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This paper introduces the idea of self-instrumenting endogenous regressors in settings 
when the correlation between these regressors and the errors can be derived and used to 
bias-correct the moment conditions. The resulting bias-corrected moment conditions are 
less likely to be subject to the weak instrument problem and can be used on their own or 
in conjunction with other available moment conditions to obtain more efficient estimators. 
This approach can be applied to estimation of a variety of models such as spatial and 
dynamic panel data models. This paper focuses on the latter, and proposes a new 
estimator for short T dynamic panels by augmenting Anderson and Hsiao (AAH) estimator 
with bias-corrected quadratic moment conditions in first differences which substantially 
improve the small sample performance of the AH estimator without sacrificing on the 
generality of its underlying assumptions regarding the fixed effects, initial values, and 
heteroskedasticity of error terms. Using Monte Carlo experiments it is shown that AAH 
estimator represents a substantial improvement over the AH estimator and more 
importantly it performs well even when compared to Arellano and Bond and Blundell and 
Bond (BB) estimators that are based on more restrictive assumptions, and continues to 
have satisfactory performance in cases where the standard GMM estimators are 
inconsistent. Finally, to decide between AAH and BB estimators we also propose a 
Hausman type test which is shown to work well when T is small and n sufficiently large. 
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1 Introduction

Analysis of linear dynamic panel data models where the time dimension (T ) is short relative to

the cross section dimension (n), plays an important role in applied research. The estimation of

such panels is carried out predominantly by the application of the Generalized Method of Moments

(GMM) after first-differencing.1 This approach utilizes instruments that are uncorrelated with the

errors but are potentially correlated with the target variables (the included regressors). A num-

ber of well-known GMM estimation methods have been advanced in the literature.2 The GMM

methods apply to autoregressive (AR) panels as well as to AR panels augmented with strictly or

weakly exogenous regressors and are developed under fairly general moment conditions, which is

important for applied work. However, the GMM methods are subject to a number of well-known

drawbacks. Anderson and Hsiao (1981 and 1982)’s estimator of AR(1) panels has poor small sam-

ple performance due to weak correlations between the regressors and the instruments when the

autoregressive coeffi cient is moderately large (see, e.g. Arellano, 1989). Subsequently proposed

GMM estimators have better small sample performance but at the cost of more restricted assump-

tions. The popular first-difference GMM estimator due to Arellano and Bond (1991) uses lagged

levels rather than first-differences as instruments, and the system GMM approach by Blundell and

Bond (1998) considers additional moment conditions that help identification but impose stronger

requirements on the initialization of the dynamic processes. In particular, as discussed in Section

2, the system GMM approach does not allow for the initial values to differ systematically from the

long-run means.

This paper proposes a novel idea of self-instrumenting the endogenous regressors in settings

where the correlation between the regressors and the errors can be derived instead of searching

for instruments that are uncorrelated with the error terms. The resulting ‘bias-corrected’moment

conditions are less likely to be subject to the weak instrument problem and can be used on their own

and/or augmented with other available moment conditions to obtain more effi cient estimators. Our

idea differs from the wide variety of the bias-corrected estimation methods in the literature, which

correct a first-stage estimator for small-T bias and tend to be applicable under more restrictive

1Other approaches in the literature include the likelihood-based methods (Hsiao et al., 2002, Lancaster, 2002,
Moral-Benito, 2013, Hayakawa and Pesaran, 2015, and Dhaene and Jochmans, 2016), X-differencing method (Han
et al., 2014), factor-analytical method (Bai, 2013), and bias-correction methods mentioned below.

2Anderson and Hsiao (1981 and 1982), Holtz-Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt
(1995), Arellano and Bover (1995), Blundell and Bond (1998), and Hayakawa (2012), among others. A recent
contribution by Breitung, Hayakawa, and Kripfganz (2019) is also an interesting addition to the GMM literature.
Their bias-corrected methods of moments estimator requires homoskedastic errors over time.
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assumptions.3 Instead of correcting the bias of standard GMM estimators, we consider correcting

the ‘bias’of the moment conditions before estimation. The idea of self-instrumenting has wide-

ranging applications for robust estimation and inference in settings where the correlation between

the regressors and the errors can be derived. This paper focuses on dynamic panels. Another

application is the estimation of spatial panel data models which is pursued in Pesaran and Yang

(2021).

By self-instrumenting lagged differences, we develop a simple bias-corrected methods of moment

(BMM) estimator under general conditions on initialization of the underlying dynamics, individual

effects, with (possibly) heteroskedastic error variances over time as well as cross-sectionally. The

resultant moment conditions turn out to be quadratic, and only reduce to linear moment conditions

if the underlying AR processes are stationary. In this special case we show the BMM estimator to

be identical to the first difference least square estimator proposed by Han and Phillips (2010). We

establish consistency and asymptotic normality of the BMM estimator under general conditions

and discuss its relation to a variety of GMM estimators proposed in the literature. These results

help illustrate the important role played by the initialization of the AR processes in the case of

short T panels.

We also consider augmenting the bias-corrected moment conditions with other moment condi-

tions available in the literature, and for maximum robustness to assumptions regarding individual

effects and initial values we focus on Anderson and Hsiao type moment conditions obtained from us-

ing appropriately lagged first differences as instruments. Accordingly, we propose a new augmented

Anderson and Hsiao (AAH) estimator which substantially improve the small sample performance

of the AH estimator without sacrificing on the generality of its underlying assumptions. The AAH

estimator holds under less restrictive conditions imposed by other prevalent GMM estimators pro-

posed by Arellano and Bond (AB), and Blundell and Bond (BB) in the literature, and is more

generally applicable. To test the validity of the BB moment conditions, we propose a Hausman

type test based on the difference between BB and AAH estimators, not previously considered in

3See, for example, methods based on exact analytical bias formula or its approximation, Bruno (2005), Bun (2003),
Bun and Carree (2005, 2006), Bun and Kiviet (2003), Hahn and Kuersteiner (2002), Hahn and Moon (2006), Juodis
(2013), and Kiviet (1995, 1999); simulation-based bias-correction methods by Everaert and Ponzi (2007), and Phillips
and Sul (2003, 2007); the jackknife bias corrections by Dhaene and Jochmans (2015), and Chudik, Pesaran, and Yang
(2018); or the recursive mean adjustment correction procedures, Choi et al. (2010)). Most of these bias-correction
techniques do not apply to short-T type panels where the error variances are heteroskedastic (over i and t), with
the exception of Juodis (2013), and the simulation-based bias-correction method of Everaert and Ponzi (2007). A
comparative analysis of GMM estimators considered in this paper and bias correction estimators is a welcome addition
to the literature but lies beyond the scope of the present paper.
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the literature.

Monte Carlo (MC) experiments document AAH’s good small sample performance in comparison

with a number of GMM estimators. Perhaps not surprisingly the AAH estimator represents a sub-

stantial improvement over the AH estimator across all designs considered. When compared to AB

and BB estimators, the AAH is less effi cient in designs that satisfy the more restrictive assumption

that underlie BB estimators, but continues to perform well uniformly across the various designs

including in cases where the system-GMM type estimators are not consistent. The robustness of

the AAH estimator is an important advantage since in practice it is not known if the additional

restrictions of the AB and BB estimators are met.

The remainder of this paper is organized as follows. Section 2 sets up the baseline panel AR(1)

model and discusses AH and subsequent GMM moment conditions. Section 3 introduces the main

idea and presents a simple BMM estimator. Section 4 introduces the AAH estimator and discusses

the related literature, in particular Ahn and Schmidt (1995, 1997). Section 5 discusses extensions

of AAH estimator to ARX and VAR short-T panel data models. Section 6 discusses the problem

of moment proliferation and adopts the One Covariate at the time Multiple Testing approach by

Chudik, Kapetanios, and Pesaran (2018) for selection of relevant subset of AAH moments for

estimation and inference. Section 7 presents MC evidence, and the last section concludes and

discusses avenues for future research. Further results and discussions are provided in an Appendix,

including additional Monte Carlo evidence for panel ARX designs, and an empirical application to

earning dynamics using Panel Study of Income Dynamics dataset of Meghir and Pistaferri (2004).

2 Panel AR(1) model

We begin with a simple panel AR(1) model to set out the main idea. Specifically, consider the

following dynamic panel data model

yit = αi + φyi,t−1 + uit, for i = 1, 2, ..., n, (1)

where {αi, 1 ≤ i ≤ n} are unobserved unit-specific effects, uit is the idiosyncratic error term, and

yit are generated from the initial values, yi,−mi for mi ≥ 0, and t = −mi + 1,−mi + 2..., 1, 2, ..., T .
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Using (1) to solve for the initial observations yi0, we obtain

yi0 = φmiyi,−mi + αi

(
1− φmi
1− φ

)
+

mi−1∑
`=0

φ`ui,−`. (2)

It is assumed that available observations for estimation and inference are yit, for i = 1, 2, ..., n,

and t = 0, 1, 2, ..., T (a total T + 1 observations on y). For the implementation of the proposed

estimator we require T ≥ 3, although under mean and variance stationarity identification of φ could

be achieved even if T = 2, namely if the panel covers three time periods.

ASSUMPTION 1 (Parameter of interest) The true value of φ, denoted by φ0, is the parameter

of interest, and it is assumed that φ ∈ Θ, where Θ ⊂ (−1, 1] is a compact set.4

In the case where |φ| < 1, and mi → ∞, then E (yit) = E (αi) / (1− φ) for all t. We set

µi = αi/ (1− φ) and refer to µi as the long-run mean of yit, even if mi is finite. However ,in the

unit-root case (φ = 1), µi is not defined and to avoid incidental linear trends we set αi = 0 when

φ = 1. .

Taking first differences of (1), we have

∆yit = φ∆yi,t−1 + ∆uit, (3)

for t = 2, 3, ..., T , and i = 1, 2, ..., n; but ∆yi1 is given by

∆yi1 = bi,mi + ui1 − (1− φ)

mi−1∑
`=0

φ`ui,−`, (4)

where

bi,mi = −φmi (1− φ) (yi,−mi − µi) . (5)

The relations (4) and (5) show how the deviations of starting values from the long-run means,

given by (yi,−mi − µi), affect ∆yi1. The initialization effect is given by bi,mi and tends to zero if

|φ| < 1, E |yi,−mi − µi| < C, and mi →∞. We aim for a minimal set of assumptions on the starting

values and individual effects, since in practice such assumptions are diffi cult to ascertain and, as

our Monte Carlo results show, can have important consequences for estimation and inference when

mi and T are both small.
4Our theory applies for all finite values of φ so long as T and mi are fixed as n → ∞. We focus on −1 < φ ≤ 1,

since we believe these values are most relevant in empirical applications.
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We assumemi is finite and consider the following assumptions on the errors, uit, and the starting

values, yi,−mi .

ASSUMPTION 2 (Idiosyncratic errors) For each i = 1, 2, ..., n, the process {uit, t = −mi + 1,

−mi + 2, ..., 1, 2, ..., T} is distributed with mean 0, E
(
u2
it

)
= σ2

it, and there exist positive constants

c and C such that 0 < c < σ2
it < C. Moreover, σ̄2

tn ≡ n−1
∑n

i=1 σ
2
it → σ̄2

t as n → ∞, and

supitE |uit|4+ε < C for some ε > 0. For each t, uit is independently distributed over i. For each i,

uit is serially uncorrelated over t.

ASSUMPTION 3 (Initialization and individual effects) Let bi,mi ≡ −φmi [(1− φ) yi,−mi − αi]

and ς2
i = E

(
b2i,mi

)
. Then ς̄2

n ≡ n−1
∑n

i=1 ς
2
i → ς̄2 as n → ∞, and supiE |bi,mi |

4+ε < C for some

ε > 0. In addition, bi,mi is independently distributed of
(
bj,mj , ujt

)′ for all i 6= j, i, j = 1, 2, ..., n,

and t = −mj + 1,−mj + 2, ..., 1, 2, ..., T , and the following conditions hold:

E (∆uitbi,mi) = 0, for i = 1, 2, ..., n, and t = 2, 3, ..., T . (6)

Remark 1 Assumption 2 does not allow the errors, uit, to be cross-sectionally dependent, as is

customary in the GMM short-T panel data literature, and together with Assumption 3 ensures also

that ∆yit is cross-sectionally independent. When errors are weakly cross-sectionally correlated, in

the sense defined in Chudik, Pesaran, and Tosetti (2011), then the BMM estimators proposed in

this paper remain consistent, but the inference based on them will no longer be valid.

Remark 2 Assumption 2 allows errors to be unconditionally heteroskedastic over time t and across

units i.

Remark 3 Assumption 3 allows for E (bi,mi) to vary across i, and therefore, in view of (3)-(4),

E (∆yit) can vary across both i and t.

2.1 Assumptions underlying GMM estimators

It is important to compare our assumptions on the individual effects and the starting values with

those maintained in the GMM literature. Under Assumptions 2 and 3, initial first-differences, ∆yi1,

given by (4) have fourth-order moments and the following moment conditions, which are key to our

estimation method, hold

E (∆yis∆uit) = 0, for i = 1, 2, ..., n, s = 1, 2, ..., t− 2, and t = 3, 4, ..., T. (7)
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Anderson and Hsiao (1981, 1982) have been the first to utilize this type of moment conditions.

In particular, they consider instrumenting ∆yit−1 with ∆yit−2 and obtain a simple estimator by

averaging moments E (∆yit−2∆uit) = 0 over t = 3, 4, ..., T .5

The subsequent GMM estimators advanced by Arellano and Bond (1991), Arellano and Bover

(1995), and Blundell and Bond (1998) require stronger conditions on the initial values and the

individual effects as compared to (7). In addition, the subsequent GMM literature does not average

individual moment conditions over time, but combine them effi ciently. The first-difference GMM

approach considered by Arellano and Bond (1991) assumes

E (yis∆uit) = 0, for i = 1, 2, ..., n, s = 0, 1, 2, ..., t− 2, and t = 2, 3, ..., T , (8)

which imply (7) but are not required for the moment conditions in (7) to hold. It is clear that

the estimator based on (8) will depend on the distributional assumptions regarding the individual

effects, whereas an estimator based on (7) need not depend on the distributional assumptions

regarding the individual effects.6

In addition to (8), the system GMM approach proposed by Arellano and Bover (1995) and

Blundell and Bond (1998) also requires that7

E [∆yi,t−1 (αi + uit)] = 0, for i = 1, 2, ..., n; and t = 2, 3, ..., T. (9)

These additional restrictions impose further requirements on the errors and the initial values. To

see this, first note that iterating (3) from t = 1 and using (4) we have

∆yit = φt−1

[
bi,mi + ui1 − (1− φ)

mi−1∑
`=0

φ`ui,−`

]
+

t−2∑
`=0

φ`∆ui,t−`. (10)

5 In adition to ∆yit−2 Anderson and Hsiao (1981, 1982) also considered using yit−2 as instrument.
6Suppose that |φ| < 1, and consider the case where mi is finite, namely, 0 ≤ mi < K, and consider the following

initial values yi,−mi = µi + υi, where E (υi) = 0, and E (υi∆uit) = 0, for i = 1, 2, ..., n, and t = 3, 4, ..., T . υi
measures the extent to which the initial values yi,−mi deviate from the long-run means, µi. Under this specification
of initial values, ∆yit, for t = 0, 1, ..., T and all i does not depend on µi, and estimator based on (7) will not depend
on the distributional assumptions about µi.

7The complete set of moment conditions is E [∆yis (αi + uit)] = 0, for i = 1, 2, ..., n, s = 1, 2, ..., t − 1, and
t = 2, 3, ..., T . The set of conditions in (9) contains the T − 2 moment conditions in the system GMM approach that
are not redundant.
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Since for all i, uit’s are assumed to be serially uncorrelated, then condition (9) is met if

φt−2E [bi,mi (αi + uit)]+φ
t−2E (ui1αi)+(φ− 1)φt−2

mi−1∑
`=0

φ`E (αiui,−`)+
t−3∑
`=0

φ`E (αi∆ui,t−`−1) = 0,

for i = 1, 2, ..., n; and t = 2, 3, ..., T . In the case where mi → ∞, the first term vanishes and the

moment conditions (9) will be satisfied if E (uitαi) = 0, for all i and t ≤ T − 1. If mi is finite it is

further required that E [bi,mi (αi + uit)] = 0, unless φ = 0. Now using (5) and noting that |φ| < 1,

we have8

E [bi,mi (αi + uit)] = −φmi (1− φ)E [(yi,−mi − µi) (αi + uit)]

= −φmi (1− φ)E [(yi,−mi − µi)αi] .

Therefore, when mi is finite for the moment conditions (9) to hold we must have

E [µi (yi,−mi − µi)] = 0, for i = 1, 2, ..., n. (11)

This condition requires that for each i, individual effects are uncorrelated with the deviations of

initial values from their long-run means, µi. These restrictions might not hold in practice. For

example, condition (11) is violated when µi 6= 0 and yi,−mi = 0.

It is true that by imposing additional restrictions on individual effects and starting values it

might be possible to obtain a more effi cient estimator of φ. However, it is also desirable to seek

estimators of φ that are consistent under reasonably robust set of assumptions on starting values,

individual effects, and error variances. Seen from this perspective, Assumption 3 is less restrictive

than the assumptions that underlie the moment conditions used in the existing GMM literature.

When comparing GMM estimators, it is also worth noting from (10) that if |φ| < 1 and {yit} are

initialized in a distant past (with mi →∞), then ∆yit will no longer depend on αi and renders the

BMM and Anderson-Hsiao estimators invariant to the individual effects. However, this is not the

case for the GMM estimators that make use of lagged values of yit in construction of their moment

conditions. As a result, the performance of such GMM estimators can be affected by the ratio∑n
i=1 V ar (αi) /

∑n
i=1 V ar (uit). See Blundell and Bond (1998) and Binder et al. (2005) for further

discussions. Of course, if it can be assumed that mi is large for all i, then many of the issues raised

8Note that by assumption E (uitαi) = 0 = E (uityi,−mi), for t = 2, 3, ....
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surrounding the validity of the GMM moments discussed above might not arise. However, in most

empirical micro applications where there are entry and exit of firms/households, the assumption

that mi is large across all i could still be highly restrictive. In the case of the earnings dynamics

regressions presented in Section A6 of the Appendix, BB restrictions are far from innocuous, and

the Hausman test, which we propose in Subsection 4.1 below, strongly rejects the validity of the

BB restrictions.

3 BMM estimation of short-T AR(1) panels

We consider the first-differenced version of the panel AR model (3), but instead of using instru-

ments for ∆yi,t−1 that are uncorrelated with the error terms, ∆uit, we propose a self-instrumenting

procedure whereby ∆yi,t−1 is ‘instrumented’for itself, but the population bias due to the non-zero

correlation between ∆yi,t−1 and ∆uit is corrected accordingly. The advantage of using ∆yi,t−1 as an

instrument lies in the fact that by construction it has maximum correlation with the target variable

(itself), so long as we are able to correct for the bias that arises due to Cov (∆yi,t−1,∆uit) 6= 0. To

summarize, GMM searches for instruments that are uncorrelated with the errors but are suffi ciently

correlated with the target variables. Instead, we propose using the target variables as instruments

but correct the moment conditions for the non-zero correlations between the errors and the in-

struments. Both approaches employ method of moments, but differ in the way the moments are

derived.

Using ∆yi,t−1 as an instrument, under Assumptions 2 and 3, we have

E (∆uit∆yi,t−1) + σ2
i,t−1 = 0, for i = 1, 2, ..., n, and t = 2, 3, ..., T − 1. (12)

Also E (∆uit)
2 = σ2

i,t−1 + σ2
it, where E (∆ui,t+1∆yit) = −σ2

it. Hence, σ2
i,t−1 = E (∆uit)

2 +

E (∆ui,t+1∆yit), which if used in (12) yields the following quadratic moment (QM) condition:

E (∆uit∆yi,t−1) + E (∆uit)
2 + E (∆ui,t+1∆yit) = 0, (13)

for i = 1, 2, ..., n, and t = 2, 3, ..., T − 1. It is useful to note that the expression for σ2
i,t−1 =

E (∆uit)
2 + E (∆ui,t+1∆yit) depends on the set of assumptions considered, and different solutions

could be obtained under different (stricter) conditions. In this paper, we focus on the general set

8



of conditions summarized by Assumptions 2 and 3, although additional moment conditions can

be obtained if one is prepared to make stronger assumptions such as time series homoskedasticity

σ2
it = σ2

i,t−1 = σ2
i . Another possibility is to assume yit is covariance stationary, which will lead to

a linear moment condition solution, further discussed in Remark 5 below.

Initially, we use the QM condition (13) alone to obtain an estimator of φ, and propose averaging

(13) over i and t, which will deliver a simple exactly identified moment estimator. In Section 4, we

consider optimally weighting the moment conditions in (13), and augmenting them with Anderson-

Hsiao type moment conditions.

Averaging moment condition (13) over t, and substituting (3) for ∆uit and ∆ui,t+1, we obtain

E [MiT (φ)] = 0, for i = 1, 2, ..., n, (14)

where

MiT (φ) =
1

T − 2

T−1∑
t=2

[
(∆yit − φ∆yi,t−1) ∆yi,t−1 + (∆yit − φ∆yi,t−1)2 + (∆yi,t+1 − φ∆yit) ∆yit

]
.

(15)

The BMM estimator is then given by

φ̂nT = arg min
φ∈Θ

∥∥M̄nT (φ)
∥∥ , (16)

where ‖.‖ denotes the Euclidean norm, Θ ⊂ (−1, 1] is a compact set for the admissible values of φ

defined by Assumption 1, and

M̄nT (φ) =
1

n

n∑
i=1

MiT (φ) . (17)

The following theorem summarizes the results for the BMM estimator of φ.

Theorem 1 Suppose yit, for i = 1, 2, ..., n, and t = −mi+1,−mi+2, ..., 1, 2, ..., T , are generated by

(1) with starting values yi,−mi, and the true value of the parameter of interest φ0. Let Assumptions

1-3 hold, and suppose B̄T 6= 0 and n−1
∑n

i=1E
(
V 2
iT

)
→ ST > 0, where B̄T is given by

B̄T = lim
n→∞

E
(
B̄nT

)
, B̄nT =

1

n

n∑
i=1

(
QiT +Q+

iT + 2HiT

)
, (18)

QiT = 1
T−2

∑T−1
t=2 ∆y2

i,t−1, Q
+
iT = 1

T−2

∑T−1
t=2 ∆y2

it, HiT = 1
T−2

∑T−1
t=2 ∆uit∆yi,t−1, and ViT =

1
T−2

∑T−1
t=2

(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)
. Consider the BMM estimator φ̂nT given by (16).

9



Let T ≥ 3 be fixed and n→∞. Then, the unique
√
n-consistent estimator φ̂nT satisfies

√
n
(
φ̂nT − φ0

)
→d N (0,ΣT ) ,

where

ΣT = B̄−2
T ST . (19)

A
√
n-consistent estimator of φ exits if B̄T 6= 0, where B̄T = limn→∞ n−1

∑n
i=1E (BiT ), and

BiT =
1

T − 2

T−1∑
t=2

(
∆y2

i,t−1 + ∆y2
it + 2∆uit∆yi,t−1

)
. (20)

It is now easily seen that condition B̄T 6= 0 is satisfied when ∆yit is a stationary process (for

mi →∞, σit = σ2
i and |φ| < 1). In this case

B̄T = 2

(
1− φ
1 + φ

)
σ̄2 > 0,

where σ̄2 = limn→∞ n−1
∑n

i=1 σ
2
i . In the non-stationary case (with mi finite) B̄T 6= 0 even if φ = 1

so long as σit is suffi ciently variable over t. As a simple example consider the case where T = 3,

and note that (see Section A.1 of the Appendix)

B̄3 = σ̄2
2 − σ̄2

1 + (1− φ)2 σ̄2
1 +

(
1 + φ2

)
(1− φ)ψ0. (21)

where σ̄2
t = limn→∞ n−1

∑n
i=1 σ

2
it, and

ψ0 = (1− φ) lim
n→∞

1

n

n∑
i=1

E (yi0 − µi)2 − 2 lim
n→∞

1

n

n∑
i=1

E [ui1 (yi0 − µi)] . (22)

If φ = 1, then B̄3 = σ̄2
2 − σ̄2

1, and B̄3 6= 0, if and only if σ̄2
1 6= σ̄2

2. When |φ| < 1, B̄3 6= 0 even if

σ̄2
1 = σ̄2

2, except for when (1− φ)
(
1 + φ2

)
ψ0 = φ(2− φ)σ̄2

1 − σ̄2
2. Therefore, time variations in the

average error variances, σ̄2
t , can help identification under the BMM quadratic moment condition.

Remark 4 When B̄T = 0, from (A.13) we have,

(
φ̂nT − φ0

)2
Q̄nT = V̄nT +

(
φ̂nT − φ0

)
Op

(
n−1/2

)
, (23)

where V̄nT = n−1
∑n

i=1 ViT , Q̄nT = n−1
∑n

i=1QiT . Note that Q̄nT → Q̄T > 0 as n → ∞.
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Therefore, there exists a unique n1/4-consistent estimator φ̂nT . As noted earlier a leading case

when B̄T = 0, is the unit root case (φ = 1) under error variance homogeneity over t.

ΣT , can be estimated consistently by

Σ̂nT = ̂̄B−2

nT

(
1

n

n∑
i=1

V̂ 2
i,nT

)
, (24)

where ̂̄BnT =
1

n

n∑
i=1

(
QiT +Q+

iT + 2Ĥi,nT

)
, (25)

Ĥi,nT = (T − 2)−1∑T−1
t=2 ∆ûit∆yi,t−1, ∆ûit = ∆yit − φ̂nT∆yi,t−1,9 and

V̂i,nT = − 1

T − 2

T−1∑
t=2

(
∆ûit∆yi,t−1 + ∆û2

it + ∆ûi,t+1∆yit
)
. (26)

Consistency of Σ̂nT is established in Proposition 1 in the appendix.

Remark 5 In the case of covariance stationary panels (|φ| < 1 and mi → ∞), we have ∆yit =∑∞
`=0 φ

`∆ui,t−`, where E
(
u2
it

)
= σ2

i . Then E
(
∆y2

it

)
= 2σ2

i / (1 + φ) is time-invariant. Under

covariance stationarity σ2
i = (1 + φ)E

(
∆y2

i,t−1

)
/2, E (∆uit∆yi,t−1) = E (∆ui,t+1∆yit), and using

(12) the quadratic moment condition, (13), simplifies to the following linear moment condition:

E (∆yit∆yi,t−1) +
1

2
(1− φ)E

(
∆y2

i,t−1

)
= 0,

which yields the associated BMM estimator given by

φ̂n =

∑n
i=1

∑T
t=2

(
2∆yit∆yi,t−1 + ∆y2

i,t−1

)
∑n

i=1

∑T
t=2 ∆y2

i,t−1

. (27)

In this case φ is identified even when T = 2. Interestingly enough, the above linear BMM estima-

tor is identical to the first-difference least square (FDLS) estimator proposed by Han and Phillips

(2010),10 who show that φ̂n has standard Gaussian asymptotics for all values of φ ∈ (−1, 1] and

does not suffer from the weak instrument problem. However, when T is fixed the covariance station-

arity assumption is rather restrictive for most empirical applications in economics, where typically

9∆ûit depends on n and T , but we omit subscripts n, T to simplify the notations.
10We are grateful to Kazuhiko Hayakawa for drawing our attention to this fact.
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not much is known about the initialization of the dynamic processes over i, and it is not possible to

rule out the heteroskedasticity of error variances over t.

4 Augmented Anderson Hsiao (AAH) estimator

The BMM estimator above is useful for illustrative purposes, but it is not asymptotically effi cient

partly due to averaging of moment conditions over t, and more importantly due to not exploring

additional readily available moment conditions that hold under the same set of assumptions. An-

other reason for augmenting the quadratic BMM moments with additional moment conditions is

because the global identification for BMM is not guaranteed.

As noted above, amongst the moment conditions proposed in the literature, only the ones

proposed by AH are suffi ciently general, and accordingly, we propose to augment the T−2 quadratic

moment conditions in (13) with the (T − 2) (T − 1) /2 AHmoment conditions in (7). Together, they

provide (T − 2) (T − 1) /2 + T − 2 AAH moment conditions. As usual, we can obtain first, second

and continuous-updating GMM estimators based on these quadratic-linear moment conditions.

Remark 6 It is worth noting that conditions (7) and (13) do not imply conditions (8) and/or

(9), since (7) and (13) rely only on first differences, whereas (8) and (9) also rely on levels. Hence,

it is possible that (7) and (13) can hold whilst (8) and/or (9) might not hold. An example of this

case is considered in the Monte Carlo section below.

The set of AAH moment conditions (7) and (13) is a subset of the conditions in Ahn and

Schmidt (1995, 1997), who enumerated a complete set of moment conditions under a stronger set

of assumptions than are necessary for AAH alone; see their Assumptions SA1-SA3. Suffi cient set

of assumptions that give rise to AAH are the following ‘basic’assumptions:

(BA1) For all i, the uit are mutually uncorrelated.

(BA2) E [(yi0 − µi) ∆uit] = 0 for all i and t = 2, 3, ..., T ,

where µi = αi/ (1− φ). Assumption BA1 on its own has been considered as Case H of Ahn and

Schmidt (1997), which implies T (T − 3) /3 moment conditions. Assumption BA2 is implied by

Assumptions SA1-SA2 of Ahn and Schmidt (1995), but not vice versa. The full set of moment

conditions based on BA1 and BA2 is the union of AH moment conditions given by (7) and QM

12



moment conditions given by (13). Derivation of the asymptotic distribution and conducting in-

ference requires additional standard high-level regularity conditions routinely used in the GMM

literature.11

It is of interest to consider the effi ciency loss that arises when using AAH moment conditions,

whilst in fact the more restrictive system GMM conditions (8)-(9) hold. To shed light on this,

we report the ratios of asymptotic variances of the AH, first-difference GMM and system GMM

estimators, all relative to that of the AAH estimator. We illustrate the asymptotic effi ciency

gains and losses in Table 1 in the same way as in Ahn and Schmidt (1995). We are interested

in two questions: (i) How much is gained by adding QM conditions to AH, and (ii) how much

is lost by not utilizing the additional moment conditions assuming that the DGP satisfies all of

the restrictions in (8) and (9). Following Ahn and Schmidt (1995), we tabulate the asymptotic

variance ratios for the stationary homoskedastic case for different values of φ, and different ratios

of E
(
α2
i

)
/E
(
u2
it

)
= σ2

α/σ
2
u, for all i and t.

The results, computed by simulations, are summarized in Table 1. As can be seen, augmenting

AH moment conditions with the quadratic moment conditions (13) results in substantial effi ciency

gains for all values of φ, σ2
α/σ

2
u and the three choices of T = 3, 6 and 10, in Table 1. The effi ciency

gains are particularly pronounced for values of φ close to unity. Also as to be expected the two

estimators perform equally well for all values of σ2
α/σ

2
u since both use first-differences as instruments

and hence are not affected by σ2
α. The effi ciency gain of AAH over AH reduces somewhat when T

is increased.
11These are listed, for example, in Pesaran (2015). In particular, assumptions for consistency are given by Assump-

tions A1 and A2 in Chapter 10 of Pesaran (2015) and the additional assumptions for asymptotic normality are given
by Assumptions A3-A5 of the same chapter. See also Assumptions 1-3 for a set of low-level assumptions required for
consistency and asymptotic normality.
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Table 1: Asymptotic effi ciency of AH, AB and BB estimators relative to the AAH

estimator under stationarity

var (AH) /var (AAH) var (AB) /var (AAH) var (BB) /var (AAH)

σ2α/σ
2
u σ2α/σ

2
u σ2α/σ

2
u

φ 0.5 1 4 0.5 1 4 0.5 1 4
T = 3

-0.9 1.5 1.5 1.5 1.0 1.0 1.1 0.9 1.0 1.0
-0.8 1.7 1.7 1.7 1.0 1.1 1.2 0.9 1.0 1.0
-0.5 2.3 2.3 2.3 1.1 1.2 1.6 0.9 0.9 1.0
-0.3 2.9 2.9 2.9 1.2 1.3 1.9 0.9 0.9 1.0
0 4.0 4.0 4.0 1.2 1.5 2.4 0.8 0.9 0.9

0.3 5.3 5.3 5.3 1.2 1.7 3.0 0.6 0.7 0.9
0.5 6.4 6.4 6.4 1.2 1.7 3.4 0.4 0.5 0.7
0.8 8.2 8.2 8.2 1.2 1.7 4.1 0.1 0.1 0.3
0.9 9.2 9.2 9.2 1.9 2.6 3.8 0.05 0.05 0.06

T = 6

-0.9 1.3 1.3 1.3 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.3 1.3 1.3 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.6 1.6 1.6 1.2 1.2 1.4 1.0 1.0 1.0
-0.3 1.8 1.8 1.8 1.3 1.4 1.6 1.0 1.0 1.0
0 2.2 2.2 2.2 1.5 1.6 2.0 1.0 1.0 1.0

0.3 3.0 3.0 3.0 1.7 2.0 2.6 0.9 1.0 1.0
0.5 3.9 3.9 3.9 2.0 2.4 3.3 0.9 0.9 1.0
0.8 6.1 6.1 6.1 2.5 3.5 5.1 0.5 0.6 0.8
0.9 7.6 7.6 7.6 2.5 4.0 6.3 0.2 0.3 0.5

T = 10

-0.9 1.2 1.2 1.2 1.0 1.0 1.1 1.0 1.0 1.0
-0.8 1.2 1.2 1.2 1.1 1.1 1.1 1.0 1.0 1.0
-0.5 1.3 1.3 1.3 1.1 1.2 1.2 1.0 1.0 1.0
-0.3 1.5 1.5 1.5 1.2 1.3 1.4 1.0 1.0 1.0
0 1.7 1.7 1.7 1.4 1.5 1.6 1.0 1.0 1.0

0.3 2.2 2.2 2.2 1.6 1.8 2.0 1.0 1.0 1.0
0.5 2.7 2.7 2.7 1.9 2.2 2.5 1.0 1.0 1.0
0.8 4.8 4.8 4.8 2.9 3.6 4.3 0.8 0.9 0.9
0.9 6.5 6.5 6.5 3.6 4.6 5.8 0.5 0.6 0.8

Notes: This table reports ratios of asymptotic variance of the Anderson and Hsiao (AH), Arellano and Bond (AB)
and Blundell and Bond (BB) estimators relative to the asymptotic variance of the augmented AH (AAH) estimator
in a stationary design with E

(
α2i
)

= σ2α and E
(
u2it
)

= σ2u, and for different values of the AR coeffi cient, φ.
Asymptotic variances are computed by simulations using n = 107. T = 3 requires yi,0, yi,1, yi,2, and yi,3 are
observed.

Turning now to the second issue, namely effi ciency loss of AAH relative to AB and BB esti-

mators, we first note that interestingly enough, the expected effi ciency gain of AB over AAH does

not materialize and AAH is in fact generally more effi cient than the AB estimator, with effi ciency

gain of AAH increasing substantially as larger values of φ and σ2
α/σ

2
u are considered. Increasing

T does not seem to have much effect on the relative effi ciency of the AB estimator. The results

in Table 1 also confirm the sensitivity of the AB estimator to the ratio, σ2
α/σ

2
u. In contrast, the

14



BB estimator performs favorably relative to the AAH estimator (and by implication relative to the

AB estimator) particularly, for values of φ close to unity. However, this effi ciency gain is achieved

assuming that E [µi (yi,−mi − µi)] = 0, for i = 1, 2, ..., n, which might not hold in practice. (see

(11) and the related discussions). The cost of using BB estimator is inconsistency if condition (11)

is not met. Further evidence on this is provided in the Monte Carlo section.

4.1 Hausman test for the validity of moment conditions

The above simulations suggest that AAH estimator cannot be more effi cient than BB estimator

when all BB moment conditions are met. This can be seen formally by investigating more closely

the relation between the BB condition (9) and the QM moment condition (12), or equivalently

(13). Using uit + αi = ∆uit + (αi + ui,t−1) in (9) we have

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit) + E [∆yi,t−1 (αi + ui,t−1)] ,

and since ∆yi,t−1 = φ∆yi,t−2 + ∆ui,t−1, then

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit)+φE [∆yi,t−2 (αi + ui,t−1)]+E (∆ui,t−1αi)+E (∆ui,t−1ui,t−1) .

(28)

But under BB moment conditions E (∆ui,t−1αi) = 0 and

E [∆yi,t−2 (αi + ui,t−1)] = 0. (29)

Using these results in (28) we have

E [∆yi,t−1 (αi + uit)] = E (∆yi,t−1∆uit) + E (∆ui,t−1ui,t−1)

= E (∆yi,t−1∆uit) + σ2
i,t−1 = 0,

which is the same as the QM condition given by (12). Namely, the QM condition is implied by the

BB moment conditions, but not vice versa. Hence, under BB moment conditions the AAH estimator

cannot be more effi cient than the BB estimator. Note that (29) is the same as (9) and it is satisfied

if E (∆ui,t−1αi) = 0 and E [µi (yi,−mi − µi)] = 0, as discussed in Section 2. However, when the

BB conditions (8) and/or (9) are not met the BB estimator becomes inconsistent contrary to the
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AAH estimator that continues to be consistent. Therefore, the main two conditions underlying

the Hausman test (Hausman, 1978) are met and the validity of BB moment conditions can be

tested using the Hausman procedure. Denoting the AAH and BB estimators by φ̂
aah

nT and φ̂
bb

nT ,

respectively, the Hausman test statistic is defined by

Hn =
(
φ̂
aah

nT − φ̂
bb

nT

)2 [
V̂ ar

(
φ̂
aah

nT

)
− V̂ ar

(
φ̂
bb

nT

)]−1
, (30)

assuming that V̂ ar
(
φ̂
aah

nT

)
− V̂ ar

(
φ̂
bb

nT

)
> 0, where V̂ ar

(
φ̂
aah

nT

)
and V̂ ar

(
φ̂
bb

nT

)
are consistent

estimators of the asymptotic variances of φ̂
aah

nT , and φ̂
bb

nT , respectively. Under the null hypothesis

that the BB conditions are met, Hn is asymptotically distributed as χ2 (1), for a fixed T and as

n→∞.

5 Extensions to panel VARs and to models with covariates

There are two important extensions of model (1). The first extension is to a panel VAR model

zit = αi + Φzi,t−1 + uit, t = 0, 1, 2, ..., T ; and i = 1, 2, ..., n, (31)

where zit = (yit,x
′
it)
′ is the k × 1 vector of endogenous variables, αi = (αiy,α

′
ix)′ is the k × 1

vector of individual effects, Φ is the k×k matrix of slope coeffi cients, and uit =
(
uy,it,u

′
x,it

)′
is the

k × 1 vector of idiosyncratic errors. Similarly, to the univariate case, the set of linear AH moment

conditions is given by:

E
(
∆zis∆u′it

)
= 0k×k, for i = 1, 2, ..., n, s = 1, 2, ..., t− 2, and t = 3, 4, ..., T, (32)

to be augmented with the following QM moment conditions:

E
(
∆uit∆z′i,t−1

)
+ E

(
∆uit∆u′it

)
+ E

(
∆ui,t+1∆z′it

)
= 0k×k, (33)

for i = 1, 2, ..., n, and t = 2, 3, ..., T − 1. AAH estimation of the panel VAR model can proceed

based on (32) and (33), which replace (7) and (13), respectively.

The second extension is to augment (1) with the additional k − 1 regressors in xit, as the
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conditioning variables, to obtain the ARX model

yit = αi + φyi,t−1 + β′xit + uit, for i = 1, 2, ..., n, t = 1, 2, ..., T . (34)

The regressors in xit can be strictly or weakly exogenous. AAH moment conditions (7) and (13)

can be augmented by the standard orthogonality for the regressors xit, as is standard in the GMM

literature. This paper does not have anything new to add regarding instrumenting the regressors

xit. But in the case of weakly exogenous regressors, where there are feedbacks from lagged values

of yit onto xit, the validity of the ARX specification and the strength of the instruments used for

∆xit will depend on the nature and the quantitative importance of such feedbacks. For a general

discussion see Chudik, Pesaran, and Yang (2018).

In the case where (34) is derived from an underlying VAR model such as (31), additional

restrictions on error variance heteroskedasticity are required. To see this write down the individual

equations for yit and xit in (31) as

yit = αiy + φ11yi,t−1 + φ′yxxi,t−1 + uy,it, (35)

xit = αix + φxyyi,t−1 + Φxxxi,t−1 + ux,it, (36)

where Φ is partitioned as:

Φ =

 φ11 φ′yx

φxy Φxx

 .
Suppose that the errors, uit, are heteroskedastic over i and t, and let

E
(
uitu

′
it

)
= Ωit =

 ωyy,it ω′xy,it

ωxy,it Ωxx,it

 ,
for all i and t. Using linear projection of uy,it on ux,it, we have

uy,it = θ′itux,it + ηit, (37)

where θit = Ω−1
xx,itωxy,it, and cov (ηit,ux,it) = 0. Then using (37) and (36) in (35), we have

yit = αiy + φ11yi,t−1 + φ′yxxi,t−1 + θ′it
(
xit −αix − φxyyi,t−1 −Φxxxi,t−1

)
+ ηit,

17



where cov (ηit,xis) = 0 for all i, t and s, and recall that ηit is serially uncorrelated. Therefore, for

(34) to be compatible with the underlying panel VAR (31) we must have

αi = αiy − θ′itαix, φ = φ11 − θ′itφxy, β = θit, and φyx = Φ′xxθit.

which is possible only if θit = Ω−1
xx,itωxy,it = β, for all i and t. When this condition is met, the

restriction φyx = Φ′xxθit = Φ′xxβ can be relaxed by considered the autoregressive-distributed lag

(ARDL) specification

yit = αi + φyi,t−1 + β′0xit + β′1xi,t−1 + ηit, (38)

where

αi = αiy − β′0αix, φ = φ11 − ω′xyΩ−1
xxφxy, β0 = Ω−1

xxωxy , and β1 = φyx −Φ′xxβ0.

The above derivations also show that when xit is weakly exogenous, it is best to use ARDL specifica-

tions to ensure that the conditional model being considered and its underlying VAR are compatible.

6 Problem of many moment conditions

As it is well known, the number of moment conditions that underlie any of the GMM based

estimation techniques discussed above (AH, AAH, AB, or BB) grow at the quadratic rate in T .

Consequently, the number of moments can get quite large even for moderate values of T . Under

their respective set of assumptions, these are all valid moments and their relevance (strength) varies,

some of which could be weakly identifying. Unless the number of cross-section dimension, n, is

suffi ciently large, as compared to the number of moment conditions, h = h (T ), the proliferation of

moments will have adverse effects for estimation and inference in finite samples. See, for instance,

Anderson and Sorenson (1996), Clark (1996), and Hansen, Heaton, and Yaron (1996). The many

moment problem often occurs together with the weak moment problem, but they are not necessarily

the same. Han and Phillips (2006) provide a number of asymptotic theoretical results for GMM

estimation that allow for the number of moments to increase with the sample size, whilst moment

conditions may only be weakly identifying, encompassing earlier contributions by Bekker (1994),

Staiger and Stock (1997), Stock and Wright (2000), and Chao and Swanson (2003), among others.

GMM estimators utilizing many weak moment conditions may not be consistent and the rate of
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convergence could depend not only on the sample size, but also on the number and quality of the

moment conditions.

Hsiao and Zhang (2015) show that the AB estimator is asymptotically biased if T/n → c, for

some 0 < c < ∞, as n, T → ∞. This bias can be reduced using jackknife instrumental variables

estimation (JIVE), which has been considered in a general GMM framework by Angrist, Imbens,

and Krueger (1999), Chao, Swanson, Hausman, Newey, and Woutersen (2012), Hansen and Kozbur

(2014), Lee, Moon, and Zhou (2017), Phillips and Hale (1977) and Zhang and Zhou (2020).12

Koenker and Machado (1999) and Donald, Imbens, and Newey (2003) consider GMM estimation

under a large number of strong moments, and provide conditions on the number of moments that

permits the usual asymptotic theory and inference. In particular, Koenker and Machado (1999)

show h3/n→ 0 is suffi cient for validity of conventional GMM asymptotic inference.

There are two approaches to dealing with a large number of valid moments. One is to use them

all, but combine them in such a way that allows for the number of moments to be large relative to the

sample size so that consistency and valid inference are achieved. The second approach is to select

and use only a subset of available moments. Contributions to this strand of the literature includes

Donald and Newey (2001), Kuersteiner (2002), Hall and Peixe (2003), Inoue (2006), Hall, Inoue,

Jana, and Shin (2007), and Donald, Imbens, and Newey (2009).13 In what follows we propose a new

sub-set selection procedure by adapting the One Covariate at the time Multiple Testing (OCMT)

recently developed by Chudik, Kapetanios, and Pesaran (2018) for variable selection to the problem

of moment selection in the case of the AAH estimator.

6.1 Moment selection using OCMT approach

In the case of AH moments listed in (7), there are t− 2 instruments for ∆yi,t−1, for t = 3, 4, ..., T .

We collect them in the set Si,t−2 = {∆yi,1,∆yi,2, ...,∆yi,t−2}. In general, it is not possible to derive

analytical expressions for the correlation of the target variable ∆yi,t−1 and individual instruments

in Si,t−2 in the case where the underlying dynamic processes are initialized from finite pasts, and

12Monte Carlo findings reported in Zhang and Zhou (2020) suggest very good size performance of JIVE corrected
AB GMM estimator. However, the size reported in Zhang and Zhou (2020) is computed using standard deviation of
the estimated slope coeffi cients across Monte Carlo replications, which is not feasible in practice where only one set
of realizations is available. Hence, the findings in Zhang and Zhou (2020) are not indicative of inference that can be
conducted in empirical applications.
13 In addition to the literature on selecting relevant moments from a set of valid moments, there is a vast literature

on moment validity, and the selection of valid moments, including Andrews (1999), Andrews and Lu (2001), Chatelain
(2007), and Liao (2013). The problem of selecting valid as well as relevant moments has been consideed by Cheng
and Liao (2015).
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there is little known about the data generating processes for the initial values. It is, nevertheless,

possible to show that corr (∆yi,t−1,∆yi,t−`) declines in ` at an exponential rate in the case of

stationary initial values. This is illustrated in the following example.

Example 1 Let yit = αi + φyi,t−1 + uit, for t = ...,−1, 0, 1, ..., T and i = 1, 2, ..., n, where |φ| < 1.

Then yit = µi +
∑∞

`=0 φ
`ui,t−`, and

∆yit = uit − (1− φ)
∞∑
`=1

φ`−1ui,t−`,

where µi = αi/ (1− φ). Provided E (uituit′) = 0 for t 6= t′ and E
(
u2
it

)
is bounded, it follows that

|corr (∆yi,t−1,∆yi,t−`)| < Cφ|`−1|.

Hence, it could be the case that some of the t − 2 instruments in Si,t−2 are rather weak and

consequently not very useful in improving the asymptotic variance of the resulting GMM estimator.

Our suggestion is to apply OCMT method to select the relevant instruments from the set Si,t−2,

for t = 4, 5, ..., T . It is desirable to always include ∆yi,t−2, which is likely to have the largest

correlation with the target variable ∆yi,t−1, as a conditioning (or pre-selected) variable in the

OCMT procedure, as described below.

OCMT algorithm for selecting AH instruments for a given t (= 4, 5, ..., T ) is as follows:

1. Estimate the (t− 3) individual first stage regressions

∆yi,t−1 = a` + β`∆yi,t−2 + θ`∆yi,`, for ` = t− 3, t− 4, ..., 1 (39)

by least squares and compute the associated t-ratios for the coeffi cients θ` in the above

regression, denoted as tθ̂`(s) = θ̂`/s.e.
(
θ̂`

)
for stage s = 1. The first stage OCMT selection

indicator is given by

Ĵ`,(1) = I[|tθ̂`(1)| > cp (t− 1, δ)], for ` = 1, 2, ..., t− 3, (40)

where cp(t, δ) is a critical value function defined by

cp (t, δ) = Φ−1
(

1− p

2tδ

)
, (41)
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Φ−1 (.) is the inverse of standard normal distribution function, 0 < p < 1, and δ > 0.

Following Chudik, Kapetanios, and Pesaran (2018), we set p = 0.05 and δ = 1 in the first

stage, while another value, δ∗ = 2, is used in subsequent stages of OCMT described below.

Variables with Ĵi,(1) = 1 are selected as instruments in the first stage. If no variables are

selected in the first stage, then OCMT procedure stops. Otherwise, increase s by one.

2. The next stage (s > 1) is computed by regressing ∆yi,t−1 on a constant, ∆yi,t−2, all instru-

ments selected from the previous stages, and, one-at-time, the remaining instruments not yet

selected. Let tθ̂`,(s) denote the corresponding t-ratio of the instruments considered for selec-

tion in the stage s > 1. Then the instruments are added to the selected set if the indicator

Ĵ`,(s) = I[|tθ̂`,(s) | > cp (t− 1, δ∗)] is one. If no instruments are selected in stage s, then the

OCMT procedure stops. Otherwise s is increased by one.

3. Step 2 is repeated until no further instruments are selected.

The outcome of this data-dependent selection of moments is ĥnT selected AH moments, T −2 ≤

ĥnT ≤ (T − 2) (T − 1) /2.14

7 Monte Carlo Evidence

We now provide some evidence on the small sample performance of the AAH estimator as compared

to AH, and the two popular AB and BB estimators (also known as first-difference and the system

GMM estimators). In addition, we also investigate the small sample performance of the AAH

estimator using the subset of AAH moments selected by the OCMT procedure.

7.1 Data generating process (DGP)

The dependent variable is generated as

yit = αi + φyi,t−1 + uit, (42)

14This idea can be applied to any of the GMM estimators considered in this paper. Our focus is on the AAH
estimator.
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for i = 1, 2, ..., n, and t = 1, 2, ..., T . We consider φ = 0.4, 0.6, 0.8, 0.9 and report results for φ = 0.4

and 0.8 in the body of the paper.15 Individual effects are generated as

αi =

T∑
τ=1

ρτuiτ + εi, εi ∼ IIDN (1, 1) . (43)

We consider two values for ρ = 0 or 0.8. When ρ 6= 0 then the individual effects are correlated

with errors uit, and AB and BB restrictions implicit in (8)-(9), respectively, are not satisfied. The

processes are initialized as

yi,0 = µi + κεi + υi, υi ∼ IIDN (0, 1) , (44)

where µi = αi/ (1− φ). We consider two values for κ = 0 or 1. When κ 6= 0 the individual effects

are correlated with the deviations of initial values from their long-run means µi, and BB restrictions

implicit in (9) are not satisfied. But setting κ 6= 0 on its own does not invalidate the AB restrictions

implicit in (8). We also need ρ 6= 0.

Restriction κ = 0 rules out any systematic deviations of initial values from their long-run means.

It is less likely to hold in empirical applications, where individual dynamic processes over i might

have been initialized from a recent past and possibly from non-stationary initial value distributions.

In contrast, the restriction ρ = 0 appears much less restrictive, since it would be satisfied whenever

fixed effects are uncorrelated with innovations.

The idiosyncratic errors, uit, are generated as non-Gaussian processes with heteroskedastic

error variances over i and t, namely uit = (eit − 2)σia/2 for t ≤ [T/2], and uit = (eit − 2)σib/2

for t > [T/2], with σ2
ia ∼ IIDU (0.25, 0.75), σ2

ib ∼ IIDU (1, 2), and eit ∼ IIDχ2 (2), where [T/2]

is the integer part of T/2. σ2
ia and σ

2
ib are generated independently of eit. This ensures that the

errors have zero means, and heteroskedastic both conditionally and unconditionally, in particular,

V (uit|σia) = σ2
ia for t ≤ [T/2], and V (uit|σib) = σ2

ib for t > [T/2]. We consider a comprehensive

set of choices of T = 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20 and n = 100, 200, 500, 1000, 2000, 4000, 8000.

Findings for selected sample choices are reported below, whilst the full set of results is available

from authors upon request. 2, 000 replications were carried out for each experiment.

Besides the parameter of interest φ, the key parameters of the MC design are κ and ρ. AH

and AAH estimators are valid for all values of κ and ρ. AB estimators require ρ = 0, and the

15Findings for the remaining values of φ are available from authors upon request.
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BB estimator requires ρ = 0 and κ = 0. Consequently, we consider the following three sets

of experiments, based on values of ρ and κ: (i) experiments with ρ = 0 and κ = 0 labeled as

experiments where both AB and BB restrictions are met; (ii) experiments with ρ = 0 and κ 6= 0

labeled as experiments where BB restrictions are not met whilst AB restrictions are met, and (iii)

experiments with ρ 6= 0 and κ 6= 0 labeled as experiments where neither AB nor BB restrictions

are met.

7.2 Estimation methods

We consider 2-step GMM estimators based on the AHmoment conditions given by (7), the AAHmo-

ment conditions given by (7) and (13), the Arellano and Bond’s first-difference moment conditions

given by (8), and the Arellano and Bover’s and Blundell and Bond’s system moment conditions given

by (8)-(9).16 These estimators are labeled below as AH, AAH, AB, and BB, respectively. Inference

is conducted using the conventional standard errors. In addition to two-step GMM estimator based

on AAH moments, we also consider using OCMT to select relevant AAH moments, as discussed in

Subsection 6.1. We denote this estimator by AAH-O. In particular, the AAH-O estimator is based

on the union of T −2 quadratic moments in (13) and ĥnT selected subset of AH moments using the

OCMT procedure described in Subsection 6.1. Also since T−2 ≤ ĥnT ≤ (T − 2) (T − 1) /2, then the

number of moments for the AAH-O estimator lies between 2 (T − 2) and (T − 2) (T − 1) /2+T −2.

7.3 Monte Carlo findings

7.3.1 Comparison of AH and AAH estimators

We first focus on the comparison of AH and AAH estimators in experiments where both AB and

BB restrictions are met (ρ = 0 & κ = 0).17 Results for bias and RMSE (both ×100) of estimating

φ are reported in Table 2, and size and power of the tests at the 5% nominal level are reported

in Table 3 and Figure A1 in the Appendix. Table 2 shows very large RMSE values for the AH

estimator, especially when T = 4. Once the set of AH moment conditions (7) is augmented by the

quadratic moment conditions in (13), we see a substantial drop in the reported RMSE values. The

small sample improvements in RMSE are about four to five-fold for T = 4, and smaller but still

16We found that continious-updating (CU) GMM estimators exhibit often worse performance than the 2-step
estimators in our experiments. A comparison of two-step and CU GMM estimators is available in an earlier version
of this paper, Chudik and Pesaran (2017).
17Findings for the relative performance of AH and AAH estimators are similar for other experiments, available

from authors upon request.
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substantial for larger values of T , all regardless of n. The relative RMSE differences are somewhat

more pronounced when φ = 0.8, as compared to the ones obtained for φ = 0.4. Compared to the

AH estimator, the AAH estimator is less biased in almost all reported cases, and has a smaller

RMSE even for T = 14. This suggests that correcting for bias will be unimportant for the reported

sample choices.

In line with the bias and RMSE findings, we see in Table 3 that there are substantial gains

in power from the augmentation of the AH moments with the new quadratic moment conditions

in (13). These differences can be seen more clearly in Figure A1 in the Appendix, shown for the

sample combinations, n = 1000, T = 4 and 6. The empirical power functions of the AH estimator

are rather flat when φ = 0.8, and T = 4. As to be expected, the results for the AH estimator

improve with a decrease in φ (as AH instruments become stronger), and/or a rise in T . In contrast,

the empirical power function of the AAH estimator is much more satisfactory. The size of the AH

and AAH estimators reported in Table 3 are close to their nominal value of 0.05, in cases where T/n

is suffi ciently small. For T = 4, size is close to 5 per cent for all n ≥ 500, but it deteriorates when

the number of moments is large relative to the number of cross-section units, which is a well-known

problem in the GMM literature.

7.3.2 Comparison of AAH and AAH-O estimators

As noted earlier, with an increase in T , the number of moments becomes large, many of which

could be relatively weak. In such a case, using a well chosen sub-set of moments could improve

the small sample performance. We investigate the small sample benefits and drawbacks of using

OCMT procedure described in Section 6.1 to select a subset or relevant AH moments. The AAH-O

estimator is based on the union of T − 2 quadratic moments (13) and the selected subset of AH

moments. We expect that for a fixed T and as n → ∞, all relevant moments will be selected

by OCMT procedure and therefore asymptotically AAH, and AAH-O achieve the same variance

(for a fixed T ), although AAH-O could have lower or higher RMSE compared with AAH in finite

samples. These expectations are in line with the reported findings in Tables 4-5 and Figure A2

in the Appendix. First, the average number of moments (reported in the last columns of Table

4) increases in n for a fixed T , since all of the AAH moments are relevant albeit with a varying

degree of strength. The differences in RMSE values between AAH and AAH-O estimators are

negligible for large values of n, as expected. Second, AAH-O outperforms AAH in cases where T/n
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is relatively large. For example, when n = 100, and T > 10. However, for intermediate cases with

more moderate T/n ratio, AAH-O tends to perform less well as compared to the AAH estimator

in terms of RMSEs. The size distortion of AAH-O is not as serious as the size distortions of AAH,

but still quite substantial in the case of experiments where T ≥ 10 and n < 2000.

7.3.3 Comparison of AAH with AB and BB estimators

We now turn to the small sample performance of AAH relative to the AB and BB estimators.

Comparisons for experiments where both AB and BB restrictions are met are reported in Tables

6-7 and Figure A3 in the Appendix. In these experiments AAH is asymptotically less effi cient than

BB, and this is reflected in the lower values of RMSEs obtained for the BB estimator; although

it is interesting to note that these differences are not large in many cases. This result is also in

line with the asymptotic relative effi ciency of the BB estimator reported in Table 1. The situation

is very different when the AAH estimator is compared to the AB estimator. As can be seen from

Table 6, in all cases the AAH estimator performs better (in many cases substantially so) than the

AB estimator. Size of the tests based on the individual estimators is close to 5 per cent when n

is suffi ciently large relative to T , otherwise when T is large relative to n inference could be unsafe

with substantial over-rejections.18

To investigate the factors behind the better performance of the BB estimator, we now consider

experiments where individual effects are correlated with the deviations of initial values yi0−µi, by

setting κ = 1. In these experiments, reported in Tables 8-9 and Figure A4 in the Appendix, the

restrictions underlying the BB estimator are not met. Hence, BB is estimator is no longer consistent,

which shows the BB estimator having large biases and close to 100 per cent size rejections. The

remaining two estimators (AAH and AB) are consistent and their relative performance is very

similar to the previous experiments reported in Tables 6-7, with the proposed AAH estimator

generally dominating the AB estimator.

In the last set of experiments, reported in Tables 10-11, we also allow for correlation of errors

and fixed effects (by setting the parameter ρ = 0.8), in addition to κ = 1. In these experiments

AAH continues to be valid, but the moment conditions of AB and BB are both violated. As a

result both of these estimators perform very poorly, and exhibit large biases and substantial size

18The size performance can be improved upon by considering alternative estimates of standard errors, such as
Windmeijer (2005) finite sample corrections for the standard errors of two-step GMM estimators, or Newey and
Windmeijer (2009) standard errors for the CU-GMM estimators. These or other alternative estimators of standard
errors are not pursued in this paper.
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distortions even when T = 4. In contrast, the MC findings for the AAH estimator perform well,

and in fact are numerically identical to those reported in Tables 8-9, since due to first-differencing

the AAH estimator is not affected by the values of ρ and κ.19

Overall, the MC findings show that the AAH estimator is robust and outperform its ‘cousin’, the

AH estimator by a wide margin. The AB and BB estimators are not robust to ρ 6= 0, and BB is also

not robust to κ 6= 0. In the case of experiments with ρ = 0 & κ = 0, the AAH estimator continues

to outperform the AB estimator, but performs less well when compared to the BB estimator, which

is obtained under a much stronger set of restrictions (given by (11)). In practice it is not known

whether these additional restrictions on the initialization of dynamic processes are satisfied, and

violation of these conditions renders the BB estimator inconsistent.

7.3.4 Hausman test for a comparison of AAH and BB estimators

We now consider the small sample performance of the Hausman test proposed in Subsection 4.1.

This test compares AAH and BB estimators. As already noted, under the null hypothesis of BB

conditions holding, we have V ar (AAH) ≤ V ar (BB), whereas BB estimator will be inconsistent if

BB conditions are not met. Table 12 shows the rejection rates of Hausman test (defined by ( 30))

at 5 per cent nominal level under the null that BB conditions are met (namely H0 : ρ = κ = 0),

as well as the rejection rates under the alternative hypothesis H1 : ρ = 0 and κ = 1, under which

the BB conditions do not hold. Our findings suggest that the Hausman test has relatively good

size for n suffi ciently large. However, rejection rates increase well beyond the 5 per cent nominal

level as T increases and n is not suffi ciently large. These distortions can be observed in sample

sizes where V ar (AAH) and V ar (BB) are not well estimated due to large number of moments

and n not being suffi ciently large. Under the null hypothesis we also observe a large incidence of

cases (reported in the right part of Table 2) where V̂ ar (AAH) < V̂ ar (BB) and Hausman test is

therefore not applicable. A large number of these cases are reported due to very small differences

in RMSE values reported earlier in Table 6, in particular for larger values of T .

Rejection rates under the alternative hypothesis (H1 : ρ = 0 and κ = 1) are quite large and

quickly approach unity as n increases, suggesting relatively good power of the Hausman test for

this design. Overall, Hausman test seems to work well when T is small relative to n, but as T is

increased we observe size distortions very similar to the ones reported in Table 7.

19To make the results in Tables 10 & 11 and Tables 8 & 9 comparable we have used the same seed for generating
the random numbers.
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8 Concluding remarks

Instead of focusing on instruments that are uncorrelated with the errors, this paper proposes to

use the regressors themselves in cases where the non-zero correlation between the regressors and

the errors can be derived. This approach will lead to possibly nonlinear bias-corrected moment

conditions. In this paper this idea is applied to the estimation of short-T dynamic panel data mod-

els, and a new augmented Anderson-Hsiao (AAH) estimator is proposed without making additional

restrictions. The basic idea has potential applications in other settings, including spatial panel data

models. An application is provided by Pesaran and Yang (2021). The idea can also be exploited

to estimate unknown parameters of a known distributional functional form of slope coeffi cients in

short-T autoregressive or vector autoregressive panels with heterogenous slope coeffi cients, which

we leave for future research.

The proposed AAH estimator is applicable under less restrictive conditions on the initialization

of the dynamic processes and the individual effects as compared to the leading first-difference

and system-GMM methods advanced in the literature. It is, however, acknowledged that AAH

estimator can be less effi cient asymptotically when the stricter requirements of the system GMM

estimator proposed by Blundell and Bond hold. The robustness of the AAH estimators is likely

to be an advantage in practice where it is not possible to know if the stronger requirements of the

system-GMM estimators are met, and thus avoid possible estimation bias and incorrect inference.

To decide between AAH and BB estimators in empirical applications we also propose a Hausman

type test which is shown to work well when T is small and n suffi ciently large.

This paper only considered panels with a fixed T . In panels with n, T → ∞ jointly, there is

an important issue that pertains to the GMM approach, namely the problem of combining a large

number of moment conditions. We have briefly discussed this topic and proposed using OCMT to

select a subset of relevant moment conditions as a simple way to mitigate the adverse effects of

moments proliferation.
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Table 2: Bias and RMSE of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AH AAH AH AAH AH AAH AH AAH
4 100 -11.18 1.22 -39.91 0.22 51.22 12.05 94.44 14.56
4 200 -3.70 0.36 -24.55 0.21 34.55 7.44 75.82 10.65
4 500 -2.43 -0.01 -10.60 -0.01 19.97 4.05 41.66 6.40
4 1000 -0.83 0.13 -3.78 0.13 13.78 2.88 26.43 4.33
4 2000 -0.71 -0.10 -2.21 -0.10 9.78 2.03 17.50 3.04
4 8000 -0.08 -0.01 -0.15 -0.01 4.65 1.06 8.40 1.53

6 100 -5.01 1.08 -23.59 0.14 17.29 9.86 38.13 9.27
6 200 -2.42 0.24 -12.94 -0.06 11.74 6.08 25.62 6.51
6 500 -1.05 -0.14 -5.20 -0.39 7.13 2.64 14.30 3.70
6 1000 -0.37 -0.01 -2.42 -0.14 5.09 1.83 9.91 2.49
6 2000 -0.19 -0.07 -1.28 -0.14 3.51 1.32 6.71 1.75
6 8000 -0.03 -0.02 -0.20 -0.05 1.75 0.63 3.23 0.86

10 100 -3.40 0.48 -14.08 0.22 8.84 5.66 19.59 6.38
10 200 -1.49 0.17 -7.05 -0.01 5.59 3.03 11.61 3.92
10 500 -0.60 -0.03 -2.54 -0.04 3.37 1.82 6.05 2.32
10 1000 -0.22 -0.03 -1.20 -0.12 2.36 1.25 3.97 1.46
10 2000 -0.16 -0.03 -0.60 -0.07 1.65 0.84 2.74 0.98
10 8000 -0.04 -0.01 -0.14 -0.03 0.79 0.41 1.30 0.49

Notes: "AH" is the 2-step GMM estimator based on the (T − 2) (T − 1) /2 Anderson and Hsiao’s moment conditions (7), "AAH"
is the augmented Anderson and Hsiao 2-step GMM estimator based on the (T − 2) (T − 1) /2 + T − 2 moment conditions (7)
and (13). The DGP is given by yit = αi + φyi,t−1 + uit, for i = 1, 2, ..., n, and t = 1, 2, ..., T , with yi,0 = µi + κεi + υi, where
µi = αi/ (1− φ), αi =

∑T
t=1 ρ

tuit + εi, εi ∼ IIDN (1, 1), and υi ∼ IIDN (0, 1). This table reports findings for experiments
where κ = ρ = 0, namely AB and BB restrictions are met. BB restrictions are not satisfied when κ 6= 0, and AB restrictions are
not satisfied when ρ 6= 0. Errors uit are generated to be cross-sectionally heteroskedastic and non-normal, uit = (eit − 2)σia/2
for t ≤ [T/2], and uit = (eit − 2)σib/2 for t > [T/2], with σ2ia ∼ IIDU (0.25, 0.75), σ2ib ∼ IIDU (1, 2), eit ∼ IIDχ2 (2), and
[T/2] is the integer part of T/2. See Section 7 for a full description of the MC experiments. The number of datapoints required
is T + 1, namely yi0, yi1, ..., yiT , for i = 1, 2, ..., n.

Table 3: Size and Power of AH and AAH estimators when both Arellano and Bond
(AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AH AAH AH AAH AH AAH AH AAH
4 100 11.0 10.2 19.2 12.7 16.0 35.0 23.2 30.6
4 200 7.5 7.4 13.0 9.5 12.3 45.6 17.3 34.0
4 500 6.3 6.1 7.9 6.6 13.9 71.7 12.8 47.6
4 1000 5.2 5.3 5.8 5.9 16.6 91.7 11.9 65.9
4 2000 6.3 5.3 5.3 5.8 23.5 99.5 13.2 88.1
4 8000 5.0 5.6 4.9 5.8 56.8 100.0 23.3 100.0

6 100 18.3 20.5 31.1 20.3 33.9 58.0 43.4 53.9
6 200 11.2 12.0 19.1 13.7 31.4 76.1 31.8 61.8
6 500 7.4 8.0 9.5 9.5 40.0 96.9 26.8 84.7
6 1000 6.5 6.1 7.5 6.5 57.4 100.0 30.5 96.4
6 2000 4.8 5.5 5.5 6.3 82.1 100.0 42.3 100.0
6 8000 4.6 4.1 4.5 5.2 100.0 100.0 87.2 100.0

10 100 40.5 47.3 58.9 49.3 76.6 88.4 83.3 85.4
10 200 20.5 24.1 32.6 27.9 77.9 97.2 74.6 93.4
10 500 10.4 12.1 14.4 15.3 93.7 100.0 75.8 99.8
10 1000 8.3 9.6 8.8 11.3 99.4 100.0 88.8 100.0
10 2000 7.1 6.2 7.4 7.3 100.0 100.0 98.5 100.0
10 8000 5.3 5.2 5.0 5.9 100.0 100.0 100.0 100.0

See the notes to Table 2
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Table 4: Bias and RMSE of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Average number
Bias (×100) RMSE(×100) of moments

φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 AAH-O
T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O AAH φ0 = 0.4 φ0 = 0.8

10 100 0.48 0.12 0.22 -0.39 5.66 5.53 6.38 7.21 44 20 17
10 200 0.17 -0.05 -0.01 -0.56 3.03 3.12 3.92 4.29 44 23 18
10 500 -0.03 -0.07 -0.04 -0.25 1.82 1.90 2.32 2.57 44 28 22
10 1000 -0.03 -0.05 -0.12 -0.26 1.25 1.28 1.46 1.55 44 33 25
10 2000 -0.03 -0.05 -0.07 -0.14 0.84 0.85 0.98 1.02 44 39 29
10 8000 -0.01 -0.01 -0.03 -0.03 0.41 0.41 0.49 0.49 44 43 44

16 100 0.73 0.09 -0.59 -0.11 7.93 4.16 9.24 6.02 119 35 30
16 200 0.22 -0.12 0.42 -0.57 2.92 2.63 3.69 4.00 119 41 32
16 500 0.06 -0.02 0.04 -0.32 1.44 1.45 1.58 1.83 119 56 39
16 1000 0.03 0.00 -0.01 -0.20 0.93 0.97 0.96 1.15 119 71 51
16 2000 -0.03 -0.04 -0.05 -0.16 0.62 0.64 0.63 0.70 119 86 65
16 8000 0.00 0.00 0.00 -0.01 0.31 0.31 0.31 0.31 119 112 103

20 100 -1.73 -0.06 -9.91 -0.34 8.22 3.73 14.22 5.72 189 45 39
20 200 0.55 -0.09 1.07 -0.67 4.63 2.39 5.32 3.51 189 53 41
20 500 0.07 -0.04 0.08 -0.36 1.38 1.33 1.46 1.86 189 72 49
20 1000 0.02 -0.01 0.00 -0.22 0.84 0.86 0.82 1.04 189 96 64
20 2000 0.00 -0.02 0.00 -0.12 0.55 0.57 0.53 0.60 189 121 92
20 8000 0.00 0.00 0.00 -0.02 0.27 0.27 0.25 0.26 189 171 139

Notes: See the notes to Table 2. "AAH-O" estimator is the two-step GMM estimator based on T − 2 quadratic moment
conditions (13) and a subset of (T − 2) (T − 1) /2 AAH moment conditions (7) selected by OCMT. See section 7 for a full
description of the MC experiments.

Table 5: Size and power of AAH and AAH-O estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.02)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AAH-O AAH AAH-O AAH AAH-O AAH AAH-O
10 100 47.3 25.6 49.3 29.6 49.5 32.6 52.3 36.3
10 200 24.1 15.4 27.9 18.7 31.6 25.0 36.4 28.5
10 500 12.1 10.7 15.3 14.6 34.8 30.5 34.2 33.0
10 1000 9.6 9.5 11.3 12.4 46.2 44.1 42.4 44.7
10 2000 6.2 7.0 7.3 8.8 71.0 71.2 61.4 64.9
10 8000 5.2 5.3 5.9 6.1 99.8 99.9 98.0 98.1

16 100 85.9 34.6 85.4 41.9 86.7 41.1 86.3 48.1
16 200 59.4 22.3 61.9 28.5 63.4 36.3 66.6 43.3
16 500 22.0 12.9 27.7 18.8 56.6 44.6 59.3 47.0
16 1000 13.8 10.8 16.1 16.0 71.8 66.3 74.7 69.5
16 2000 8.6 7.9 10.0 11.1 93.1 91.8 93.4 92.8
16 8000 5.7 5.8 6.2 7.2 100.0 100.0 100.0 100.0

20 100 66.8 38.9 78.2 46.1 70.1 48.2 82.8 53.8
20 200 93.1 24.8 92.0 32.3 92.8 41.6 92.7 49.1
20 500 33.4 15.1 39.1 20.3 69.6 54.2 72.0 54.7
20 1000 18.7 11.2 20.8 15.9 82.5 75.7 87.0 75.7
20 2000 10.4 9.0 11.9 11.7 96.5 95.4 98.4 96.7
20 8000 7.3 6.8 6.4 7.5 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 4.
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Table 6: Bias and RMSE of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.22 -4.92 2.01 0.22 -45.29 2.44 12.05 20.08 9.84 14.56 73.89 11.16
4 200 0.36 -2.18 0.99 0.21 -29.61 1.10 7.44 13.84 6.57 10.65 55.67 7.64
4 500 -0.01 -0.85 0.40 -0.01 -14.09 0.25 4.05 8.65 4.07 6.40 32.95 4.55
4 1000 0.13 -0.41 0.32 0.13 -6.41 0.21 2.88 6.13 2.85 4.33 21.54 3.26
4 2000 -0.10 -0.26 0.01 -0.10 -3.46 -0.07 2.03 4.36 2.01 3.04 14.81 2.40
4 8000 -0.01 -0.03 0.02 -0.01 -0.55 -0.02 1.06 2.13 1.03 1.53 7.25 1.16

6 100 1.08 -4.36 1.00 0.14 -25.52 2.72 9.86 12.77 6.92 9.27 37.03 7.99
6 200 0.24 -2.00 0.44 -0.06 -15.32 1.31 6.08 8.56 4.44 6.51 25.24 5.49
6 500 -0.14 -0.83 0.04 -0.39 -6.53 0.26 2.64 5.16 2.68 3.70 14.21 3.24
6 1000 -0.01 -0.26 0.08 -0.14 -3.03 0.13 1.83 3.63 1.84 2.49 9.43 2.23
6 2000 -0.07 -0.16 -0.03 -0.14 -1.61 -0.03 1.32 2.47 1.31 1.75 6.25 1.54
6 8000 -0.02 -0.06 -0.01 -0.05 -0.36 -0.03 0.63 1.24 0.63 0.86 3.00 0.77

10 100 0.48 -3.14 0.65 0.22 -14.73 2.53 5.66 8.24 5.23 6.38 19.91 6.00
10 200 0.17 -1.44 0.32 -0.01 -7.79 1.40 3.03 5.02 3.04 3.92 11.92 3.84
10 500 -0.03 -0.62 0.03 -0.04 -2.97 0.33 1.82 3.04 1.83 2.32 6.11 2.16
10 1000 -0.03 -0.22 0.00 -0.12 -1.38 0.07 1.25 2.07 1.26 1.46 3.92 1.44
10 2000 -0.03 -0.14 -0.02 -0.07 -0.70 0.01 0.84 1.42 0.84 0.98 2.66 0.95
10 8000 -0.01 -0.04 -0.01 -0.03 -0.17 -0.01 0.41 0.70 0.41 0.49 1.26 0.46

Notes: See the notes to Table 2. "AB" is the 2-step GMM estimator based on the Arellano and Bond’s first-difference moment
conditions (8), and "BB" is the 2-step GMM estimator based on the Arellano and Bover’s and Blundell and Bond’s system
moment conditions (8)-(9).

Table 7: Size and power of AAH, AB and BB estimators when both Arellano and
Bond (AB) and Blundell and Bond (BB) restrictions are met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.2 12.0 15.9 12.7 30.1 28.7 35.0 21.4 32.5 30.6 36.5 32.4
4 200 7.4 9.0 10.3 9.5 21.0 19.8 45.6 21.5 43.5 34.0 27.3 39.0
4 500 6.1 6.5 7.0 6.6 12.0 10.9 71.7 27.9 71.1 47.6 19.8 65.1
4 1000 5.3 6.2 6.0 5.9 8.1 8.5 91.7 41.9 92.7 65.9 16.7 88.7
4 2000 5.3 5.9 5.1 5.8 6.5 7.6 99.5 67.2 99.6 88.1 18.8 99.5
4 8000 5.6 4.7 5.7 5.8 5.8 5.2 100.0 99.8 100.0 100.0 32.6 100.0

6 100 20.5 21.1 27.8 20.3 41.2 46.1 58.0 45.9 61.8 53.9 56.2 56.3
6 200 12.0 14.0 16.5 13.7 25.9 30.1 76.1 44.8 76.5 61.8 43.8 68.2
6 500 8.0 7.9 9.2 9.5 13.4 14.8 96.9 62.6 96.9 84.7 35.3 94.6
6 1000 6.1 7.1 6.2 6.5 8.8 9.0 100.0 83.4 100.0 96.4 37.9 99.8
6 2000 5.5 5.2 6.0 6.3 5.8 7.5 100.0 97.7 100.0 100.0 50.1 100.0
6 8000 4.1 4.6 4.6 5.2 4.6 5.4 100.0 100.0 100.0 100.0 92.6 100.0

10 100 47.3 48.0 56.9 49.3 67.8 72.8 88.4 82.7 90.2 85.4 88.6 86.0
10 200 24.1 23.0 26.2 27.9 39.9 45.1 97.2 87.3 98.1 93.4 81.1 95.1
10 500 12.1 11.9 14.0 15.3 16.8 22.9 100.0 97.1 100.0 99.8 82.4 100.0
10 1000 9.6 8.5 10.3 11.3 10.2 13.7 100.0 100.0 100.0 100.0 91.5 100.0
10 2000 6.2 6.8 6.8 7.3 7.5 9.1 100.0 100.0 100.0 100.0 99.1 100.0
10 8000 5.2 5.3 5.2 5.9 5.3 5.4 100.0 100.0 100.0 100.0 100.0 100.0

See the notes to Tables 2 and 6.
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Table 8: Bias and RMSE of AAH, AB and BB estimators when Arellano and Bond
(AB) restrictions are met and Blundell and Bond (BB) restrictions are not met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.20 -0.80 23.34 0.54 -7.56 18.94 11.70 8.62 24.96 14.23 23.42 20.44
4 200 0.31 -0.33 23.96 0.32 -3.21 20.34 6.95 6.15 24.80 10.33 15.30 20.93
4 500 -0.02 -0.12 24.75 -0.02 -1.24 21.41 3.30 3.84 25.10 5.89 9.46 21.60
4 1000 0.06 -0.07 24.88 0.09 -0.75 21.82 2.36 2.76 25.05 4.03 6.81 21.91
4 2000 -0.08 -0.03 24.96 -0.10 -0.31 22.03 1.65 1.97 25.05 2.84 4.78 22.07
4 8000 -0.02 0.00 25.08 -0.02 -0.04 22.11 0.85 0.96 25.10 1.44 2.35 22.12

6 100 0.75 -1.41 12.91 0.50 -7.39 15.90 8.12 6.78 14.62 9.35 15.46 16.80
6 200 0.23 -0.57 13.12 0.10 -3.44 17.71 5.41 4.58 14.03 6.33 9.73 18.18
6 500 -0.08 -0.21 13.44 -0.36 -1.31 19.18 2.24 2.78 13.83 3.37 5.65 19.36
6 1000 0.02 -0.02 13.78 -0.11 -0.51 19.87 1.58 2.00 13.98 2.30 3.93 19.95
6 2000 -0.05 -0.04 13.76 -0.12 -0.29 20.14 1.12 1.35 13.86 1.63 2.66 20.18
6 8000 -0.02 -0.02 13.89 -0.05 -0.11 20.33 0.55 0.69 13.91 0.81 1.36 20.34

10 100 0.48 -1.68 6.17 0.54 -6.44 10.01 4.82 5.68 7.92 6.22 10.79 11.13
10 200 0.16 -0.72 6.11 0.08 -2.99 11.15 2.72 3.46 6.95 3.73 6.19 11.80
10 500 -0.02 -0.30 6.21 -0.07 -1.10 12.27 1.67 2.11 6.57 2.01 3.33 12.57
10 1000 -0.01 -0.09 6.30 -0.12 -0.49 12.54 1.13 1.44 6.49 1.36 2.27 12.71
10 2000 -0.02 -0.06 6.36 -0.07 -0.24 12.78 0.77 1.00 6.45 0.92 1.58 12.87
10 8000 -0.01 -0.02 6.46 -0.02 -0.06 12.94 0.38 0.49 6.48 0.45 0.76 12.96

See the notes to Tables 2 and 6.

Table 9: Size and power of AAH, AB and BB estimators in experiments when
Arellano and Bond (AB) restrictions are met and Blundell and Bond (BB)

restrictions are not met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 9.3 9.4 95.3 12.1 11.9 92.9 40.7 33.3 82.6 30.8 21.4 73.4
4 200 6.9 8.7 99.6 8.8 8.4 98.1 56.0 45.4 91.7 35.7 20.0 90.4
4 500 6.3 6.4 100.0 6.3 6.0 100.0 84.8 76.7 99.5 50.7 23.8 99.3
4 1000 5.2 5.4 100.0 5.3 5.8 100.0 98.0 96.1 100.0 69.7 38.0 100.0
4 2000 4.8 6.1 100.0 5.6 5.9 100.0 100.0 100.0 100.0 91.4 58.9 100.0
4 8000 5.6 5.1 100.0 5.5 4.8 100.0 100.0 100.0 100.0 100.0 98.7 100.0

6 100 17.5 16.8 90.0 19.9 23.2 96.6 67.4 60.4 61.4 55.3 47.0 78.8
6 200 10.4 10.0 97.5 12.8 12.6 99.0 84.5 73.9 59.0 64.3 44.6 90.4
6 500 7.1 6.3 100.0 8.4 6.4 100.0 99.5 97.3 68.4 87.2 57.3 98.6
6 1000 6.4 6.0 100.0 5.9 5.6 100.0 100.0 99.8 81.9 98.2 78.5 100.0
6 2000 5.4 4.5 100.0 5.8 4.3 100.0 100.0 100.0 93.9 100.0 96.6 100.0
6 8000 4.1 4.6 100.0 4.9 5.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 100 46.1 44.1 84.8 48.1 53.3 95.3 90.4 90.5 77.6 85.0 87.5 77.7
10 200 22.1 21.4 89.4 26.4 26.5 98.8 98.8 97.5 76.7 95.3 88.9 72.1
10 500 12.9 10.7 98.6 14.0 10.9 100.0 100.0 100.0 86.6 99.7 97.8 72.8
10 1000 8.9 8.3 99.9 10.3 7.6 100.0 100.0 100.0 95.6 100.0 99.9 81.5
10 2000 6.7 6.6 100.0 7.1 6.3 100.0 100.0 100.0 99.5 100.0 100.0 91.9
10 8000 5.0 5.0 100.0 5.2 5.7 100.0 100.0 100.0 100.0 100.0 100.0 99.9

See the notes to Tables 2 and 6.
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Table 10: Bias and RMSE of AAH, AB and BB estimators in experiments when AB
and BB restrictions are not met

Bias (×100) RMSE(×100)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.20 -13.32 14.81 0.54 -49.05 12.90 11.70 16.12 16.92 14.23 56.54 16.03
4 200 0.31 -11.97 14.90 0.32 -40.60 14.06 6.95 13.77 15.99 10.33 44.93 15.38
4 500 -0.02 -11.00 15.29 -0.02 -34.86 15.01 3.30 11.83 15.75 5.89 36.98 15.52
4 1000 0.06 -10.57 15.32 0.09 -32.28 15.43 2.36 11.07 15.55 4.03 33.64 15.66
4 2000 -0.08 -10.24 15.33 -0.10 -30.79 15.76 1.65 10.53 15.45 2.84 31.56 15.88
4 8000 -0.02 -9.99 15.42 -0.02 -29.56 15.93 0.85 10.07 15.45 1.44 29.78 15.95

6 100 0.75 -7.79 9.94 0.50 -24.23 12.63 8.12 10.26 11.87 9.35 27.95 13.92
6 200 0.23 -6.59 10.05 0.10 -19.63 13.64 5.41 8.05 11.09 6.33 21.65 14.42
6 500 -0.08 -5.89 10.27 -0.36 -16.82 14.47 2.24 6.56 10.71 3.37 17.70 14.80
6 1000 0.02 -5.49 10.55 -0.11 -15.52 14.93 1.58 5.89 10.78 2.30 16.02 15.10
6 2000 -0.05 -5.42 10.54 -0.12 -15.08 15.08 1.12 5.63 10.65 1.63 15.35 15.16
6 8000 -0.02 -5.24 10.64 -0.05 -14.53 15.20 0.55 5.30 10.67 0.81 14.61 15.22

10 100 0.48 -3.18 5.53 0.54 -9.76 9.00 4.82 6.28 7.42 6.22 13.10 10.21
10 200 0.16 -2.28 5.52 0.08 -6.46 9.78 2.72 4.07 6.41 3.73 8.44 10.48
10 500 -0.02 -1.85 5.63 -0.07 -4.51 10.57 1.67 2.77 6.02 2.01 5.48 10.89
10 1000 -0.01 -1.62 5.74 -0.12 -3.88 10.69 1.13 2.15 5.94 1.36 4.43 10.87
10 2000 -0.02 -1.58 5.80 -0.07 -3.63 10.84 0.77 1.86 5.90 0.92 3.93 10.93
10 8000 -0.01 -1.53 5.91 -0.02 -3.44 10.93 0.38 1.60 5.93 0.45 3.52 10.96

See the notes to Tables 2 and 6.

Table 11: Size and power of AAH, AB and BB estimators in experiments when AB
and BB restrictions are not met

Size (5% level, ×100) Power (5% level, ×100, H1 : φ = φ0 + 0.1)
φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 9.3 36.0 84.6 12.1 59.3 81.2 40.7 75.3 55.1 30.8 73.0 50.8
4 200 6.9 46.4 93.8 8.8 63.5 89.3 56.0 89.4 58.3 35.7 79.5 58.7
4 500 6.3 71.5 99.7 6.3 80.7 97.9 84.8 99.7 73.9 50.7 94.3 70.7
4 1000 5.2 90.8 100.0 5.3 93.8 100.0 98.0 100.0 87.0 69.7 98.8 86.4
4 2000 4.8 99.2 100.0 5.6 99.3 100.0 100.0 100.0 96.7 91.4 100.0 96.0
4 8000 5.6 100.0 100.0 5.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 100 17.5 34.9 83.0 19.9 60.8 91.5 67.4 87.3 53.9 55.3 85.6 66.0
6 200 10.4 37.3 91.4 12.8 62.6 95.3 84.5 96.6 49.6 64.3 92.3 71.3
6 500 7.1 53.7 99.4 8.4 82.8 99.5 99.5 100.0 45.5 87.2 99.6 81.4
6 1000 6.4 74.8 100.0 5.9 95.2 100.0 100.0 100.0 46.1 98.2 100.0 91.2
6 2000 5.4 94.0 100.0 5.8 99.6 100.0 100.0 100.0 45.5 100.0 100.0 97.7
6 8000 4.1 100.0 100.0 4.9 100.0 100.0 100.0 100.0 56.3 100.0 100.0 100.0

10 100 46.1 47.2 83.0 48.1 63.8 93.6 90.4 94.7 78.8 85.0 93.8 77.3
10 200 22.1 27.1 87.1 26.4 44.5 98.0 98.8 99.6 80.8 95.3 97.0 68.4
10 500 12.9 22.8 97.3 14.0 37.5 100.0 100.0 100.0 91.1 99.7 100.0 64.3
10 1000 8.9 24.8 99.9 10.3 46.4 100.0 100.0 100.0 98.0 100.0 100.0 65.1
10 2000 6.7 36.8 100.0 7.1 66.2 100.0 100.0 100.0 99.9 100.0 100.0 67.9
10 8000 5.0 86.9 100.0 5.2 99.6 100.0 100.0 100.0 100.0 100.0 100.0 79.8

See the notes to Tables 2 and 6.
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Table 12: Empirical size and power of Hausman test applied to the difference
between BB and AAH estimators at the 5% nominal level

Fraction of replications (×100)
where Hausman test was not applicable

Rejection rates (×100) due to V̂ ar
(
φ̂
aah
)
− V̂ ar

(
φ̂
bb
)
< 0

under H0 under H1 under H0 under H1
T n φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8 φ0 = 0.4 φ0 = 0.8

4 100 15.27 17.60 93.54 54.08 28.60 11.65 0.10 2.65
4 200 9.92 13.08 99.65 70.67 28.95 11.70 0.00 0.95
4 500 9.41 8.91 100.00 93.25 27.20 9.05 0.00 0.05
4 1000 7.26 8.34 100.00 99.45 26.30 4.65 0.00 0.00
4 2000 8.88 7.28 100.00 100.00 22.30 2.45 0.00 0.00
4 8000 8.41 5.50 100.00 100.00 9.05 0.05 0.00 0.00

6 100 23.32 33.62 88.25 77.15 25.40 6.30 0.00 0.45
6 200 18.06 23.41 98.70 92.80 30.80 7.95 0.00 0.00
6 500 9.90 15.79 100.00 99.85 36.90 9.75 0.00 0.00
6 1000 6.60 14.47 100.00 100.00 39.40 8.45 0.00 0.00
6 2000 6.38 9.78 100.00 100.00 36.55 3.35 0.00 0.00
6 8000 5.97 7.07 100.00 100.00 30.50 0.30 0.00 0.00

10 100 44.92 58.80 79.58 86.42 20.20 4.50 0.10 0.25
10 200 21.62 41.71 91.05 97.10 34.10 9.25 0.00 0.00
10 500 9.29 25.83 99.55 99.95 39.20 18.70 0.00 0.00
10 1000 5.65 20.95 100.00 100.00 45.10 22.90 0.00 0.00
10 2000 4.29 13.21 100.00 100.00 42.95 21.65 0.00 0.00
10 8000 3.63 11.40 100.00 100.00 44.90 14.45 0.00 0.00

Notes: Reported rejection rates under the null correspond to DGP with ρ = 0 and κ = 0, i.e. both AB and BB conditions
are met. Reported rejection rate under alternative correspond to DGP with ρ = 0 and κ 6= 0, i.e. BB conditions are not met,
whilst AB conditions still hold. See also the notes to Tables 2 and 4.
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A Appendix

This appendix is organized as follows. Section A.1 derives B̄3 given by (21) and (22). Section A.2

states and proves a number of lemmas used in the rest of this appendix. Additional propositions and

proofs are given in Section A.3. Section A.4 presents rejection frequencies for selected estimators

considered in the Monte Carlo experiments in Section 7. Section A.5 presents additional Monte

Carlo results for the panel ARX(1).model featuring a strictly exogenous covariate. Section A.6

presents an empirical application to earning dynamics using PSID dataset originally analyzed by

Meghir and Pistaferri (2004).

A.1 Derivation of B̄3

Using (20), it readily follows that B̄3 = limn→∞ n−1
∑n

i=1E (Bi3), where

E (Bi3) = E
(
∆y2

i1

)
+ E

(
∆y2

i2

)
+ 2E (∆ui2∆yi1) . (A.1)

Also recall that ∆yi1 = ui1− (1− φ) (yi0 − µi) , and ∆yi2 = φ∆yi1 + ∆ui2. Hence E (∆ui2∆yi1) =

−σ2
i1,

E
(
∆y2

i1

)
= σ2

i1 + (1− φ)2E (yi0 − µi)2 − 2 (1− φ)E [ui1 (yi0 − µi)] ,

and

E
(
∆y2

i2

)
= E

(
φ2∆y2

i1 + ∆u2
i2 + 2φ∆ui2∆yi1

)
= φ2E

(
∆y2

i1

)
+ (1− 2φ)σ2

i1 + σ2
i2. (A.2)

Using the above results in (A.1) now yields:

E (Bi3) =
(
σ2
i2 − σ2

i1

)
+(1− φ)2 σ2

i1+
(
1 + φ2

){
(1− φ)2E (yi0 − µi)2 − 2 (1− φ)E [ui1 (yi0 − µi)]

}
.

Hence, as required, we have

B̄3 = σ̄2
2 − σ̄2

1 + (1− φ)2 σ̄2
1 +

(
1 + φ2

)
(1− φ)ψ0, (A.3)

where σ̄2
t = limn→∞ n−1

∑n
i=1 σ

2
it, for t = 1, 2, and

ψ0 = (1− φ) lim
n→∞

1

n

n∑
i=1

E (yi0 − µi)2 − 2 lim
n→∞

1

n

n∑
i=1

E [ui1 (yi0 − µi)] .
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A.2 Lemmas

Lemma A.1 Suppose yit, for i = 1, 2, ..., n, and t = −mi + 1,−mi + 2, ..., 1, 2, ..., T , are generated

by (1) with starting values yi,−mi. Let Assumptions 1-3 hold. Consider

Q̄nT =
1

n

n∑
i=1

QiT , and B̄nT =
1

n

n∑
i=1

(
QiT +Q+

iT + 2HiT

)
,

where QiT = (T − 2)−1∑T−1
t=2 ∆y2

i,t−1, Q
+
iT = (T − 2)−1∑T−1

t=2 ∆y2
it, and HiT = (T − 2)−1∑T−1

t=2 ∆uit∆yi,t−1.

Suppose that T is fixed. Then, we have

Q̄nT = E
(
Q̄nT

)
+Op

(
n−1/2

)
, (A.4)

B̄nT = E
(
B̄nT

)
+Op

(
n−1/2

)
. (A.5)

Proof. Under Assumptions 1-3, the fourth moments of uit and bi,mi are bounded, and hence, using

Loève’s inequality,20 for each i the fourth moment of ∆yit :

∆yit = φt−1

[
bi,mi + ui1 − (1− φ)

mi−1∑
`=0

φ`ui,−`

]
+

t−2∑
`=0

φ`∆ui,t−`,

is also bounded, for all values of |φ| ≤ 1 and mi ≥ 0. Since T is fixed, it follows that the second

moment of QiT = (T − 2)−1∑T−1
t=2 ∆y2

i,t−1 must be bounded, and hence there must exist C such

that E [QiT − E (QiT )]2 < C. Consider next the cross-sectional average of QiT −E (QiT ). We have

E [QiT − E (QiT )] = 0 by construction, and also QiT −E (QiT ) is independently distributed across

i, since, under Assumptions 1-3, ∆yit is independently distributed across i. Hence,

V ar

{
n−1

n∑
i=1

[QiT − E (QiT )]

}
≤ n−2

n∑
i=1

E [QiT − E (QiT )]2 <
C

n
,

and therefore n−1
∑n

i=1QiT − n−1
∑n

i=1E (QiT ) = Op
(
n−1/2

)
. This completes the proof of (A.4).

Result (A.5) is established similarly. Note that

B̄nT =
1

n

n∑
i=1

QiT +
1

n

n∑
i=1

Q+
iT + 2

1

n

n∑
i=1

HiT = Q̄nT + Q̄+
nT + 2H̄nT .

20See equation (9.62) of Davidson (1994).
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The order of Q̄nT −E
(
Q̄nT

)
is given by (A.4). Using the same arguments as in the proof of (A.4),

we have

Q̄+
nT − E

(
Q̄+
nT

)
= Op

(
n−1/2

)
, and H̄nT − E

(
H̄nT

)
= Op

(
n−1/2

)
.

Hence, B̄nT − E
(
B̄nT

)
= Q̄nT − E

(
Q̄nT

)
+ Q̄+

nT − E
(
Q̄+
nT

)
+ 2

[
H̄nT − E

(
H̄nT

)]
= Op

(
n−1/2

)
,

and result (A.5) follows. This completes the proof.

Lemma A.2 Suppose yit, for i = 1, 2, ..., n, and t = −mi + 1,−mi + 2, ..., 1, 2, ..., T , are generated

by (1) with starting values yi,−mi. Let Assumptions 1-3 hold. Consider

V̄nT =
1

n

n∑
i=1

ViT ,

where ViT = 1
T−2

∑T−1
t=2

(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)
. Suppose that T is fixed. Then, we

have

V̄nT = Op

(
n−1/2

)
. (A.6)

If, in addition, ST = limn→∞ n−1
∑n

i=1E
(
V 2
iT

)
, and T is fixed as n→∞, then

√
nV̄nT →d N (0, ST ) . (A.7)

Proof. Under Assumptions 2 and 3, ViT is independently distributed of VjT for all i 6= j, i, j =

1, 2, ..., n. In addition, (using (13))

E (ViT ) =
1

T − 2

T−1∑
t=2

E
(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)

= 0. (A.8)

Also, by Assumptions 2 and 3, supi,tE |uit|4+ε < C, and supiE |bi,mi |
4+ε < C, for some ε > 0, and

hence, using Loève’s inequality,21 we have supi,tE |∆yit|4+ε < C. Using Loève’s inequality again,

we have

E
∣∣∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
∣∣2+ε/2 ≤ C

(
E |∆uit∆yi,t−1|2+ε/2 + E

∣∣∆u2
it

∣∣2+ε/2
+ E |∆ui,t+1∆yit|2+ε/2

)
.

But supitE
∣∣∆u2

it

∣∣2+ε/2
= supitE |∆uit|4+ε < C, as well as supi,tE |∆uit∆yi,t−1|2+ε/2 < C, and

supi,tE |∆ui,t+1∆yit|2+ε/2 < C. Hence, supitE
∣∣∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
∣∣2+ε/2

< C, and

21See equation (9.62) of Davidson (1994).
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using Loève’s inequality again, we have

sup
i
E
(
|ViT |2+ε/2

)
< C. (A.9)

It follows also that supiE
(
V 2
iT

)
< C, and given that ViT is independently distributed over i, we

have

E
(
V̄ 2
nT

)
= n−2

n∑
i=1

n∑
j=1

E (ViTVjT ) = n−2
n∑
i=1

E
(
V 2
iT

)
<
C

n
,

and result (A.6) follows. To establish (A.7), we note that (A.9) holds, and therefore the Lyapunov

condition holds (see Theorem 23.12 of Davidson, 1994). Hence, noting also that n−1
∑n

i=1E
(
V 2
iT

)
→

ST by assumption, we obtain
√
nV̄nT →d N (0, ST ), as required.

A.3 Propositions and Proofs

First we establish Theorem 1.

Proof of Theorem 1. To derive the asymptotic properties of φ̂nT , let φ0 denote the true value

of φ, assumed to lie inside Θ, and note that under φ = φ0, (3) yields ∆yit = φ0∆yi,t−1 + ∆uit, and

(15) can be written as

MiT (φ) =
1

T − 2

T−1∑
t=2


[∆uit − (φ− φ0) ∆yi,t−1] ∆yi,t−1

+ [∆uit − (φ− φ0) ∆yi,t−1]2

+ [∆ui,t+1 − (φ− φ0) ∆yit] ∆yit


= ΛiT + ViT , (A.10)

where

ViT =
1

T − 2

T−1∑
t=2

(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)
, (A.11)

and ΛiT = (φ− φ0)2QiT − (φ− φ0)
(
QiT +Q+

iT + 2HiT

)
, in which

QiT =
1

T − 2

T−1∑
t=2

∆y2
i,t−1, Q

+
iT =

1

T − 2

T−1∑
t=2

∆y2
it, and HiT =

1

T − 2

T−1∑
t=2

∆uit∆yi,t−1. (A.12)

We have one unknown parameter φ and one moment condition (14). Suppose there exists φ̂nT such
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that M̄nT

(
φ̂nT

)
= 0. Then (A.10) evaluated at φ = φ̂nT yields

(
φ̂nT − φ0

) [(
φ̂nT − φ0

)
Q̄nT − B̄nT

]
= −V̄nT , (A.13)

where V̄nT = n−1
∑n

i=1 ViT , Q̄nT = n−1
∑n

i=1QiT , and

B̄nT =
1

n

n∑
i=1

(
QiT +Q+

iT + 2HiT

)
. (A.14)

Using results (A.4)-(A.5) of Lemma A.1 in the appendix, under Assumptions 1-3, we have (for a

fixed T )

Q̄nT = E
(
Q̄nT

)
+Op

(
n−1/2

)
, and B̄nT = E

(
B̄nT

)
+Op

(
n−1/2

)
, (A.15)

where

E
(
Q̄nT

)
=

1

n

n∑
i=1

E (QiT ) > 0. (A.16)

In addition, using result (A.6) of Lemma A.2 in the appendix, we have

V̄nT = Op

(
n−1/2

)
. (A.17)

We now use (A.13) to show that there exists a unique
√
n-consistent estimator of φ. Suppose that

φ̂nT is a
√
n-consistent estimator of φ. Then we establish that such an estimator is in fact unique.

Using (A.13), we have

√
n
(
φ̂nT − φ0

)2
Q̄nT −

√
n
(
φ̂nT − φ0

)
B̄nT = −

√
nV̄nT . (A.18)

But, if there exists a
√
n-consistent estimator, then

√
n
(
φ̂nT − φ0

)2
Q̄nT = Op

(
n−1/2

)
, and hence

B̄nT
√
n
(
φ̂nT − φ0

)
=
√
nV̄nT +Op

(
n−1/2

)
. (A.19)

Also, using (A.15) the above can be written as

E
(
B̄nT

)√
n
(
φ̂nT − φ0

)
=
√
nV̄nT +Op

(
n−1/2

)
.
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where by (A.17),
√
nV̄nT = Op (1). If

B̄T = lim
n→∞

E
(
B̄nT

)
6= 0, (A.20)

it then follows that the
√
n-consistent estimator, φ̂nT , must be unique. It also follows that

√
n
(
φ̂nT − φ0

)
a∼ B̄−1

T

√
nV̄nT .

Finally, using result (A.7) of Lemma A.2 in the appendix, we have
√
nV̄nT →d N (0, ST ), where

ST = limn→∞ n−1
∑n

i=1E
(
V 2
iT

)
, and it follows that

√
n
(
φ̂nT − φ0

)
→d N (0,ΣT ) with ΣT =

B̄−2
T ST .

We present next propositions for the consistency of Σ̂nT .

Proposition 1 Suppose conditions of Theorem 1 hold, and consider Σ̂nT defined by (24), namely

Σ̂nT = ̂̄B−2

nT

(
1

n

n∑
i=1

V̂ 2
i,nT

)
,

where ̂̄BnT = n−1
∑n

i=1

(
QiT +Q+

iT + 2Ĥi,nT

)
, Ĥi,nT = (T − 2)−1∑T−1

t=2 ∆ûit∆yi,t−1, ∆ûit =

∆yit − φ̂nT∆yi,t−1,

V̂i,nT =
1

T − 2

T−1∑
t=2

(
∆ûit∆yi,t−1 + ∆û2

it + ∆ûi,t+1∆yit
)
,

and φ̂nT is the
√
n-consistent BMM estimator given by (16). Let T be fixed as n→∞. Then,

Σ̂nT →p ΣT , (A.21)

where ΣT is defined in (19)

Proof. Using Theorem 1, we have φ̂nT = φ0 +Op
(
n−1/2

)
, and therefore ∆ûit = ∆yit− φ̂nT∆yi,t−1

is consistent, namely ∆ûit − ∆uit = −
(
φ̂nT − φ0

)
∆yi,t−1 = Op

(
n−1/2

)
. This implies Ĥi,nT is

consistent, which in turn implies ̂̄BnT − B̄nT →p 0. But, using result (A.5) of Lemma A.1, we have

B̄nT →p E
(
B̄nT

)
, and E

(
B̄nT

)
→ BT . Therefore ̂̄BnT →p B̄T . Since B̄T > 0 by assumption, it

follows that ̂̄B−2

nT →p B̄
−2
T . (A.22)
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Next consider n−1
∑n

i=1 V̂
2
i,nT , and note that

V̂ 2
i,nT =

[(
V̂i,nT − ViT

)
+ ViT

]2
=
(
V̂i,nT − ViT

)2
+ 2

(
V̂i,nT − ViT

)
ViT + V 2

iT ,

where ViT = (T − 2)−1∑T−1
t=2

(
∆uit∆yi,t−1 + ∆u2

it + ∆ui,t+1∆yit
)
. Using∆ûn,it−∆un,it = Op

(
n−1/2

)
,

we have V̂i,nT − ViT = Op
(
n−1/2

)
. Noting also that ViT = Op (1), we then have

n−1
n∑
i=1

(
V̂i,nT − ViT

)2
→p 0, and n−1

n∑
i=1

(
V̂i,nT − ViT

)
ViT →p 0. (A.23)

Finally, to obtain the limiting property of n−1
∑n

i=1 V
2
iT , note that by assumption ViT is indepen-

dently distributed over i. Also, as established in (A.9), we have supiE |ViT |2+ε/2 < C for some ε > 0.

It follows that n−1
∑n

i=1

[
V 2
iT − E

(
V 2
iT

)]
→p 0, and therefore (noting that n−1

∑n
i=1E

(
V 2
iT

)
→ ST

by assumption) we have

n−1
n∑
i=1

V 2
iT →p ST . (A.24)

Result (A.21) now follows from (A.22), (A.23), and (A.24).

A.4 Rejection frequencies for selected estimators in Monte Carlo experiments

This section presents rejection frequencies for selected estimators considered in the Monte Carlo

experiments in Section 7, and selected sample combinations. Figure A1 compares rejection fre-

quencies of AH and AAH estimators in experiments where both AB and BB restrictions are met

(ρ = 0 & κ = 0), for the sample combinations, n = 1000, T = 4 and 6. Figure A2 compares rejec-

tion frequencies of AAH and AAH-O estimators using the same data generating process (ρ = 0 &

κ = 0), but plotting rejection frequencies for sample sizes with smaller value of n = 200 and larger

values of T = 10 and 20, where the number of moments is a very important small sample issue.

Figure A3 shows the rejection frequencies for AAH, AB, and BB estimators using the same data

generating process (ρ = 0 & κ = 0), using sample combinations n = 1000, T = 4 and 6. The last

figure (Figure A4) compares rejection frequencies of AAH and AB estimators in the experiments

where AB restrictions are met but BB restrictions are not met (ρ = 0, and κ = 1), and using the

sample combinations, n = 1000, T = 4 and 6.
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Figure A1: Rejection frequencies (at 5% nominal level) for AH and AAH estimators
when both Arellano and Bond (AB) and Blundell and Bond (BB) restrictions are

met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See the notes to Table 2.
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Figure A2: Rejection frequencies (at 5% nominal level) for AAH and AAH-O
estimators when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

n = 200, T = 10

φ0 = 0.4 φ0 = 0.8

n = 200, T = 20

φ0 = 0.4 φ0 = 0.8

See the notes to Tables 2 and 4.
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Figure A3: Rejection frequencies (at 5% nominal level) for AAH, AB, and BB
estimators when AB and BB restrictions are met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See notes to Tables 2 and 6.
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Figure A4: Rejection frequencies (at 5% nominal level) for AAH and AB estimators
when AB restrictions are met and BB restrictions are not met

n = 1000, T = 4

φ0 = 0.4 φ0 = 0.8

n = 1000, T = 6

φ0 = 0.4 φ0 = 0.8

See the notes to Tables 2 and 6.
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A.5 Monte Carlo experiments for panel ARX(1) model

This section presents Monte Carlo evidence on the relative performance of AAH, AB and BB

estimators for the panel ARX(1) model.22

A.5.1 ARX Monte Carlo Design

We augment the AR(1) DGP in Section 7 with a strictly exogenous regressor:

yit = αi + φyi,t−1 + βxit + uit, (A.25)

for i = 1, 2, ..., n, and t = 1, 2, ..., T . Individual effects, αi, are generated in the same way as in

Section 7, see (43). Similarly, the starting values, yi,0, are generated as in (44), namely

yi,0 = µi + κεi + υi, υi ∼ IIDN (0, 1) , (A.26)

but unlike in Section 7, where µi = αi/ (1− φ), the long-run means are generated as µi =

(αi + µxi) / (1− φ). The idiosyncratic errors, uit, are generated in the same way as in Section

7. Regressors, xit, are generated as

xit = µx,i (1− θ) + θxi,t−1 + εit, (A.27)

for i = 1, 2, ..., n, and t = 1, 2, ..., T , with starting values xi,0 = µx,i + IIDN (0, 1), where µx,i ∼

IIDN(1, 1), and εit ∼ IIDN
(
0, 1− θ2

)
.

We set φ = 0.8, β = 0.5 and θ = 0.6, and consider the same two values for ρ, namely ρ = 0 and

0.8, and the same two values for κ,namely κ = 0 and 1, as in Section 7. Under this design, the

covariates xit are strictly exogenous.

Available observations for estimation are (xit, yit) for t = 0, 1, 2, ..., T . We consider T = 4, 6, 10

and n = 100, 200, 500, 1000, 2000, 8000. R = 2000 replications were carried out for each experiment.

A.5.2 AB, BB and AAH Estimators for ARX panel

The AB estimator is implemented as a two-step GMM estimator based on "DIF1" set of mo-

ment conditions outlined in Hayakawa and Pesaran (2015), comprising the following T (T − 1) /2+

22We are grateful to an anonymous referee for suggesting these Monte Carlo experiments.
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(T + 1)T/2− 1 moment conditions:

E (yis∆uit) = 0, for s = 0, 1, ..., t− 2, t = 2, 3, ..., T , (A.28)

and

E (xis∆uit) = 0, for s = 1, 2, ..., t, t = 2, 3, ..., T . (A.29)

The BB estimator is a two-step GMM estimator based on "SYS1" set of moment conditions

outlined in Hayakawa and Pesaran (2015), comprising the moment conditions in (A.28)-(A.29) plus

the following additional 2 (T − 1) moment conditions:

E [∆yi,t−1 (αi + uit)] = 0, for t = 2, 3, ..., T , (A.30)

and

E [∆xit (αi + uit)] = 0, for t = 2, 3, ..., T . (A.31)

Detailed descriptions of these AB and BB estimators are provided in Sections 4 and 5 of Hayakawa

and Pesaran (2015).

In addition to AB and BB estimators, we also implement a two-step AAH estimator. This

estimator is based on the moment conditions (7) and (13) augmented with additional moment

conditions for instrumenting the regressor, xit for i = 1, 2, ..., n. As we noted in Section 5, this

paper has nothing new to add regarding the moment conditions for the exogenous regressors, and

standard moment conditions used in the literature can be considered. In the experiments presented

here we consider the same subset of available moment conditions for the regressor xit as chosen for

the AB estimator described above. This will make the comparisons between AH and AB methods

straightforward and fair. The set of moment conditions for the AAH estimator implemented below

is given by the (T − 2) (T − 1) /2 +T + (T + 1)T/2− 3 moment conditions in (7), (13) and (A.29).

For the choices of T = 4, 6, 10, we respectively have 15, 35, 99 moment conditions for the AB

estimator, 21, 45, 117 moment conditions for the BB estimator, and 14, 34, 98 moment conditions

for the AAH estimator.
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A.5.3 Results

We consider three sets of experiments, for different values of ρ and κ. Table A1 reports Bias and

RMSE (both ×100) of the three estimators in the baseline case where both Arellano and Bond (AB)

and Blundell and Bond (BB) restrictions are met, namely ρ = κ = 0. The reported values for bias

are overall relatively small for estimation of both parameters, φ and β, and the bias is reduced quite

rapidly with an increase in n. For most experiments RMSEs of estimating β are larger compared

to the RMSE obtained for estimating φ. This could be due to relatively low variability of ∆xit over

i and t. For all sample sizes considered, BB estimator has the lowest RMSE values, reflecting that

the set of moment conditions underpinning the BB estimator encompasses the moment conditions

that underlie the other two estimators. Comparison of RMSE values reported for AAH and AB

estimator reveals that AAH has lower RMSE for majority of sample sizes when estimating φ, but

somewhat larger RMSE when estimating β. Size and power of AAH, AB and BB estimators for

the baseline experiments (with ρ = κ = 0) are reported in Table A2. As in Section 5, we observe

large size distortions when the number of moment conditions is relatively large compared with the

sample sizes, which can be seen most clearly when n = 100 or 200, with the size distortions quickly

worsening with as T is increased. For T = 10, we need at least n = 2000 for the size distortion to

be relatively small.

Findings for experiments when AB restrictions are met and but some of the BB restrictions are

not met (namely when ρ = 0, and κ = 1) are summarized in Table A3 (for the bias and RMSE)

and in Table A4 (for the size and power). We see that BB estimator is subject to bias, which

does not decrease with an increase in n, in line with expectation that BB estimator is no longer

consistent in these experiments, since some of the BB moment conditions are no longer valid when

κ 6= 1. Consequently, the reported size distortions of the BB estimator in Table A4 are very large

and deteriorate rapidly with an increase in n. Comparison of AAH and AB estimators in terms

of RMSE (reported in Table A3) reveals that AAH has lower RMSE for all sample sizes with the

exception of one sample size (n = 100, T = 4) when estimating φ, whilst the comparisons are more

mixed for the estimation of β, where the AAH estimator still outperforms in majority of sample

sizes considered.

Last but not least, Tables A5-A6 report Monte Carlo findings for panel ARX(1) experiments

when some of AB and BB restrictions are not met (ρ = 0.8, and κ = 1). In the case, not surprisingly,

AB and BB estimators being based on invalid moment conditions are biased (Table A5) for most
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of the sample sizes. It is interesting to note that the bias is quite small for the AB estimator

and values of T = 10, when parameter β is estimated. Bias distortions of AB and BB estimators

manifest in large size distortions that rise in n (Table A8). In contrast, the AAH estimator shows

qualitatively similar performance compared with the previous experiments. In particular, there are

no serious size distortions when n is suffi ciently large relative to T . For example, for T = 4 the

AAH estimator does not show any size distortions for values of n ≥ 200, irrespective of whether we

consider estimating φ and β. But to avoid size distortions when T = 6 then we need n ≥ 500, and

so on. The AAH continues to have satisfactory power which rise with n.
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Table A1: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

ρ = 0, and κ = 0

Bias (×100) RMSE(×100)
φ0 = 0.8 β0 = 0.5 φ0 = 0.8 β0 = 0.5

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.51 -0.24 0.47 0.03 0.44 -1.17 7.39 8.24 2.76 8.71 8.19 8.07
4 200 0.79 -0.16 0.21 -0.20 0.05 -0.75 4.71 5.69 1.88 5.74 5.48 5.36
4 500 0.34 0.02 0.03 0.00 0.10 -0.23 2.79 3.58 1.15 3.54 3.49 3.34
4 1000 0.24 0.03 0.05 -0.05 -0.01 -0.20 2.01 2.56 0.81 2.57 2.54 2.40
4 2000 0.10 0.06 0.00 0.03 0.06 -0.05 1.36 1.77 0.57 1.78 1.78 1.69
4 8000 0.01 0.00 0.00 -0.02 -0.02 -0.03 0.68 0.90 0.28 0.90 0.90 0.84

6 100 1.65 0.13 0.88 -0.42 0.02 0.88 5.10 5.63 2.78 7.68 6.48 7.01
6 200 1.03 0.32 0.48 -0.02 0.17 0.48 3.07 3.67 1.71 4.51 4.19 4.21
6 500 0.47 0.27 0.20 -0.05 0.00 0.20 1.78 2.21 1.00 2.72 2.68 2.62
6 1000 0.25 0.06 0.07 0.06 0.08 0.07 1.19 1.50 0.70 1.89 1.87 1.76
6 2000 0.11 0.04 0.03 -0.02 -0.01 0.03 0.82 1.09 0.48 1.28 1.29 1.22
6 8000 0.01 0.00 0.01 -0.01 -0.01 0.01 0.41 0.55 0.24 0.64 0.64 0.60

10 100 3.84 0.36 - -1.49 1.14 - 10.98 18.90 - 16.13 26.23 -
10 200 1.26 0.71 0.88 -0.08 0.15 0.88 2.63 2.76 1.89 4.13 3.63 3.77
10 500 0.58 0.35 0.37 0.09 0.17 0.37 1.27 1.39 0.89 2.08 1.99 1.94
10 1000 0.31 0.20 0.20 0.05 0.08 0.20 0.80 0.94 0.59 1.34 1.34 1.27
10 2000 0.16 0.10 0.10 0.05 0.06 0.10 0.53 0.66 0.40 0.95 0.96 0.89
10 8000 0.03 0.02 0.02 0.00 0.00 0.02 0.25 0.32 0.19 0.47 0.47 0.44

Notes: “AAH”is the augmented Anderson and Hsiao 2-step GMM estimator based on the (T − 2) (T − 1) /2+T+(T + 1)T/2−3
moment conditions in (7), (13), and (A.29), “AB”is 2-step GMM estimator based on the T (T − 1) /2+(T + 1)T/2−1 moment
conditions in (A.28)-(A.29), and “BB”is 2-step GMM estimator based on the T (T − 1) /2+(T + 1)T/2−1+2 (T − 1) moment
conditions in (A.28)-(A.31). See Subsection A.5.2 in Appendix for further details. The DGP is given by yit = αi + φyi,t−1 +
βxit + uit, for i = 1, 2, ..., n, and t = 1, 2, ..., T , with initial values given by yi,0 = µi + κεi + υi, xi,0 = µxi + IIDN (0, 1),
where µi = (αi + µxi) / (1− φ), µx,i ∼ IIDN(1, 1), αi =

∑T
t=1 ρ

tuit + εi, εi ∼ IIDN (1, 1), and υi ∼ IIDN (0, 1). This table
reports findings for experiments where κ = ρ = 0, namely AB and BB restrictions are met. BB restrictions are not satisfied
when κ 6= 0, and AB restrictions are not satisfied when ρ 6= 0. Errors uit are generated to be cross-sectionally heteroskedastic
and non-normal, uit = (eit − 2)σia/2 for t ≤ [T/2], and uit = (eit − 2)σib/2 for t > [T/2], with σ2ia ∼ IIDU (0.25, 0.75),
σ2ib ∼ IIDU (1, 2), eit ∼ IIDχ2 (2), and [T/2] is the integer part of T/2. Errors εit are generated as εit ∼ IIDN

(
0, 1− θ2

)
.

See Subsection A.5.1 for a full description of the MC experiments. The number of time periods available for estimation is T +1,
namely (xi0, yi0) , (xi1, yi1) , ..., (xiT yiT ), is available for i = 1, 2, ..., n.
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Table A2: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when both Arellano and Bond (AB) and Blundell and Bond (BB)

restrictions are met

ρ = 0, and κ = 0

Size (5% level, ×100) Power (5% level, ×100)
φ0 = 0.8 β0 = 0.5 H1 : φ = φ0 + 0.1 H1 : β0 = β0 + 0.1

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.60 11.35 17.90 8.75 11.70 17.40 11.40 12.55 20.60 10.20 12.55 19.55
4 200 6.95 7.75 10.95 5.85 7.35 10.10 8.65 10.55 23.60 7.85 9.05 12.80
4 500 5.40 6.45 7.60 4.80 5.85 6.20 10.65 9.10 43.40 8.10 9.85 12.65
4 1000 6.05 6.25 6.25 5.65 6.25 6.75 17.55 13.25 71.55 13.35 13.90 16.70
4 2000 4.85 4.45 5.20 5.20 5.90 5.60 28.90 19.30 94.80 19.60 20.20 25.10
4 8000 5.10 5.00 5.00 5.30 5.40 5.50 82.50 60.35 100.00 62.55 62.40 67.35

6 100 25.60 24.30 39.00 27.60 25.75 37.50 24.10 26.45 40.90 30.20 26.80 42.50
6 200 13.65 13.45 19.95 11.55 11.45 16.40 14.95 16.45 33.20 15.85 15.50 25.65
6 500 8.50 8.40 9.95 7.40 7.90 11.00 20.80 16.40 54.90 15.40 16.55 24.60
6 1000 6.60 5.60 6.90 6.45 5.75 6.70 35.45 25.85 83.60 20.20 20.85 28.00
6 2000 5.90 5.50 6.05 4.10 4.70 5.75 64.05 43.90 98.95 34.90 34.50 43.25
6 8000 5.10 5.65 5.80 4.80 4.80 4.45 99.60 95.60 100.00 86.45 87.05 92.30

10 100 94.90 97.25 - 94.40 97.35 - 95.50 96.80 - 95.45 96.80 -
10 200 44.20 38.25 55.40 40.50 36.65 47.25 40.10 41.65 57.85 44.60 40.35 57.00
10 500 18.90 13.40 18.95 14.30 13.10 17.10 42.50 37.55 73.55 30.25 28.95 43.35
10 1000 10.80 8.70 12.55 8.70 7.80 8.85 72.30 58.40 94.35 37.85 36.85 51.90
10 2000 7.65 6.70 7.80 6.45 6.60 7.00 96.45 85.50 99.85 59.95 58.35 70.65
10 8000 5.65 5.60 5.35 5.35 5.20 5.35 100.00 100.00 100.00 99.35 99.20 99.65

See the notes to Table A1
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Table A3: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions are met and Blundell and Bond

(BB) restrictions are not met

ρ = 0, and κ = 1

Bias (×100) RMSE(×100)
φ0 = 0.8 β0 = 0.5 φ0 = 0.8 β0 = 0.5

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.50 -0.17 3.12 0.04 0.44 -0.04 7.36 7.35 3.77 8.76 8.17 8.08
4 200 0.77 -0.09 3.19 -0.19 0.08 0.45 4.62 5.08 3.52 5.73 5.48 5.40
4 500 0.32 0.02 3.25 0.00 0.10 1.10 2.73 3.19 3.38 3.54 3.49 3.58
4 1000 0.23 0.02 3.32 -0.05 0.00 1.16 1.95 2.27 3.38 2.56 2.54 2.70
4 2000 0.10 0.05 3.32 0.03 0.06 1.33 1.33 1.58 3.35 1.78 1.78 2.18
4 8000 0.01 0.01 3.35 -0.02 -0.01 1.37 0.66 0.80 3.36 0.90 0.89 1.62

6 100 1.58 0.11 3.08 -0.39 0.04 3.08 4.95 5.09 3.74 7.71 6.50 6.81
6 200 1.00 0.26 3.03 0.00 0.20 3.03 3.00 3.31 3.31 4.53 4.21 4.20
6 500 0.47 0.24 3.05 -0.04 0.01 3.05 1.74 1.99 3.16 2.73 2.68 2.84
6 1000 0.24 0.04 3.05 0.06 0.09 3.05 1.16 1.36 3.11 1.89 1.87 2.34
6 2000 0.11 0.03 3.09 -0.02 -0.01 3.09 0.81 0.98 3.12 1.28 1.29 2.03
6 8000 0.01 0.00 3.11 -0.01 -0.01 3.11 0.40 0.50 3.12 0.64 0.65 1.84

10 100 3.82 0.35 - -1.69 0.78 - 10.72 18.94 - 16.14 27.32 -
10 200 1.24 0.61 2.74 -0.04 0.19 2.74 2.60 2.52 3.07 4.14 3.66 3.69
10 500 0.57 0.29 2.55 0.11 0.20 2.55 1.25 1.28 2.65 2.09 2.01 2.28
10 1000 0.30 0.18 2.55 0.06 0.10 2.55 0.78 0.86 2.60 1.35 1.35 2.00
10 2000 0.16 0.09 2.55 0.06 0.07 2.55 0.52 0.60 2.57 0.95 0.96 1.97
10 8000 0.03 0.02 2.55 0.00 0.00 2.55 0.24 0.29 2.56 0.47 0.47 1.92

Notes: See notes to Table A1.
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Table A4: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions are met and Blundell and Bond

(BB) restrictions are not met

ρ = 0, and κ = 1

Size (5% level, ×100) Power (5% level, ×100)
φ0 = 0.8 β0 = 0.5 H1 : φ = φ0 + 0.1 H1 : β0 = β0 + 0.1

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.00 11.80 56.20 8.65 11.60 16.35 11.20 13.55 25.15 10.15 12.60 18.20
4 200 6.50 8.40 71.75 5.45 7.50 9.40 9.20 10.95 26.10 7.75 9.15 11.05
4 500 5.45 6.15 95.75 4.80 5.80 8.05 10.70 10.55 38.05 8.10 9.70 7.85
4 1000 5.95 6.00 99.95 5.70 6.30 8.60 17.55 15.50 61.45 13.10 13.80 7.60
4 2000 5.10 5.00 100.00 5.10 5.90 13.70 30.10 23.25 87.15 19.55 19.95 7.35
4 8000 5.05 4.75 100.00 5.25 5.25 37.30 83.95 70.15 100.00 62.65 62.40 12.00

6 100 24.90 24.65 74.20 27.20 25.35 34.70 24.35 26.45 43.85 29.45 26.55 37.65
6 200 13.75 14.10 82.10 11.50 11.30 16.25 15.10 17.50 34.35 15.20 16.00 18.85
6 500 8.40 8.55 97.85 7.35 7.85 12.30 20.90 18.20 40.65 15.10 16.30 11.35
6 1000 6.85 5.65 100.00 6.55 5.55 16.35 36.40 31.70 59.20 19.95 20.85 7.30
6 2000 5.75 5.10 100.00 4.00 4.55 26.55 65.75 52.20 85.90 34.30 34.25 6.95
6 8000 4.80 5.15 100.00 4.85 4.85 79.45 99.70 97.85 100.00 86.55 86.50 6.85

10 100 95.95 97.25 - 93.95 97.35 - 94.70 97.00 - 94.70 97.05 -
10 200 45.55 38.55 89.95 40.00 35.85 44.95 40.00 43.95 58.50 44.85 40.55 49.70
10 500 18.65 13.85 98.70 14.75 13.25 24.25 43.75 43.85 36.35 29.80 27.95 19.30
10 1000 11.00 9.15 100.00 8.15 7.70 32.15 73.50 67.25 40.00 37.40 36.10 10.55
10 2000 7.90 6.95 100.00 6.40 6.80 55.75 97.25 91.45 53.60 59.00 57.60 8.00
10 8000 5.65 5.55 100.00 5.10 5.20 98.95 100.00 100.00 94.20 99.20 99.10 6.85

See the notes to Table A1
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Table A5: Bias and RMSE of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions and Blundell and Bond (BB)

restrictions are not met

ρ = 0.8, and κ = 1

Bias (×100) RMSE(×100)
φ0 = 0.8 β0 = 0.5 φ0 = 0.8 β0 = 0.5

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 1.48 -4.16 1.86 0.00 0.46 -0.26 7.37 9.22 2.88 8.78 8.83 8.36
4 200 0.77 -3.56 1.86 -0.21 0.27 0.15 4.62 6.86 2.41 5.73 5.87 5.49
4 500 0.32 -2.80 1.93 0.00 0.43 0.59 2.73 4.66 2.15 3.54 3.76 3.55
4 1000 0.23 -2.58 2.01 -0.05 0.35 0.58 1.95 3.81 2.12 2.56 2.72 2.55
4 2000 0.10 -2.39 2.03 0.03 0.39 0.69 1.33 3.09 2.09 1.78 1.98 1.94
4 8000 0.01 -2.31 2.09 -0.02 0.36 0.76 0.66 2.53 2.10 0.90 1.06 1.20

6 100 1.58 -1.44 2.49 -0.40 0.20 2.49 4.95 5.58 3.25 7.71 6.64 6.96
6 200 1.00 -1.05 2.40 0.00 0.45 2.40 3.00 3.62 2.75 4.53 4.37 4.30
6 500 0.47 -0.97 2.42 -0.04 0.30 2.42 1.74 2.34 2.56 2.73 2.76 2.73
6 1000 0.24 -1.04 2.44 0.06 0.41 2.44 1.16 1.79 2.51 1.89 1.97 2.08
6 2000 0.11 -1.03 2.48 -0.02 0.33 2.48 0.81 1.49 2.51 1.28 1.40 1.70
6 8000 0.01 -1.03 2.51 -0.01 0.33 2.51 0.40 1.17 2.52 0.64 0.75 1.35

10 100 3.82 -0.01 - -1.69 0.69 - 10.72 18.21 - 16.14 25.94 -
10 200 1.24 0.25 2.56 -0.04 0.18 2.56 2.59 2.50 2.91 4.14 3.69 3.70
10 500 0.57 -0.07 2.38 0.11 0.21 2.38 1.25 1.25 2.48 2.09 2.02 2.19
10 1000 0.30 -0.20 2.38 0.06 0.11 2.38 0.78 0.87 2.43 1.35 1.36 1.84
10 2000 0.16 -0.29 2.38 0.06 0.10 2.38 0.52 0.66 2.41 0.95 0.97 1.76
10 8000 0.03 -0.36 2.38 0.00 0.04 2.38 0.24 0.47 2.39 0.47 0.48 1.68

Notes: See notes to Table A1.
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Table A6: Size and Power of AAH, AB and BB estimators in panel ARX(1)
experiments when Arellano Bond (AB) restrictions and Blundell and Bond (BB)

restrictions are not met

ρ = 0.8, and κ = 1

Size (5% level, ×100) Power (5% level, ×100)
φ0 = 0.8 β0 = 0.5 H1 : φ = φ0 + 0.1 H1 : β0 = β0 + 0.1

T n AAH AB BB AAH AB BB AAH AB BB AAH AB BB
4 100 10.05 17.00 35.15 8.65 15.35 17.20 11.25 22.20 19.30 10.15 16.70 18.35
4 200 6.50 15.20 40.10 5.45 9.90 10.25 9.25 23.85 13.15 7.75 12.05 12.10
4 500 5.45 14.85 64.30 4.80 8.95 7.90 10.70 31.30 9.70 8.10 12.10 10.00
4 1000 5.95 21.15 89.10 5.70 9.70 7.60 17.55 48.25 9.35 13.10 14.35 11.40
4 2000 5.10 30.80 99.15 5.10 9.95 9.30 30.10 69.50 8.90 19.55 18.60 14.10
4 8000 5.05 71.55 100.00 5.25 10.85 16.95 83.95 99.15 11.55 62.65 48.40 32.60

6 100 24.95 25.85 63.85 27.15 26.55 36.70 24.40 33.90 39.90 29.40 26.85 39.25
6 200 13.75 15.00 69.80 11.50 13.50 17.00 15.10 26.30 22.85 15.20 16.30 20.35
6 500 8.40 10.60 92.10 7.35 9.40 10.10 20.90 36.40 18.25 15.10 15.65 15.35
6 1000 6.85 12.65 99.55 6.55 7.80 11.35 36.40 59.35 21.50 19.95 17.50 11.50
6 2000 5.75 19.70 100.00 4.00 7.30 16.10 65.75 83.80 32.20 34.30 28.05 12.60
6 8000 4.80 52.35 100.00 4.85 9.45 49.40 99.70 99.90 80.35 86.55 72.35 25.90

10 100 95.90 97.40 - 93.95 96.40 - 94.70 96.90 - 94.70 97.40 -
10 200 45.55 37.20 88.50 39.95 35.90 45.35 40.00 47.65 55.15 44.85 40.45 50.05
10 500 18.65 11.70 98.25 14.75 13.50 21.75 43.75 55.45 29.95 29.80 27.45 20.55
10 1000 11.00 8.75 100.00 8.15 8.10 26.60 73.50 80.35 30.00 37.40 35.75 13.35
10 2000 7.90 9.65 100.00 6.40 6.80 45.30 97.25 97.85 36.00 59.00 56.15 11.50
10 8000 5.65 23.55 100.00 5.10 6.15 95.65 100.00 100.00 73.60 99.20 98.85 15.30

See the notes to Table A1
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A.6 Empirical Application: AR(1) model of earning dynamics

This section presents the results of estimating a panel AR(1) model for earnings dynamics using

the Panel Study of Income Dynamics (PISD) dataset, originally studied by Meghir and Pistaferri

(2004), and more recently by Hospido (2012) and Hayakawa and Pesaran (2015).23 Hospido argues

it is important to account for individual unobserved heterogeneity and dynamics in conditional

variance of errors, which can change over time. We note that the AAH estimator of AR(1) panel

is robust to any time series and cross section heteroskedasticity of errors, and therefore it is valid

for estimation and inference in the presence of such effects. Application by Hayakawa and Pesaran

(hereafter HP) compares the estimates of panel AR and panel ARX models of PISD earnings

across different GMM estimators and the transformed MLE (TMLE) estimator proposed by Hsiao,

Pesaran, and Tahmiscioglu (2002) and further extended by Hayakawa and Pesaran (2015).24 We

build on the application by HP and compare their panel AR(1) estimates with ones obtained using

the AAH estimator proposed in this paper.

We estimate panel AR(1) model of earning:

yit = αi + φyi,t−1 + uit, for i = 1, 2, ..., n, (A.32)

which is identical to our model (1) extensively discussed in Section 2, where yit is log(earningsit/priceit).

The annual data is unbalanced with Tmin = 9 and Tmax = 26 and n = 2069 individuals for the

period 1967-1992. Similarly to HP, we consider estimating φ using the full panel, as well as sub-

samples. In particular, we consider dividing the individuals into three groups, based on the years

of education: HSD (high school dropouts with less than 12 years of education), HSG (high school

graduates with at least 12, but less than 16 years of education), and CLG (college graduates with at

least 16 years of education). In addition, we consider three different subperiods: 1977-1987 (T = 5

after first-differencing), 1977-1987 (T = 10), and 1977-1992 (T = 15). We estimate (A.32) using

the 2-step AAH estimator based on the moment conditions given by (7) and (13), and compare

the AAH estimates with the ones obtained using the AB and BB two-step GMM estimators de-

23We have downloaded data from the supplementary materials posted for the Hayakawa and Pesaran (2015)
using this link: http://www.econ.cam.ac.uk/people-files/emeritus/mhp1/wp12/Matlab-code-and-data-for-TransML-
Hayakawa-and-Pesaran-2012.zip. We are grateful to Kazuhiko Hayakawa for making these codes and data publicly
available.
24This application is not part of the published paper, but it is available in the supplementary materi-

als available at http://www.econ.cam.ac.uk/people-files/emeritus/mhp1/wp12/Matlab-code-and-data-for-TransML-
Hayakawa-and-Pesaran-2012.zip.
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scribed in Section 7.2. These estimators are the same ones as the two-step GMM estimators based

on “DIF1” and “SYS1”moment conditions considered in HP. In addition, we also compare the

GMM estimates of φ with the ones obtained using the TMLE approach of Hsiao, Pesaran, and

Tahmiscioglu (2002), using the robust standard errors derived in Hayakawa and Pesaran (2015).

A.6.1 Estimation results

Estimation results are reported in Table A7. The left panel of this table reports findings for the

sample covering 1977-1982 (T = 5 after first differencing), middle panel reports results for 1977-

1987 (T = 10), and the right panel reports findings for 1977-1992 (T = 15). The number of moment

conditions depends on T and it is reported in the last row. Each of the three samples is further

divided based on the education achievement. The top part show results for all individuals with

available data, followed by the high school dropouts (HSD), high school graduates (HSG), and

college graduates (CLG). One common theme emerges from these results: persistence of earnings

is higher for college graduates compared with high school dropouts and high school graduates.

This is generally true for all estimators and samples considered with two notable exception: the

TMLE estimator when T = 5, where the estimate of φ is actually lowest for the college graduates;

and the second exception is the unusually large (explosive) value of φ̂ = 1.0375 obtained when

using the BB estimator for HSG sample with T = 5. These results therefore suggest that there is

some heterogeneity in persistence of earnings based on the educational achievement, and therefore

assuming homogeneity of φ in the full sample (sample ALL reported in the top panel of Table A7)

is probably not warranted. Second interesting observation from the estimates in Table A7 is the

very large disparities that exist across the different estimators. Sample with T = 15 reported in the

right part of the table A7 is subject to many moments problem (in the case of the GMM estimators)

with reported number of moments between 104 and 135 compared with the sample sizes ranging

from n = 72 to n = 507. It is clear that TMLE is more reliable for T = 15, with the estimated

values 0.4236 (HSD), 0.5488 (HSG) and 0.7352 (CLG), reported in the last column of Table A7.

We focus next on the estimates with T = 5 and T = 10, where the number of moments will be of

less consequence compared with T = 15 in the case of the GMM estimators (AAH, AB and BB).

BB estimates of φ range between 0.9292 to 1.0375 in all cases with very tight standard errors. AB

estimates range between 0.0910 to 0.8779. TMLE and AAH estimates lie in the narrower range of

0.3610 to 0.7091. It is diffi cult to reconcile such large heterogeneity of estimates across methods
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particularly given that all these estimates are rather precisely estimated with small standard errors.

Differences among the requirements for the initial values and fixed effects, discussed in depth

in this paper, could be one of the contributing factors explaining such large differences across the

estimation methods. Hausman test applied to the difference between BB and AAH estimators

(reported in Table A8) show very strong rejection rates for all samples considered. This is a strong

indication that the BB restrictions are not met. Other factors could also play a role in such a large

differences across individual estimators, such as heterogeneity of slope coeffi cients, cross-sectional

error dependence, and higher order dynamics. It is important that the analysis of this paper is

extended along the lines of AAH estimator in search of new estimators that are also robust to slope

heterogeneity and cross-sectional error dependence.
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Table A7: Estimation results for panel AR(1) model of real earnings using PISD
dataset

1977-1982, T = 5 1977-1987, T = 10 1977-1992, T = 15

AAH AB BB TMLE AAH AB BB TMLE AAH AB BB TMLE

All n = 994 n = 712 n = 507

φ̂ 0.4056 0.0910 0.9417 0.6251 0.4457 0.4636 0.9501 0.5045 0.4321 0.4739 0.9487 0.5899

s.e. 0.0424 0.0811 0.0044 0.1026 0.0264 0.0292 0.0007 0.0294 0.0120 0.0133 0.0005 0.0254

HSD n = 237 n = 134 n = 72

φ̂ 0.4698 0.3084 1.0375 0.6553 0.4631 0.2537 0.9460 0.4055 - - - 0.4236

s.e. 0.0578 0.0938 0.0116 0.2015 0.0106 0.0145 0.0005 0.0459 - - - 0.0558

HSG n = 514 n = 382 n = 285

φ̂ 0.4010 0.1231 0.9292 0.6376 0.3610 0.3241 0.9561 0.4449 0.4335 0.4017 0.9449 0.5488

s.e. 0.0684 0.0993 0.0066 0.1084 0.0217 0.0283 0.0011 0.0344 0.0115 0.0161 0.0004 0.0274

CLG n = 243 n = 196 n = 150

φ̂ 0.4657 0.6012 0.9949 0.5084 0.5988 0.8779 0.9881 0.7091 0.5561 0.8398 0.9897 0.7352

s.e. 0.0680 0.0913 0.0023 0.1263 0.0191 0.0184 0.0006 0.0784 0.0045 0.0047 0.0001 0.0507

h 9 15 20 44 55 65 104 120 135

Notes: This table reports estimation of coeffi cient φ in panel AR(1) specification yit = αi + φyi,t−1 + uit, where yit is
log(earningsit/priceit) using the PISD dataset. “HSD” refers to high school dropouts with less than 12 years of education,
“HSG” refers to high school graduates with at least 12, but less than 16 years of education, and “CLG” refers to college
graduates with at least 16 years of education. The last row reports the number of moment conditions (h). AAH is the 2-step
GMM estimator based on the moment conditions given by (7) and (13), AB and BB are two-step GMM estimators based on
“DIF1” and “SYS1” moment conditions outlined in Hayakawa and Pesaran (2015). DIF1 moment conditions are given by
(A.28). SYS1 moment conditions are given by (A.28) and (A.30). Conventional standard errors are reported. TMLE is the
transformed ML estimator of Hsiao, Pesaran, and Tahmiscioglu (2002) and Hayakawa and Pesaran (2015). “-” indicates the
number of moments (h) exceeds the sample size (n). Reported time dimension T refers to the available time periods after
first-differencing.
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Table A8: Hausman test applied to AAH and BB estimators in the panel AR(1)
model of real earnings using PISD dataset

1977-1982, 1977-1987, 1977-1992,

T = 5 T = 10 T = 15

All n = 994 n = 712 n = 507

Hausman test 161.7 366.0 1866.1

p-value 0.000 0.000 0.000

HSD n = 237 n = 134 n = 72

Hausman test 100.4 2076.5 -

p-value 0.000 0.000 -

HSG n = 514 n = 382 n = 285

Hausman test 60.2 753.6 1976.7

p-value 0.000 0.000 0.000

CLG n = 243 n = 196 n = 150

Hausman test 60.6 416.2 9234.4

p-value 0.000 0.000 0.000

Notes: This table reports Hausman test applied to applied to the AAH and BB estimators. See Section 4.1 for details. Under
the null hypothesis that the BB conditions are met, the Hausman test is asymptotically distributed as χ2 (1), for a fixed T and
as n→∞. Results in this table suggest that the BB restrictions are not met.
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