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1 Introduction

After a series of events during the past decade with swift and severe consequences for firms across

the globe — including the U.S. Sub-Prime Mortgage and Eurozone Debt Crises — researchers and

policymakers have reexamined our understanding of systemic risk and contagion across financial

firms given their perceived centrality to the transmission of these episodes. To this end, the Bank

of England’s then Executive Director for Financial Stability, Andrew G. Haldane, drew parallels

between financial systems and complex systems in other fields and postulated that financial net-

works may be “robust-yet-fragile” (RyF).1 This term describes the duality wherein greater network

connectedness acts to cushion and smooth the effects of small shocks; however, these connections

may also spread crises by passing on large shocks and propagating contagion.

What this research often misses, however, is the striking extent and breadth of these events,

not only across the global banking system, but across all business sectors. Reflecting this inter-

connectedness across non-finance firms, Ford CEO Alan R. Mulally appeared before the Senate

Banking Committee in November 2008, lobbying for bailouts for General Motors and Chrysler in

the midst of the ongoing financial turmoil, though not Ford itself. He worried that because of the

major automobile manufacturers’ significant overlap in suppliers, dealers, and other business part-

ners that “the collapse of one of our competitors would have a severe impact on Ford... because the

domestic auto industry is highly interdependent. It would also have devastating ripple effects across

the entire U.S. economy.”2 The synchronicity across firms worldwide during recent crisis events

emphasizes the importance of the network of connections between them. A better understanding

of the features of firm networks could have broad implications, as systemic importance has been

used to support policies ranging from these government bailouts, to import tariffs, to the sweeping

Dodd-Frank reforms aimed at preventing future crises.

We estimate global inter-firm networks in real time and test the robustness and fragility of these

systems, particularly as they relate to crisis susceptibility and firm health. Our work expands the

analysis of inter-firm networks beyond financial companies with a set of global firms from 1981-

2016 across up to 49 countries and in all major industry categories. Both firms’ industry and

locality influence their network position, with financial firms typically at the center of the global

network. We find evidence for the existence of robustness through more connected firms having

better performance and resistance to network level crises, and of fragility through direct contagion,

vulnerability to system-wide shocks, and these latter two mechanisms reinforcing one another. Our

results suggest that a one standard deviation increase in a firm’s total connections in from other

1See Haldane (2009) for the full speech text.
2See Mulally (2008) for details.
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firms reduces the probability of firm distress by 3.6% and is associated with improved firm health

— e.g., increased growth of 1.2% for monthly equity prices, 4.0% for quarterly profits, and 1.7% for

both quarterly revenue and annual return on equity. At the same time, if a neighboring firm is in

distress then its contagious effect is nine times greater than its diversification benefit. The robust

network features and initially low level of connectedness at the beginning of our sample suggest

why representative agent and closed economy models have had such success in economics; however,

they are not appropriate to study events such as the Global Financial and Eurozone Debt Crises

owing to increased global integration, and the network’s exhibited firm heterogeneity and fragility.

It is an open question in economics whether inter-firm networks are a steadying or destabilizing

force for the firms within them.3 Pioneering research by Allen and Gale (2000) and Freixas et al.

(2000) into the nature of systemic risk in bank networks found that more connected firm networks

are robust by mitigating risk across counterparties. Conflicting conclusions were reached by later

research, which found that bank network connectedness creates fragility by acting as a conduit

for contagion.4 Subsequent theoretical work attempted to reconcile these divergent results, but

the RyF nature of the global inter-firm network has not yet been explicitly tested nor empirically

measured.5 Further, while most of the attention in the firm network literature has been given

to the financial sector, recent work by Acemoglu et al. (2012) and Baqaee (2016) demonstrated

the importance of non-financial firm networks. We therefore estimate firm networks and use a

regression framework to test their RyF nature along several dimensions and run simulations to

evaluate these properties.

As a first step, we build from the work of Demirer et al. (2015), Diebold and Yilmaz (2009, 2014,

2016), and Scida (2015) by using vector-autoregressive (VAR) techniques to estimate economic net-

works.6 Firms can be connected in myriad ways: shared product markets; sourcing from the same

labor markets; obtaining credit from the same financial center; location; having similar business

risks; etc. Collecting the data on the multitude of firm interactions would be near impossible, and it

3The evolution of global financial networks was the subject of research by Billio et al. (2012) that analyzed monthly

returns of hedge funds, banks, broker-dealers and insurance companies, and that of McGuire and Tarashev (2008)

and Minoiu and Reyes (2013) into cross-border banking flows. See Glasserman and Young (2016) for an excellent

overview of the development of research into financial networks.
4For example, Blume et al. (2011), Blume et al. (2013) and Vivier-Lirimont (2006) find evidence of financial

network fragility.
5See for example the work on the robustness and fragility of bank networks by Acemoglu et al. (2015b), Gai and

Kapadia (2010), Gai et al. (2011), and Elliott et al. (2014).
6These papers offer noteworthy insights into a number of areas of economics by using tools from computer science

and physics to characterize and visualize the relationships between the network members. For example, the Diebold-

Yilmaz series demonstrates the evolution towards greater global integration over time, especially during crisis periods.

3



would be difficult to find a function to properly aggregate them into a single network.7 The efficient

markets hypothesis postulates that firms’ equity prices reflect all available information about them,

including proximity across these many dimensions. If two firms produce in the same labor market,

borrow from the same banks, have similar risk profiles, hold similar assets, etc... these should be

reflected in linked equity returns for the two. If this were not the case then profit opportunities

would exist for investors savvy enough to trade on the omitted information. The equity returns

act as both an easily available proxy for collecting data on the different channels through which

firms are connected — one that can be updated in real-time — and as an aggregator function to

combine them.

To infer the firm networks from daily equity prices, we do VAR estimation using adaptive

elastic-net shrinkage methods to avoid the dimensionality problem.8 We then use these estimates

to calculate generalized impulse response functions (GIRFs) between every pair of firms. In these

networks each node represents a firm, and the edges connecting them are the GIRFs from the source

firm to the terminal one. These edges capture the strength and direction of interactions — which

flow in both directions — making them what is referred to as weighted, directed networks. Using

GIRFs, the network edges capture how much other target firms’ equity prices are expected to move

conditional on a change in the price of the source node, rather than the effect of an orthogonalized

shock emanating from the source firm. Therefore, the network edges do not necessarily reflect cause

and effect but rather capture co-movements regardless of the nature of the shock.

We start our sample with the union of the top 1% of global firms by equity market capitalization

for each year from 1992-2016, representing more than 55% of the global market capitalization of all

exchange listed firms. We then examine three subsets of the data: global firms that are continuously

traded throughout 1991-2016; U.S. listed firms that are continuously traded throughout 1981-2016;

and 5-year rolling windows of global firms that are continuously traded throughout each sub-period.

We do the latter in order to deal with any potential issues relating to survivorship bias or new

firms entering the market. Once we estimate the networks, we analyze the full time period network

connections, as well as rolling windows to study the evolution of the network structure. We identify

several empirical features that characterize the global inter-firm network: both industry and locality

play important roles in connectedness between firms; firms have become more connected over time;

and finance is at the center of the global firm network. These results generalize and refine the

7To overcome these data collection challenges, Hoberg and Phillips (2016) use text-based machine learning analysis

of firm 10-K product descriptions to identify a new network of industries based on product classifications rather than

production processes to study how industries and their competitors change.
8Several of the papers in the Diebold-Yilmaz series, as well as Kitwiwattanachai (2015) and Scida (2015), also use

financial market prices, volatility and credit market data to estimate firm networks.
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conclusions of Demirer et al. (2015), who found that when looking at the top 150 global banks it

is bank location, not bank assets, that matters for network proximity.

In order to test for robustness and fragility in the firm networks, we run a series of regressions

where the dependent variables are different measures of firm health, including equity returns, rev-

enue, CDS spreads, return on equity, and profit. The explanatory variables are a firm’s aggregate

connectedness in the network estimated over the previous five years, these weights multiplied by

indicators of neighboring firms’ health, and several aggregate variables such as the TED spread,

VIX and the share of firms currently in a distressed state. We define as distressed, firms that

are in the bottom 10% of the performance distribution. From this analysis, we find evidence of

robustness with well connected firms less likely to be in distress, especially during crisis periods.

Moreover, beyond the common definition of robustness as reduced susceptibility to firm distress

events, greater connectedness has a positive relationship with firm health, including higher profit

and revenue growth. We also find fragility along three dimensions: direct contagion between neigh-

boring firms; firm vulnerability to network level shocks; and reinforced contagion wherein the direct

contagion effect becomes greater during crisis periods.

We conclude the analysis by running a series of contagion simulations based on these estimated

regressions, which yield three important findings about the global firm network. First, the model

simulations provide further evidence of network crisis reinforced contagion. Second, the level of

global firm connectedness — and with it the potential for global contagion — grew over our sample

period. The evolution of the firm network illuminated by these simulations helps explain why

research developed around 2000 found robust networks and later work suggested fragility. Finally,

we discover a new mechanism for global contagion that has been activated by increased firm network

connectedness, the crisis echo effect. When there is extensive distress in an economy that plays an

important part in the global firm network, distress is prone to be transmitted to firms abroad. It

is likely there will then be a large number of distressed firms abroad as contagion to them occurs,

leading to an echo effect wherein spillovers then return from these firms to spread to other domestic

ones. This echo effect should be an important consideration for policymakers in large economies

when facing potential crises, since these disturbances can be reflected back by the global network

to exacerbate domestic conditions.

The existence of the echo effect indicates that it is misleading to study crises with countries

in isolation, with the real world implication that, going forward, large economies like the U.S.,

China and the Eurozone cannot ignore their impact on developments abroad. Our results provide

evidence that while increased network connections may make the global economy more resilient

and benefit firm growth, they also may act as a conduit for contagion and elevated systemic risk.
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2 Robustness and Fragility in Firm Networks

There is a growing body of literature with theoretical models that predict that inter-bank networks

have a RyF structure.9 Allen and Gale (2000) and Freixas et al. (2000) focused on direct firm

claims on one another as the edges in the financial network connecting banks. In both cases, their

results suggest that more connected firm networks are robust by mitigating risk when one of them

defaults. One can think of this as diversifying counterparty risk, reducing overall systemic risk.

On the other hand, later work — especially that in the wake of the Global Financial Crisis —

tends to support the idea that bank network connectedness acts as a destabilizing force producing

financial fragility.10 Blume et al. (2011) and Blume et al. (2013) modeled the spread of cascading

failures through networks that emerge in many domains, with one focus being the contagious

failures that spread among financial institutions during a financial crisis. They found evidence of

financial network fragility. By modeling strategic financial network formation, they proposed that

stable network systems tend to be ones where agents “over-link,” with contagious risks that have

dire consequences for the welfare of the participants. Likewise, Vivier-Lirimont (2006) found that

the higher is network connectedness, the larger is the number of banks involved in the contagion

process, and the quicker is the contagion phenomenon.

These conflicting views on the role of network connectedness with regard to robustness and

fragility were reconciled in subsequent work. Elliott et al. (2014), Acemoglu et al. (2015b), Gai and

Kapadia (2010), and Gai et al. (2011) developed models that have “hump shaped” effects of bank

network connectedness.11 The former paper breaks connectedness into two measures: integration

(greater counterparty exposure) and diversification (more counterparties per organization). They

9For example, Acemoglu et al. (2015b), Acemoglu et al. (2015a), Gai and Kapadia (2010), Gai et al. (2011) and

the references therein.
10Hale (2012) is the first study of bank-level networks on a global scale — using syndicated loan data to construct

a global banking network from 1980 to 2009 of 7938 banking institutions across 141 countries — finding that bank

linkages are less likely to form if a country is experiencing a recession or a banking crisis.
11Caccioli and Farmer (2012) and Caccioli et al. (2015) augment the model of Gai and Kapadia (2010). These

“humps” arise because very low levels of connectedness with other firms are not enough to pass on contagion, and

very high levels provide enough diversification over many firms to buffer against contagion. It is only for moderate

levels of connectedness that the probability and potential breadth of contagion are large. The former paper adds

firms that are heterogeneous in their degree distributions, balance sheet size and degree correlations. They find that

networks with heterogeneous degree distributions are more resilient to contagion occurrences, so long as the source

is not a highly connected bank. Their results recommend a targeted policy aimed at reinforcing the stability of the

biggest banks to improve financial market stability. Caccioli et al. (2015) includes both direct counterparty failure

risk and contagion via overlapping portfolio exposures, finding that neither channel is significant on its own, but that

when both channels are active at once, bankruptcies are much more common and have large systemic effects.
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found that these have different, non-monotonic effects on the extent of contagion. Diversification

initially is a negative, as the small connections transmit crises; however, as it increases further

organizations are better insured against one another’s failures. Integration also entails a trade-off

between dependence on other banks versus less sensitivity to a firm’s own idiosyncratic shocks. Ace-

moglu et al. (2015b) found that the extent of financial contagion is sensitive to a phase transition.

For small shocks there is robustness from a more densely connected financial network (correspond-

ing to more diversified counterparties). Beyond a certain threshold, greater firm connectedness

dominates in its role as a shock transmission mechanism leading to fragility. In this way, the effects

of firm connectedness can be twofold, able to contribute to resilience under certain conditions or

act as a source of systemic risk under others, with network integration and concentration being

important for which force dominates. The latter two papers — on which we will base an example

model to illustrate RyF dynamics in Section 2.1 — conclude that, while with more connectedness

the probability of contagion may be lower, the exposure can be extremely widespread when distress

events do occur.

The firm network literature has been mostly focused on the financial sector; however, Acemoglu

et al. (2012) and Baqaee (2016) showed that it is important to consider the network of all firms in

an economy.12 Despite a long running assumption in macroeconomic modeling that idiosyncratic

firm shocks will average out and so can be ignored, Acemoglu et al. (2012) demonstrated how

these shocks can generate cascade effects whereby firm problems propagate not only to immediate

customers, but also to the aggregate macroeconomy.13 This propagation occurs if there is significant

asymmetry in the scopes of sectors as intermediate input suppliers to others, with the sparseness of

the input-output matrix being largely immaterial to the nature of aggregate fluctuations.14 Baqaee

(2016) likewise found that the interaction of input-output networks with industrial structure affects

the propagation and amplification of shocks and is an important consideration for business cycle

fluctuations.

12Other papers exploring connectedness and transmission of shocks across sectors in the macroeconomy are Bak

et al. (1993), Carvalho and Gabaix (2013) and Gabaix (2011).
13Acemoglu et al. (2015a) developed a unified framework for studying network propagation and amplification

of microeconomic shocks dependent on whether the system has (log) linear agent interaction and network utility

functions. This work clarifies that, with linear firm interactions, the desire for reduced output volatility lies at the

heart of the results in Acemoglu et al. (2012). Likewise, for non-linear interaction functions — such as with bank

defaults in Acemoglu et al. (2015b) — they characterized similar phase transitions transforming the role of network

interconnections in shaping aggregate performance.
14Asymmetry in the scope of actors in a network refers to the relative weights of their edges out, with some nodes

being far more influential than others. Sparseness measures how many of the potential edges in a network do not

exist.
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2.1 Modeling Firm Networks

To help explain what is meant by a RyF network, and to motivate why these dynamics are of

consequence, in this section we present a simple one period model of connected firms that exhibits

these attributes and is a special case of the global firm network model we develop later. The model

is based on that of Gai and Kapadia (2010), however, we expand the framework to include both

financial and production (i.e., non-finance) firms.

Financial firms interact by making investments in one another, and production firms interact

by using each others’ goods as intermediate inputs. In both cases, these are denoted as Iij . For

financial firms, this term represents the investment proceeds owed to firm j by firm i from the

former’s previous investment in the latter that is to be repaid today. In the case of a production

firm, Iij is the expenditure on firm j’s goods as intermediate inputs in firm i’s production process.

Alternately, for a more comprehensive firm structure, the Iij could represent the gross of both

loans and intermediate input payment flows, so that the network simultaneously includes both

production and financial firms, or firms taking part in both markets. In any case, Iij is the cash

flow from firm i to firm j, assuming that firm i does not go bankrupt.

These cash flows are the connections between firms and are not netted, creating a network that

is both weighted and directed. For now, we abstract from the formation of the network, as well

as the firm asset pricing, goods pricing and production problems by focusing solely on these cash

flows. In order to remain solvent a firm must have a positive liquidation value. Firm i’s solvency

condition derived from its balance sheet is:

Ai +Di +
J∑
j=1

Iji︸ ︷︷ ︸
Income

−
J∑
j=1

Iij︸ ︷︷ ︸
Outflows

≥ 0. (1)

Ai is the liquidation value of firm i’s assets. In the case of a financial firm these are investments

other than those in other firms. In the case of a production firm, this is the value of the firm’s

capital. Di is firm i’s net change in bank deposits for financial firms, and consumer demand for

production firms. All quantities are known at the start of the period except for these Di shocks,

which are exogenously determined. If a great enough negative shock is drawn for firm i and its

balance sheet goes negative, then it goes bankrupt and does not pay its neighboring firms, and

Iij = 0 ∀j. This can then cause contagion in the adjoining firms, potentially cascading throughout

the network.

We run a series of numerical simulations to demonstrate the RyF nature of the network, and

how these two properties vary with the average level of firm connectedness. We assume that all of

the firms have an initial asset value of 100, with the outside asset (Ai) and receivables from other
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firms (
∑J

j=1 Iji) equal to 80 and 20, respectively.15 We assume that each firm i has receivables

from Ri other firms, and that they are equally distributed among those debtor firms. This could

be interpreted, for example, as financial firms choosing investments in other firms to achieve the

maximum level of diversification possible. Since the level of each cash flow is determined using the

rule above by the firm that is owed the money, and each inter-firm asset is another’s liability, this

condition determines the magnitude of all the Iij once which edges exist in the network is known.

Finally, we assume that the unperturbed Di values are such that each firm has a 4% cash buffer

(i.e., the left hand side of Equation (1) sums to 4).

Before running any simulations, we can already discern the RyF properties of the network.

From the model structure, a firm will become insolvent if and only if:

Bi
Ri

>
Ai +Di +

∑J
j=1 Iji −

∑J
j=1 Iij∑J

j=1 Iji
=

Cash Buffer

Receivables
=

1

5
, (2)

where Bi is the number of bankruptcies among those owing money to firm i. With fewer network

connections and a lower Ri, a firm is less likely to have an insolvent neighbor in the network;

however, with few connections, having such a neighbor guarantees that it will go bankrupt itself.

Alternately, with more connections and a higher Ri, a firm is more likely to have an insolvent

neighbor, but it will take many of them going bankrupt concurrently to cause insolvency due

to the diversification benefit of being more connected. At the aggregate network level, widespread

contagion is unlikely at the extremes where there are either very few connections — as the contagion

is likely to be quarantined by the lack of connectedness — or with very many connections — as it

is unlikely that enough firms will become insolvent to trigger bankruptcies across the network.

For the model simulations, we assume a network of 1000 firms. We examine firms across a range

of average Iij per firm ranging from zero to ten to examine how connectedness affects contagion.16

To achieve the desired level of connectedness, Iij edges are randomly added to the network until

the average connectedness reaches the target level. This is repeated to get 1000 networks for each

target level of connectedness.

To model contagion in each of these networks, one firm is chosen at random to default and

shocked with a poor Di draw, and all of its neighbors that are left insolvent also default. Next,

all of the remaining solvent firms are reconsidered to see if these new defaults will make them

insolvent. This is continued until the spread of the contagion through the network ceases and there

are no newly insolvent firms, allowing all cascading failures to play out. A default outbreak is said

15These values, and the cash buffers, are chosen to match those of Gai and Kapadia (2010) and are based on

averages across developed country banking systems.
16This will be the same whether the Iij are averaged over i or j.
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to occur if over five percent of the firms in the network become insolvent to focus on network level

effects.

The simulation results can be seen in the two panels of Figure 1 plotting the extent of contagion

conditional on an outbreak occurring and the probability of an outbreak. Along the x-axis of each

panel is the average number of connections per firm in the simulated networks, ranging from zero

to ten, and the dots mark the average value across the 1000 simulations at each given level of

connectedness. The top panel plots the extent of contagion when it occurs; that is, conditional

on an initial firm bankruptcy that causes over five percent of the firms to become insolvent, what

is the ultimate share of firms that go bankrupt. The bottom panel plots the probability of an

outbreak where over five percent of the firms become insolvent. Both of these plots demonstrate

RyF network behavior, producing “hump” shaped figures, a hallmark of the presence of these

dynamics. In particular, there are phase transitions in the model generating a contagion window,

highlighted with gray shading, where there is a non-trivial probability of a default outbreak, and

if one does occur for it to be widespread. On the other hand, in line with our analysis of Equation

(2), for either very low or very high levels of connectivity it is unlikely that a default outbreak

occurs. While our model is quite simple, this result is a recurring one in the bank and firm network

literatures.

These results illustrate the duality of firm networks, with them having the potential to be either

robust or fragile. With our empirical analysis below, we seek to determine where the international

firm network is relative to the contagion window to better understand the risks it poses, or possibly

the benefits firm connectedness provides for weathering shocks and preventing outbreaks. This

knowledge is a first step towards helping contend with — or even prevent — possible outbreaks in

the future.

3 Data

Our sample is the set of the top 1% of global firms by equity market capitalization from Bloomberg

over the past two and a half decades. We queried this list on December 31st every year from 1992-

2015 with all market values converted to U.S. dollars at market exchange rates, removed exchange

traded funds and took the remaining 1,182 equity securities in the union of these annual sets as our

sample.17 Our focus is on the largest firms in order to ensure that they all have actively traded,

liquid equity securities that are highly researched and followed, providing them with accurate price

17If there were multiple tickers for a single firm then we first filtered by keeping only the securities marked as

primary, and if there was still more than one ticker we took the one with the best data coverage. The ticker search

begins in 1992 because of Bloomberg data limitations on extending it further back in time.
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discovery. Further, we limit the number of firms so that they do not overwhelm our network

estimation methodology and feel that this set is sufficient given that the 919 of these firms traded

on December 31st 2015 represented just over 55% of the global market capitalization of all exchange

listed firms according to data from Bloomberg and the World Federation of Exchanges.18

For each firm we collect a set of daily, quarterly and annual data. One of the benefits of our

methodology is that it can be implemented using easily obtainable data. First, we include the

daily equity closing price for each firm from January 1st, 1981 through September 30th, 2016.

We also gathered daily 5-year CDS spreads from October 2013 through November 2015 from

Markit. From firm quarterly statement data on Bloomberg we collected EBITDA (profit), rev-

enue (Sales/Revenue/Turnover), and total firm equity. We also include the annual return on equity

(RoE) over each calendar year. From these we calculate log changes as well as distress/crisis state

indicator variables for the worst 10% performance within our sample by each measure. All prices

and market values are in local currency, so their log changes do not conflate currency movements

with individual firm performance. For a summary of the data see Online Appendix Table A1. The

headquarters country, currency of equity issuance, and industry firm meta-data is also included.

In addition to the firm data, we collect daily data to gauge the overall health of the global

economy from Global Financial Data: the 3-month TED spread; S&P 500 Total Return Index; and

the CBOE S&P 500 Volatility Index (VIX).19 The log changes of each variable and indicators for

the worst 10% of outcomes over monthly, quarterly and annual tenures are included in the dataset.

4 Global Network Estimation

In this section, we first describe how to estimate inter-firm networks for the sample of global firms

reviewed in Section 3, explore the features of the network from 1991 through 2016, and finally

examine how it evolves this sample period. As mentioned in the introduction with the example

of Ford’s CEO lobbying the U.S. Congress for bailouts of GM and Chrysler, firms are highly

connected and dependent on one-another in nuanced ways. Ford and the automotive industry

provided further reason to consider the full context of the inter-firm network structure when such

an eventuality actually played out in Australia. In May 2013, Ford Australia announced it would

stop manufacturing cars in the country and did cease doing so in October 2016. Two months after

the Ford announcement, Toyota followed suit by stating that it would terminate its manufacturing,

18Supporting restricting the sample to only the largest firms is work by Gabaix (2011), which found that the

idiosyncratic movements of the 100 largest U.S. firms explained about one-third of all variation in output growth,

implying that many macroeconomic questions can be resolved by looking at only the behavior of large firms.
19The TED spread is the difference between 3-month USD LIBOR and the 3-month U.S. Treasury bill yield.
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too, citing a lack of volume from those in the component supply chain to keep its Australian

production operations economically viable.20 Within a few months, GM Australia announced that

it would also have to shutdown, along with many of the parts suppliers, effectively ending the

Australian automotive manufacturing industry.

There are many other examples demonstrating inter-firm network effects. Some, as in the

case of the August 2016 bankruptcy of Hanjin Shipping, can have dramatic and sweeping echoes

through the global economy. The disruptions eminating from the Hanjin bankruptcy stranded

$14 billion of goods at sea around the world.21 In others, the reliance of firms on each other are

more local but no less real, even when they are not in the same industry nor supply chain. For

example, work by Benmelech et al. (2014) demonstrated how local businesses rely upon one another

to attract customers when they showed that the closure of a retail chain weakens the economies

of agglomeration in the local area. They further showed that companies with greater geographic

exposure to the closed retailer are more likely to close themselves, with the externality being higher

for smaller stores. These results corroborate recent worries about what the challenges confronting

large department stores in the face of increased online competition and over development of retail

might mean for shopping malls that rely upon them as anchor stores, and validates the usage of

that term, “anchor,” when describing them.22

On the labor side, Goins and Gruca (2008) used firm stock price as an aggregate measure

of firm well-being to find that when a firm announces a significant permanent layoff there is a

spillover beyond the announcing firm to others in the industry. They studied a longitudinal sample

of layoff announcements in the U.S. oil and gas industry from 1989 to 1996 and found that if the

equity price of the announcing firm responds negatively, there will be simultaneous price declines

for non-announcing firms; however, close rivals see a countervailing competitive effect dampening

this contagion. There are many other examples we could go into, but at this point it should not be

difficult to appreciate the importance and variety of inter-firm connections.

4.1 Network Estimation Methodology

We investigate connections between firms; however, doing so is challenging as firms are connected

via numerous different networks, many of which cannot be observed in real time or are difficult

20http://www.smh.com.au/business/the-economy/australias-car-industry-one-year-from-closing-its-doors-

20151012-gk7ip0.html
21http://www.reuters.com/article/us-hanjin-shipping-debt-usa-bankruptcy-idUSKCN11Q2TA
22See for example http://www.businessinsider.com/macys-store-closures-and-what-it-means-for-malls-2015-9,

https://www.washingtonpost.com/news/digger/wp/2016/08/30/macys-is-closing-100-stores-does-yours-stand-a-

chance/, and http://www.nytimes.com/2015/01/04/business/the-economics-and-nostalgia-of-dead-malls.html? r=1.
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to measure.23 Further complicating matters is that there has not been a single clear technique

proposed to combine the diverse dimensions of connectedness into one inter-firm network.

To overcome these issues we utilize the efficient markets hypothesis, which states that firms’

equity prices reflect all available information about them, for if that were not the case then there

would be profit opportunities for shrewd investors trading on the omitted information. If two firms

are in close proximity along any of the dimensions of the network multiplex connecting them —

similar asset holdings, geography, labor skill requirements, distribution networks, etc. — then it

should be revealed in their equity returns. This includes not only direct connections between firms,

but also exposure to similar common shocks. An aggregate shock can only affect two firms if there

is an underlying connection that is a conduit for the shock to affect both, and we intend for our

estimated networks to include these latent exposure channels. For example, greater globalization

would increase firms’ responses to shocks abroad, which we capture in greater estimated network

connections. We use equity returns as both a proxy for collecting data on the different channels

through which firms are connected and as an aggregator function to combine them, much as Goins

and Gruca (2008) exploit equity returns to measure changes in overall firm well-being.

We estimate inter-firm networks that represent co-movements in the firms’ equity prices, reflect-

ing similarities in the firms themselves, regardless of the source of any underlying shock(s). Our

first step in doing so is to estimate VAR models of the daily equity log returns on lags of them-

selves and of the returns of other firms. The primary challenge facing this approach is the curse

of dimensionality from having numerous firms and potentially multiple lags of their equity returns

in the VAR and is likely the obstacle which has prevented similar global network research in the

past. As we show, this impediment is worth overcoming as the international network connections

between firms are often important conduits for contagion and propagation of shocks.

To contend with this issue, we follow the work of Demirer et al. (2015) in using shrinkage

methods borrowed from machine learning to obtain our VAR estimates. The particular shrinkage

method that we use is the adaptive elastic-net (AEN) estimator from Zou and Zhang (2009). Their

method uses an elastic-net estimation combining the L1 and L2 penalties of the LASSO and ridge

methods, with the adaptive label in the name referring to the manner in which weights are selected

to further penalize coefficients that are smaller in magnitude to aid in the shrinkage. The AEN

23Collecting off-balance sheet items is challenging in its own right, as described by Demirer et al. (2015); however,

tracking all of the inter-firm connections through the supply chain and financing of numerous companies, countries

and sectors is virtually impossible.
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estimation procedure solves the following problem for dependent firms j ∈ {1, 2, ..., I}:

β̂j = arg min
{βjil}

T∑
t=L+1

(
xj,t − βj00 −

I∑
i=1

L∑
l=1

βjilxi,t−l

)2

+ ρj

I∑
i=1

L∑
l=1

wjil(αj |β
j
il|+ (1− αj)βjil

2
), (3)

with β̃jil being the standard OLS coefficient estimates, wjil ≡
1

|β̃jil|
, {βj00} the constant terms, {βjil}

the set of elements of the coefficient matrix βj , {xit} the standardized daily log returns, and L the

maximum lag considered. The {ρj} and αj penalty weights are set to fit the data.24 Each firm’s

daily log return series is standardized independently over the full sample, so that they all have mean

zero and a standard deviation of one to make the GIRF values comparable across firms and over

time. We do not remove the average market returns because these include important information

about broader shocks, sensitivity to which we incorporate into our inter-firm networks. With this

approach we utilize the AEN for both the shrinkage and selection of the VAR lag order.

When αj = 1 only the LASSO penalty is included, and when αj = 0 only the ridge penalty is

applied, otherwise the two are mixed in standard elastic-net. To benefit from both techniques, we

set αj such that each penalty term is on average equal. In particular, by including both penalty

arguments strongly-correlated predictors are shrunk in or out of the model together unlike LASSO,

where having only the absolute value term makes the optimization more likely to hit an multidi-

mensional vertex where only the “best” explanatory variable will be kept among highly correlated

variables, with the others driven towards zero. We run 10-fold cross-validation to determine the ρj

value for each firm.

The AEN estimator has several drawbacks, including that there are not well-defined values to

use for the penalization parameters, and that there is not asymptotic econometric theory under

serial and cross-sectional dependence of regressors, and cross-sectionally correlated errors. There

are three leading estimation procedures that we could have also implemented to estimate our VAR

system. The first is a large Bayesian VAR; however, it is not clear what priors and distributions

should be assumed.25 The second option is a Global VAR in following Pesaran et al. (2004);

however, the manner by which this approach would reduce the dimensionality of the VAR would

be by estimating regressions of each firm’s equity return series on synthetic stock indexes of the

other firm’s equity returns with ex-ante assumed weights that would enter the regressions, instead

of each individual firm’s return series. This again requires making prior assumptions about the

connections between the firms, as we would have to decide upon the weights for these synthetic

stock indexes. Finally, another alternative to our estimation is the OCMT procedure of Chudik

et al. (2016) for model selection, but this method was not developed for a large-scale VAR system.

24See Online Appendix Section A1.1 for further details of the estimation procedure.
25For more on large Bayesian VARs see Banbura et al. (2010) and Koop (2013).
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Like AEN, each of these other leading estimation approaches to contend with the curse of

dimensionality has its own drawbacks. The benefits of AEN — requiring few assumptions while

dealing with the model shrinkage and selection — leave the AEN method as the best option for

our purposes from what is currently available.26

We deviate from the Demirer et al. (2015) procedure in how we derive our inter-firm network

from the estimated VAR model. While they use the generalized forecast error variance decom-

positions based on their estimated VARs to measure the weights of the edges connecting firms,

we instead use generalized impulse response functions (GIRFs).27 There are two main reasons for

using the GIRFs rather than the variance decompositions: the GIRFs do not necessarily add to

near 100% at any forecast horizon as the forecast error variance decompositions do, which may ar-

tificially increase firms’ estimated connectedness; and the GIRFs have an economic interpretation

that more closely quantifies the underlying relationships between the different firm returns that we

are interested in. The precise definition of the GIRF is the effect of a shock to the return of firm i

in the VAR at time t (εit) on the vector of firm returns at a horizon h (Xt+h), which is given by:

GIRF (h, i,Ωt−1) = E(Xt+h|εit = σi,Ωt−1)− E(Xt+h|Ωt−1), (4)

where Ωt−1 is the non-decreasing information set known at time t − 1, and σi is the standard

deviation of the error term εit.
28 Once we have the estimated VAR coefficients and residuals it is

straightforward to calculate the GIRFs between all of the firms. The I × I matrix of the GIRFs

between all of the sample firms’ returns created by appending the GIRF (h, i,Ωt−1) vectors is the

basis of our estimate of the firm network adjacency matrix. Because we care about the magnitude

of the degree of connectivity — rather than the positive or negative signs of the relationships —

we take the matrix of the absolute values of all of the paired GIRFs as the adjacency matrix

representing the inter-firm network, A, with the value in each aji cell being the network weight

from firm i to firm j.29 Each firm, or node in our network, is listed along the rows and columns,

with the edge weights between them being the entries in the matrix, generating a network that is

both weighted and directed.

26Also, as described below, we use the bilateral equity return correlations between each firm pair to create a

model-free network matrix as a robustness check and find similar results.
27In Online Appendix Figure A19 we provide a comparison of the network spring plots by industry and headquarters

country using both our method and the scaled generalized forecast error decomposition based networks of Demirer

et al. (2015). Both methods utilize the results of our baseline reduced VAR estimates and have qualitatively similar

results as far as the importance of both industry and locality in network organization.
28Specifically, we use the scaled generalized impulse response functions of Pesaran and Shin (1998).
29We apply shrinkage on the approximating VAR model, but this does not mean we are shrinking the network

itself.

15



We use generalized responses — rather than orthoganalized responses such as those found

using Cholesky decompositions to capture shocks from individual firms — so their values are not

estimating the cause and effect of a shock emanating from one firm to another.30 The proper way

to interpret the edges in our estimated networks is how many standard deviations one would expect

other target firms’ daily equity returns to move conditional on a one standard deviation innovation

for the source node’s equity return. In this way, the network edges flexibly capture co-movements

and firm connectedness regardless of the source of the shocks, whether they be idiosyncratic firm

shocks or common shocks.

When investigating the RyF nature of the inter-firm networks in Sections 5 to 8, we examine

three sub-samples of the data: all firms that are publicly traded throughout 1991-2016; U.S. dollar

listed firms that are publicly traded throughout 1981-2016; and 5-year rolling samples of firms that

are publicly traded throughout each sub-period. The rolling samples help us deal with survivorship

bias from the former two samples. Additionally, these rolling samples allow us to capture new firms

entering the network — like Facebook and Google — that would not be in the longer networks,

also potentially skewing our results. We estimate a series of rolling 5-year networks for each of

these samples in order to incorporate how they might evolve over time into our test regressions.

In the remainder of this section we assess the characteristics of the inter-firm networks, and what

they can tell us about global firm connectedness before analyzing their robustness and fragility.

4.2 Features of the Global Firm Network

Our analysis of the global inter-firm network focuses on the 382 firms in our sample that were

actively traded from 1991 through 2016 to provide continuity when analyzing the network over

time. Our primary network is from one period ahead GIRFs derived from the AEN estimation

procedure in the previous section run on the firms’ daily log equity returns with one lag. To help

picture the global firm network, we borrow network visualization methods used in various other

disciplines (e.g., biology, physics, computer science). Specifically, we generate a series of spring plots

using the ForceAtlas2 method from Bastian et al. (2014). ForceAtlas2 is a force-directed layout

algorithm to display network spatialization, transforming a network into a map where nodes with

greater connectedness are closer together. At a high level, all of the nodes are repulsed from one

another like charged particles, while edges attract their nodes, like springs — yielding the name for

30Orthogonalization of the shocks is not appropriate for our purposes, since we are not trying to recover the

specific structural shocks; rather, we are estimating how the system behaves for shocks similar to historical ones,

taking into account the correlations among the innovations. Additionally, an often overlooked drawback of Cholesky

decomposition based impulse response functions is that they do not necessarily identify the proper shocks, even if

they do orthoganalize them and allocate them to particular variables.
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this class of algorithms — with greater edge weights producing greater attraction. The final node

positions provide a balanced state, helping to interpret the data without having to incorporate any

other attributes of the nodes.

The maps of our estimated global firm networks are quite revealing about the nature of the

interactions between the firms. To begin, Figure 2 shows the results of applying the ForceAtlas2

algorithm to the global firm network from 1991-2016, with the nodes colored based on four sets of

firm characteristics. In the top left panel, the firms are colored based on their industry classification.

From the quasi pie-chart appearance of the main cluster it is evident that industry plays a key role

in connecting firms in the network. The firms on the edges of the network are generally near those

in the same industry in the central cluster, with ICT firms at the top right, base materials and

energy firms at the bottom left, and industrial diversified and consumer cyclical firms on the left.

Further, the black center of the figure identifying a cluster of financial firms at the heart of the

network indicates that finance has played a central role within it.

The next two panels show firms colored based on locality related attributes, namely the country

of a firm’s headquarters and the currency in which the firm’s equity was issued. There are again

clear, but very different, color patterns to the figures. Both of these plots have U.S. based firms

at the center, with other advanced western markets closely integrated with them. There are a

number of South African, Canadian, and U.K. firms on the fringes of that central cluster, with

Australian, Japanese and other Asian firms stationed in orbits farther outside, on the periphery

of the panels.31 Since all of the equity prices are in local currency, currency movements are not

captured in the equity returns we use so they cannot be the cause of the regional organization of

the plots. Further, in related work, Grant and Yung (2017) finds that firm size by several measures

does not play an important part in our global inter-firm network structure nor in each firm’s degree

of network connectedness.

The fourth panel shows the firms grouped using a spectral clustering algorithm on their daily

equity return series. The spectral clustering algorithm produced four clusters, which appear to be

associated with locality, perhaps reflecting local equity market betas. The black region appears

to cover the U.S. and other closely related advanced western firms, the orange encompasses those

firms that are on the periphery of that cluster, and the red ones are the Australian, Japanese and

other Asian companies. There is one cluster of two firms in green near the middle of the diagram.

These two firms are the U.S. agencies Fannie Mae and Freddie Mac. While they are close to several

other U.S. and financial firms, their tight connections with one another and unique return profiles

31That Asian and Australian equities are on the periphery with generally low out weights but higher in ones

matches findings from Diebold and Yilmaz (2015) studying the network between country level equity indices.
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during the Global Financial Crisis and subsequent government intervention placed them outside

the main knot of firms.

Figure 3 has the same global network spring plot with the nodes colored by four different

categories based on the estimated network weight matrix. The top two plots show the firms colored

based on quartiles of each node’s sum of in and out edge weights. Unsurprisingly, those nodes with

the greatest weight out sums are at the center, smoothly transitioning to the lower weight out sums

on the periphery. On the other hand, the firms with the lowest edge weight in sums are at the

center of the second panel, but there is not as smooth an evolution as firms become farther from

the center, suggesting that leading firms are in the main cluster while firms on the edges are there

because they do the least to drive other firms. The bottom two plots color firms based on spectral

and k-means clustering of the network adjacency matrix. Both a firm’s industry and its locality

are important for which clusters it is in.32

Exploring the estimated network further, Table 1 provides the top 25 firms in the global network

by their edge weight out sums. There are a few aspects of this list that stand out. The first is

that all of the firms are dollar based.33 The second is the preponderance of financial firms at the

top of the list, with over half of the top 25 being in that industry. In fact, even though the second

firm, General Electric, is not a financial firm, up until it significantly changed its businesses in

June 2016, its financial dealings were great enough that the Financial Stability Oversight Council

designated it a nonbank systemically important financial institution. Taking all of these results

into account, it is notable how the relatively straightforward estimation procedure we use based off

of easily available equity price data seems to reflect so many attributes of the firms.

Given that firms’ importance appears to be closely connected with their currency and industry,

Table 2 groups the firms at that level and has a similar ranking of the top 25 by their edge weight

out sums. The prominent role of the U.S. markets is again displayed, with the top six entries —

and eight of the top ten — all being based in dollars. Within the currencies, the finance sector is

the most important sector for the USD, EUR, CAD, GBP, and CHF, reinforcing its central role in

global connectedness. In fact, there is not a single utility, consumer non-cyclical, ICT or Energy

sector present. This confirms the results of Grant (2016) showing finance as a primary international

transmission channel. The Online Appendix contains similar analysis for a network of only USD

issued firms, and in that network other sectors are better represented in the list of most influential

32This refines the results of the long-standing literature in international finance studying asset prices, which finds

that country factors are more important drivers of co-movement and volatility than industry factors, as established

by the seminal work of Heston and Rouwenhorst (1994).
33The most connected firms are actually Asian and Australian ones, but their connectedness comes from having

large in degrees. Online Appendix Tables A7 and A8 provide the rankings by in degree.
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firms, indicating the particularly global nature of finance.34

The centrality of the U.S. and the financial sector over this time leads to the question of whether

the network estimation is driven by the Global Financial Crisis. In order to answer this, and to

understand the evolution of the global firm network more generally, Figures 4 and 5 examine the

global firm network estimated in non-overlapping 5-year sub-periods during this timeframe. The

former figure has the firms colored by industry, and the latter by currency. In both figures, the

first panel has the longer term network spring plot we have been reviewing for reference, followed

by the sequential 5-year plots. There is a distinct pattern of consolidation over the first four plots,

suggesting increasing globalization throughout the sample period. The 1992-1996 panel shows a

loose cloud of firms that consolidates over time, hitting a maximal level of concentration over the

2007-2011 crisis period, before slightly expanding outwards again in the following five years. There

is evidence of a particularly large increase in agglomeration between 1997-2001 and 2002-2006,

notably with European firms moving into the center, possibly reflecting the adoption of the Euro

and the associated integration. The 2007-2011 crisis period particularly brought together North

American and European firms, but many Asian firms were far out on the network periphery.

The firm positioning with regards to industry and location in these 5-year sub-periods appears

generally similar to the longer term plots, and the top firms for these sub-periods — provided in

the Online Appendix — also exhibit similar characteristics to those for the full sample network.35

An exception is that over the 5-year period from 2007-2011 covering the Global Financial Crisis,

the firms with the largest weight out sums were not financial companies. Rather, over this period

the top firms were in the Energy and Base Materials industries, as well as supporting firms such

as Caterpillar, Inc. That firms in these industries were the most central in these years is likely due

to the tremendous run-up in commodity prices over this period. Combined with the fact that in

the Online Appendix section on networks of only USD issued firms finance does not dominate the

list of the most central firms, these results suggest that there is something uniquely global about

financial industry connectedness and network centrality, and this is not solely an artifact of the

Global Financial Crisis. Additionally, the overall characteristics we observed in the longer term

network are not driven by the Global Financial Crisis.

The Online Appendix includes a number of figures that delve into the industry level dynamics

of rolling 5-year sub-periods ending in 1995 through 2016 for these firms. The total industry in and

out edge weight sums, as well as the net of the two, can be seen in Figures A9 and A10. These show

the generally increased level of connectedness in the late 2000s, and the rise in Energy as a source

34See Online Appendix Section A1.3 for the results of our analysis of other networks, including only the USD issued

firms.
35The list of top 25 firms by 5-year period can be found in Online Appendix Tables A9-A13.
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of edge weights and Finance as a sink for in edge weights. The average network connectedness by

year varies substantially, so we control for this by plotting the average ratio of the firms in each

industry’s sum of edge weights in and out relative to means of those sums in that year in Figure

A11. To help see the evolution of industry importance as edge sources and sinks, Figures A12 and

A13 show the industry shares of in and out edge weights as a fraction of total edge weights in

and out for each year. The edge weight out shares are nearly static over time, but there is more

variation across the in weights — particularly for Finance around 1999 and 2010. Finally, Figure

A14 plots all bilateral pairs of average edge weight out sums from industries in the columns to

those listed in the rows, relative to the mean edge weights for each year. This figure reveals several

interesting patterns, such as the increase in Energy weights to Finance during the Global Financial

Crisis — matching the observations mentioned above — a peak of ICT to ICT edge weights around

the 2000 Dot-Com Boom, and that the Energy sector consistently receives edge weights in from

other industries that are roughly only half the annual average.

The results in this section are robust to several variations of the estimation procedure. First,

Figures A1-A4 repeat the analysis for a forecast horizon of zero, producing similar spring plots.

Figure A5 shows the spring plots for horizons from zero to five, showing that the connections

dissipate as the horizon is increased, but that the same basic patterns emerge. Finally, Figure A6

shows the network re-estimated allowing up to five lags of the explanatory variables, the results of

which are nearly indistinguishable from our main ones using a single lag.36

5 Robust-yet-Fragile Behavior of Firm Networks

Many theoretical models have predicted that inter-firm networks may have both positive and neg-

ative implications for their members: greater network connectedness insures against and diversifies

away the effects of smaller shocks, but these connections may also propagate contagion and make

firms more susceptible to larger shocks. In this section, we identify and measure these two counter-

acting dynamics — referred to as robustness and fragility, respectively — in the inter-firm networks

that we estimated in Section 4, with the goal of better understanding the nature of firm networks

and systemic risk.

36We also experimented with lag orders and forecast horizons from zero to ten days each and found our results

were robust to these choices.
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5.1 Identifying Robust-yet-Fragile Behavior in Firm Networks

To study the structure of the network and how shocks are transmitted across firms, we relate a

firm’s health to its network connectedness, the health of its neighboring firms, and of the system as

a whole.37 Specifically, we use a probit regression framework to measure how these other quantities

predict the incidence of firm distress:

Pr(Dit) = Φ


β +φ̂

∑
j 6=i

wjit︸ ︷︷ ︸
Robustness:

Diversification

+γ̂
∑
j 6=i

wjitDjt︸ ︷︷ ︸
Fragility:

Direct Contagion

+λ̂Nt︸ ︷︷ ︸
Fragility:
Network

Vulnerability

+ω̂Nt

∑
j 6=i

wjit︸ ︷︷ ︸
Robustness:

Network Resistance

+θ̂Nt

∑
j 6=i

wjitDjt︸ ︷︷ ︸
Fragility: Network Crisis

Reinforced Contagion

+εit


, (5)

where Dit is a distressed state indicator for firm i (e.g., monthly equity log return in the bottom

10% of the overall sample distribution), wjit is the network weight from firm j to i estimated

over the preceding 5-year window (e.g., for January 2010 the network weights estimated from the

daily equity log returns from January 2005-December 2009 are used), and Nt is an indicator of the

aggregate network state (e.g., TED spread or VIX in the top 10% of the sample distribution).38 We

use rolling lagged 5-year network weights in order to capture how the inter-firm networks evolve over

time, and to avoid simultaneity bias in the estimation. Additionally, we interpret this regression as

a descriptive measurement equation to empirically decompose the relationships between the various

firm and network attributes, not to explicitly determine causality, which could be subject to issues

of endogeneity.

The model in Equation (5) can be used to answer several questions about the nature of the

estimated inter-firm networks. There are five aspects of RyF behavior that we investigate, broadly

divided into two categories depending on whether they are expected to be beneficial or detrimental

to firms. The labels for each have been included under the corresponding terms in the equation.

Throughout this discussion we focus on the dependent variable in the model being a distressed state

indicator where positive values reflect poor firm health; however, when we instead examine firm

37The model presented in Section 2.1 is a subset of this probit latent linear equation based model. To place the

previous model within this framework the constant should be 16, the diversification term coefficient should be -1,

and the direct contagion term coefficient should be 1 for firms that are owed money by others in the network, with a

constant of -4 added if not a creditor of any other firms. All remaining coefficients should be zero, and the network

weights should be calculated based on the size of borrowing as described in the text.
38The variables with the hats are the coefficient estimates from the latent equation. When presenting the regression

results, we instead focus on the more appropriate marginal effects for the probit regressions, which will be listed

without the hats. In the case of standard linear regressions, the actual coefficients will be what is referred to by the

non-hat variables.

21



returns, revenue, return on equity and profits, the expected signs under the null hypotheses should

accordingly be reversed, as in those cases higher levels for the dependent variables are a positive

rather than a negative outcome. Additionally, we assume above that Nt is a distress indicator, but

in alternate formulations we include other measures of network level economic conditions where the

signs on the related coefficients should be negated.

The first form of RyF behavior that we investigate is the diversification channel of Elliott et al.

(2014).39 This channel in their model is initially expected to be a negative, as small connections

transmit crises; however, as connectedness increases further it provides better insurance and di-

versification benefits that make this channel a net positive. We capture this in the first term of

the regression, answering the question of whether greater firm connectedness is associated with

better firm outcomes. While the theory does not provide a definitive prediction for the sign of the

coefficient on this term in all cases, we conjecture that the inter-firm network is integrated enough

to provide the insurance and diversification benefits and that φ < 0.

The second term in the regression captures the next facet of RyF behavior that we are interested

in, the degree of pass-through to a firm from its neighbors, which we label direct contagion. This is

what is commonly measured in both the banking and cross-country crisis contagion literatures.40

We expect that — in following with the consensuses of these literatures — γ > 0 indicating direct

contagion.

The final three channels we look at incorporate network wide disturbances, Nt, rather than

only the direct neighbor relationships in the previous two terms. We use several gauges of network

level disturbances, including the TED spread, VIX and within-period averages of the Djt measures

across all firms, giving the share of firms currently in a distressed state. The degree to which firm

outcomes are related with these is captured by λ, and we expect this coefficient to be positive, with

firms exhibiting vulnerability to the overall health of the network. On the other hand, we expect

that greater connectedness may help to buffer this effect, as in the right hand portions of the plots

in Figure 1. We call this dynamic network resistance and predict that ω < 0, since we expect the

inter-firm networks to be highly connected.

The fifth and final aspect of RyF network behavior that we examine is whether network wide

disturbances and direct contagion from a firm’s neighbors act to amplify one another when they

coincide. We refer to this situation as network crisis reinforced contagion and expect that each of

these would make a firm more sensitive to the other. This would, for example, be similar to the

39Diversification here refers to more network connectedness diversifying away individual shocks, not the distribution

of the network edges themselves.
40For examples of direct bank contagion see Elliott et al. (2014), Acemoglu et al. (2015b), Gai and Kapadia (2010),

and Gai et al. (2011), and for cross-country contagion see Glick and Rose (1999) and Hernandez and Valdes (2001).
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network dynamics of Caccioli et al. (2015) investigating both direct counterparty failure risk and

contagion via overlapping portfolio exposures in a banking network. This paper found that neither

channel is significant on its own, but that when both channels are active at once bankruptcies

are much more common and have large systemic effects. If reinforced contagion is an extant

phenomenon in the global firm network, then it would be reflected in a positive value of θ.

5.2 Regression Results

In this section, we run various permutations of Equation (5) to delve into the RyF nature of the

firm networks. In particular, we measure firm health using equity returns, 5-year CDS spreads,

revenue, return on equity, and profits. Distressed firm states are defined as being in the worst 10%

tail of the overall sample distribution for the corresponding underlying health measures. Also, we

run standard linear regressions with the continuous versions of these measures as the dependent

variables in order to see if — without specifically isolating distressed states — there is evidence

that network structure is related to firm performance.

Our baseline estimates of Equation (5) testing the RyF network structure of our global firm

networks using monthly log equity return distress firm health indicators can be found in Table 3.

The table has two panels: the top panel has the estimated marginal effects of each explanatory

variable (not estimates of coefficients in the latent linear model); and the bottom panel has the

estimated changes in the probability of a distressed state from a one standard deviation increase in

each explanatory variable. To help interpret the values, the right hand columns provide the signs

one would expect if the associated type of RyF behavior exists. The explanatory variables are

introduced across the regressions. The first two regressions have only the average sum of weights

into a firm and direct contagion variables, respectively. If one were to examine these individually

then it would seem that greater network connectedness was a bad thing; however, as column (3)

shows, more connectedness actually has a robust, diversifying effect, and it is the direct contagion

that occurs through these same connections that has a positive impact on the probability of a firm

being in distress.41 Both of these results are in line with there being RyF behavior. The next column

then adds the network crisis state variable — measured as having a monthly average TED spread in

the top 10% of its sample distribution — and the final column adds interactions of the network crisis

state with the former two variables. All of the estimated effects are in the hypothesized directions

41Hale et al. (2016) provide evidence of similar direct contagion effects. The authors construct a yearly global

network of interbank exposures from 1997 to 2012 of more than 6,000 banks using long-term interbank loan data

to study the transmission of financial sector shocks across borders, finding that direct exposures to crisis countries

squeeze banks’ profit margins, thereby reducing their returns.
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and, with the exception of the network crisis reinforced contagion in column (5), are statistically

significant.42 Additionally, there is substantial agreement between the estimated effects in the latter

three regressions.

Since it is not necessarily clear what a one unit increase in the explanatory variables means, we

focus on the standardized effects in the bottom panel. For the network crisis state the effect is of

an increase from zero to one — indicating the difference between being in a crisis versus not — and

the interactions of this increase multiplied by the standard deviation of the interacted sum term.

These results suggest that a one standard deviation increase in network connectedness reduces

the probability of a firm being in distress by about 3.7%, while an increase in direct contagion

of one standard deviation increases the probability by 5.9%. From the estimates in columns (3)-

(5), it is clear that the direct contagion effect is much larger than the diversification one. These

coefficients indicate that if a neighbor is in crisis, then it would take other non-crisis neighbors with

in edge weights roughly nine times as great to counteract the impact. Being in a network crisis

state increases the probability of being in distress by 8.1%; however, when controlling for network

resistance one can see that greater connectedness can significantly offset this effect. These effects

are quite large given that the unconditional probability of being in distress is 10%, with both direct

contagion and network vulnerability being over half of this value.43

Table 4 presents the estimates of similar linear regressions where rather than a distressed in-

dicator dependent variable, the dependent variable is the continuous monthly log equity return.

The two panels are similar to the previous table, but now the bottom panel has standardized co-

efficients, which are more appropriate to understanding continuous linear models. The estimation

produces statistically significant results in line with what one would expect given the RyF theory

we outlined above in all cases, including the network crisis reinforced contagion.

Focusing on the values in the lower panel, a one standard deviation increase in network connect-

edness corresponds with increased expected monthly returns of about 12% of a standard deviation,

or roughly 1.2%. This result is interesting because it suggests that being connected in the network is

positively related wtih increased firm equity returns, going beyond just reducing the probability of

a firm distress event. The direct contagion effect is nearly three times as large as the diversification

one, with a standardized coefficient of -31%, correlating with a 3.1% equity price decline. Finally,

there again is a negative expected effect of a network crisis state, with evidence that network

42All standard errors are clustered at the firm level. Additionally, we did not find evidence of significant serial

correlation in the estimation residuals and rerunning the regressions allowing for AR(1)-AR(10) correlation in the

error terms does not alter our findings.
43Plots of the average sums of weights and direct contagion variables used as the first two dependent variables by

various firm characteristics and overall can be found in Online Appendix Figures A7-A8.
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connectedness can aid, and direct contagion can hinder, a firm’s response to such a state.

It could be that firm, industry or location effects might in part be responsible for these results.

To control for these possible effects, Online Appendix Table A2 presents the results of running this

estimation in first differences, effectively controlling for various fixed effects, and the results are not

materially different.44 Additionally, we estimate both the discrete and continuous versions of the

model with industry interactions on all of the coefficients and do not find any substantive differences

across industries. Also, the coefficients on the industry interactions are not stationary over time,

further challenging the idea that there are underlying structural differences across industries.

Beyond the effects on the equity returns, we wish to know whether there is “real” evidence

of RyF firm network behavior, so we examine similar continuous regressions with the dependent

variables and neighboring firm distress indicators based on the quarterly change in profit, as mea-

sured by EBITDA, the 5-year CDS spread, the quarterly change in revenue, and the annual return

on equity (RoE). We include the monthly average 5-year CDS spread and RoE in levels and first

differences, since these variables likely incorporate firm specific level effects that should be removed.

The results of these regressions are presented in Table 5, where it can be seen that even across these

other firm health measures and differing time frequencies the RyF behavior still upholds. Not sur-

prisingly, the CDS spread is strongly influenced by direct contagion, with a one standard deviation

increase in direct contagion associated with a 46.0% standardized CDS increase. The small diver-

sification and large direct contagion responses are intuitive, as CDS spreads are based on discrete

underlying default choices which are most pertinent in very weak economic environments.

Profit and revenue growth have standardized diversification coefficients of just under 10%. In

practical terms, a one standard deviation higher network in weight sum corresponds with improved

firm health via increased growth of 1.2% for monthly equity prices, 4.0% for quarterly profits, 1.7%

for quarterly revenue, and 1.7% for annual return on equity. Interestingly, profit and RoE growth

demonstrate significantly larger effects from a network crisis than does revenue growth, -23.0% and

-17.5% to -6.6%. For context, the standardized coefficients are reported in the bottom panel of

Table 5. These results suggest that profitability is more susceptible to network crises than is income

and are consistent with the fact that the two profit measures are significantly more volatile than

revenue. All three dependent variables, however, are consistent in showing a positive relationship

with connectedness and a negative one with the fragility terms. These continuous regressions

suggest not just level improvements for the real profit and revenue quantities, but growth rate

increases — especially meaningful effects.

44In untabulated results, we also tried controlling for time fixed effects, obtaining similar results with regards to

diversification and direct contagion.
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One might expect that growth in these real firm health indicators would correspond to greater

inter-firm connectedness, with a fast growing firm being a healthy one that drives other firms,

especially as it comprises a larger and larger share of its market; however, our regressions are finding

a more nuanced relationship in the reverse direction. Our measures of connectedness included in

the regressions focus on how firms are influenced by others in the network via the sums of edge

weights in from other firms only. The correlation between these sums of edge weights into firms

used in the regressions and the corresponding sums of edge weights emanating from them is -0.183.

Therefore, these results indicate that firms whose equity prices are more liable to move along with

those of other firms are likely to have higher profit, revenue and RoE growth, as well as lower

CDS spreads, a novel finding in the literature on the global firm network. This is an important

distinction when thinking about the relationships between global integration and firm performance,

indicating significant value to being more integrated. Additionally, Grant and Yung (2017) show

that the sum of a firm’s in weights — as well as the out weight sum — is not correlated with

firm size in the estimated networks by numerous measures, including total equity, sales, profits

and number of employees, so the beneficial real effects are not simply because the biggest firms

necessarily have the largest weights.

Together, these results provide strong evidence of RyF behavior in the global firm network

and benefits to global integration. The increased inter-firm network connectedness over time that

we find signs of should then be a net positive for global firms — outside of neighboring firm

distress events — via the diversification channel. Further, the direct contagion channel appears

to overpower the diversification channel, and severe credit tightness substantially weakens firm

health. These results suggest that globalization has had positive consequences for firm health, but

that policymakers should be wary of greater connectedness allowing for increased contagion. This

wariness is particularly critical when there are signs of network wide distress, given the evidence we

find for network crisis reinforced contagion in Table 4, with amplification between network crisis

states and direct contagion.

We examine two other sets of firm networks in the Online Appendix. The first is the set of

USD equities from 1981-2016, with the results provided in Tables A18 and A19. The other is

comprised of rolling 5-year windows of the top global firms that are continuously traded within

each window. These results are available in Tables A22 and A23. The results from these other

samples are markedly similar to our main ones, providing evidence for RyF behavior, and rejecting

the possibility that sample selection drove our results.

We then check whether our results are robust to network crisis measures other than our indicator

for a credit crisis indicated by a high TED spread. Tables 6 and 7 provide the results when using
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the following crisis indicators: the continuous monthly average TED spread level; the log of this

level, given the non-linear relationship that it tends to have versus the state of the macroeconomy;

a crisis indicator for the VIX being in the top 10% of its monthly distribution; the monthly average

VIX; a crisis indicator for the SP500 return being in the bottom 10% of its monthly distribution;

the monthly SP500 return; the fraction of firms in a distressed state in a given month; and an

indicator for months with the top 10% of the fraction of firms in a distressed state.45 These results

show that our main findings are robust to the choice of network crisis state measure, with nearly

every estimate matching the expected sign associated with RyF behavior and being statistically

significant.46

We used the GIRFs for a one day horizon throughout the above analysis. To check the robustness

of our results with respect to the choice of network, Tables 8 and 9 show the results of running

our main regressions for forecast horizons from 0-5 days. The tables also include the results of

using the rolling 5-year bilateral equity return correlations between each firm pair as the network

edges. All of our main results still obtain, including the proper signs with statistical significance,

the direct contagion channel being roughly an order of magnitude larger than the diversification

one, and there being network vulnerability.

This is particularly interesting because the bilateral equity return correlation and zero day

horizon GIRF networks are positively correlated at a statistically significant level with one an-

other using the quadratic assignment network comparison procedure; both the overall and all of

the 5-year sub-period networks. The network correlations are calculated using position-by-position

correlations of the entries in the two network adjacency matrices. The quadratic assignment pro-

cedure then effectively bootstraps the distribution of correlations one would expect for two similar

network structures by repeatedly reordering the rows and columns of one matrix and recalculating

the network correlations. This has the benefit of incorporating the likely correlations between net-

works of similar sparsity, distribution of network edge weights, etc.47 Likewise, the 1-5 day horizon

GIRF networks are positively correlated at statistically significant levels. However, these two sets

of networks have statistically significant and negative correlations with one another. This suggests

a great deal of robustness of our results to the measure of the network structure.

Finally, we seek to determine whether these RyF relationships vary over time. Specifically,

were there significantly different relationships over the Great Moderation and is fragility a unique

45Online Appendix Tables A3-A6 provide results of rerunning the estimation using continuous TED spread mea-

sures.
46The exceptions are the diversification term for the fraction of firms in crisis in Tables 6 and 7, and the network

vulnerability term for the log TED spread in Table 7.
47See Online Appendix Table A14 for the network correlation results.
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feature of the Global Financial Crisis period, driving our main results? In the Online Appendix we

reran the estimation for our main, fixed sample of global firms as well as the USD one, breaking

the sample into ten year periods.48 The overall results are similar to those obtained in our longer,

full samples suggesting that the results are not solely driven by the events of the Global Financial

Crisis.

6 Fall 2008 Global Contagion

During the latter half of 2007 and the beginning of 2008 the effects of the U.S. Sub-Prime Mortgage

Crisis were starting to be felt in the U.S., with heightened credit spreads, equity market declines,

and, most notably, the March 2008 collapse of Bear Stearns, with its ultimately being taken over

by J.P. Morgan in a government orchestrated deal. It was during the fall of 2008, however, that the

crisis climaxed. Within a week in September 2008, Fannie Mae and Freddie Mac were taken under

government conservatorship, Lehman Brothers announced its bankruptcy, and the government

pressed a buyout of Merrill Lynch by Bank of America, escalating the U.S. Sub-Prime Mortgage

Crisis into a global financial crisis. The fall of 2008 saw equity markets around the world plummet,

credit spreads surge, numerous firms require government support, and both the VIX and VSTOXX

reach their all-time highs.

Given the importance of this period as the height of the Global Financial Crisis, we take the

data for the fall of 2008 to our model to see how well it can account for the facts. As the basis for

our model, we take the estimated latent linear model from a quarterly probit regression including

our five RyF terms with the average VIX as the network state, as well as the average TED spread

as its own separate additional term.49 We include the VIX as a measure of the stress or crisis

level of the global economy, leaving the TED spread as a measure of global credit spreads. If the

value of the latent linear model is positive for a firm, that is taken to indicate a distressed state

for it and vice-versa. The sample that we focus on is the global sample of top firms continuously

traded throughout the previous five years, 2003-2007.50 We use this sample instead of our long

continuously traded firm sample to include several now defunct firms which were central to the

events of late 2008, and to have the fullest picture possible of the firm network over this period.

For the network weights, we use the sub-sample’s pre-crisis network connections entering 2008, the

48See Tables A15, A16, A20 and A21.
49We also ran the model with an interaction term on the TED spread for USD issued equities, and found that the

coefficient on that term was small and not statistically significant. Further, the simulation results were little changed

when including it.
50This sample includes 756 firms across 40 countries, with equities issued in 25 currencies.
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estimation of which ran from 2003-2007 and does not include the actual crisis contagion period we

are attempting to match.

Using this model, we start with 17 firms that are initially assumed to be in a distressed state,

and the VIX and TED spread levels from this period in late 2008.51 These firms are selected from

the worst performing firms over this period — with 2008 equity returns from -49.81% to -99.96%

— that also went bankrupt or needed significant government intervention and were recognizably

central to the crisis, such as Lehman Brothers, Washington Mutual, and Bear Stearns. For details

on the experiences of these firms during this period see Online Appendix Table A24. We use an

interacting agent modeling approach to simulate the contagion, reevaluating the latent linear model

for every firm to determine whether it is in a distressed state or not, and iterating until a steady

state is reached. Note that the only firms we assume to be in a distressed state are the original 17

firms, and it is possible for other firms to go into and out of a distressed state dependent on the

network state, their network connections and the status of their neighbors.

Figure 6 contains a series of spring plots based on the global firm network from 2003-2007 that

we use, which present features of the actual network and illustrate the modeled contagion. The

first two panels show the industry and locality of each firm, which demonstrate distributions that

are extremely similar to what we saw earlier for the continuously traded global firm sample. For

example, both industry and region are important for firm connectedness, the Asian and Australian

firms are on the periphery, and finance is at the center of the network. The next panel shows which

firms actually experienced equity return distress over late 2008, with those affected in red. The

substantial scope of the contagion across regions and industries in the fall of 2008 is evident in the

plot. The final panel in the top row shows the positions of the 17 initially distressed firms in red.

These are predominantly financial firms and have USD issued equities, so it is not surprising that

they are all located relatively near the center of the network plot. The second row of panels then

shows the modeled contagion spread over each iteration through convergence in the fourth one.

While not an exact match for the actual firm distressed states, at an aggregate level the sim-

ulation’s share of 88.6% of firms in distress is quite similar to the actual level of 88.0%. This is a

considerable degree of contagion given that the initially distressed firms represented only 2.2% of

all firms in the sample. Delving deeper, 78.2% of firms’ actual states matched their final simulated

ones, with a higher rate of core firms and a lower rate of periphery firms being in distress in the

model than in the data. In this way, greater distance was even less of a buffer in actual contagion

51By selecting these firms we are not stating that we can identify them as the source of the shocks causing the

Global Financial Crisis, but rather exploring how a shock that put them all into distress would be expected to spread

across the network.
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than in the model simulations. In the end, the contagion swept across virtually all but the most

remote firms. Industry does not seem to be very important for contagion beyond what was captured

in the network weights, though locality does seem to matter with fewer Asian and Australian firms

affected. It is promising that our model, though relatively sparse, is able to match the high level

aspects of the crisis.

As the spring plots show, the contagion quickly spread from the initially distressed firms in the

first iteration, particularly to other USD and financial firms. The second iteration saw a significant

increase in the spread to European firms with the U.S. market having hit a critical mass. At this

point, the large number of distressed firms abroad then led to an echo effect, where the contagion

spread more widely across U.S. firms that were connected to foreign ones.

The echo effect should be an important consideration for policymakers in large economies when

facing potential crises. First, given the evidence we have found for the importance of locality in

firm connectedness, such economies are likely to contain most of the firms that have important

connections to others in their economy, passing on direct contagion as well as, by definition, leaving

a smaller rest of the world to provide connections that offer robustness and buffer against firm

distress. Second, a large economy is likely to have a strong influence on other economies, making it

more likely to spillover to other firms abroad. Combined, these two influences make it so that when

a large economy is in a crisis it is liable to be severe, as there are likely to be returning echoes from

contagion sent abroad that the economy is not well buffered against, leading issues to snowball

at home and exacerbating the already tenuous economic situation. In this manner, crises that

occur within major economies may become more globally contagious going forward, conditional on

them becoming widespread internally, with increased global integration creating the circumstances

for further situations like the U.S. Sub-Prime Mortgage and Eurozone Debt Crises to develop into

having a global impact instead of being smaller, regional issues. How such episodes develop depends

on the RyF nature of the global firm network, highlighting the importance of understanding these

properties.

7 Simulating Sectoral Shocks

Table 2 reveals that there are a handful of currency-industry pairs with outsized network impact.

For example, the number one pair, USD-finance, has a weight out sum that is more than double

the pair five slots down the list (USD-Energy), which in turn has a weight out sum that is more

than double the pair five slots below it (EUR-consumer non-cyclical). The work of Acemoglu et al.

(2012) and Acemoglu et al. (2015a) indicates that asymmetries in the scope of network members
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can potentially lead to network instability, so in this section we simulate how a shock to each of

the currency-industry pairs propagates through the global firm network to study the consequences

of having such a high concentration of influence among the top sectors.52

We follow the simulation approach from Section 6, using the estimated probit latent linear

model from Column (5) of Online Appendix Table A5 as the foundation for simulating sectoral

shocks with distress for all firms in each currency-industry pair. The simulations use a network of

our long, continuous global firm sample from 1991-2016, with lag and GIRF orders of one. For the

network crisis state, we use the value of the average monthly TED spread in the top percentile of

our sample distribution to gauge the worst case reach of contagion from each sectoral shock.

Figure 7 plots the simulation results, with the share of firms in each currency-industry pair along

the x-axis, and the ultimate share of firms in distress along the y-axis. The color of the marker

indicates the currency region, with small share currencies that are nearby one-another given the

same color, and the shape of the marker indicates the industry. For reference, the 45-degree line

is also plotted in gray, with the distance above that line representing the degree of contagion from

the sector experiencing the shock.

The plot shows that there is a generally positive relationship between the share of firms in a

sector and the final share of firms in distress, but the relationship is far from linear. The large

gap in the middle of the plot — with contagion to firms outside of a sector being less than 12% or

greater than 92% — suggests a critical mass type, all-or-nothing relationship, and indicates that

there are only a handful of sectors where a shock would be expected to have broad ramifications.

Finance tends to have the greatest contagious effect for each major currency (e.g., for the USD,

CAD, GBP, EUR), but that is not the case for Japan where the industrial-diversified and consumer-

cyclical industries have more influence. Unsurprisingly, the USD industries are the largest by the

share of firms in them, encompassing the top six observations, with many of the most contagious

sectors. Also, USD-finance is again at the top of the influence list — in a tie with USD-consumer

non-cyclical, USD-ICT, USD-consumer cyclical, and EUR-finance — hinting at the significance of

the echo effect for the U.S. and Eurozone.

The EUR-finance sector is an especially interesting case, as a shock to this sector results in

far broader contagion than a shock to either the USD-Energy or USD-IndDiv sectors, even though

those two sectors have out weight sums that are 1.7 and 2.3 times that of the EUR-finance sector.

In separate results examining the pre-Eurozone period, no one currency-finance sector shock for

the future member countries is simulated to have had nearly the same contagious effect as seen

52Similar results are found when grouping at the country-industry level, with many more small firm share pairs

with little contagion near the origin.
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here for the EUR-finance sector. Although further work is needed to asses the impact of European

integration on firm-level spillovers, our simulation results suggest that the propagation of shocks

was intensified through higher integration during this period.53

8 Network Contagion Simulations

As mentioned above, the degree of integration in the global firm network varied over the past

three decades, with a generally increasing trend, especially at the upper tail of the connectivity

distribution.54 In this section our goal is to provide context for what that increase means and

study its implications for potential crisis contagion. Has increased firm connectedness been a

stabilizing force producing a more robust global economy, or has the distribution been such that it

has engendered greater fragility?

The analysis is similar to that performed in the previous two sections in that we use an estimated

probit latent linear model as the basis for running a series of interacting agent model simulations.

Specifically, we use the estimates of the latent linear model associated with Column (5) in Table

3, including all five of our RyF terms with the network crisis state measured as having an average

monthly TED spread in the top decile of the sample distribution.55

To analyze the global firm network over time, we take the same estimated network weights that

the 5-year sub-period spring plots in Figures 4 and 5 are based on. We then examine how these

5-year networks respond to crises that originate in one through all 382 firms in the continuously

traded global firm sample. Across all of these cases the coefficients from the latent linear model are

the same ones estimated over the full sample period, with only the network weights changing. We

then randomly select the crisis source firms, with the process repeated 200 times to get simulated

contagion distributions for each share of initially distressed firms. This is performed with and

without a network level crisis.

The results of these model simulations are presented in Figures 8 and 9. The first column of

Figure 8 plots the average share of firms that end up in a distressed state across the 200 iterations

53The classification and acceptance of Greek government debt as top tier collateral by banks in other Eurozone

countries has been suggested to have been an especially grievous aspect of financial integration within the single

market. See Farhi and Tirole (2016) for a discussion of this issue.
54See Online Appendix Figures A7 and A17 for time series of the average global and USD continuously traded firm

samples’ connectedness showing the increased average network connectedness, and the large increases at the upper

tails of the distributions.
55When the network crisis state is zero, these estimates are extremely similar to the estimated probit latent linear

model when only the first two diversification and direct contagion terms are included. Therefore, the cases with

Nt = 0 can be viewed as the results from a more concise model without the three network crisis state terms.
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for each set of network edge weights and share of firms that are crisis sources. The dashed 45-degree

lines denote the share of source firms that are initially distressed, and the height of each average

line above that is the share of firms experiencing contagion.56 The second column helps put the

contagion shares into context, since as the share of firms initially in crisis increases, there are fewer

firms remaining to potentially experience contagion. Rather than the simple difference between

the simulation averages and the 45-degree lines, the second column shows those differences divided

by the share of firms that are not assumed to initially be in crisis. In other words, these plots

show the fraction of firms that could potentially experience contagion that actually do. Figure 9

shows more detailed information for each case, with the same simulation averages, the minimum

and maximum shares of firms in distress, and the contagion shares. For comparison, these plots

also include simulation results for the full 1991-2016 global network.

The top two rows in Figure 9 show the case in which there is not a network level crisis as

measured by a high TED spread. Starting at the beginning of the sample period, the 1992-1996

based network experiences almost no contagion. The average, minimum and maximum contagion

lines are right on the 45-degree line, with only a handful of non-source firms experiencing distress

as the share of source firms approaches one. This result reinforces the idea that at the start of the

period there was a significantly lower level of global network integration.

At the other extreme of the contagion plots is the 2007-2011 period covering the Global Financial

Crisis. In this case, contagion begins to occur with an initial share of crisis source firms as low as

16%, with 80% of firms affected when the share of crisis source firms is only 34%. At this level

the contagion spread fraction is already at 70%, and plateaus around 80% starting at a 54% initial

share of crisis source firms. Figure 9 sheds some light on why the simulations produce so much

more contagion over this period than others. Examining the maximum and minimum curves for the

2007-2011 period plots, it is clear that they are far wider than for the other periods, especially as

the contagion initially begins to occur. The greater variety of simulation outcomes for this period

suggests that during this time, more than any other, there was a set of firms with far more outward

connectedness that were central to the particular outcomes at lower initial crisis share levels.57 At

higher shares of crisis source firms more of these central firms are likely to be in crisis, leaving

the network to be quickly overcome with contagion.58 These results are not surprising given the

56See Online Appendix Figure A18 for plots of the contagion shares, the average curves minus the 45-degree line.
57Tables A9 through A13 of the top globally connected firms and the sum of their weights out to other firms over

each 5-year sub-period support this conclusion.
58The work of Acemoglu et al. (2012), Acemoglu et al. (2017), and Gai et al. (2011) studying different subsets of

the firm network come to similar conclusions about crisis risk, with greater asymmetry and concentration in specific

firms in a network amplifying the network fragility.
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perceived instability at this time, and that our estimated networks reflect all manners in which

firms were integrated over this period.

The other three sub-periods were relatively more tame than the two discussed above. The late

1990s period covering the Dot-Com Boom and various emerging market crises was the next most

contagious period, but in the simulations without a network level crisis there was not decidedly more

contagion than in the periods immediately around 2007-2011. Conversely, the late 1990s period

also exhibited robustness, with contagion occurring at a higher initial crisis share (28%) than either

the 2002-2006 (23%) or 2012-2016 (20%) sub-periods. Additionally, the degrees of contagion in the

sub-periods on either side of 2007-2011 were nearly identical, with maximum contagion fractions

under 45%, well below the 80% plateau for the 2007-2011 sub-period discussed above.

In our regression estimates we found evidence that being in a network crisis state can have

serious consequences, so we now focus on contagion simulations of the same 5-year sub-periods

assuming that there is such a state with high credit spreads. These results are shown in the bottom

plots of Figures 8 and 9. The most noticeable change is the accelerated contagion for the 2007-2011

network, with 90% of firms on average in distress starting with an initial firm crisis share of only

30%. The contagion fraction then plateaus at 95% when the initial firm crisis share is only 32%.

That is a considerable level of contagion, indicating an extremely fragile network.

The 1997-2001 contagion fraction is the second highest, and in this case it is markedly higher

than those for the 2002-2006 and 2012-2016 periods. An interesting similarity between the plots

with and without a crisis state is the nearly identical share of initial crisis firms at which contagion

begins for all of the sub-periods. Additionally, with a network crisis the 1992-1996 period approaches

a contagion fraction near the 55-60% for the 2002-2006 and 2012-2016 periods; however, the early

1990s period approaches that level slowly in a shallow convex manner, while the latter two approach

it far quicker with concave contagion fraction curves. Altogether, these behaviors suggest significant

network crisis reinforced contagion when compared to the upper plots without a network crisis.

Overall, these simulation results reflect increased global firm integration, confirming what we

observed looking at the 5-year sub-period spring plots. Generally, the simulations imply greater di-

rect contagion effects, but greater integration also materializes in some cases as more robustness for

moderate initial firm crisis shares. These results can guide future macroeconomic modeling choices.

Specifically, firm level microeconomic dynamics may be unimportant during normal times due to

the robustness of the inter-firm network; however, firm heterogeneity has meaningful aggregate

consequences during crises owing to network fragility. Further, our simulations suggest that over

time global firm network fragility has increased during crisis periods, underscoring the importance

of capturing these effects in a model. Additionally, a network crisis state is found to be a warning
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sign, steepening the contagion fraction curves and increasing the maximum contagion shares as the

network crisis reinforced contagion effect leads to rapid, non-linear contagion effects.

These results should guide investors and policymakers to be particularly alert for potential

contagion when there are signs of system wide stress and high firm connectedness, especially when

the firm connectedness distribution’s upper tail fattens. However, this is not the whole story.

In particular, Section 5.2 showed more connectedness corresponds with a reduced probability of

distress and improved stock returns, CDS spreads, profit, RoE, and revenue growth. Therefore,

while contagion can spread extremely rapidly and widely with greater global firm integration —

and high levels of connectedness can be a red flag — policymakers should not overreact and cutoff

international connections given the benefits of a more integrated network, forming the double-edged

sword of greater global integration.

9 Conclusion

In this paper, we estimate inter-firm networks across countries and industries by using readily

available data from financial markets and the latest developments in machine learning to resolve

the curse of dimensionality associated with large panel VAR models. Most importantly, the global

inter-firm network provides essential information on how firms are connected with one another and

how these linkages have changed over time. This allows us to study how network connections may

transmit or mitigate idiosyncratic — as well as system-wide — shocks, consistent with the idea

of integration being a double-edge sword. On the one hand, we find that integration makes the

system more robust through diversification and network resistance, increasing companies’ growth

prospects and reducing the incidence of firm distress events. On the other hand, more connected

firms become more fragile through higher exposure to direct contagion from a distressed neighbor,

vulnerability to system-wide shocks, and network crisis reinforced contagion.

We conclude our study with a series of counterfactual experiments and simulations that reveal

non-trivial echo effects that aggravate domestic conditions during a crisis through international

connections that are not well buffered. Understanding such RyF qualities of the network is one

way that our modeling approach can inform better policy decisions when future crises threaten.

By shedding light on the nature of the firm network, we help identify the classes of models

appropriate to account for global firm dynamics, confirming the findings of Acemoglu et al. (2012)

that “classic” macroeconomic models that ignore firm heterogeneity, assuming differences will aver-

age out, are inadequate to capture real-world developments.59 Firm level heterogeneity is especially

59See, for example, Acemoglu et al. (2015a) on how modeling assumptions interact with the RyF behavior of
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significant during crisis periods and when there is greater globalization and firm network integra-

tion, which our work suggests has increased over the past quarter century. Finally, given that

finance is at the center of the global inter-firm network, open economy models should be designed

to incorporate international connections via this pivotal sector.

Although our work identifies how firms’ responses to shocks are related, we do not determine the

source or nature of the initial shocks. We believe the identification of such shocks is an important

avenue that should be explored as the literature continues to expand to understand systemic risk and

contagion through global networks. Moreover, further investigating the connections between inter-

firm linkages and the international co-movement of business cycles can enlighten the discussion of

how macroeconomic shocks are absorbed through the system, and their repercussions in the global

economy. Finally, another extension of our analysis would be a structural model that can build from

our empirical findings to formally model inter-firm connections in a general equilibrium context. We

believe these are only some of the directions this line of work can take, as we expand our knowledge

of the benefits and drawbacks of higher global integration, and its role in the propagation of shocks.
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Figure 1: Robust–yet–Fragile Contagion in Firm Networks
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Note: Shaded areas indicate the contagion window. Results of model simulations assuming a network of
1,000 firms, with 1,000 repetitions for each level of connectedness. Plots are the average results when one
firm is randomly selected to receive a shock that forces it into bankruptcy. A contagious default outbreak is
defined as at least 5% of firms becoming insolvent.

Source: Gai and Kapadia (2010).
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Figure 2: Global Network, 1991-2016, by Firm Categories

Industry Headquarters Country
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Note: Daily equity return based network for all firms available continuously from January 1991 through

September 2016. Estimated using 1 lag in the VAR and GIRF horizon=1. This sample includes 382 firms

across 18 countries, with equities issued in 13 currencies.
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Figure 3: Global Network, 1991-2016, by Network Weight Categories
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Note: Daily equity return based network for all firms available continuously from January 1991 through

September 2016. Estimated using 1 lag in the VAR and GIRF horizon=1. This sample includes 382 firms

across 18 countries, with equities issued in 13 currencies. For the top two plots, higher quartile numbers

indicate greater weights.
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Figure 4: Global Dynamic Networks by Industry
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Note: Daily equity return based network for all firms available continuously during each period. Estimated

using 1 lag in the VAR and GIRF horizon=1. This sample includes 382 firms across 18 countries, with

equities issued in 13 currencies.
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Figure 5: Global Dynamic Networks by Currency
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Note: Daily equity return based network for all firms available continuously during each period. Estimated

using 1 lag in the VAR and GIRF horizon=1. This sample includes 382 firms across 18 countries, with

equities issued in 13 currencies.
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Figure 6: Fall 2008 Contagion — Actual Data vs Model Simulations

Industry Currency Region Actual Distress Initial Distress
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Note: Spring plots are based on the rolling global firm sample network from 2003-2007. Simulations are based off of quarterly predictions from the main sample using the

latent linear model estimates from a probit model estimated from 1996-2016, with firm distress as the dependent variable and the five robust and fragile terms from our main

regressions with the level of the VIX as the network crisis variable, in addition to the TED spread as its own term. VIX and TED spread levels from the end of 2008 and the

above initially distressed firms are entered into the model, and it is simulated until reaching a steady state. See Online Appendix Table A24 for details on the initially distressed

firms, and Table A25 for the estimated latent probit model used. This sample includes 756 firms across 40 countries, with equities issued in 25 currencies.
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Figure 7: Spread of Local Sector Shocks vs Sector Firm Share
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Note: This figure plots the final extent of contagion from a shock to each currency-industry locality pair.

The simulations use a firm network of our long, continuous global firm sample from 1991-2016, using lag and

GIRF orders of one. Simulations are based off of the latent linear model estimates of the probit model from

column (5) of Table A5. The TED spread is assumed to be 2.9, the value of the top percentile of its sample

distribution, in order to consider the worst case extent of contagion from a shock to each local sector. This

sample includes 382 firms across 18 countries, with equities issued in 13 currencies.
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Figure 8: Network Contagion Simulations Using Various Time Period Networks
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Note: Network contagion simulations using daily equity return based networks for all firms available continuously during each period. Estimated using 1 lag in

the VAR and GIRF horizon=1. Contagion determined using simulations based upon estimates from the latent equation of Column (5) in Table 3. Crisis state

is equivalent to a TED spread crisis state. The contagion fractions are the average contagion minus the initial crisis share divided by one minus the initial crisis

share.
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Figure 9: Details of Network Contagion Simulations Using Various Time Period Networks
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Note: Network contagion simulations using various global continuous sample estimated monthly networks based on

regression estimates from Column (5) in Table 3. Crisis state is equivalent to a TED spread crisis state. Black lines

are simulation averages, gray lines are minimum and maximum levels, and the dotted lines are the spread of contagion

(the distance between the averages and the 45-degree line that marks the initial share of firms in crisis). This sample

includes 382 firms across 18 countries, with equities issued in 13 currencies.
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Table 1: Global Top Firms by Network Out Weights

Rank Ticker Name Industry Currency Measure

1 jpm-us JPMORGAN CHASE Fin USD 29.42
2 ge-us GENERAL ELECTRIC IndDiv USD 29.4
3 ben-us FRANKLIN RES INC Fin USD 29.36
4 c-us CITIGROUP INC Fin USD 29.04
5 axp-us AMERICAN EXPRESS Fin USD 28.75
6 bac-us BANK OF AMERICA Fin USD 28.27
7 bk-us BANK NY MELLON Fin USD 28.22
8 ntrs-us NORTHERN TRUST Fin USD 28.2
9 ppg-us PPG INDS INC BasMater USD 27.93
10 emr-us EMERSON ELEC CO IndDiv USD 27.82
11 pcar-us PACCAR INC ConsCycl USD 27.16
12 wfc-us WELLS FARGO AND CO Fin USD 27.11
13 sti-us SUNTRUST BANKS Fin USD 27.06
14 dd-us DU PONT (EI) BasMater USD 26.98
15 itw-us ILLINOIS TOOL WO IndDiv USD 26.96
16 key-us KEYCORP Fin USD 26.93
17 l-us LOEWS CORP Fin USD 26.8
18 pnc-us PNC FINANCIAL SE Fin USD 26.78
19 stt-us STATE ST CORP Fin USD 26.71
20 etn-us EATON CORP PLC IndDiv USD 26.62
21 cat-us CATERPILLAR INC IndDiv USD 26.46
22 aa-us ALCOA CORP BasMater USD 26.46
23 utx-us UNITED TECH CORP IndDiv USD 26.28
24 hd-us HOME DEPOT INC ConsCycl USD 26.23
25 schw-us SCHWAB (CHARLES) Fin USD 26.07

Note: Daily equity return based network for all firms available continuously from January 1991 through

September 2016. Estimated using 1 lag in the VAR and GIRF horizon=1. Self-loops not included. This

sample includes 382 firms across 18 countries, with equities issued in 13 currencies.
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Table 2: Global Top Currency & Industry Aggregates by Network Out Weights

Rank Name Measure

1 USD-Fin 760.26
2 USD-ConsNonCycl 728.06
3 USD-ICT 622.75
4 USD-IndDiv 515
5 USD-ConsCycl 445.44
6 USD-Energy 366.96
7 EUR-Fin 221.46
8 USD-BasMater 212.46
9 USD-Util 190.03
10 CAD-Fin 147.84
11 EUR-ConsNonCycl 143.07
12 GBP-Fin 118.74
13 EUR-ConsCycl 91.96
14 EUR-IndDiv 82.55
15 EUR-ICT 81.63
16 CAD-Energy 80.71
17 CHF-Fin 78.79
18 GBP-ConsNonCycl 59.89
19 EUR-Util 57.42
20 JPY-ConsCycl 54.57
21 JPY-IndDiv 51.15
22 CAD-BasMater 48.13
23 EUR-Energy 43.53
24 EUR-BasMater 43.15
25 CAD-ICT 42.58

Note: Daily equity return based network for all firms available continuously from January 1991 through

September 2016. Estimated using 1 lag in the VAR and GIRF horizon=1. Self-loops not included. This

sample includes 382 firms across 18 countries, with equities issued in 13 currencies.
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Table 3: Global Network Monthly Equity Return Crises, 1996-2016

Panel A: Regression Estimates

(1) (2) (3) (4) (5)
Robustness: Diversification 0.000208* -0.00248*** -0.00232*** -0.00226*** -

φ
∑
j 6=i wjit (0.000108) (0.000205) (0.000200) (0.000197)

Fragility: Direct Contagion 0.0170*** 0.0217*** 0.0210*** 0.0211*** +
γ
∑
j 6=i wjitDjt (0.000904) (0.000936) (0.000927) (0.000952)

Fragility: Network Vulnerability 0.0811*** 0.137*** +
λNt (0.00684) (0.0117)

Robustness: Network Resistance -0.00269*** -
ωNt

∑
j 6=i wjit (0.000602)

Fragility: Network Crisis Reinforced Contagion 0.000388 +
θNt

∑
j 6=i wjitDjt (0.00139)

Observations 95,118 95,118 95,118 95,118 95,118

Panel B: Standardized Coefficients

∆Pr(Crisis) for one StdDev
increase in explanatory variable

for regression:
(4) (5)

Robustness: Diversification -3.7% -3.6% -
Fragility: Direct Contagion 5.9% 5.9% +
Fragility: Network Vulnerability 8.1% 13.7% +
Robustness: Network Resistance -4.3% -
Fragility: Network Crisis Reinforced Contagion 0.1% +

Note: The dependent variable is the monthly equity return distress indicator for firm i, the neighboring

firm health variable (Djt) is the equity return distress indicator for firm j, and the network state variable

(Nt) is an indicator for the average monthly TED spread being in the top 10%. Effects of a network crisis

state indicate the effect of the indicator variable going from zero to one, and the interactions with the weight

(wjit) and crisis sums are this times the standard deviation of the interacted sum term. This sample includes

382 firms across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the

firm level in parentheses. The marginal effects for the probit regressions are provided in place of the latent

regression coefficient estimates. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Global Network Continuous Monthly Equity Returns, 1996-2016

Panel A: Regression Estimates

(1) (2) (3) (4) (5)
Robustness: Diversification -1.48e-05 0.000821*** 0.000771*** 0.000749*** +

φ
∑
j 6=i wjit (1.49e-05) (4.12e-05) (3.89e-05) (3.81e-05)

Fragility: Direct Contagion -0.00962*** -0.0116*** -0.0111*** -0.0112*** -
γ
∑
j 6=i wjitDjt (0.000432) (0.000503) (0.000492) (0.000516)

Fragility: Network Vulnerability -0.0388*** -0.0602*** -
λNt (0.00266) (0.00466)

Robustness: Network Resistance 0.00218*** +
ωNt

∑
j 6=i wjit (0.000268)

Fragility: Network Crisis Reinforced Contagion -0.00196*** -
θNt

∑
j 6=i wjitDjt (0.000610)

Observations 95,118 95,118 95,118 95,118 95,118
R-squared 0.000 0.079 0.094 0.099 0.101

Panel B: Standardized Coefficients

Standardized coefficients for
regression:

(4) (5)

Robustness: Diversification 12.3% 12.0% +
Fragility: Direct Contagion -31.0% -31.2% -
Fragility: Network Vulnerability -38.8% -60.2% -
Robustness: Network Resistance 34.9% +
Fragility: Network Crisis Reinforced Contagion -5.5% -

Note: The dependent variable is the monthly equity return for firm i, the neighboring firm health variable

(Djt) is the equity return distress indicator for firm j, and the network state variable (Nt) is an indicator

for the average monthly TED spread being in the top 10%. Effects of a network crisis state indicate the

effect of the indicator variable going from zero to one, and the interactions with the weight (wjit) and crisis

sums are this times the standard deviation of the interacted sum term. This sample includes 382 firms

across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm level

in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 5: Global Network RyF Regressions with Various Continuous Dependent Variables, 1996-2016
Panel A: Regression Estimates

(1) (2) (3) (4) (5) (6) (7)

EQ Return
Change 5yr CDS

Spread† 5yr CDS Spread† Change EBITDA Change Revenue Change RoE RoE

Robustness: Diversification 0.000771*** -0.479*** -1.114*** 0.00229*** 0.000990*** 0.0984*** -0.0859*
+

φ
∑
j 6=i wjit (3.89e-05) (0.0872) (0.218) (0.000453) (0.000183) (0.0350) (0.0496)

Fragility: Direct Contagion -0.0111*** 7.823*** 14.38*** -0.0310*** -0.0120*** -1.120** -1.572*** -
γ
∑
j 6=i wjitDjt (0.000492) (0.739) (2.078) (0.00556) (0.00198) (0.462) (0.464)

Fragility: Network Vulnerability -0.0388*** -0.0989*** -0.0151 -5.289*** -2.910** -
λNt (0.00266) (0.0201) (0.0133) (1.553) (1.447)

Observations 95,118 7,620 7,976 21,479 27,913 6,375 6,571
R-squared 0.099 0.028 0.010 0.007 0.004 0.005 0.009

Period M M M Q Q Y Y

Panel B: Standardized Coefficients

Standardized coefficients for regression:
(1) (2) (3) (4) (5) (6) (7)

Robustness: Diversification 12.3% -10.4% -31.1% 9.2% 7.2% 5.6% -3.6%
+

Fragility: Direct Contagion -31.0% 46.0% 30.2% -11.9% -10.4% -6.8% -6.3% -
Fragility: Network Vulnerability -38.8% - - -23.0% -6.6% -17.5% -7.3% -

Note: The dependent variables are the monthly averages of each variable for firm i, the neighboring firm health variable (Djt) indicates the most ex-

treme 10% of distress as measured by the corresponding dependent variable for firm j, and the network state variable (Nt) is an indicator for the average

monthly TED spread being in the top 10%. CDS data covers October, 2013 - November, 2015 during which there were no network distress events so that term is

excluded from those regression results. Effects of a network crisis state indicate the effect of the indicator variable going from zero to one, and the interactions

with the weight (wjit) and crisis sums are this times the standard deviation of the interacted sum term. †Expected to have coefficients with signs opposite the

other regressions. This sample includes 382 firms across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm level in

parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 6: Global Network Monthly Equity Return Crises, 1996-2016 with Various Network Crisis Measures

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Crisis
TedSprdAvg

TedSprdAvg
log

TedSprdAvg
Crisis

VIXAvg
VIXAvg

Crisis
RetSP500

RetSP500†
Fraction of
Firms in
Distress

Crisis Fraction
of Firms in

Distress
Robustness:

Diversification
-0.00232*** -0.00204*** -0.00210*** -0.00211*** -0.00165*** -0.00129*** -0.000883*** 4.29e-05 -0.00127*** -

φ
∑

j 6=i wjit (0.000200) (0.000197) (0.000203) (0.000193) (0.000181) (0.000159) (0.000138) (0.000115) (0.000163)
Fragility: Direct

Contagion
0.0210*** 0.0199*** 0.0204*** 0.0187*** 0.0156*** 0.0120*** 0.00912*** 0.00245*** 0.0112*** +

γ
∑

j 6=i wjitDjt (0.000927) (0.000933) (0.000951) (0.000874) (0.000796) (0.000684) (0.000568) (0.000419) (0.000605)
Fragility: Network

Vulnerability
0.0811*** 0.0406*** 0.0225*** 0.0607*** 0.00350*** 0.148*** -1.079*** 0.518*** 0.120*** +

λNt (0.00684) (0.00239) (0.00172) (0.00369) (0.000133) (0.00758) (0.0414) (0.0163) (0.00395)

Observations 95,118 95,118 95,118 95,118 95,118 95,118 95,118 95,118 95,118

Note: The dependent variable is the monthly equity return distress indicator for firm i, the neighboring firm health variable (Djt) is the equity return
distress indicator for firm j, and the network state variable (Nt) various across the columns. †Expected to have a negative network vulnerability
coefficient. This sample includes 382 firms across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm
level in parentheses. The marginal effects for the probit regressions are provided in place of the latent regression coefficient estimates. *** p<0.01,
** p<0.05, * p<0.1
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Table 7: Global Network Continuous Monthly Equity Returns, 1996-2016 with Various Network Crisis Measures

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Crisis
TedSprdAvg

TedSprdAvg
log

TedSprdAvg
Crisis

VIXAvg
VIXAvg

Crisis
RetSP500

RetSP500†
Fraction of
Firms in
Distress

Crisis Fraction
of Firms in

Distress
Robustness:

Diversification
0.000771*** 0.000771*** 0.000834*** 0.000802*** 0.000794*** 0.000484*** 0.000167*** 3.35e-05 0.000483*** +

φ
∑

j 6=i wjit (3.89e-05) (4.00e-05) (4.28e-05) (4.15e-05) (4.30e-05) (3.09e-05) (2.15e-05) (2.34e-05) (3.16e-05)
Fragility: Direct

Contagion
-0.0111*** -0.0113*** -0.0116*** -0.0113*** -0.0113*** -0.00691*** -0.00312*** -0.00174*** -0.00729*** -

γ
∑

j 6=i wjitDjt (0.000492) (0.000501) (0.000512) (0.000513) (0.000533) (0.000383) (0.000272) (0.000320) (0.000386)
Fragility: Network

Vulnerability
-0.0388*** -0.00752*** 0.00114* -0.00547*** -0.000209*** -0.0592*** 0.823*** -0.303*** -0.0432*** -

λNt (0.00266) (0.00123) (0.000616) (0.00138) (6.47e-05) (0.00274) (0.0256) (0.00978) (0.00156)

Observations 95,118 95,118 95,118 95,118 95,118 95,118 95,118 95,118 95,118
R-squared 0.099 0.095 0.094 0.094 0.094 0.120 0.188 0.158 0.125

Note: The dependent variable is the monthly equity return distress indicator for firm i, the neighboring firm health variable (Djt) is the equity return
distress indicator for firm j, and the network state variable (Nt) various across the columns. †Expected to have a positive network vulnerability
coefficient. This sample includes 382 firms across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm level
in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 8: Global Network Monthly Equity Return Crises, 1996-2016 with Various Networks

(1) (2) (3) (4) (5) (6) (7)
Bilateral

Return Correl
H=0 H=1 H=2 H=3 H=4 H=5

Robustness:
Diversification

-0.00117*** -0.00126*** -0.00232*** -0.0122*** -0.0307*** -0.0801*** -0.145*** -

φ
∑

j 6=i wjit (5.17e-05) (6.12e-05) (0.000200) (0.000659) (0.00247) (0.00596) (0.0104)
Fragility: Direct

Contagion
0.00736*** 0.00899*** 0.0210*** 0.0842*** 0.222*** 0.563*** 0.919*** +

γ
∑

j 6=i wjitDjt (0.000204) (0.000268) (0.000927) (0.00321) (0.0103) (0.0251) (0.0399)
Fragility: Network

Vulnerability
0.000109 0.0214*** 0.0811*** 0.0844*** 0.104*** 0.121*** 0.139*** +

λNt (0.00415) (0.00509) (0.00684) (0.00654) (0.00807) (0.00797) (0.00771)

Observations 95,118 95,118 95,118 95,118 95,118 95,118 95,118

Note: The dependent variable is the monthly equity return distress indicator for firm i, the neighboring firm
health variable (Djt) is the equity return distress indicator for firm j, and the network state variable (Nt)
is an indicator for the average monthly TED spread being in the top 10%. This sample includes 382 firms
across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm level
in parentheses. The marginal effects for the probit regressions are provided in place of the latent regression
coefficient estimates. *** p<0.01, ** p<0.05, * p<0.1
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Table 9: Global Network Continuous Monthly Equity Returns, 1996-2016 with Various Networks

(1) (2) (3) (4) (5) (6) (7)
Bilateral

Return Correl
H=0 H=1 H=2 H=3 H=4 H=5

Robustness:
Diversification

0.000256*** 0.000298*** 0.000771*** 0.00340*** 0.00895*** 0.0224*** 0.0483*** +

φ
∑

j 6=i wjit (8.87e-06) (9.98e-06) (3.89e-05) (0.000166) (0.000502) (0.00112) (0.00239)
Fragility: Direct

Contagion
-0.00446*** -0.00538*** -0.0111*** -0.0456*** -0.120*** -0.299*** -0.503*** -

γ
∑

j 6=i wjitDjt (9.21e-05) (0.000120) (0.000492) (0.00184) (0.00609) (0.0124) (0.0224)
Fragility: Network

Vulnerability
-0.00950*** -0.0219*** -0.0388*** -0.0436*** -0.0485*** -0.0538*** -0.0567*** -

λNt (0.00216) (0.00243) (0.00266) (0.00254) (0.00269) (0.00262) (0.00259)

Observations 95,118 95,118 95,118 95,118 95,118 95,118 95,118
R-squared 0.166 0.157 0.099 0.100 0.093 0.084 0.071

Note: The dependent variable is the monthly equity return distress indicator for firm i, the neighboring

firm health variable (Djt) is the equity return distress indicator for firm j, and the network state variable

(Nt) is an indicator for the average monthly TED spread being in the top 10%. This sample includes 382

firms across 18 countries, with equities issued in 13 currencies. Robust standard errors clustered at the firm

level in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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