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provision of loans to fund the acquisition of capital by entrepreneurs and includes three 
types of time-varying stochastic volatility shocks related to monetary policy uncertainty, 
financial risk (micro-uncertainty), and macro-uncertainty. Key parameters are estimated 
by the Simulated Method of Moments using U.S. data from 1984:Q1 until 2014:Q4. We 
find: 1. Micro-uncertainty has first-order effects that are significantly larger than the effects 
of macro-uncertainty and monetary policy uncertainty. 2. Poor credit conditions 
exacerbate the economic drag from micro-uncertainty shocks, amplify the effects of 
monetary policy shocks, and mitigate the impact of TFP shocks. 3. A degree of asymmetry 
and non-scalability appears in response to monetary policy shocks, dependent on the 
degree of nominal rigidities and initial conditions. 4. Monetary policy uncertainty accounts 
for about one-third of the business cycle volatility largely by affecting the size of monetary 
policy shocks. 
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1 Introduction

In the late 2000s, the U.S. experienced its longest recession in the post-World War II period.

Credit market disruptions, unseen in the U.S. since the Great Depression, occurred while

uncertainty heightened. The unique character of the 2007 − 09 Global Financial Crisis

sparked a renewed interest in the role played by uncertainty and credit market frictions in

propagating and prolonging economic downturns. In this paper, we provide a quantitative

assessment of the extent to which uncertainty exacerbates credit frictions that can result in

a "financial crunch" consistent with the U.S. experience. We also explore how worsening

credit conditions during a financial crisis affect the transmission mechanism of monetary

policy and condition the monetary policy responses.1

To do this, we estimate a medium-scale New Keynesian model where capital accumulation

is subject to adjustment costs (real rigidities as in Hayashi (1982)) and financed through

risky nominal loans. Credit frictions stem from information asymmetry between borrowers

and lenders under limited liability and costly loan verification, as in Townsend (1979), Gale

and Hellwig (1985), and Bernanke et al. (1999). These credit frictions result in agency costs

from defaults that are passed to borrowers through credit spreads, increasing borrowing

costs for entrepreneurs and restraining investment and economic activity. Similarly, collateral

constraints tied to asset values can also amplify the downturn, to some extent. This financial

accelerator mechanism has been articulated by, among others, Bernanke and Gertler (1989),

Bernanke et al. (1996), Carlstrom and Fuerst (1997), Kiyotaki and Moore (1997), Bernanke

et al. (1999), Kocherlakota (2000), Córdoba and Ripoll (2004), and Martínez-García (2014).2

Dorofeenko et al. (2008), Gilchrist et al. (2013), Christiano et al. (2014), an earlier

working paper version of this article circulated as Balke et al. (2017a), and Cesa-Bianchi and

Fernández-Corugedo (2018) have also shown that some second-moment shocks can have large,

first-order impacts on economic activity even in general equilibrium when they are priced

into credit spreads. This financial lever channel operating through credit spreads makes it

plausible for second-moment shocks to originate (not just amplify) economic downturns.

The paper closest to ours in the literature is Cesa-Bianchi and Fernández-Corugedo (2018)

which considers a setup with financial frictions and different forms of uncertainty similar to

1A recent take on the lessons learned from the 2007 − 09 Global Financial Crisis for the conduct of
monetary policy during the COVID19 recession can be found in Coulter and Martínez-García (2020).

2For more discussion on the qualitative and quantitative effects of credit frictions on real economic
activity, see e.g. Gerke et al. (2013) and Mendicino and Zhang (2018). Credit frictions also can influence
the transmission mechanism of monetary policy as seen, e.g., in Carlstrom et al. (2010), Cohen-Cole and
Martínez-García (2010), Lombardo and McAdam (2012), Dib et al. (2013), Gilchrist et al. (2013), Christiano
et al. (2014), Paleka and Schwanebeck (2017), and de Blas and Malmierca (2020).

1



ours.3 However, unlike Cesa-Bianchi and Fernández-Corugedo (2018) and the previous liter-

ature, we show that the importance of the financial lever channel (the interaction between

credit frictions and certain forms of uncertainty) goes beyond the average first-order effects

of financially-related uncertainty documented elsewhere. Our main novel contribution is

the quantitative evidence we uncover of state-dependence, nonlinearities, and asymmetries

affecting the propagation of shocks when financial conditions are poor (credit spreads are

high). This implies that an economic downturn can be significantly more severe (becoming

a "financial crunch") when financial risks are rising and financial conditions poor than when

credit spreads are low and stable.

To show this, we quantitatively explore the financial lever channel in relation to three

distinct forms of uncertainty:4

(i) Macro-uncertainty or aggregate uncertainty about the evolution of the economy

brought about by time-varying stochastic volatility innovations in total factor productivity

(TFP) (Alexopoulos and Cohen (2009), Bloom (2009), Bloom et al. (2018), Cesa-Bianchi

and Fernández-Corugedo (2018));

(ii) Monetary policy uncertainty or time-varying stochastic volatility of the monetary

policy shock (Fernández-Villaverde et al. (2010), Born and Pfeifer (2014));

(iii) Micro-uncertainty or financial risk arising from the time-varying dispersion of (unin-

surable) idiosyncratic entrepreneurial productivity shocks (Dorofeenko et al. (2008), Gilchrist

et al. (2013), Christiano et al. (2014), Cesa-Bianchi and Fernández-Corugedo (2018)).

Following in the footsteps of Born and Pfeifer (2014) and Basu and Bundick (2017), we

pin down the structural parameters of the model using a combination of calibration and

estimation based on the Simulated Method of Moments (SMM) targeting U.S. data cover-

ing the period from 1984:Q1 to 2014:Q4. To solve the model, we use a pruned third-order

approximation to strike a reasonable balance between accuracy and tractability (on this

point, see, e.g., Fernández-Villaverde and Rubio-Ramírez (2005) and Fernández-Villaverde

and Rubio-Ramírez (2006)). From our analysis of the business cycle implications and gen-

eralized impulse responses of the estimated model, we draw five main conclusions:

First, consistent with Christiano et al. (2014) and Cesa-Bianchi and Fernández-Corugedo

3Cesa-Bianchi and Fernández-Corugedo (2018) cite the earlier working paper version of our work that
circulated as Balke et al. (2017a) noting as well the connections and similarities that exist between the
research that we both pursued independently.

4We represent time-varying uncertainty with stochastic volatility models similar to those of Fernández-
Villaverde (2010), Fernández-Villaverde et al. (2010), Fernández-Villaverde et al. (2011), Born and Pfeifer
(2014), and Basu and Bundick (2017). Unlike what the existing literature does, though, we study mean-
preserving stochastic volatility in order to isolate the effects of second-moment shocks from those of first-
moment shocks which could otherwise be confounded under log-normality.
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(2018), we find that the micro-uncertainty shock (a second-moment shock) has first-order

effects of similar magnitude to first-moment shocks like TFP or monetary policy shocks.

Second, investment, consumption, hours worked, and inflation are unconditionally pro-

cyclical, while credit spreads are countercyclical (markedly so during the 2007 − 09 Global

Financial Crisis) in the U.S. data. TFP shocks alone cannot explain these patterns of co-

movement.5 In turn, a positive micro-uncertainty shock (an increase in financial risk), similar

to what is expected from a positive (contractionary) monetary policy shock, leads to a decline

in investment, consumption, hours worked, and inflation, and to a widening of credit spreads

all of which contributes to account for the unconditional cyclical patterns found in the U.S.

Third, we find that exogenous micro-uncertainty is a major source of exogenous business

cycle fluctuations and the main driver of credit spread fluctuations in the U.S. as it impacts

the probability of default priced into the credit spreads. The endogenous feedback from eco-

nomic conditions to credit conditions depends on what happens with the aggregate leverage

of entrepreneurs and, consistent with the results of Levin et al. (2004), our evidence suggests

those feedback effects are only modest in size. Hence, we observe that TFP and monetary

shocks, whether to the level (first-moment) or to the uncertainty (second-moment), do not

have large impact on credit risk spreads.

Fourth, monetary policy uncertainty shocks, on average, have effects on real variables

an order of magnitude larger than macro-uncertainty shocks but still smaller than micro-

uncertainty shocks. However, macro- and monetary policy uncertainty affect the size of TFP

and particularly of monetary policy shocks. In that sense, time-varying uncertainty becomes

an important amplification factor of the business cycle fluctuations caused by TFP shocks

and specially by monetary policy shocks. In fact, keeping monetary policy uncertainty stable

at its unconditional variance could lower aggregate output volatility in the U.S. by one-third.

Finally, we show that the impact of shocks on economic activity is path-dependent. Large

initial credit spreads (generally the result of heightened micro-uncertainty) tend to dampen

somewhat the TFP shocks’impact on output. However, if spreads are already wide, the effect

of micro-uncertainty shocks on output is nearly 40% larger on impact than when spreads

are narrow. This suggests that when credit conditions are deteriorating (widening spreads),

additional micro-uncertainty shocks disproportionately worsen the downturn.

Furthermore, we show an economically-significant degree of asymmetry and non-scalability

in the propagation of monetary policy shocks. On average, a two-standard-deviation neg-

ative (expansionary) monetary innovation boosts output on impact by about 2.16 times as

5A positive TFP shock boosts output and investment, lowers inflation, and allows households to consume
more while cutting hours worked. Credit spreads are procyclical in this case but small in magnitude.
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much as a one-standard innovation does while a two-standard-deviation positive (contrac-

tionary) monetary innovation lowers output only about 1.85 times as much as a one-standard

innovation would. When credit spreads are already wide, the effect of a contractionary (one-

standard-deviation) monetary policy shock is nearly 20% larger than when spreads are low.

This showcases how the monetary policy shock transmission mechanism depends on the de-

gree of nominal rigidities in the model, but also on the nonlinearities that arise with the

interaction between credit frictions and micro-uncertainty.

The remainder of the paper proceeds as follows: Section 2 describes our model with

credit market imperfections and stochastic volatility. Section 3 discusses the third-order ap-

proximation of the model solution and the SMM strategy we employ to estimate the model’s

key structural parameters. Section 4 presents our nonlinear impulse response analysis and

the business cycle implications of uncertainty. It also highlights the main quantitative find-

ings derived from our model. Section 5 concludes. A discussion of our solution strategy

for the pruned third-order approximation and our novel recursive implementation of the

mean-preserving correction to stochastic volatility can be found in the Appendix.6

2 Credit Frictions and Uncertainty

In this paper, we extend the benchmark New Keynesian business cycle model with nominal

and real rigidities to incorporate: 1, a financial accelerator mechanism based on the costly-

state verification framework of Bernanke et al. (1999), but with risky debt expressed in

nominal terms; 2, shocks to the cross-sectional dispersion of the idiosyncratic productivity

shocks (micro-uncertainty) which induce financial risk, and 3, time-varying uncertainty in

TFP (macro-uncertainty) and monetary policy (policy uncertainty). This section describes

the building blocks of the model.

2.1 Households

The economy is populated by a continuum of mass one of identical and infinitely-lived house-

holds. Preferences are defined over household consumption, Ct, and household hours worked,

6Additional details on the model solution and the simulation and estimation methods together with a
rich set of supplementary results are available in Balke et al. (2017b).
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Ht, based on an additively separable specification with internal habits in consumption:7

U ≡ E0

∑∞

t=0
βt

{
(Ct − bCt−1)1−χ

1− χ − κH
1+ξ
t

1 + ξ

}
, (1)

where χ ≥ 0 is the inverse of the intertemporal elasticity of substitution, 0 ≤ b ≤ 1 the

internal habit persistence, ξ ≥ 0 the inverse of the Frisch elasticity of labor supply, κ ≥ 0

the scaling of household labor disutility, and 0 < β < 1 the intertemporal discount factor.

Households face the following nominal budget constraint:

PtCt +Bt ≤ WtHt + It−1Bt−1 +DIVt. (2)

At time t, households consume an amount Ct of the final good at a nominal price Pt and

save an amount Bt through one-period nominal deposits offered by financial intermediaries.

Households receive a gross nominal risk-free interest rate It−1 (known at time t− 1) on their

one-period nominal deposits maturing at time t and earn income from supplying household

hours Ht at its competitive nominal wage rate Wt. Households own all financial and non-

financial firms and receive nominal dividend payments DIVt from the profits or losses that

retail firms generate (all other firms make zero profits in equilibrium).

Solving the households’optimization problem, we obtain that:

Wt

Pt
=
κHξ

t

Λt

, (3)

1 = βEt
[(

Λt+1

Λt

)
Pt
Pt+1

It

]
, (4)

which are the labor supply and consumption-savings Euler equations, respectively. Here,

Λt ≡ (Ct − bCt−1)−χ − bβEt
[
(Ct+1 − bCt)−χ

]
is the Lagrange multiplier on the households’

budget constraint expressed in units of the final good. The households’equilibrium condi-

tions also include the appropriate initial and no-Ponzi transversality conditions.

7We also consider Epstein-Zin preferences (as poposed by Epstein and Zin (1989)) as an additional
robustness check to examine precautionary savings and wealth effects on the results. In work not reported
in the paper due to space constraints, we have considered Jaimovich-Rebelo preferences as well– a special
case of which is the GHH preferences with no income effects on labor used, for instance, by Cesa-Bianchi
and Fernández-Corugedo (2018).
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2.2 Financial Business Sector

2.2.1 Entrepreneurs (Borrowers)

There is a continuum of entrepreneurs of unit mass with identical linear preferences on

consumption, Ce
t , defined as follows:

E0

∑∞

t=0
(γβ)tCe

t , (5)

where the parameter 0 < γ < 1 scaling the intertemporal discount β in (5) captures the prob-

ability of each entrepreneur surviving until next period. We assume full replacement of the

fraction of entrepreneurs 1−γ who die to keep the mass of entrepreneurs constant and equal
to one in each period. Entrepreneurs that die do not purchase capital, work, or sign new loan

contracts, but instead consume their accumulated resources. The replacement entrepreneurs

come with no resources, but earn income by inelastically supplying entrepreneurial hours

worked (normalized to one), He
t = 1. Entrepreneurs maximize their lifetime utility in (5)

subject to a sequence of nominal budget constraints and a balance sheet identity.

At time t − 1, entrepreneurs purchase the aggregate stock of physical capital that will

be available for production at time t, Kt, at a price of Qt−1 units of the final good per unit

of physical capital. Entrepreneurs make this purchase from capital-good producers. The

nominal expenditures on physical capital, Pt−1Qt−1Kt, are financed with a combination of the

entrepreneurs’accumulated nominal net worth (internal funds or equity), Nt−1, and external

funding from financial intermediaries (via one-period loans), Lt−1. Hence, the entrepreneurs’

balance sheet satisfies that Pt−1Qt−1Kt = Lt−1 +Nt−1. A linear technology transforms each

unit of physical capital acquired at time t − 1 into ωt−1 units of capital services at time t

where ωt−1 is a purely idiosyncratic productivity shock (i.i.d. across entrepreneurs) known

to each entrepreneur at t− 1.8

At time t, each entrepreneur rents ωt−1 units of the capital services to the wholesale

producers and accrues a nominal capital income of ωt−1

[
Rw
t + PtQt (1− δ)

]
at time t per

unit of physical capital acquired at time t − 1. This nominal capital income includes the

earned competitive nominal rental rate on capital services, Rw
t , and the resale value in units

of the final good, Qt, of the entrepreneurs’depreciated physical capital sold back to the

capital-good producers. From here it follows that each entrepreneur’s nominal return on

8While all entrepreneurs face the same physical capital purchasing decision problem ex ante and make
identical choices to acquire and fund it at t−1, ex post differences emerge because each entrepreneur receives
a different draw from ωt−1 which affects the nominal capital income each of them accrues at time t.
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physical capital is given by ωt−1R
e
t where R

e
t is the aggregate nominal return given as:

Re
t

Πt

≡
[
Rwt
Pt

+Qt (1− δ)
Qt−1

]
, (6)

with Πt ≡ Pt
Pt−1

being the gross inflation rate on final goods and δ the depreciation rate.

The idiosyncratic technology shock ωt is log-normally distributed, i.e., ln(ωt) ∼ N(µω,t, σ
2
ω,t).

We denote the probability distribution function (pdf) and the cumulative distribution func-

tion (cdf) for ωt as φ (ωt | σω,t) and Φ (ωt | σω,t), respectively. The conditional variance, σ2
ω,t,

reflects the time t dispersion of the cross-sectional distribution of ωt. We set σω,t ≡ σωe
σ̂ω,t

and model the time-varying log-conditional volatility σ̂ω,t ≡ lnσω,t − lnσω, which we refer

to as the exogenous micro-uncertainty (or financial risk) shock, as follows:

σ̂ω,t = υωσ̂ω,t−1 + ηωuω,t, (7)

where uω,t is i.i.d. N (0, 1) and uncorrelated with all other shock innovations. The parameter

0 < υω < 1 determines the persistence of σ̂ω,t, σω > 0 the unconditional expected log-

volatility, and ηω ≥ 0 the standard deviation of the innovations. We set the time-varying

conditional mean µω,t to be µω,t = −σ2ω,t
2
for the unconditional mean of ωt to be mean-

preserving such that E (ωt) = 1 for all t. Unlike elsewhere in the literature, using mean-

preserving volatility shocks on micro-uncertainty and in all other stochastic volatility shocks

allows us to more cleanly disentangle the effect of first-moment and second-moment shocks.9

Given this, by the law of large numbers, aggregating capital services across all entre-

preneurs must be equal to the aggregate stock of physical capital each period. Each in-

dividual entrepreneur’s nominal capital income at time t is ωt−1

[
Rw
t + PtQt (1− δ)

]
Kt =

ωt−1R
e
tPt−1Qt−1Kt. The idiosyncratic technology shock ωt−1 is realized after the t−1 nominal

loan contract is signed and then costlessly observed by the individual entrepreneur. However,

the entrepreneur’s draw of ωt−1 is not observed by the financial intermediaries and verifica-

tion (through monitoring) as well as enforcement of the terms of the loan are costly. A credit

distortion arises here from the information asymmetry between entrepreneurs (borrowers)

9Few papers in the literature, notably Basu and Bundick (2017), have recognized that there is a first-
moment impact from stochastic volatility when the stochastic process is expressed in logs through a Jensen’s
inequality effect. To prevent that, Basu and Bundick (2017) use stochastic processes for the first- and
second-moment shocks in levels instead of in logs. The disadvantage of doing so is that normally-distributed
processes in levels can take negative values. Our approach keeps the stochastic processes in logs, ensures they
are non-negative in levels, and also prevents second-moment shocks from having an impact on first-moments
to cleanly isolate one from the other. See the Appendix and Balke et al. (2017b) for the technical details of
our novel recursive approach to modeling mean-preserving stochastic volatility.
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and financial intermediaries (lenders).

At time t, default on a nominal loan occurs whenever the capital income earned is insuf-

ficient to cover the repayment of the loan, i.e., whenever:

ωt−1R
e
tPt−1Qt−1Kt ≤ RL

t Lt−1, (8)

where, RL
t , is the nominal return required by the financial intermediaries on the risky nominal

one-period loan, Lt−1. The return RL
t is defined implicitly in terms of a default threshold set

on the idiosyncratic productivity shock, ωt−1, which corresponds to the draw of ωt−1 that

equates the nominal loan repayment owed to financial intermediaries with the nominal capital

income accrued by the entrepreneur– i.e., ωt−1 is such that RL
t Lt−1 = ωt−1R

e
tPt−1Qt−1Kt.

If ωt−1 < ωt−1, the entrepreneur does default at time t. Under limited liability, the

financial intermediaries can only recover the nominal capital income generated by the de-

faulting entrepreneur in that period, i.e., ωt−1

[
Rw
t + PtQt (1− δ)

]
Kt = ωt−1R

e
tPt−1Qt−1Kt.

The financial intermediaries always monitor the defaulting entrepreneurs to prevent misrep-

resentations of the nominal capital income but do so at a cost proportional to the amount

recovered– i.e., at a cost µωt−1R
e
tPt−1Qt−1Kt where 0 ≤ µ < 1. The defaulting entre-

preneur gets nothing, while the financial intermediaries retain (1− µ)ωt−1R
e
tPt−1Qt−1Kt

after paying off the verification costs. If ωt−1 ≥ ωt−1, the entrepreneur does not default

at time t, pays ωt−1R
e
tPt−1Qt−1Kt to the financial intermediaries and accordingly keeps

(ωt−1 − ωt−1)Re
tPt−1Qt−1Kt.

The entrepreneurs’budget constraint can be expressed as follows:

PtC
e
t +PtQtKt+1 ≤ W e

t H
e
t +

∫ ∞
ωt−1

[
ωt−1R

e
tPt−1Qt−1Kt −RL

t Lt−1

]
φ (ωt−1 | σω,t−1) dωt−1 +Lt.

(9)

Apart from nominal capital income net of borrowing costs, entrepreneurs get revenue from

inelastically supplying one unit of entrepreneurial hours (He
t = 1) to wholesale producers

at the competitive nominal wage, W e
t , and also obtain nominal funds from new loans, Lt,

secured from the financial intermediaries.10 These nominal resources are allocated to today’s

consumption, Ce
t , and for the acquisition of tomorrow’s stock of physical capital, Kt+1.

10As is the case in much of the literature, prior defaults on loans do not influence the terms of the new
loans because they don’t reveal any information about the idiosyncratic (i.i.d.) shocks at the heart of the
informational asymmetry between borrowers and lenders. In other words, observed past defaults do not help
predict future defaults for individual entrepreneurs.
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2.2.2 Financial Intermediaries (Lenders)

There is a continuum of mass one of identical, competitive financial intermediaries. At each

time t, financial intermediaries offer one-period, fully-insured nominal deposits to households,

Bt, which pay a gross nominal risk-free rate, It. These nominal deposits attract households’

savings which are then transformed into the one-period nominal loans demanded by the

entrepreneurs, Lt.11 Financial contracts are written in nominal rather than real terms,

unlike in Bernanke et al. (1999) and Martínez-García (2014).

The loan contracting problem reduces to optimally choosing the physical capital, Kt+1,

and the default threshold, ωt, that maximize the entrepreneurs’nominal capital returns net

of borrowing costs, i.e.,

PtQtKt+1Et
[
Re
t+1f (ωt, σω,t)

]
, (10)

subject to the following participation constraint for the financial intermediaries:

PtQtKt+1Et
[
Re
t+1g (ωt, σω,t)

]
≥ It [PtQtKt+1 −Nt] , (11)

where f (ωt, σω,t) > 0 and g (ωt, σω,t) > 0 denote the share of nominal capital income going to

the entrepreneurs and the financial intermediaries, respectively. The participation constraint

in (11) means that financial intermediaries can pool defaulting and non-defaulting loans but

must be compensated, at the very least, with enough to repay the depositors (households) in

full every period. In equilibrium, financial intermediaries break even in each period and make

zero profits. Three conditions characterize the solution of the loan contract in (10)− (11).

First, an income sharing rule between entrepreneurs and financial intermediaries:

f (ωt, σω,t) + g (ωt, σω,t) = 1− µG (ωt, σω,t) , (12)

where µG (ωt, σω,t) ≥ 0 determines the fraction of nominal capital income lost due to moni-

toring costs (which is zero only if monitoring costs are zero, i.e., if µ = 0).12

11The financial intermediaries’balance sheet identity is given by Bt = Lt (total deposits equal total loans).
12Section 3 in Balke et al. (2017b) provides a detailed derivation of the optimal one-period nominal

loan contract in (10)− (11) and a formal derivation of the functions f (ωt, σω,t) ≡
∫ +∞
ωt

ωtφ (ωt | σω,t) dωt−
ωt (1− Φ (ωt | σω,t)), g (ωt, σω,t), and G (ωt, σω,t) ≡

∫ ωt
0
ωtφ (ωt | σω,t) dωt under the log-normal distribution

assumption imposed on ωt (where φ (ωt | σω,t) and Φ (ωt | σω,t) denote the probability distribution function
and the cumulative distribution function of the log-normal, respectively).
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Second, an optimal leverage condition:

Nt

PtQtKt+1

=
f (ωt, σω,t)

f (ωt, σω,t) + λ (ωt, σω,t) g (ωt, σω,t)
, (13)

where λ (ωt, σω,t) is the Lagrange multiplier on the participation constraint in (11), i.e.,

λ (ωt, σω,t) is the shadow cost of enticing the financial intermediaries’participation. Equation

(13) implies that the default threshold ωt depends on the micro-uncertainty shock, σω,t, and

on the entrepreneurs’net-worth-to-asset ratio (or equity ratio), Nt
PtQtKt+1

.

Finally, expected gross returns for the entrepreneurs must satisfy:

Et
[
Re
t+1

]
= s

(
Nt

PtQtKt+1

, σω,t

)
It, (14)

where the endogenous credit spread s
(

Nt
PtQtKt+1

, σω,t

)
≡ λ(ωt,σω,t)

f(ωt,σω,t)+λ(ωt,σω,t)g(ωt,σω,t)
> 1 is a

function of micro-uncertainty, σω,t, and also of the entrepreneur’s equity ratio, Nt
PtQtKt+1

,

whenever µ > 0 but is independent of both and equal to s
(

Nt
PtQtKt+1

, σω,t

)
≡ 1 if µ = 0.

As a result, the effi ciency condition in (14) shows that capital demand must be lower

when entrepreneurs are leveraged (the equity ratio is low) or when micro-uncertainty is high

in this costly-state verification framework. That is because the expected nominal return on

that last unit of capital being funded, Et
[
Re
t+1

]
, must equate the external borrowing cost,

s
(

Nt
PtQtKt+1

, σω,t

)
It, and this borrowing cost is above the nominal risk-free rate, It.13

Entrepreneurial Net Worth Dynamics. The entrepreneurs’budget constraint in (9),

which in equilibrium holds with equality, and the nominal loan contract’s optimality condi-

tion in (13) pin down entrepreneurial nominal net worth, Nt, as:

Nt = PtQtKt+1 − Lt = W e
t H

e
t + f (ωt−1, σω,t−1)Re

tPt−1Qt−1Kt − PtCe
t

= W e
t H

e
t + (f (ωt−1, σω,t−1) + λ (ωt−1, σω,t−1) g (ωt−1, σω,t−1))Re

tNt−1 − PtCe
t . (15)

As described in (5), entrepreneurs are risk-neutral and die with probability 1 − γ each

period. Hence, entrepreneurs optimally postpone their consumption until death at which

point they eat their accumulated net worth (but do not save or work). Entrepreneurs’

13As Gomes et al. (2003) note, the costly-state verification model of Bernanke et al. (1999) which we
have adapted to the nominal case, unlike that of Carlstrom and Fuerst (1997), allows asset price movements
(given by Tobin’s q or Qt) to interact with the financial frictions. This remains an important feature also in
our setup as can be seen in equation (14).
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aggregate consumption, Ce
t , is given by:

Ce
t = (1− γ) (f (ωt−1, σω,t−1) + λ (ωt−1, σω,t−1) g (ωt−1, σω,t−1))

Re
t

Πt

(
Nt−1

Pt−1

)
. (16)

Dying entrepreneurs get replaced by the same fraction 1 − γ of new entrepreneurs with no
net worth of their own who, nonetheless, start earning income immediately by supplying

entrepreneurial hours. Accordingly, it follows from equations (15) and (16) that the law of

motion for nominal net worth, Nt, can be expressed as:

Nt

Pt
=
W e
t

Pt
He
t +

(
γ (f (ωt−1, σω,t−1) + λ (ωt−1, σω,t−1) g (ωt−1, σω,t−1))

Re
t

Πt

)
Nt−1

Pt−1

, (17)

where He
t is inelastically supplied and normalized to one (as indicated before). That is, the

entrepreneurs’aggregate net worth includes the per-period capital income that all surviving

entrepreneurs accrue net of borrowing costs plus the entrepreneurial labor income of new

and surviving entrepreneurs minus the aggregate consumption of the dying entrepreneurs.

2.3 Non-Financial Business Sector

2.3.1 Capital-Goods Producers

There is a continuum of mass one of identical capital-goods producers. As in Hayashi (1982),

aggregate physical capital, Kt+1, evolves according to a law of motion with adjustment costs:

Kt+1 = (1− δ)Kt + sk

(
Xt

Kt

)
Kt, (18)

where Xt denotes units of the final good used for aggregate investment, XtKt is the investment-

to-capital ratio, and sk
(
Xt
Kt

)
is the capital adjustment cost function. The production of

physical capital is subject to technological constraints implicit in the adjustment cost spec-

ification proposed by Jermann (1998) and Boldrin et al. (2001), among others, i.e.,

sk

(
Xt

Kt

)
≡
(

δ

1− 1
ϕk

)( Xt
Kt

δ

)1− 1
ϕk

− 1

ϕk

 , (19)

where ϕk > 0 is the degree of concavity of sk
(
Xt
Kt

)
.

At time t, entrepreneurs purchase their physical capital for next period, Kt+1, at a price

11



in units of the final good (or Tobin’s q), Qt, and sell today’s depreciated stock of physical

capital, (1− δ)Kt, at a resale price of Qt units of the final good. Capital producers purchase

the depreciated physical capital back and acquire Xt additional units of the final good for

the production of
[
sk

(
Xt
Kt

)
Kt
Xt

]
Xt units of new physical capital. Given this, the nominal per-

period (static) profits of the capital-goods producers are Pt
(
QtKt+1 −Xt − (1− δ)QtKt

)
.

Solving the capital producers’static profit maximization problem to choose investment, Xt,

subject to the constraints in (18)− (19), it follows that Tobin’s q, Qt, is given by:

Qt =

[
s′k

(
Xt

Kt

)]−1

=

(
Xt
Kt

δ

) 1
ϕk

. (20)

Imposing that capital producers make zero profits in every period, i.e.,

Qtsk

(
Xt

Kt

)
− Xt

Kt

− (1− δ)
(
Qt −Qt

)
= 0, (21)

pins down Qt as a function of Tobin’s q, Qt, and of the investment-to-capital ratio, XtKt .

2.3.2 Wholesale Firms

There is a continuum of mass one of identical wholesale producers. Wholesale goods, Y w
t ,

are produced with the following Cobb-Douglas technology:

Y w
t = eat−a (Kt)

α (He
t )
ϑ (Ht)

1−α−ϑ , (22)

combining hours from households, Ht, together with hours and rented capital services from

entrepreneurs, He
t and Kt respectively. The capital share satisfies that 0 ≤ α < 1, the

entrepreneurial labor share is 0 < ϑ < 1, and the household labor share is 0 < 1−α−ϑ < 1.

The stochastic process for aggregate productivity (TFP) in logs, at, in (22) is:

at = µa,t + ρa
(
at−1 − µa,t−1

)
+ σa,tεa,t, (23)

where 0 < ρa < 1 denotes its persistence. The macro-uncertainty shock is defined as a shock

to the stochastic volatility of TFP, σa,t ≡ σae
σ̂a,t , where σa > 0, and

σ̂a,t = υaσ̂a,t−1 + ηaua,t, (24)

with 0 < υa < 1 and ηa ≥ 0. The shock innovations εa,t and ua,t are i.i.d. N (0, 1)
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and uncorrelated with each other and with all other shock innovations. The time-varying

conditional mean, µa,t, satisfies the recursion: µa,t = −σ2a,t
2

+ρ2
aµa,t−1 to ensure the stochastic

volatility is mean-preserving. The unconditional mean is then expressed as a ≡ −1
2

σ2a
1−ρ2a

.

All wholesale producers operate in competitive markets and produce a homogeneous

wholesale good sold at a nominal price, Pw
t . Hours worked from households and entrepreneurs

are paid at their nominal wages, Wt andW e
t respectively, and entrepreneurs’capital services

at their nominal rental rate, Rw
t , generating per-period profits of P

w
t Y

w
t − Rw

t Kt −WtHt −
W e
t H

e
t . Solving the (static) profit-maximization problem of the wholesale firms subject to

(22) results in zero profits in equilibrium and the factors of production being remunerated

at their marginal product, i.e.,

Wt

Pt
= (1− α− ϑ)

Pwr
t Y w

t

Ht

, (25)

W e
t

Pt
= ϑ

Pwr
t Y w

t

He
t

, (26)

Rw
t

Pt
= α

Pwr
t Y w

t

Kt

, (27)

where Pwr
t ≡

Pwt
Pt
is the price of wholesale goods, Pw

t , over the price of the final good, Pt.

2.3.3 Final Goods and Retail Firms

There is a continuum of differentiated retail varieties of mass one indexed j ∈ [0, 1]. Final

output Yt is bundled with a constant elasticity of substitution (CES) aggregator, Yt ≡[∫ 1

0
Yt (j)

ε−1
ε dj

] ε
ε−1
, where ε > 1 is the elasticity of substitution across varieties and Yt (j)

denotes the amount of each variety j. The corresponding final goods price, Pt, is given

by Pt =
[∫ 1

0
Pt (j)1−ε dj

] 1
1−ε
, which is a function of the price of each variety j, Pt (j). The

optimal allocation of expenditure is:

Yt (j) =

(
Pt (j)

Pt

)−ε
Yt, ∀j ∈ [0, 1] , (28)

which implies that retailers face a downward-sloping demand function.

Each variety j is produced by a monopolistically competitive retail firm that chooses its

price, Pt (j), to maximize its expected discounted stream of nominal profits, i.e.,

E0

∑∞

t=0
λt [(Pt (j)− Pw

t )Yt (j)− sp (Pt (j) , Pt−1 (j))PtYt] , (29)
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subject to the demand function in (28) and the households’intertemporal marginal rate of

substitution λt ≡ βt Λt
Λ0

P0
Pt
where Λt ≡ (Ct − bCt−1)−χ− bβEt

[
(Ct+1 − bCt)−χ

]
. For each unit

of its own variety sold, the retail firm needs to acquire a unit of the wholesale good at its

nominal price, Pw
t . Nominal retail prices can change every period subject to Rotemberg

(1982) adjustment costs, sp (Pt (j) , Pt−1 (j)), given by:

sp (Pt (j) , Pt−1 (j)) =
ϕp
2

(
Pt (j)

Pt−1 (j)
− 1

)2

, ∀j ∈ [0, 1] , (30)

where ϕp ≥ 0 scales the quadratic cost term.14

All retailers face the same optimization problem, choose the same optimal price Pt (j),

and have their profits or losses rebated lump-sum to the households. Thus, a symmetric

equilibrium emerges where Pt (j) = Pt and Yt (j) = Yt. It also follows in this case that

Yt = Y w
t . The optimal price-setting equation that we obtain from the retailers’optimization

problem can be expressed in this symmetric equilibrium as:

[
1− ϕp (Πt − 1) Πt

]
+ ϕpβEt

[(
Λt+1

Λt

)(
(Πt+1 − 1) Πt+1

Yt+1

Yt

)]
= (1− Pwr

t ) ε, (31)

where Πt ≡ Pt
Pt−1

is the gross inflation rate and Pwr
t ≡ Pwt

Pt
is the relative price of wholesale

goods in units of the final good. In this context, Pwr
t is interpreted as the retailers’ real

marginal cost or, conversely, 1
Pwrt

is the retailers’price markup over marginal costs.

Finally, the aggregate per-period resource constraint for final output is:

Yt = Ct +Xt +
ϕp
2

(Πt − 1)2 Yt + µG (ωt−1, σω,t−1)
Re
t

Πt

Qt−1Kt. (32)

Equilibrium in the final goods market means the production of the final good, Yt, in each

period t is allocated either to households’ consumption, Ct, to capital-goods producers’

investment, Xt, or gets lost due to price adjustment costs in the retail sector,
ϕp
2

(Πt − 1)2 Yt,

and agency costs in the financial intermediation sector, µG (ωt−1, σω,t−1)
Ret
Πt
Qt−1Kt.

2.4 Monetary Policy

Ben-Haim et al. (2018) find that a simple Taylor (1993) rule outperforms more complicated

rules that include credit spreads or a debt-to-GDP ratio as indicators of financial stability

14While Rotemberg (1982) adjustment costs is our benchmark, we also consider as a robustness how the
model responds if instead we were to assume staggered price-setting à la Calvo (1983).
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whenever the central bank itself is uncertain about the parameters and shocks of the model.

Given that, we retain the assumption that the monetary authority sets the nominal interest

rate, It, following a Taylor (1993)-type monetary policy rule with inertia (in index form):

It
I

=

(
It−1

I

)ρi ((Πt

Π

)ψπ ( Yt
Yt−1

)ψx)1−ρi

emt−m, (33)

where I is the steady-state nominal interest rate, Πt ≡ Pt
Pt−1

is the gross rate of inflation on

final goods prices, Π = 1 corresponds to the central bank’s zero-net inflation target, and
Yt
Yt−1

is the gross final output growth.15 The parameters ψπ > 1 and ψx > 0 determine the

sensitivity of the policy response to inflation deviations from target and to output growth

fluctuations, respectively. The parameter 0 ≤ ρi < 1 sets the monetary policy inertia.

The stochastic process for the monetary policy shock, mt, can be written as:

mt = µm,t + ρm
(
mt−1 − µm,t−1

)
+ σm,tεm,t, (34)

where the shock persistence is given by 0 < ρm < 1. The stochastic volatility of the monetary

policy shocks (monetary policy uncertainty), σm,t ≡ σme
σ̂m,t , where σm > 0, follows:

σ̂m,t = υmσ̂m,t−1 + ηmum,t, (35)

with 0 < υm < 1 and ηm ≥ 0. The shock innovations εm,t and um,t are i.i.d. N (0, 1) and

uncorrelated with each other and with all other innovations. The time-varying conditional

mean, µm,t, satisfies the recursion: µm,t = −σ2m,t
2

+ρ2
mµm,t−1 to ensure the stochastic volatility

process is mean-preserving. The unconditional mean of the process m is m ≡ −1
2

σ2m
1−ρ2m

.

3 Estimating the Model

As in Fernández-Villaverde et al. (2010), Fernández-Villaverde et al. (2011), and Born

and Pfeifer (2014), we use a third-order perturbation with the control and state variables

expressed in logs to locally approximate the model solution.16 Following Andreasen et al.

15Expressed in logs, equation (33) responds solely to inflation and output growth (the "growth gap").
Similar policy reaction functions are used by Fernández-Villaverde et al. (2010) and Basu and Bundick
(2017)). We also considered an alternative specification where the policy rule responds to output in log-
deviations from steady-state, but the results are not too dissimilar and are omitted from the paper.
16The log-linearizing approach discussed by Martínez-García (2018), among others, does not suffi ce

here. This is because, even with a second-order approximation, stochastic volatility shocks– except micro-
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(2018), we prune the third-order approximation to avoid dynamic instability problems.17

Table 1 summarizes the calibration and estimation of the model parameters. The para-

meterized preference and technological parameters (β, χ, ξ, α, ϑ, and δ) follow closely the

values used by Bernanke et al. (1999) and Martínez-García (2014). We set the elasticity

of substitution across varieties ε as in Basu (1996). The values for the parameters of the

exogenous TFP shock process, the monetary policy shock process, and their corresponding

stochastic volatilities (ρa, σa, υa, ηa, ρm, σm, υm, and ηm) as well as the policy parameters

(ρi, ψπ, and ψx) are based on the estimates from Born and Pfeifer (2014). Born and Pfeifer

(2014) obtain those estimates directly from observed U.S. TFP and by fitting an inertial

Taylor (1993) rule on U.S. short-term interest rates.

We estimate the values of the remaining nine structural parameters of the model (κ, b, ϕk,

ϕp, γ, µ, σω, υω, and ηω) with the Simulated Method of Moments (SMM) approach. That is,

matching simulated moments from the model to values that are consistent with key empirical

regularities found in the U.S. data together with a couple of conventional model parameter

normalizations. Table 2 lists the moments we seek to match, their empirical values, and their

data sources spanning the period from 1984:Q1 to 2014:Q4. Prior to computing any of the

empirical moments reported in the paper, we extract the cyclical component of each series

with a one-sided Hodrick-Prescott filter using a lambda of 1600 and a power of 2, except for

the equity ratio and the nominal short-term interest rate that are demeaned instead. We

apply the same filtering to the corresponding endogenous data simulated by the model to

ensure the comparability between simulated and empirical moments.

Our SMM estimation strategy is a limited information technique that relies solely on a

subset of key moments– not the full information in the data– in order to discipline the esti-

mation of the structural parameters. The advantage of using a limited information method

here is two-fold: first, we can use the same U.S. data to investigate how the model replicates

other non-targeted moments for cross-validation purposes and, second, this approach tends

to produce parameter estimates that are less sensitive to omitted variables or unmodeled

features of the economy than estimates obtained with full-information techniques would.

The estimated parameter values for κ, b, ϕk, ϕp, γ, µ, σω, υω, and ηω are chosen to

minimize the weighted squared distance between nine key moments implied by the model

and their counterparts in the data. The moments we choose to match are:

1. the mean of the credit spread (400× Et
(

ln
(
Ret+1
It

))
),

uncertainty– would not enter into the decision rules in an interesting way.
17Further discussion of the pruned third-order approximation of the solution can be found in the Appendix.
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2. the mean of the equity ratio in levels (100× Nt
PtQtKt+1

),

3. the mean default probability (100× Φdefault
t where Φdefault

t ≡ Φ (ωt | σω,t)),

4. the mean household hours worked (400× ln (Ht)),

5. the variance of the credit spread (400× Et
(

ln
(
Ret+1
It

))
),

6. the ratio of investment variance (400× ln (Xt)) to output variance (400× ln (Yt)),

7. the first-order autocorrelation of the credit spread (400× Et
(

ln
(
Ret+1
It

))
),

8. the first-order autocorrelation of nondurable consumption (400× ln (Ct)),

9. the first-order autocorrelation of inflation (400× ln (Πt)).

Specifically, we minimize the following quadratic form:

min
κ,b,ϕk,ϕp,γ,µ,σω ,υω ,ηω

M′WM

where W is a weighting matrix and M is given by,

M ≡



∑T
t=1

ŝpreadt
T
− 0∑T

t=1

̂equity_ratiot
T

− 0

Emodel
(
100× Φdefault

)
− 0.75

Emodel (400× ln (H))− 0∑T
t=1

[
ŝpreadt

2−VARmodel(400×Emodel(ln(R
e

I )))
T

]
∑T

t=1

[
̂400×ln(Xt)

2
−VARmodel (400×ln(X))
VARmodel (400×ln(Y ))

× ̂400×ln(Yt)
2

T

]
∑T

t=1

[
ŝpreadt×ŝpreadt−1−ρmodel(400×Emodel(ln(R

e

I )))×ŝpreadt2
T

]
∑T

t=1

[
̂400×ln(Ct)× ̂400×ln(Ct−1)−ρmodel(400×ln(C))× ̂400×ln(Ct)

2

T

]
∑T

t=1

[
̂400×ln(Πt)× ̂400×ln(Πt−1)−ρmodel(400×ln(Π))× ̂400×ln(Πt)

2

T

]



.

17



Table 1. Parameters Used in the Model Simulations

Preference and Technological Parameters Parameter Value Parameterization Source

Households’Intertemporal Discount Factor 0 < β < 1 0.990 Bernanke et al. (1999)

Households’Inverse of the Intertemporal Elasticity of Substitution χ ≥ 0 1 Bernanke et al. (1999)

Households’Inverse of the Frisch Elasticity of Labor Supply ξ ≥ 0 1
3

Bernanke et al. (1999)

Households’Scaling Parameter on Labor Disutility κ ≥ 0 0.738 SMM estimate

Households’Habit Parameter 0 ≤ b ≤ 1 0.738 SMM estimate

Elasticity of Substitution Across Varieties ε > 1 10 Basu (1996)

Capital Share 0 ≤ α ≤ 1 0.350 Bernanke et al. (1999)

Entrepreneurial Labor Share 0 ≤ ϑ ≤ 1 0.010 Bernanke et al. (1999)

Depreciation Rate 0 < δ ≤ 1 0.025 Bernanke et al. (1999)

Adjustment Cost & Agency Cost Parameters

Capital Adjustment Cost ϕk > 0 3.369 SMM estimate

Rotemberg (1982) Price Adjustment Cost ϕp ≥ 0 121.730 SMM estimate

Monitoring Cost 0 ≤ µ < 1 0.145 SMM estimate

Survival Rate of Entrepreneurs 0 < γ < 1 0.978 SMM estimate

Taylor Rule Policy Parameters

Interest Rate Smoothing 0 ≤ ρi < 1 0.836 Born and Pfeifer (2014)

Sensitivity to Inflation Deviations from Target ψπ > 1 1.777 Born and Pfeifer (2014)

Sensitivity to Output Growth ψx > 0 0.319 Born and Pfeifer (2014)

Exogenous Shock Parameters

Unconditional Std. Dev. of Idiosyncratic Risk Shock σω > 0 0.300 SMM estimate

Persistence of the Stochastic Volatility of Idiosyncratic Risk Shock 0 < υω < 1 0.966 SMM estimate

Std. Dev. of the Stochastic Volatility of Idiosyncratic Risk Shock ηω ≥ 0 0.0254 SMM estimate

TFP Shock Persistence 0 < ρa < 1 0.814 Born and Pfeifer (2014)

TFP Shock Unconditional Standard Deviation σa > 0 0.0054 Born and Pfeifer (2014)

Persistence of the Stochastic Volatility on TFP 0 < υa < 1 0.632 Born and Pfeifer (2014)

Std. Dev. of the Stochastic Volatility on TFP ηa ≥ 0 0.312 Born and Pfeifer (2014)

Monetary Shock Persistence 0 < ρm < 1 0.367 Born and Pfeifer (2014)

Monetary Shock Unconditional Standard Deviation σm > 0 0.0014 Born and Pfeifer (2014)

Persistence of the Stochastic Volatility of Monetary Shock 0 < υm < 1 0.921 Born and Pfeifer (2014)

Std. Dev. of the Stochastic Volatility of Monetary Shock ηm ≥ 0 0.363 Born and Pfeifer (2014)

Note: SMM refers to the Simulated Method of Moments estimation method described in Section 3.
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Table 2. Moments Used to Set Values of κ, b, ϕk, ϕp, γ, µ, σω, υω, and ηω

Variable Moment Value Data Source

1. Mean credit spread 400× E
(
Et
(

ln
(
Ret+1
It

)))
2.29

Spread between Moody’s seasoned Baa corporate bond

and 10-year Treasury rate (constant maturity)

2. Mean equity ratio 100× E
(

Nt
PtQtKt+1

)
52.14

(Net worth/Total assets)x100

(Non-financial corporate business)

3. Mean quarterly default probability 100× E
(

Φdefault
t

)
0.75 Bernanke et al. (1999)

4. Mean log hours 400× E (ln (Ht)) 0 Normalization

5. Variance of credit spread VAR
(

400× Et
(

ln
(
Ret+1
It

)))
0.52

Spread between Moody’s seasoned Baa corporate bond

and 10-year Treasury rate (constant maturity)

6. Var(investment)/Var(output) VAR(400×ln(Xt))
VAR(400×ln(Yt))

17.85 NIPA fixed investment plus consumer durables

7. Autocorrelation of the credit spread ρ
(

400× Et
(

ln
(
Ret+1
It

)))
0.90

Spread between Moody’s seasoned Baa corporate bond

and 10-year Treasury rate (constant maturity)

8. Autocorrelation of consumption ρ (400× ln (Ct)) 0.90 NIPA non-durable consumption

9. Autocorrelation of inflation ρ (400× ln (Πt)) 0.39 NIPA GDP deflator

Note: E(.) denotes unconditional mean, VAR(.) denotes unconditional variance, and ρ(.) denotes the first-order autocorrelation. More details on the data
sources can be found in Balke et al. (2017b).
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Here, we define ŝpreadt ≡ 400 ×
[
Et
(

ln
(
Ret+1
It

))
− Emodel

(
ln
(
Re

I

))]
, ̂equity_ratiot ≡

100 ×
[

Nt
PtQtKt+1

− Emodel
(

N
PQK

)]
, ̂400× ln (Xt) ≡ 400 × (ln (Xt)− µlnX), ̂400× ln (Yt) ≡

400 × (ln (Yt)− µlnY ), ̂400× ln (Ct) ≡ 400 × (ln (Ct)− µlnC), and ̂400× ln (Πt) ≡ 400 ×
(ln (Πt)− µln Π) with µlnZ being the sample mean of the corresponding variable Zt in logs.

Emodel (·), VARmodel (·), and ρmodel (·) are the simulated unconditional mean, unconditional
variance, and first-order autocorrelation, all of them implied by the model solution’s pruned

third-order approximation. For the mean default probability (100×Φdefault
t ) and mean hours

worked (400× ln (Ht)) no sample data was used; the target moments were normalized to 0.75

(as in Carlstrom and Fuerst (1997) and Bernanke et al. (1999)) and zero, respectively.18

We select the means of the credit spread (400×Et
(

ln
(
Ret+1
It

))
), the equity ratio (100×

Nt
PtQtKt+1

), and the default probability (100×Φdefault
t ) as well as the variance and first-order

autocorrelation of the credit spread (ŝpreadt) to determine the values of γ, µ, σω, υω, and ηω.

We use the variance of investment (400 × ln (Xt)) relative to that of output (400 × ln (Yt))

as well as the autocorrelations for inflation (400 × ln (Πt)) and nondurable consumption

(400 × ln (Ct)) to pin down the values of ϕk, ϕp, and b, respectively. Finally, the scaling

disutility of household labor κ sets the average hours worked (400 × ln (Ht)) to zero so

household and entrepreneurial labor supply are about the same.

Simulated variances and autocorrelations are based on 20, 000 simulated values. The

weighting matrix W is the identity matrix. For each parameter value evaluated, the same

random number seed was used to generate the simulated samples. The estimated values for

the vector (κ, b, ϕk, ϕp, γ, µ, σω, υω, and ηω) are then reported in Table 1. Our estimates of

γ, µ, and σω are similar to those in Bernanke et al. (1999) and Martínez-García (2014) which

do not feature any form of stochastic volatility. The parameters for υω and ηω are not very

far from those that describe the micro-uncertainty (or financial risk) shocks in Christiano

et al. (2014) and Cesa-Bianchi and Fernández-Corugedo (2018).19 Similarly, the parameters

for b, ϕk, and ϕp are all well within the ranges typically seen in the literature.
20

18In practice, we add a tiny bit of sampling noise to the moment conditions for the default probability
and mean hours for computational convenience so we can include them along with the other moments in the
same computer subroutine.
19Our estimation strategy recovers the parameters of micro-uncertainty shocks from macro-financial data

(the spread between Moody’s seasoned Baa corporate bond and the 10-year Treasury rate and net worth
over total assets in the U.S. non-financial corporate sector) while Cesa-Bianchi and Fernández-Corugedo
(2018) use the approach of Chugh (2016) and the annual data from the Census panel of manufacturing
establishments over the 1972− 2009 sample period from Bloom et al. (2018). Yet our estimates are similar
to those reported by Cesa-Bianchi and Fernández-Corugedo (2018) albeit with a somewhat higher persistence
(0.966 vs. 0.86) that is more congruent with the persistence indicated in Christiano et al. (2014).
20References for b include Christiano et al. (2005), Smets and Wouters (2007), and Christiano et al.
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4 Quantitative Findings

4.1 Business Cycle Moments

Table 3, Table 4, and Table 5 display business cycle statistics implied by the estimated

benchmark model and by various other variants where we shut down different features each

time. In particular, we examine the estimated benchmark (M1) against alternative specifi-

cations where all stochastic volatilities are shut down (ηω = ηa = ηm = 0, M2), where each

stochastic volatility is shut down individually (ηω = 0,M3; ηa = 0,M4; ηm = 0,M5), where

financial frictions are shut down (µ = 0, M6), and where nominal price rigidities are shut

down (ϕp = 0, M7). Furthermore, we also consider Epstein-Zin preferences to explore the

case of high risk aversion separately from the intertemporal elasticity of substitution (M8).21

Table 3 reports the standard deviation of output and the standard deviation of the other

key macro variables of interest relative to that of output. We compute those moments in

the data as well as for the different model specifications under consideration (M1 −M8).

Table 4 shows the first-order autocorrelation (persistence) of the key macro variables and

Table 5 displays the correlations of the key macro variables with output (cyclicality) and

with the endogenous credit spread, both in the data and across all model specifications

(M1−M8). Most of these business cycle moments were not used to estimate the structural

parameters under the SMM estimation strategy discussed in Section 3. Hence, comparing

the empirical against the simulated (not-used-for-estimation) moments provides a measure

of cross-validation for the benchmark model (M1). Moreover, by isolating the individual

contributions from the most salient modeling features (M1 vs. M2−M8), we establish the

relative importance of each feature in accounting for the observed U.S. business cycles.22

(2014); references for ϕk include Bernanke et al. (1999), and Justiniano et al. (2011); and references for ϕp
include Carlstrom et al. (2010) and Ascari and Sbordone (2014).
21We specify Epstein-Zin preferences as in Swanson (2018). There Vt = u (Ct − bCt−1, Ht) −

β
[
Et (−Vt+1)1−ν

] 1
1−ν

with the utility kernel given as u (Ct − bCt−1, Ht) ≡ (Ct−bCt−1)1−χ
1−χ − κ

H1+ξ
t

1+ξ . Our

kernel includes internal habits in the additively separable benchmark case in (1). We choose the Epstein-Zin
preference parameter ν according to Swanson (2018) (equation 23) and Andreasen et al. (2018) (online
appendix). Hence, we set the value of ν at −113.11 so that the resulting coeffi cient of relative risk aversion
is 75 and the value of the inverse of the intertemporal elasticity of substitution χ is 2. We also considered
Jaimovich-Rebelo preferences instead of the additively separable preferences in our benchmark. We found,
however, that conventional calibrations of the Jaimovich-Rebelo utility function do not change much our
results qualitatively and even quantitatively.
22We calculated the same moments in Table 3, Table 4, and Table 5 for the unpruned third-order approx-

imation of the model solution and got results virtually identical to the prunded ones reported here.
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Business Cycle Volatility Comparing the benchmark model (M1) with the model with-

out stochastic volatilities (M2) in Table 3, we observe that the stochastic volatility is an

important contributor to the overall volatility of output– output volatility is about 40%

lower in the model without any stochastic volatility. Of the various sources of uncertainty

included in the benchmark model, monetary policy uncertainty contributes the most to

output volatility (compare M2 vs. M5). In terms of relative variability, we observe that

shutting down some or all the stochastic volatilities (as we do in M2 −M5) does not have

a dramatic impact on the standard deviations of other macro variables (consumption, hours

worked, real wages, price markups or inflation) relative to the standard deviation of output.

We also find that the relative volatilities of the equity ratio (100 × Nt
PtQtKt+1

) and of the

credit spread (400×Et
(

ln
(
Ret+1
It

))
) are fairly consistent with the data and largely unchanged

with or without macro-uncertainty (M1 vs. M4). However, they are larger by as much as

50% when we exclude monetary policy uncertainty (M1 vs. M5). The volatilities of these

two financial variables relative to output decline to near zero if micro-uncertainty is excluded

(M1 vs. M3) while, at the same time, the relative volatility of investment falls by as much

as 6%. We infer from all of this that: 1, macro-uncertainty is of second-order importance to

explain volatility over the business cycles; and 2, monetary policy uncertainty is an important

contributor to macro volatility while micro-uncertainty is important for financial volatility

(the equity ratio and credit spread) and for investment volatility.

Without financial frictions (M6), the credit spread becomes s
(
PtQtKt+1

Nt
, σω,t

)
≡ 1 and

micro-uncertainty drops out and has no effect on the economy as can be noted from the

effi ciency condition in (14) pins down the entrepreneurs’demand for capital. We disentangle

the impact of financial frictions (M6 vs. M1) by parts. On the one hand, we observe that

output volatility is almost 8% higher and the relative volatility of investment is about 10%

lower in a model without financial frictions (which also excludes micro-uncertainty) (M6)

than in a model with financial frictions but no micro-uncertainty (M3). On the other hand,

we also find that output volatility is about 3.5% lower and the relative volatility of investment

is about 6% lower in the case with financial frictions but no micro-uncertainty (M3) than in

the benchmark model with financial frictions and micro-uncertainty (M1).

Accordingly, we argue that: (a), adding financial frictions alone tends to mitigate output

volatility but at the expense of a significantly higher investment volatility, and (b), adding

micro-uncertainty to the model with financial frictions leads to higher output volatility and,

particularly, leads to higher investment volatility relative to that of output. Therefore, when

comparing the benchmark (M1) against the model without financial frictions (and without
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micro-uncertainty) (M6), the effects in (a) and (b) push in the same direction resulting in

lower relative investment volatility while the negative effect of (b) limits the higher output

volatility that would result from the effect of (a). Hence, eliminating financial frictions

significantly lowers the relative volatility of investment with respect to that of output by as

much as 15% and, counterfactually, brings down the relative volatilities of the equity ratio

and the credit spread to near zero.23 This, however, has modest effects on the variability of

output, which is about 4% higher than in the benchmark model (M1), and on most of the

relative volatilities for other macro variables except for investment.

Without monetary policy uncertainty (M5) as well as with costless price adjustments

(M7), the volatility of output falls by about 35% and 40%, respectively, relative to the

benchmark (M1) and counterfactually below the observed U.S. output volatility. The relative

volatility of the credit spread and the equity ratio nearly doubles compared to what we

observe in the benchmark model (compare M5 and M7 vs. M1), while changes in the

relative volatility of investment are otherwise very minor. All these findings suggest that

the impact of monetary policy uncertainty operates primarily through the standard New

Keynesian channels rather than through credit frictions and the financing of capital.

While the volatility of other non-financial variables relative to that of output appears

largely similar with or without monetary policy uncertainty (M1 vs. M5), removing nom-

inal rigidities (as in M7) can have counterfactual implications for them. Under the Taylor

(1993) rule in (33) (and even when the central bank responds to output deviations from

steady state instead of the output growth), the relative volatility of the nominal interest rate

shoots up more than twofold and the relative volatility of inflation more than fourfold in

the model without nominal rigidities (compare M7 vs. M1 or even M5 with nominal rigidi-

ties but no monetary policy uncertainty). Removing nominal rigidities (M7) also brings

down the volatility of price markups to zero which is thought as quite implausible. It also

has implications along the consumption-labor margin increasing the volatility of consump-

tion relative to output by about 20% while concurrently decreasing the relative volatility of

hours worked by a whopping 65% when M7 is compared to M1 or M5.

Using Epstein-Zin preferences with a relatively high risk aversion (M8) lowers the volatil-

ity of consumption relative to output well below what we observe in the data (about 62.5%

lower) while increasing the relative volatility of investment somewhat (by about 9%). It

23Including capital adjustment costs in the benchmark model, ϕk > 0, introduces a real rigidity which
is crucial to align the relative volatility of investment with that found in the data. Similar to removing
financial frictions, removing this real rigidity also contributes to produce counterfactually higher investment
volatility but, in contrary, does so while still allowing variation in the equity ratio and the credit spread.
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also decreases the overall output volatility relative to that of the estimated benchmark (M1)

by about 9% and also produces a relative volatility of consumption about 37% lower. This

suggests that, when risk aversion is high, households beef up their precautionary savings to

self-insure against future risks contributing to mitigate the effects of uncertainty on output

volatility but, in the process, inducing counterfactually smooth consumption dynamics.

Business Cycle Persistence and Cyclicality From Table 4, we find that introducing

stochastic volatility or financial frictions has little effect on the autocorrelations of the model.

The only notable exception to this is that the persistence on inflation and on the nominal

interest rate is substantially lower while the persistence on output and investment is a touch

higher in the model without nominal rigidities (M7) than in the benchmark (M1). This

suggests that price adjustment costs have a major effect on the persistence of nominal vari-

ables and only some modest impacts on the persistence of real macroeconomic variables.

Interestingly, the persistence of macro variables is largely unaffected by financial frictions

even though loan contracts open up an important conduit for the propagation of shocks

through the funding-of-capital channel.

The benchmark model (M1) closely matches the persistence of consumption and the

credit spread, but these moments are targeted in our SMM estimation strategy. The inflation

persistence implied by the benchmark model (M1) is a bit higher than its targeted empirical

counterpart, though. The persistence of the benchmark (M1) on output, investment, and

hours worked is lower than in the data. We argue that this is partly because of the well-known

consumption-smoothing puzzle (Caballero (1990)): While output tends to be as persistent

as consumption in the data, the benchmark model (M1)– which is estimated to match

the relative volatility of investment– generates instead some excess-consumption-smoothness

(see Table 3). This in turn comes with excess-consumption-persistence and low investment

persistence. Hence, the findings in Table 4 suggest that removing price adjustment costs

(M7) can partly mitigate this issue by increasing the output persistence and lowering the

inflation persistence. Similar results are found if nominal rigidities are modeled with Calvo

(1983) rather than Rotemberg (1982) pricing.24

24Working with Calvo (1983) pricing, we set the stickiness parameter to 0.8 implying an average price
duration of 5 quarters that is reasonably close to the implied duration in the benchmark model estimated
under Rotemberg (1982) price adjustment costs instead.
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Table 3. Simulated and Empirical Business Cycle Volatilities for Various Models
Data M1 M2 M3 M4 M5 M6 M7 M8

stdv (zt) (%)
zt ≡ Output 4.62 4.47 2.58 4.31 4.40 2.95 4.65 2.72 4.03
stdv (zt) /stdv (Output)
zt ≡ Consumption 0.64 0.38 0.44 0.38 0.36 0.44 0.35 0.53 0.24

Investment∗ 4.23 4.19 3.77 3.95 4.24 4.30 3.56 4.12 4.61
Hours Worked 1.66 1.61 1.66 1.61 1.60 1.67 1.55 0.55 1.69
Real Wages 0.96 1.54 1.51 1.60 1.56 1.35 1.50 1.19 1.74
Price Markup − 2.15 2.21 2.22 2.16 2.04 2.10 0.00 2.36
Inflation 0.14 0.42 0.42 0.44 0.43 0.38 0.41 1.79 0.46
Interest Rate 0.59 0.16 0.17 0.15 0.16 0.18 0.13 0.34 0.20
Equity Ratio 0.58 0.32 0.06 0.05 0.32 0.48 0.01 0.52 0.35
Credit Spread∗ 0.16 0.15 0.02 0.02 0.15 0.23 0.00 0.25 0.17

Note: The endogenous variables included are output (400× ln (Yt)), household consumption (400× ln (Ct)), investment (400× ln (Xt)), hours

worked by households (400× ln (Ht)), real wages (400× ln
(
Wt

Pt

)
), price markup (−400× ln (Pwrt )), inflation (400× ln (Πt)), nominal interest

rate (400 × ln (It)), equity ratio (100 × Nt
PtQtKt+1

), and credit spread (400 × Et
(

ln
(
Ret+1
It

))
). We extract the cyclical component of all these

series by HP-filtering them with a one-sided filter using a lambda of 1600 and a power of 2, except for the equity ratio and the nominal interest
rate that are demeaned instead. More details on the data sources can be found in Balke et al. (2017b). The table shows the standard deviation
of output and the standard deviation of all other endogenous variables relative to the standard deviation of output. We report the results for
the following variants of the model: M1 = benchmark model, M2 = without all stochastic volatilities, M3 = without micro-uncertainty only,
M4 = without TFP stochastic volatility only, M5 = without monetary stochastic volatility, M6 = without financial frictions, M7 = without
nominal rigidities, and M8 = Epstein-Zin preferences with high risk aversion.

* These data moments are used to estimate the benchmark model by the simulated method of moments, all others are not.
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Table 4. Simulated and Empirical Business Cycle Persistence for Various Models
Data M1 M2 M3 M4 M5 M6 M7 M8

ρ (zt, zt−1)
zt ≡ Output 0.91 0.63 0.68 0.64 0.62 0.67 0.63 0.73 0.60

Consumption∗ 0.90 0.90 0.91 0.89 0.89 0.91 0.89 0.91 0.90
Investment 0.93 0.58 0.58 0.55 0.58 0.64 0.56 0.68 0.58
Hours Worked 0.96 0.56 0.55 0.57 0.57 0.54 0.56 0.54 0.55
Real Wages 0.73 0.57 0.59 0.57 0.56 0.60 0.56 0.66 0.57
Price Markup − 0.54 0.53 0.55 0.55 0.52 0.54 − 0.54
Inflation∗ 0.39 0.52 0.51 0.52 0.52 0.51 0.52 0.01 0.52
Interest Rate 0.96 0.83 0.85 0.83 0.83 0.87 0.83 0.61 0.85
Equity Ratio 0.96 0.99 0.97 1.00 0.99 0.99 0.99 0.99 0.99
Credit Spread∗ 0.89 0.88 0.96 0.96 0.88 0.88 0.93 0.88 0.89

Note: The endogenous variables included are output (400× ln (Yt)), household consumption (400× ln (Ct)), investment (400× ln (Xt)), hours

worked by households (400× ln (Ht)), real wages (400× ln
(
Wt

Pt

)
), price markup (−400× ln (Pwrt )), inflation (400× ln (Πt)), nominal interest

rate (400 × ln (It)), equity ratio (100 × Nt
PtQtKt+1

), and credit spread (400 × Et
(

ln
(
Ret+1
It

))
). We extract the cyclical component of all these

series by HP-filtering them with a one-sided filter using a lambda of 1600 and a power of 2, except for the equity ratio and the nominal
interest rate that are demeaned instead. More details on the data sources can be found in Balke et al. (2017b). The table shows the first-
order autocorrelations. We report the results for the following variants of the model: M1 = benchmark model, M2 = without all stochastic
volatilities, M3 = without micro-uncertainty only, M4 = without TFP stochastic volatility only, M5 = without monetary stochastic volatility,
M6 = without financial frictions, M7 = without nominal rigidities, and M8 = Epstein-Zin preferences with high risk aversion.

* These data moments are used to estimate the benchmark model by the simulated method of moments, all others are not.

26



Table 5. Simulated and Empirical Business Cycle Cyclicality for Various Models
Data M1 M2 M3 M4 M5 M6 M7 M8

ρ (zt,Output)
zt ≡ Output 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Consumption 0.90 0.70 0.80 0.77 0.70 0.67 0.75 0.73 0.61
Investment 0.93 0.94 0.95 0.96 0.94 0.92 0.97 0.89 0.96
Hours Worked 0.88 0.79 0.55 0.77 0.83 0.53 0.80 −0.11 0.75
Real Wages 0.04 0.94 0.96 0.97 0.94 0.89 0.97 0.89 0.94
Price Markup − −0.80 −0.61 −0.81 −0.84 −0.54 −0.81 − −0.81
Inflation 0.35 0.83 0.69 0.84 0.86 0.62 0.84 −0.12 0.83
Interest Rate −0.02 −0.49 −0.55 −0.58 −0.49 −0.35 −0.56 −0.38 −0.40
Equity Ratio −0.02 0.06 −0.03 −0.10 0.06 0.10 −0.06 0.11 0.07
Credit Spread −0.51 −0.07 0.06 0.10 −0.07 −0.12 0.00 −0.11 −0.08

ρ (zt,Credit Spread)
zt ≡ Output −0.51 −0.07 0.06 0.10 −0.07 −0.12 0.00 −0.11 −0.08

Consumption −0.51 −0.04 0.09 0.10 −0.05 −0.06 0.00 −0.03 −0.06
Investment −0.42 −0.10 0.04 0.08 −0.10 −0.15 0.00 −0.16 −0.10
Hours Worked −0.44 −0.03 0.14 0.15 −0.03 −0.05 0.01 −0.15 −0.03
Real Wages −0.04 −0.01 0.08 0.11 −0.01 −0.04 0.01 −0.02 −0.03
Price Markup − 0.00 −0.13 −0.14 0.00 0.01 −0.01 − 0.00
Inflation −0.18 0.01 0.12 0.14 0.00 −0.01 0.01 −0.00 −0.00
Interest Rate −0.61 −0.36 −0.52 −0.30 −0.36 −0.49 −0.01 −0.38 −0.36
Equity Ratio 0.02 0.18 −0.99 −0.99 0.18 0.18 −0.11 0.19 0.16
Credit Spread 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: The endogenous variables included are output (400× ln (Yt)), household consumption (400× ln (Ct)), investment (400× ln (Xt)), hours

worked by households (400× ln (Ht)), real wages (400× ln
(
Wt

Pt

)
), price markup (−400× ln (Pwrt )), inflation (400× ln (Πt)), nominal interest

rate (400 × ln (It)), equity ratio (100 × Nt
PtQtKt+1

), and credit spread (400 × Et
(

ln
(
Ret+1
It

))
). We extract the cyclical component of all these

series by HP-filtering them with a one-sided filter using a lambda of 1600 and a power of 2, except for the equity ratio and the nominal interest
rate that are demeaned instead. More details on the data sources can be found in Balke et al. (2017b). The table shows the contemporaneous
correlation with output (cyclicality) and the contemporaneous correlation with the credit spread. We report the results for the following
variants of the model: M1 = benchmark model, M2 = without all stochastic volatilities, M3 = without micro-uncertainty only, M4 = without
TFP stochastic volatility only, M5 = without monetary policy stochastic volatility, M6 = without financial frictions, M7 = without nominal
rigidities, and M8 = Epstein-Zin preferences with high risk aversion.
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From Table 5, we observe that the benchmark model (M1) gets the cross-correlations of

output with other real macro variables largely right. Consumption, investment, and hours

worked are procyclical while the price markup is countercyclical. The most notable mismatch

with the data is the correlation between output and the real wage. In the U.S. data, real

wages are largely acyclical while they appear strongly procyclical in the benchmark model.

The benchmark is more imprecise when it comes to pin down the magnitude of the cross-

correlation of output with the nominal and financial variables (inflation, nominal interest

rate, equity ratio, and credit spread) even though it gets the sign of the cyclicality right,

except for the equity ratio.

We also note that monetary policy uncertainty (see M5 without it) as well as nominal

rigidities (see M7 without them) play a substantive role in the simulated cyclicality of infla-

tion and the nominal interest rate.25 Comparing modelsM1 throughM5 in Table 5 suggests

that including stochastic volatility does not change the correlations of output with other real

macro variables all that much, but it does change the output and credit spread correlation

in an economically meaningful way. We observe that the model without any form of stochas-

tic volatility (M2), which is the one that comes closest to the financial frictions model of

Bernanke et al. (1999) and Martínez-García (2014), results in procyclical movements in the

credit spread. That is, the endogenous credit spreads implied by the financial accelerator

mechanism alone fail to match the countercyclical correlation observed in the U.S. data.26

Hence, including stochastic volatility (and micro-uncertainty in particular) becomes the key

to generate a plausible countercyclical credit spread (M1 vs. M3).

Even so, the model correlations between output and the credit spread are generally

smaller in magnitude than those found in the data. This indicates that a general equilibrium

New Keynesian model, even one with credit frictions and micro-uncertainty like ours, still

misses part of the interaction between output and the credit spread observed in the U.S.

4.2 Generalized Impulse Response Analysis

We conduct an impulse response analysis similar to what is typically done with linear mod-

els to investigate the propagation of exogenous shocks. Given the nonlinear nature of the

model solution that we pursue here, we use the generalized impulse response approach of

Koop et al. (1996) and calculate how the conditional expectation of the pruned third-order

25We observe that the sensitivity of the policy rule to inflation in particular is another important factor
in accounting for the observed empirical comovement.
26Faia and Monacelli (2007) provide additional discussion on financial frictions and the countercyclicality

of the credit spread.
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approximation of endogenous variables (yrdt ) changes as a result of a shock innovation (vt).

Specifically, we examine:

GIRF (k,vt,xt−1) ≡ E
[
yrdt+k|vt,xt−1

]
− E

[
yrdt+k|xt−1

]
, (36)

where the state vector of the pruned third-order approximation is xt = (xft ,x
s
t ,x

rd
t )′. We

denote an endogenous variable k-periods-ahead generically as yrdt+k (shorthand k).
27

Given the pruned third-order approximation of the nonlinear model that we use, the

impulse responses in (36) do not, in principle, have to be symmetric or scale up with the size

of the shock innovation, vt. Furthermore, the impulse responses may be path-dependent–

conditional on the initial conditions of the state variables. In general, there are many possible

initial conditions to evaluate and typically researchers would simply take the initial condition

to be a particular realization, say the deterministic steady state or the ergodic (unconditional)

mean of the state variables. Unfortunately, while responses conditional on a particular

realization are relatively easy to compute, it is not straightforward to evaluate the likelihood

of the economy being at that particular initial state.

Our approach is to use the information not only from a particular realization, but from the

unconditional distribution implied by the model to choose initial conditions for our impulse

response analysis that are economically-relevant. As part of our impulse response analysis,

we first get a sense of the average effect of shocks over all possible initial conditions. Then,

we concentrate our impulse response analysis on exploring the differences in the propagation

of shocks arising from different initial conditions on: (a) the types of uncertainty under

consideration, and (b) endogenous variables related to the state (tight or loose) of financial

conditions such as the credit spread, the equity ratio, and the nominal interest rate.

4.2.1 Unconditional Impulse Responses

We look at the expected (or average) generalized impulse response given the unconditional

distribution implied by the model, i.e.,

GIRFaverage (k,vt) =

∫
GIRF (k,vt,xt−1 = x) p (x) dx, (37)

27We compare simulated generalized impulse responses as in Balke (2000) with the analytical solution for
the pruned third-order approximation derived by Andreasen et al. (2018). We also examine the simulated
impulse responses from the non-pruned third-order approximation. However, we find little difference between
the pruned and non-pruned model solutions, with only very minor deviations noticeable on the responses to
monetary policy shocks.
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where p(x) is the unconditional density of the state vector x implied by the model, k is

again shorthand for the horizon of the endogenous variable of interest, and vt refers to the

shock innovations. To obtain an estimate of the unconditional distribution of the endogenous

variables implied by the model, we simulate the pruned third-order approximation starting

at the unconditional mean for 300 time periods. We repeat this 20, 000 times to obtain

an estimate of the unconditional distribution. We then draw a sample of initial conditions

(500 draws), calculate the change in conditional expectations for each initial condition, and

average the responses.

The Unconditional Response Patterns Figure 1 displays the average impulse re-

sponses for the various shocks in the model.28 In general, first-moment TFP and monetary

policy shocks have substantially larger effects than macro-uncertainty and monetary policy

uncertainty shocks that affect their volatilities (second-moments). Macro-uncertainty shocks

cause consumption and investment to fall, and output, hours worked, and inflation to rise

while monetary policy uncertainty shocks lead to declines in consumption and increases in in-

vestment, output, hours worked, and inflation. However, in the estimated benchmark model

(M1), on average, their responses are of at most second-order importance, even for mone-

tary policy uncertainty shocks whose responses are an order of magnitude larger than the

responses to macro-uncertainty. Furthermore, the effects of macro-uncertainty and monetary

policy uncertainty on the equity ratio as well as on the credit spread are quite small indi-

cating that the contribution of financial frictions to amplify these two types of uncertainty

shocks is quite modest.

Overall, these results are broadly in line with the existing literature on TFP and mone-

tary policy uncertainty which also tends to find small individual effects (see, e.g., Fernández-

Villaverde et al. (2010) and Born and Pfeifer (2014)). In fact, when examining the impor-

tance of stochastic volatility shocks, the existing literature often focuses on the response to a

28A number of papers– such as Cesa-Bianchi and Fernández-Corugedo (2018)– the literature conduct
their analysis calculating responses conditional on the ergodic (unconditional) mean instead of averaging
impulse responses over the unconditional distribution of initial conditions, as we do in Figure 1. Balke
et al. (2017b) (Figure 5) illustrates the impulse responses corresponding to Figure 1 under this alternative
approach setting the initial condition to be equal to the ergodic (unconditional) mean. The two sets of
responses are qualitatively similar, although the average response to first-moment shocks (monetary policy
shocks and TFP shocks) is larger in magnitude than the corresponding response starting at the ergodic
(unconditional) mean. In turn, the average response for second-moment shocks is almost indistinguishable
from the corresponding response computed with respect to the ergodic (unconditional) mean for macro-
and micro-uncertainty shocks, and displays only quantitatively small differences in response to monetary
policy uncertainty.shocks. Such differences between averaging over initial conditions and setting the initial
condition at the ergodic (unconditional) mean are likely due to Jensen’s inequality.
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simultaneous two-standard deviation shock to all sources of uncertainty showcasing episodes

of heightened, albeit very infrequent, broad uncertainty. In our subsequent analysis, we

also explore tail events over the distribution of the uncertainty shocks and, not surprisingly,

reach similar conclusions: Macro-uncertainty and policy uncertainty shocks are most relevant

economically at those infrequent times when their size can be fairly large.

Figure 1 also showcases that a second-moment shock– specifically micro-uncertainty–

can have first-order economic effects, as its economic impact heightens and propagates

through an economy with credit frictions. The effects of a shock to the distribution of

entrepreneurial idiosyncratic productivity (micro-uncertainty), on average, are of the same

order of magnitude as those of a TFP shock and about half the impact of a monetary policy

shock on output. The credit friction that underpins our estimated benchmark model (M1)

is key for these findings because it implies that micro-uncertainty shocks cannot be fully

insured with the available nominal loan contract. As a result of asymmetric information and

costly monitoring, greater micro-uncertainty makes lending to entrepreneurs riskier and leads

to a higher default probability and higher credit spreads charged on entrepreneurs. As can

be gleaned from the capital demand through the effi ciency condition in (14), the resulting

higher cost of borrowing reduces the demand for capital and pushes down its price (Tobin’s

q), but also encourages entrepreneurs to free up more internal funds (increasing the equity

ratio). In response to the falling investment, households cut down labor input and save

initially less in order to sustain their consumption which over time also gradually declines.

Hence, output shrinks quite strongly and inflation falls even though nominal interest rates

are cut to provide some accommodation.

Finally, we should note that TFP shocks generate countercyclical patterns of hours

worked and inflation that cannot be reconciled with the unconditional comovement seen

in Table 5. In turn, qualitatively similar to micro-uncertainty, monetary policy shocks in-

duce a positive comovement between output, consumption, investment, hours worked, and

inflation as well as a countercyclical but small credit spread which is more in line with the

observed unconditional comovement.29 However, monetary policy shocks generate counter-

cyclical movements of the interest rate and cyclical movements of the equity ratio while

micro-uncertainty does the opposite. Accordingly, we observe that monetary policy shocks

can help explain the comovement of the main real and nominal macro variables found in

the data, but micro-uncertainty shocks can deliver similar patterns and their contribution

29As argued by Basu and Bundick (2017), similar macroeconomic comovement between output, con-
sumption, investment, and hours worked also could arise from other second-moment shocks too (e.g., from
uncertainty on preference shocks).
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is fundamental to simultaneously match the countercyclical and volatile financial variables

(credit spreads, equity ratio, and interest rate) as observed in Table 5. This suggests that

micro-uncertainty shocks (or financial risk shocks more broadly) are an important drivers

of the business cycle that might be confounded with monetary policy shocks when financial

data is not used to discipline the model.
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The Effect of Key Features of the Model on Unconditional Impulse Responses
Figure 2 plots the average impulse responses of output as well as the impact on borrowing
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costs through the responses of the credit spread and the nominal interest rate for alternative

models. We compare the benchmark (M1) against the model without credit frictions (µ = 0,

M6), the model with flexible prices (ϕp = 0, M7), and the model with Epstein-Zin prefer-

ences allowing for high risk aversion (M8). We also consider the case where price rigidities

are modeled with Calvo (1983) pricing rather than Rotemberg (1982) price adjustment costs

and the case where internal habits in consumption are shut down (b = 0).

We observe from Figure 2 that, under Epstein-Zin preferences with high relative risk

aversion (M8), the response of output to macro- and micro-uncertainty are a touch lower

than in the benchmark case (M1), while the response to monetary policy uncertainty shocks

increases noticeably (although its effect remains rather modest).30 The higher risk-aversion

under Epstein-Zin preferences (M8) typically dampens the effects of first-moment shocks,

and most significantly lowers the wealth effects from TFP shocks.

If prices are fully flexible (M7), monetary policy shocks have no real effects, the impact

of micro-uncertainty shocks is lessened, and the effect of TFP shocks on economic activity

increases (albeit the output response to a TFP shock in that case is no longer hump-shaped).

The effect of the macro-uncertainty and monetary policy uncertainty shocks, already small

in the benchmark model (M1), declines further when we remove nominal rigidities (M2).

Furthermore, the impact of macro-uncertainty shocks on economic activity becomes negative

only with flexible prices. In turn, the positive response of output to monetary policy un-

certainty still persists although much diminished. These patterns of macro-uncertainty and

monetary policy uncertainty appear consistent with the inverse "Oi-Hartman-Abel" effects

of uncertainty previously explored in the work of Born and Pfeifer (2014).

The magnitude of the economic boost arising from these inverse "Oi-Hartman-Abel"

effects depends on the presence of nominal rigidities, weakening somewhat under Calvo

(1983) pricing relative to our benchmark under Rotemberg (1982) price adjustment costs.

As argued by Abel (1983), these effects suggest that risk-neutral entrepreneurs operating

with a convex cost structure respond with a small investment increase as price uncertainty

increases as a result of higher uncertainty. In other words, even when nominal rigidities are

low or prices are flexible, an economic impact can still arise in part from convex adjustment

costs on capital (real rigidities) which affect the price of physical capital (Tobin’s q) and

the capital’s resale value in (20) and (21). It can also arise in part due to the presence of

30The precautionary savings motive implies that risk-averse households cut back on consumption expen-
diture and generally work more today to build up their savings and self-insure against an uncertain future
(see, e.g., Carroll and Kimball (2008)). However, in a general equilibrium setting like ours, this mechanism
appears to have only a limited effect for time-varying uncertainty even with fairly high risk-aversion (M8).
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credit frictions since the capital demand is tied to a credit spread– a convex function of the

entrepreneurs’equity– which affects the borrowing costs of the entrepreneurs in (14).31

The response of output to the micro-uncertainty shock is almost two times larger on

impact in the benchmark (M1) than in the flexible prices case (M7). This shows that credit

frictions alone explain only part of the punch the model gets from micro-uncertainty shocks.

In other words, ineffi ciencies in the goods markets (nominal rigidities) are important to

amplify the impact of exogenous micro-uncertainty shocks. These results also hold whenever

we replace Rotemberg (1982) costs with Calvo (1983) pricing. The most significant difference

that emerges being that the average impact on economic activity of monetary policy shocks,

and to some extent of policy uncertainty shocks, is significantly attenuated with Calvo (1983)

(as seen in Figure 2). The effects of TFP and macro-uncertainty that we obtain also display

a degree of attenuation under Calvo (1983) pricing, but the impact on the propagation of

micro-uncertainty shocks on real economic activity is almost negligible.32

Comparing the benchmark (M1) with a costless credit monitoring model (M6), we see

that financial frictions do not qualitatively change the average response of the variables of

interest to TFP or to monetary policy shocks but do lower their magnitude. The removal of

credit monitoring costs does neither appear to alter much the response to macro-uncertainty

nor to policy uncertainty shocks (which are already small in the benchmark model, M1),

but implies that micro-uncertainty shocks have no effect. In other words, micro-uncertainty

shocks matter only in the presence of credit frictions.

Interestingly, removing internal habits on consumption has the effect of dampening the

average response of the credit spread to a TFP shock and boosting the average response of

output. In contrast, removing habits in consumption attenuates the real effects of micro-

uncertainty without much effect on credit spreads. The absence of consumption habits also

worsens the impact of monetary policy shocks on credit spreads and their drag on output. We

infer from this that internal habits on consumption downplay the business cycle contribution

of micro-uncertainty relative to the contribution of TFP and monetary policy shocks.

In summary, the evidence presented in Figure 2 based on the average responses over

all possible initial conditions suggests that the interaction between financial frictions and

31Fixed costs or partial irreversibilities can also introduce convexities in the model which we have not
considered here. Those types of convexities can result in agents delaying purchases when facing an increase
in uncertainty (a real option value of waiting motive). For more on this alternative channel through which
uncertainty propagates, see e.g. Bernanke (1983) and Pindyck (1988).
32It should be noted that modeling price rigidities with Calvo (1983) pricing rather than Rotemberg (1982)

costs can have more sizeable effects on nominal variables such as inflation as documented elsewhere in the
literature (see, e.g., Oh (2020)).
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nominal rigidities tempers the response of economic activity to TFP shocks. Similarly, the

response of economic activity to TFP shocks is more muted with internal habits. In con-

trast, the inclusion of those same frictions in the model makes the economy more sensitive

to micro-uncertainty. Monetary policy shocks require nominal rigidities, but otherwise their

real effects are dampened by the addition of financial frictions and internal habits. Macro-

uncertainty and monetary policy uncertainty shocks are of second-order importance, yet

nominal rigidities appear to be a modest amplifier, in particular of monetary policy uncer-

tainty shocks, through the inverse "Oi-Hartman-Abel" effects discussed earlier.

Non-Scalability and Asymmetry of the Unconditional Impulse Responses The

pruned third-order approximation of the nonlinear model solution allows for non-scalable

and asymmetric responses to positive and negative shocks. To explore those properties,

Figure 3 displays the response of output to ± one- and two-standard deviation shocks. For
the benchmark (M1), on average, the responses to negative and positive TFP shocks display

patterns close to be scalable and symmetric. Still, two-standard deviation TFP shocks lead

to a more pronounced hump-shaped response of output than one-standard deviation TFP

shocks. The magnitude of the response also falls a touch short of doubling on impact when

doubling the size of the TFP shock, and rises a bit less on impact in absolute value when

doubling the size of a negative TFP shock than when doubling it for a positive one. In

contrast, although the magnitude of the real effects caused by macro-uncertainty is the

smallest, here we observe a substantial degree of asymmetry and robust evidence of non-

scalability. Our findings show that larger macro-uncertainty shocks tend to produce more

front-loaded real effects that dissipate faster than smaller ones.

For micro-uncertainty shocks, the presence of nonlinearities is also noticeable. On impact,

a negative two-standard deviation micro-uncertainty shocks is more than 4% smaller in

absolute value than a positive two-standard deviation one. For monetary policy shocks,

the evidence of non-scalability and asymmetry is starker than that for other shocks with

first-order effects (TFP and micro-uncertainty shocks). A negative (expansionary) two-

standard deviation policy shock is, on average, almost 20% larger on impact in absolute value

than a positive (contractionary) two-standard deviation shock. A two-standard deviation

expansionary (negative) innovation boosts output on impact by about 2.16 times as much

as a one-standard innovation does while a two-standard contractionary (positive) innovation

lowers output only about 1.85 times as much as a one-standard innovation would. By

contrast, we find that the responses to negative and positive monetary policy uncertainty

shocks are close to being symmetric and scaling up.
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This suggests that, on average, the response of output to shocks does not always scale

up or behave symmetrically, unlike what we would observe in a linear model. Most notably,

these nonlinear features appear to be quantitatively most relevant for the propagation of

monetary policy shocks. We interpret this as evidence that the nonlinearities in the model

emerge also in part from the nominal rigidities present in the New Keynesian framework.33

4.2.2 Conditional Impulse Responses

Thus far, we have examined the average effect of shocks on key variables in our model.

However, in general, shocks in nonlinear models are not path-independent. That is, the

effect of the shocks could depend on the initial state of the economy. To get at this notion

of conditional responses, we consider generalized impulse responses defined as:

GIRFy=y0 (k,vt) =

∫
GIRF (k,vt,xt−1 = x) p (x|y = y0) dx, (38)

where k is again shorthand for the horizon of interest, vt refers to the shock innovations, and

p (x|y = y0) is the conditional density of the vector of states x implied by the model when

the endogenous variable y is initially at y0. That is, given that a variable y is initially at y0,

we average over the possible states consistent with this initial condition.

In the benchmark model (M1), the expected costs of monitoring defaulting entrepreneurs

are priced into the credit spreads that lenders charge on their loans. Hence, credit spreads

reflect the extent to which credit is distorted and entrepreneur risk (or financial risk) is

present and, thus, instances where the credit spread is high are thought to coincide with

episodes when financial conditions are poor. To show the interaction between financial

conditions and shocks, we consider a generalized impulse response analysis in which the

initial conditions correspond to states where the credit spread level is either high or low.34

We also explore the initial conditions on two other endogenous variables related to fi-

nancial conditions. First, the endogenous equity ratio which together with the exogenous

micro-uncertainty are the two components that determine the credit spread in (14). When

the equity ratio is high, the strength of the entrepreneurs’balance sheet acts as a financial

buffer since then entrepreneurs are less leveraged on external borrowed funds. Second, the

33On this point, see e.g. Balke et al. (2017b) (Figure 7) which explores conditional output responses in
the benchmark model (M1), abstracting from financial frictions (M6), and under flexible prices (M7).
34Balke (2000) also examines, in the context of a threshold VAR, whether the effects of shocks depend on

current credit conditions. More recently, the amplifying role of credit frictions for the effects of uncertainty
shocks has been explored empirically by Alessandri and Mumtaz (2019) and L’huissier and Tripier (2019).
For the asymmetric effects of shocks (monetary policy shocks), see e.g. Barnichon and Matthes (2018).
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nominal interest rate which together with the credit spread determines the cost of borrowing

for entrepreneurs in (14). Hence, when the nominal interest rate is elevated, borrowing costs

are high and financial conditions worsen, ceteris paribus.

The Amplification Effect of Financial Conditions Figure 4 displays the response of

output, the credit spread, and the nominal interest rate to the shocks with first-order effects

(TFP, micro-uncertainty, and monetary policy shocks) under the benchmark model (M1),

but conditional on the credit spread being either high or low. Specifically, we define high

spread initial states as states where the credit spread is roughly at the 95th percentile of its

unconditional distribution and low spread initial states as states where the credit spread is

at its 5th percentile.35 We observe that the effect of both macro-uncertainty and monetary

policy uncertainty shocks does not depend on current credit conditions. The responses are

virtually identical and tiny regardless of whether the spread is initially high or low and for

that reason we do not report them in Figure 4.36

In Figure 4, the output response to a positive TFP shock retains its hump-shaped form

regardless of whether credit spreads are high or low, but, at its peak four quarters into the

future, the impact is almost 10% higher when financial conditions are benign (low spread)

than when they are poor (high spreads). The contractionary effect of an increase in micro-

uncertainty when the spread is initially high is about 35% larger than when the spread is

initially low. Similarly, the contractionary effect on output of a positive monetary policy

shock is about 20% more severe on impact when financial conditions are poor (high spreads).

The increase in the credit spread in response to TFP, monetary policy, and micro-

uncertainty shocks is larger when the spread is already high. This is particularly striking

for micro-uncertainty shocks– the effect on the credit spread of a positive micro-uncertainty

shock is about 80% larger on impact when the credit spread is initially high as opposed to

when the spread is initially small. Moreover, we find that the effect of a positive monetary

policy shock on the credit spread is smaller than that of a TFP shock and at least one order

35For impulse responses conditional on variable y being at its ι-th percentile, y(ιth), we average the re-
sponses for initial conditions corresponding to realizations from the unconditional distribution where variable
y ∈ [y(ι− .3)th, y(ι+ .3)th]. Given our 20, 000 draws of the unconditional distribution, we therefore end up
averaging over 121 initial conditions.
36Cacciatore and Ravenna (2020) show that second-moment shocks in general propagate linearly in a

pruned third-order approximation model solution, altough the unpruned solution could allow for some state-
dependence. In our model, the loan contracting problem implies sizeable first-order effects from a second-
moment shock (micro-uncertainty). Micro-uncertainty can, therefore, display significant path-dependence
even if macro-uncertainty and monetary policy uncertainty shocks behave largely as predicated by Cacciatore
and Ravenna (2020). Balke et al. (2017b) (Figures 2 to 5) show some further evidence of this looking at the
tails of the distribution of the endogenous credit spread and of the exogenous micro-uncertainty.
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of magnitude lower than that of a micro-uncertainty shock.

These results suggest that, if current credit conditions are poor (high spread), then the

effect of a supply-side (TFP) shocks tends to be dampened while the effect of contrac-

tionary monetary or financial shocks (a positive monetary policy shock or a positive micro-

uncertainty shock) is substantially magnified. Micro-uncertainty works primarily through

its impact on the credit spread, while the amplification of monetary policy shocks has quite

small effects on the credit spread and operates primarily through raising the financial inter-

mediaries’cost of attracting household savings through deposits. Simply put, what happens

is that the increase in the nominal interest rate caused by the same monetary policy shock

leads to higher overall external borrowing costs for the entrepreneurs when the credit spread

is initially high than if financial conditions were good (low spread).

Figure 5.A and Figure 5.B display the response of the same variables (output, credit

spread, and nominal interest rate) to the three shocks with first-order effects (TFP, micro-

uncertainty, and monetary policy shocks) conditional on whether the credit spread, the

equity ratio, and the nominal interest rate are initially high or low. The generalized impulse

responses conditional on the credit spread and the equity ratio are plotted in Figure 5.A while

the responses conditional on the credit spread and the nominal interest rate are compared

in Figure 5.B. We continue to take high initial states to be where each of the variables is

roughly at the 95th percentile of its unconditional distribution and low initial values when

roughly at the 5th percentile.

We find in Figure 5.A that a high equity ratio can act as a financial buffer. The response

of output to monetary policy shocks shows that a stronger balance sheet position of the

entrepreneurs means the economy is in a better position to absorb the impact from a positive

(contractionary) monetary policy shock and limit the resulting output drag. Indeed, we find

that the output decline is about 10% smaller on impact in response to a positive monetary

policy shock if the equity ratio is high than if it is low, while simultaneously, the increase

in the credit spread when the equity ratio is high is fairly similar to the increase observed

when the credit spread itself is initially low.

Even more strikingly, we show in Figure 5.B that positive (contractionary) monetary

policy shocks have much larger effects when they are conditional on interest rates than when

conditional on credit spreads (whether high or low). Moreover, the response of output is

about 15% lower and the credit spread increases somewhat if initial interest rates are low

rather than high. This suggests that the demand for capital implied by (14) tends to be

more elastic when interest rates are initially high than when it is initially low.

Moreover, the effect of TFP and micro-uncertainty shocks on the credit spread is more
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compressed when comparing initial conditions where the nominal interest rates are initially

high and low, than when spreads are initially high and low. Also, the transmission of TFP

shocks is perhaps most distinctly affected by whether tight financial conditions arise from

high spreads or high nominal interest rates. As we see in Figure 5.B, on impact, the output

boost is more than 20% lower when nominal interest rates are initially low than when credit

spreads are initially low, but at its peak in the fourth quarter output is about 4.5% higher.

Finally, to explore the contribution of each shock to the credit spread, Figure 6 displays

the scatter plots implied by the unconditional model-implied distribution of the credit spread

against each of the five shocks separately (TFP, monetary policy, macro-uncertainty, pol-

icy uncertainty, and micro-uncertainty).37 These scatter plots show that there is a strong

relationship between the exogenous micro-uncertainty and the endogenous credit spread.

The correlation coeffi cient between exogenous micro-uncertainty and the endogenous credit

spread is 0.84. Interestingly, this relationship also appears to be nonlinear to some extent. In

contrast, none of the other shocks appear to have a strong relationship with the credit spread.

This indicates that the credit spread fluctuations largely arise from the micro-uncertainty

shock and to a much lesser extent from the endogenous response to other shocks.38

Business cycle fluctuations and their relation with time-varying own uncertainty.
While we have established earlier that the response of key variables varies conditional on

current financial conditions, the responses to shocks are also conditional on their own un-

certainty. Figure 7 displays the responses of output, the credit spread, and the nominal

interest rate to TFP, micro-uncertainty, and monetary policy shocks conditional on their

own uncertainty being high (95th percentile) or low (5th percentile). For comparison, we also

include the responses when credit spreads are initially high or low.39

We observe that, for micro-uncertainty, the responses of output to shocks conditional on

the level of micro-uncertainty are very similar to the output responses conditional on the

initial credit spread. Given the relatively strong relationship between realizations of micro-

uncertainty and the credit spread shown previously in Figure 6, this is to be expected. We

37Balke et al. (2017b) (Figures 12 to 13) provide the joint distribution of the credit spread against other
economically-relevant variables of the model as well.
38The correlations between the spread and {at,mt, σ̂a,t, σ̂m,t} are {0.07, 0.00, 0.00, 0.00}, respectively.

These shocks affect the numerator and denominator of the equity ratio roughly in a similar proportion.
As a result, this elicits only a modest endogenous response of the credit spread. Consequently, exogenous
changes in micro-uncertainty end up being the dominant force on the spread.
39The responses of output, the credit spread, and the nominal interest rate to TFP, micro-uncertainty, and

monetary policy shocks conditional on other uncertainty types except their own are very similar whether
those other uncertainty types are high (95th percentile) or low (5th percentile). Further details on that can
be found in Balke et al. (2017b) (see, e.g., Figures 1, 6, and 10).
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also find in Figure 7 that the output response to TFP shocks and monetary policy shocks is

larger when their own uncertainty is high, primarily for the obvious reason that a high level

of their own uncertainty means the size of the shocks is larger too.

Furthermore, the range of TFP and monetary policy effects between low and high levels

of their own uncertainty is ostensibly higher than the range we observe between low and

high credit spreads. In fact, the economic contraction resulting from a positive monetary

policy shock when monetary policy uncertainty is initially high almost triples that which we

observe when financial conditions are poor (as measured by high spreads). This large output

sensitivity to monetary policy shocks when their own uncertainty is time-varying is what

ultimately explains the large fall in business cycle volatility that we detect in Table 3 when

we remove monetary policy uncertainty from the benchmark model (M5 vs. M1).

5 Concluding Remarks

In this paper we examine the interaction between uncertainty (stochastic volatility) and

credit frictions arising from asymmetric information and costly monitoring through the lens

of a mainstream New Keynesian model. We estimate the key structural parameters by the

Simulated Method of Moments (SMM) relying on a pruned third-order approximation to the

model solution, calculate various business cycle moments, and conduct an extensive analysis

of the nonlinearities of the model in the propagation of shocks through impulse responses.

Notably, we find that contractionary monetary policy shocks have a significantly lower

average response than expansionary shocks of equal size (when compared in absolute value).

Furthermore, those differences widen with larger monetary policy shock realizations at the

tails of the distribution. In other words, the transmission mechanism of monetary policy is

such that monetary policy shocks are, on average, more effective at providing accommoda-

tion than at removing it. The asymmetric and non-scalability features on the responses of

monetary policy shocks and even of TFP shocks are, to be sure, sensitive to the degree and

type of nominal rigidities built into the model as well as to the presence of credit frictions.

Similar to Christiano et al. (2014) and Cesa-Bianchi and Fernández-Corugedo (2018),

we observe that second-moment financial risk or micro-uncertainty shocks have first-order

effects of comparable magnitude to first-moment shocks to TFP or monetary policy even

when the degree of credit frictions is not particularly severe. However, we also find that the

interaction between micro-uncertainty and credit frictions goes beyond just the amplification

of these micro-uncertainty shocks. Unlike the previous literature, we show that conditioning
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on financial conditions (credit spreads)– or on micro-uncertainty to the extent that it is

the most significant driver of credit spreads– has a significant qualitative and quantitative

impact on the endogenous responses of other shocks with first-order effects in the model.

We find that the contractionary effect of an increase in micro-uncertainty tends to be

larger when the current credit spread is high (indicating a deteriorating credit environ-

ment). Moreover, poor credit conditions temper the economic boost from a positive TFP

shock while exacerbate the drag on economic activity from a contractionary monetary policy

shock. Hence, we see that the transmission mechanism of monetary policy is impacted as the

propagation of monetary policy shocks is shown to depend on the level of micro-uncertainty

and, more broadly, on the prevailing financial conditions. The responses of shocks with first-

order effects also deteriorate whenever balance sheets are impaired and with tight credit

conditions resulting from high nominal interest rates or elevated credit spreads.

Finally, we find that the interaction of credit frictions with macro-uncertainty and mon-

etary policy uncertainty produces relatively small effects. The resulting small boost to

economic activity partly reflects the sort of inverse "Oi-Hartman-Abel" effects identified in

Born and Pfeifer (2014). Monetary policy uncertainty in particular, due to the output sen-

sitivity to monetary shocks in the presence of nominal rigidities, is shown to account for a

sizeable fraction of the business cycle volatility explained by the model.

We leave for future research incorporating longer-term financial contracts, particularly

loan contracts set in nominal terms, into the specification. Furthermore, in the model, net

worth is largely affected by the price of capital; the size of fluctuations in the price of capital

depends, in turn, largely on the adjustment costs on capital. Adding a stronger asset price

channel might generate greater fluctuations in net worth and larger endogenous movements

in the credit spread. We leave that and other avenues of research on the functioning of credit

markets in general equilibrium for future research as well.40

40There may be also other non-financial frictions that we are not considering in our benchmark that could
be important to explore in the future. If there were other frictions that interact with uncertainty (e.g.,
firm hiring decisions or firm-specific adjustment costs), then uncertainty can also have an additional impact
independent of credit frictions.
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7 Appendix

7.1 Solution Strategy: Pruned Third-Order Approximation

The equilibrium conditions that characterize the model solution can be compactly stated as:

Etf (yt+1,yt,xt+1,xt,vt+1,vt) = 0, (39)

where Et denotes the mathematical expectations operator conditional on information avail-
able at time t, yt is a vector of ny control variables expressed in logs, xt is a vector of nx
state variables in logs, and the vector vt contains all nv structural shock innovations. The

nonlinear equilibrium relationships of the model are represented with the functional operator

f (·). The solution to (39) can be cast with the following measurement and state equations:

yt = g (xt, τ) , (40)

xt+1 = h (xt, τ) +τΣvt+1, (41)

where Σ is an nx × nv variance-covariance matrix of the shock innovations and τ is the

perturbation parameter scaling it. We use a third-order approximation to functions g (·)
and h (·) around the deterministic (zero-net inflation) steady state where xt = x and τ = 0.

The first, second, and third partial derivatives of g (·) and h (·) with respect to the
components of xt and the perturbation parameter τ are used to compute the pruned third-

order approximation. Pruning eliminates terms of order higher than three from the impulse

responses and other dynamic analysis as these higher order terms can lead to dynamic

instability, as suggested by Andreasen et al. (2018).41 If the first-order approximation is

stationary, then so are the pruned second- and third-order approximations. Here, the pruned

41We also investigated the unpruned third-order approximation, but the resulting impulse response func-
tions and dynamics are almost indistinguishable from the pruned ones. We only find noticeable, but very
tiny differences in the responses to monetary policy shocks. Those results are not included in the paper to
economize on space.
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third-order approximation has the following form:

yrdt = gx

(
xft + xst + xrdt

)
+ 1

2
Gxx

((
xft ⊗ xft

)
+ 2

(
xft ⊗ xst

))
...

+ 1
6
Gxxx

(
xft ⊗ xft ⊗ xft

)
+ 1

2
gτττ

2 + 3
6
gττxτ

2xft + 1
6
gττττ

3,
(42)

xft+1 = hxx
f
t + τΣvt+1, (43)

xst+1 = hxx
s
t +

1

2
Hxx

(
xft ⊗ xft

)
+

1

2
hτττ

2, (44)

xrdt+1 = hxx
rd
t +Hxx

(
xft ⊗ xst

)
+

1

6
Hxxx

(
xft ⊗ xft ⊗ xft

)
+

3

6
hττxτ

2xft +
1

6
hττττ

3, (45)

where yrdt are the pruned third-order approximations of the control variables, xft are state

variables based on the first-order approximation, xst are the state variables second-order

approximation terms, and xrdt are the state variables third-order terms. The first-order

derivatives are: gx (ny × nx matrix) and hx (nx × nx matrix). The second-order derivatives
are: Gxx (ny×n2

x matrix), Hxx (nx×n2
x matrix), gττ (ny×1 vector), and hττ (nx×1 vector).

The third-order derivatives are: Gxxx (ny×n3
x matrix), Hxxx (nx×n3

x matrix), gττx (ny×nx
matrix), hττx (ny×nx matrix), gτττ (ny×1 vector), and hτττ (nx×1 vector). We use Dynare

to find the first-, second-, and third-order perturbation solutions and extract the matrices

relevant to compute the pruned third-order approximation.

7.2 Modeling Mean-Preserving Stochastic Volatility

At a general level, uncertainty is defined as the conditional volatility (second-moment) of a

disturbance that is unforecastable by economic agents and arises independently of economic

and policy shocks. We model second-moment shocks as mean-preserving stochastic volatility

to prevent, in turn, those second-moments shocks from having first-order effects on the first-

moment economic and policy shocks under log-normality.

As discussed in greater detail in Balke et al. (2017b), in our model all shock processes

with stochastic volatility– aggregate productivity (TFP), idiosyncratic productivity, and

monetary policy shocks, i.e., zt ∈ {at, ln (ωt) ,mt}– can be cast in canonical form:

zt = µz,t + ρz
(
zt−1 − µz,t−1

)
+ σze

σ̂z,tεz,t, (46)

µz,t = −
(
σze

σ̂z,t
)2

2
+ (ρz)

2 µz,t−1, (47)

σ̂z,t = υzσ̂z,t−1 + ηzuz,t, (48)
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where σ̂z,t = lnσz,t − lnσz and σz,t ≡ σze
σ̂z,t . The innovation terms εz,t and uz,t are i.i.d.

N (0, 1) and uncorrelated. Differences between conditional and unconditional moments of

the distribution can arise under this canonical form– hence, we must note that the notion

of mean-preserving spread that we adopt in this paper is that of a mean-preserving spread

conditional on the history of the volatility shocks.

Any shock zt ∈ {at, ln (ωt) ,mt} is specified in logs as a stochastic (Gaussian) process,
but appears in the model equilibrium conditions in levels (as ezt). Under the assumption of

log-normality, an increase in σz,t increases not only the variance of the shock (the dispersion

for ezt) but also the expected mean value of ezt. Since we are interested in mean-preserving

spreads that arise solely because of shifts in the dispersion of the distribution and not from

indirect effects coming through the mean, we introduce a recursive correction given in (47)

that reverses the conditional mean-effect of volatility on the time-varying conditional mean

of the shock process µz,t.

To show that this recursive correction is conditional mean-preserving, note first that zt
and µz,t can be expanded backwards as follows:

zt = µz,t +
∑∞

i=0
(ρz)

i σz,t−iεz,t−i, (49)

µz,t = −
∑∞

i=0

(
ρ2
z

)i σ2
z,t−i

2
. (50)

When we compute the mean of the process ezt conditional on the history of the volatility

shocks, we obtain the following expression under the time-varying conditional mean (µz,t)

recursion given in (47):

E [ezt | σz,t−i, i = 0, ...,∞]

= E

[
e
µz,t+

∑∞

i=0
(ρz)iσz,t−iεz,t−i | σz,t−i, i = 0, ...,∞

]

= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
E

e
(∑∞

i=0
(ρz)iσz,t−iεz,t−i

)
| σz,t−i, i = 0, ...,∞


= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
e
E

(∑∞

i=0
(ρz)iσz,t−iεz,t−i|σz,t−i,i=0,...,∞

)
+ 1
2
V

(∑∞

i=0
(ρz)iσz,t−iεz,t−i|σz,t−i,i=0,...,∞

)

= e

(
−
∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
e

(∑∞

i=0
(ρ2z)

i σ
2
z,t−i
2

)
= 1, (51)

which follows given that εz,t are i.i.d. N(0, 1) innovations. As a result, this shows that the
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recursive correction proposed in (47) ensures that the conditional mean of the shock zt in

levels is not affected by a change in the second moment σz,t. This is the sense in which the

specification of the stochastic volatility shocks is said to be mean-preserving in our model.

Finally, we consider the implications that this mean-preserving correction has on the

steady state. The standard way we characterize the deterministic steady state is: (a) to

assume that εz,t and uz,t are replaced by their unconditional means (i.e., replaced by E (εz,t) =

E (uz,t) = 0), and (b) to drop the time subscript in the corresponding dynamic equations

in the canonical form. Based on that logic, we get the following set of equations for the

deterministic steady state:

z = µz = −1

2

σ2
z

1− ρ2
z

, (52)

σ̂z = 0, (53)

for each z ∈ {a, ln (ω) ,m}. This describes the steady state for all shocks z under our

conditional mean-preserving recursive correction.
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