)
)−1]

ε̂t = D4×6 (θ) Ẑ2t+1, (91)

where it holds by (85) that D4×6 (θ) = C4×6 (θ)
(
Md

6×6 (θ)
)−1

.

Hence, pre-multiplying both sides of (90) with D4×6 (θ) = C4×6 (θ)
(
Md

6×6 (θ)
)−1

and replacing out

D4×6 (θ) Ẑ2t+1 = Ẑ1t according to (91), it follows that:

Ẑ1t = D4×6 (θ) Ẑ2t+1 = D4×6 (θ)Md
6×6 (θ) Ẑ2t +D4×6 (θ) ε̂t

= C4×6 (θ)
(
Md

6×6 (θ)
)−1

Md
6×6 (θ) Ẑ2t + C4×6 (θ)

(
Md

6×6 (θ)
)−1

ε̂t

= C4×6 (θ)Md
6×6 (θ)

(
Md

6×6 (θ)
)−1

Ẑ2t + C4×6 (θ)
(
Md

6×6 (θ)
)−1

ε̂t. (92)

Whenever a Moore-Penrose left inverse of C4×6 (θ) exists (i.e., whenever C6×4 (θ)
+ exists such that

C6×4 (θ)
+
C4×6 (θ) = I6×6), shifting back one period equation (91) and replacing out appropriately, we

obtain:

Ẑ1t = C4×6 (θ)Md
6×6 (θ)C6×4 (θ)

+
C4×6 (θ)

(
Md

6×6 (θ)
)−1

Ẑ2t + C4×6 (θ)
(
Md

6×6 (θ)
)−1

ε̂t

= C4×6 (θ)Md
6×6 (θ)C6×4 (θ)

+
Ẑ1t−1 + C4×6 (θ)

(
Md

6×6 (θ)
)−1

ε̂t. (93)

In particular, when C4×6 (θ) has linearly independent columns (and thus the matrix
(
C6×4 (θ)

∗
C4×6 (θ)

)
is

invertible), the Moore-Penrose left inverse matrix C6×4 (θ)
+ can be expressed as:

C6×4 (θ)
+

=
(
C6×4 (θ)

∗
C4×6 (θ)

)−1
C6×4 (θ)

∗
, (94)

where C6×4 (θ)
∗ is the Hermitian of C4×6 (θ) (the conjugate transpose or Hermitian transpose C6×4 (θ)

∗ is

obtained from C4×6 (θ) by taking the transpose and then taking the complex conjugate of each entry).

Hence, it follows from (93) that the NOEM model solution takes the VAR(1) form indicated in equation

(23) in the paper as follows:

Ẑ1t = Ã4×4 (θ) Ẑ1t−1 +D4×6 (θ) ε̂t, (95)

where Ã4×4 (θ) = C4×6 (θ)Md
6×6 (θ)C6×4 (θ)

+ and D4×6 (θ) = C4×6 (θ)
(
Md

6×6 (θ)
)−1

. As a result, the

NOEM model solution has a precise finite-order VAR representation whose characterization depends on the

invertibility ofMd
6×6 (θ) and the existence and uniqueness of a Moore-Penrose left-invertible solution for the

matrix C4×6 (θ) defined by condition (84) above. This is a special case of a more general result discussed by

Martínez-García (2020).
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