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Abstract

This material presents the derivation of a solution to the optimal contracting

problem in the partial equilibrium model (the proof of Proposition 1 in the paper), the

proof of Proposition 2, the system of equations for the dynamic general equilibrium

model, the calculation of the steady state, the derivation of a key equation regarding

lemons shocks, and a version of the model with an exogenous countercyclical wage

markup. Moreover, it presents a model with risk shocks and a version of the model

presented in the paper with a shock to lenders’ perception about borrowers’ riskiness.

A. Optimal Contracting Problem

This section first provides the derivation of a solution to the optimal contracting problem of

the model with asymmetric information, presented in Section 2.3 in the paper. By doing so
it provides the proof of Proposition 1. Next, this section presents the proof of Proposition

2, which shows the results of the comparative statics analysis of the model. The notations

used in this material are the same as those in the paper, otherwise they would be noted.

∗The views expressed in this material are solely the responsibility of the author and should not be 

interpreted as reflecting views of the Bank of Japan, Federal Reserve Bank of Dallas or the Federal Reserve System.
†Bank of Japan, 2-1-1 Nihonbashi-Hongokucho,Chuo-ku,Tokyo 103-8660 Japan. E-mail: 

daisuke.ikeda@boj.or.jp.

‡Supplement DOI: https://doi.org/10.24149/gwp361supp 

                                                                                    1



A1. Proof of Proposition 1

The optimal contracting problem for the model with asymmetric information is reproduced

here for convenience. In the problem, the type-(n, p) entrepreneur chooses a bank that offers

the schedule of contracts, {Bn(p), Xn(p)}p̄p=p, that maximizes the expected profits,

max
{Bn(p),Xn(p)}p̄p=p

∫ p̄

p

[
Rk(Nn +Bn(p))− pXn(p)

]
dF (p), (A1)

subject to the bank zero profit condition,∫ p̄

p

[pXn(p)−RBn(p)] dF (p) = 0, (A2)

the entrepreneur’s participation constraint,

pθ(p)RkBn(p)− pXn(p) ≥ 0, ∀p ∈ [p, p̄], (A3)

the entrepreneur’s pledgeability constraint,

pXn(p) ≤ φpθ(p)Rk[Nn +Bn(p)], ∀p ∈ [p, p̄], (A4)

and the entrepreneur’s incentive constraint,

RkBn(p)− pXn(p) ≥ RkBn(p̃)− pXn(p̃), ∀p, p̃ ∈ [p, p̄]. (A5)

By assumption pθ(p) = 1 so that the expected return is identical at Rk for all entrepreneurs.

This problem can be solved in four steps.

Step 1 : Suppose that there exists a threshold p∗ such that entrepreneurs with riskiness

p > p∗ do not get a loan, which will be verified later. Then the incentive constraint (A5)

implies that the expected profit from borrowing for the type-(n, p) entrepreneur is given

by:

if p > p∗ RkBn(p)− pXn(p) = −pXn(p) ≤ 0,

if p = p∗ RkBn(p)− pXn(p) = 0, (A6)

if p < p∗ RkBn(p)− pXn(p) > 0.
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The equality in the first equation follows from the presumption that Bn(p) = 0 for p > p∗.

From the participation constraint (A3), Xn(p) = 0 for entrepreneurs with p > p∗. For

entrepreneurs with p ≤ p∗ the participation constraint is satisfied, which is straightforward

from the expected profit of borrowing (A6). Now the original problem is written as:

max
{p∗,{Xn(p),Bn(p)}p

∗
p=p}

∫ p∗

p

[
RkBn(p)− pXn(p)

]
dF (p), (A7)

subject to the zero profit condition (A2), the pledgeability constraint (A4), and the incentive

constraint (A5). A constant term, which is irrelevant to the problem, is omitted from (A7).

Step 2 : Let Πn(p̃; p) ≡ RkBn(p̃) − pXn(p̃) denote the expected profits for the type-

(n, p) entrepreneur who has chosen the pair {Bn(p̃), Xn(p̃)}. The incentive constraint (A5)

requires that Πn(p̃; p) is maximized at p̃ = p. As in a standard mechanism design problem,

the incentive constraint can be replaced with: ∀p ∈ [p, p∗],

Rk[dBn(p)/dp]− p[dXn(p)/dp] = 0, (A8)

dXn(p)/dp ≤ 0. (A9)

The local incentive compatibility constraint (A8) corresponds to the first-order condition

of the problem of maximizing Πn(p̃; p) with respect to p̃, with p̃ evaluated at p̃ = p, and

the monotonicity constraint (A9) corresponds to its second-order condition. Let Π∗n(p)

define Π∗n(p) ≡ Πn(p; p). Applying the envelop theorem to Π∗n(p) yields dΠ∗n(p)/dp =

[dBn(p)/dp] − p[dXn(p)/dp] − Xn(p) = −Xn(p), where the local incentive compatibility

constraint (A8) is used in the first equality. Reminding that Π∗n(p∗) = 0 from (A6), inte-

grating dΠ∗n(x)/dx over the interval [p, p∗] yields:

Π∗n(p) = RkBn(p)− pXn(p) =

∫ p∗

p

Xn(x)dx. (A10)

Now define Xn(p) as Xn(p) ≡
∫ p
p
Xn(x)dx. Then, using (A10), the expected profits of the
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type-n entrepreneur before p is realized, (A7), is given by:

∫ p∗

p

[
RkBn(p)− pXn(p)

]
dF (p) =

∫ p∗

p

∫ p∗

p

Xn(x)dxdF (p)

=

∫ p∗

p

[Xn(p∗)−Xn(p)] f(p)dp

=Xn(p∗)F (p∗)−
∫ p∗

p

Xn(p)f(p)dp,

where F (p) = 0 was used in the final equality. Note that:

d

dp
[Xn(p)F (p)] = Xn(p)F (p) + Xn(p)f(p).

Combining the two equations above yields:∫ p∗

p

[
RkBn(p)− pXn(p)

]
dF (p)

=Xn(p∗)F (p∗)−
∫ p∗

p

{
p

dp
[Xn(p)F (p)]−Xn(p)F (p)

}
dp

=Xn(p∗)F (p∗)−
[
Xn(p∗)F (p∗)−Xn(p)F (p)

]
+

∫ p∗

p

Xn(p)F (p)dp,

=

∫ p∗

p

Xn(p)F (p)dp. (A12)

From (A10), the loan schedule Bn(p) is given by:

Bn(p) =

[
pXn(p) +

∫ p∗

p

Xn(x)dx

]
/Rk. (A13)

The local incentive compatibility constraint (A8) is satisfied as long as equation (A13)

holds. By using equation (A12), (A13) and Bn(p) = Xn(p) = 0 for p > p∗ , the zero profit

condition (A2) is written as: ∫ p∗

p

ω(p)Xn(p)dp = 0, (A14)

where

ω(p) ≡ pf(p)− R

Rk
pf(p)− R

Rk
F (p).
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Also, by using equation (A13), the pledgeabiliy constraint (A4) is written as:

Xn(p) ≤ φ

(1− φ)p
RkNn +

φ

(1− φ)p

∫ p∗

p

Xn(x)dx. (A15)

To summarize the result in Step 2, the entrepreneur’s problem is now written as follows:

max
{p∗,{Xn(p)}p

∗
p=p}

∫ p∗

p

Xn(p)F (p)dp,

subject to the monotonicity constraint (A9), the zero profit condition (A14), and the pledge-

ability constraint (A15) .

Step 3 : Let λ ≥ 0 and ξ(p) ≥ 0 denote Lagrange multipliers associated with the zero profit

condition (A14) and the pledgeability constraint (A15), respectively. The monotonicity

constraint (A9) is assumed to hold and will be verified later. Then, the entrepreneur’s

problem is formulated in a Lagrangean form as:

L = max
{p∗,{Xn(p)}p

∗
p=p}

∫ p∗

p

{
F (p)Xn(p) + λω(p)Xn(p)

+ξ(p)

[
φ

1− φ
RkNn +

φ

1− φ

∫ p∗

p

Xn(x)dx− pXn(p)

]}
dp.

Let Ξ(p) define Ξ(p) =
∫ p
p
ξ(x)dx. Then, the term associated with

∫ p∗
p
Xn(x)dx in the

Lagrangean is expanded as:∫ p∗

p

ξ(p)

∫ p∗

p

Xn(x)dxdp =

∫ p∗

p

ξ(p) [Xn(p∗)−Xn(p)] dp = Ξ(p∗)Xn(p∗)−
∫ p∗

p

ξ(p)Xn(p)dp.

Note that:
d

dp
[Ξ(p)Xn(p)] = ξ(p)Xn(p) + Ξ(p)Xn(p).
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Combining the two equations above yields:∫ p∗

p

ξ(p)

∫ p∗

p

Xn(x)dxdp =Ξ(p∗)Xn(p∗)−
∫ p∗

p

{
d

dp
[Ξ(p)Xn(p)]− Ξ(p)Xn(p)

}
dp,

=Ξ(p∗)Xn(p)−

[
Ξ(p∗)Xn(p∗)−

∫ p∗

p

Ξ(p)Xn(p)dp

]

=

∫ p∗

p

Ξ(p)Xn(p)dp.

Substituting this into the Lagrangean, the problem is written as follows:

L = max
{p∗,{Xn(p)}p

∗
p=p}

∫ p∗

p

{
F (p)Xn(p) + λω(p)Xn(p)

+ξ(p)
φ

1− φ
RkNn +

φ

1− φ
Ξ(p)Xn(p)− pξ(p)Xn(p)

}
dp.

The maximization of L with respect to the payment schedule {Xn(p)}p∗p=p requires that

the term under the integral be maximized with respect to Xn(p) for all p ∈ [p, p∗]. The

first-order conditions with respect to Xn(p) and p∗ are given, respectively, by:

F (p) + λω(p) +
φ

1− φ
Ξ(p)− pξ(p) = 0, (A16)

ξ(p∗) = 0. (A17)

Given that zero profit condition (A14) is binding so that λ > 0, equation (A16) constitutes

an integral equation for ξ(p) with an initial condition, ξ(p) = λω(p)/p > 0. The solution

to (A16) is given by:

ξ(p) =
F (p) + λω(p)

p
+

φ

(1− φ)p
p

φ
1−φ

∫ p

p

[F (x) + λω(x)]

(
1

x

) 1
1−φ

dx (A18)

Substituting (A18) into (A17) yields:

ξ(p∗) =
F (p∗) + λω(p∗)

p∗
+

φ

(1− φ)p∗
(p∗)

φ
1−φ

∫ p∗

p

[F (x) + λω(x)]

(
1

x

) 1
1−φ

dx = 0. (A19)

Uniform distribution : In the case of the uniform distribution, F (p) = (p− p)/(p̄− p),
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the numerator of the first term in equation (A18) is given by:

F (p) + λω(p) =λ

[
pf(p)− R

Rk
pf(p)

]
+

(
1− λ R

Rk

)
F (p)

=
1

p̄− p

[
p

(
λ
R

Rk
− 1

)
− p

(
2λ

R

Rk
− 1− λ

)]

Suppose contrarily λ(R/Rk) − 1 < 0. Then, F (p) + λω(p) is increasing in p, which con-

tradicts with condition (A17). Hence, it must be λ(R/Rk) − 1 > 0, so that F (p) + λω(p)

is decreasing in p. Because F (p) + λω(p) is decreasing and F (p) + λω(p) > 0, equation

(A18) implies that ξ(p) > 0 at least for p ≤ p0 where F (p0) + λω(p0) = 0. For p > p0, ξ(p)

becomes decreasing in p. Equation (A19) implies that ξ(p) then crosses the zero line at

p = p∗. Therefore, under the assumption of the uniform distribution, ξ(p) > 0 for p < p∗,

i.e. the pledgeability constraint (A15) holds with equality for entrepreneurs with p < p∗.

Step 4 : Assume that pledgeability constraint (A15) holds with equality for all p < p∗,

which will be verified later. As shown in Step 3, the assumption holds under the uniform

distribution. For p = p∗ the pledgeability constraint also holds with equality because of

the continuity of the Lagrange multiplier ξ(p). Then, solving the pledgeability constraint

(A15) for Xn(p) yields:

Xn(p) =

[
φRk

1− φ
(p∗)

φ
1−φ

](
1

p

) 1
1−φ

Nn. (A20)

Payment schedule Xn(p) is strictly decreasing in p so that it satisfies monotonicity con-

straint (A9). Substituting (A20) into zero profit condition (A14) yields:

∫ p∗

p

ω(p)

(
1

p

) 1
1−φ

dp = 0. (A21)

Under the assumption that (A21) has a unique solution for p∗ < p̄, the guess made in Step

1 is confirmed. With p∗ to hand, λ is obtained from (A19) as:

λ =
F (p∗) + φ

1−φ(p∗)
φ

1−φ
∫ p∗
p
F (x)

(
1
x

) 1
1−φ dx

−ω(p∗)
> 0. (A22)

The inequality holds because ω(p∗) < 0 and ω(p) > 0, otherwise condition (A21) would

not hold with unique p∗. The positive λ confirms that the zero profit condition (A14) is
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binding. In addition, with λ to hand, the binding pledgeability constraint, ξ(p) > 0, for all

p < p∗ can be verified from equation (A18). Finally, substituting (A20) into (A13) yields

loan schedule Bn(p) as:

Bn(p) =

[
1

1− φ

(
p∗

p

) φ
1−φ

− 1

]
Nn, (A23)

To summarize, the schedules of payment and loan are given by (A20) and (A23), respec-

tively with p∗ given by (A21) for p ∈ [p, p∗], and are given by Xn(p) = Bn(p) = 0 for

p ∈ (p∗, p̄].

Regarding the derivation of the aggregate loan, aggregating (A23) over p and n yields:

B =

[
1

1− φ

∫ p∗

p

(
p∗

p

) φ
1−φ

dF (p)− F (p∗)

]
N. (A24)

Also, substituting (A20) into the zero profit condition (A2) and aggregating over n yield:

φRk

1− φ

[∫ p̄

p

(
p∗

p

) φ
1−φ

dF (p)

]
N −RB = 0. (A25)

Combining (A24) and (A25) leads to:

B =
φ(Rk/R)

1− φ(Rk/R)
F (p∗)N. (A26)

Uniform distribution : Under the assumption of the uniform distribution, F (p) = (p−
p)/(p̄ − p), ω(p) is strictly decreasing in p if Rk/R < 2 and ω(p) > 0. Hence, given that

a solution to equation (A21) exists, a sufficient condition for its uniqueness is Rk/R < 2.

For existence, its sufficient condition is
∫ p̄
p
ω(p)(1/p)

1
1−φdp < 0, which is written as:

Rk

R
< 2− p1− 2φ

φ

p
−φ
1−φ − p̄

−φ
1−φ

p̄
1−2φ
1−φ − p

1−2φ
1−φ

(A27)

In the case of φ = 1/2, the right-hand-side of the inequality (A27) is reduced to 2−(p/p̄). To

summarize, in the case of the uniform distribution over interval [p, p̄], a sufficient condition

for the existence and uniqueness of a solution to (A21) is condition (A27).
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A2. Proof of Proposition 2

First, regarding comparative statics with respect to Rk/R, the threshold p∗ is determined

by equation (A21). The derivative of the left-hand-side of equation (A21) with respect

to Rk/R is positive, implying that the threshold p∗ is increasing in Rk/R. Because the

aggregate borrowing is given by (A26), it is increasing in Rk/R.

Next, the impact of p on the threshold p∗ and the aggregate borrowing B is analyzed.

With F (p) given by a uniform distribution over [p, 1], the condition that determines p∗,

(A21), is written as:

(
1− 2

R

Rk

)
1− φ
1− 2φ

[(
p∗

p

) 1−2φ
1−φ

− 1

]
=

R

Rk

1− φ
φ

[(
p∗

p

)− φ
1−φ

− 1

]
.

This equation implies that p∗/p is independent of p. Hence, a drop in p decreases p∗,

keeping p∗/p constant. In addition, F (p∗) = (p∗ − p)/(1 − p) = (p∗/p − 1)/(1/p − 1) is

increasing in p. Hence, a drop in p decreases the aggregate borrowing (A26).

B. General Equilibrium

This section presents a system of equations for the models studied in the paper, which is

followed by the calculation of steady state and the derivation of a key equation for lemons

shocks. It also presents a numerical result on the real model with an exogenous markup in

wages.

B1. System of Equations

In this section, a system of equations for the real model is presented, which is followed by

equations pertaining to nominal wage rigidity for the nominal model.

A system of equations for the real model consists of the thirteen equations (B1)-(B13)

with the same number of unknowns, {Yt, Ct, It, Kt, ht, Nt, ut, p
∗
t , CSt, r

k
t , wt, qt, Rt}.

Households: The optimality conditions for the household problem:

1 = Etβ
bt+1

bt

Ct
Ct+1

Rt, (B1)

wt = ψh
1/ν
t Ct. (B2)
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Producers: The production function is given by:

Yt = (utKt−1)αh1−α
t . (B3)

The optimality conditions for the consumption-good producer’s problem:

rkt = α(utKt−1)α−1h1−α
t , (B4)

wt = (1− α)(utKt−1)αh−αt , (B5)

The law of motion for capital:

Kt = (1− δ)Kt−1 +

[
1− S

(
It
It−1

)]
It. (B6)

The optimality condition for the capital-good producer’s problem:

1 = qtµt

[
1− S

(
It
It−1

)
− S ′

(
It
It−1

)
It
It−1

]
+ Et

βCt
Ct+1

bt+1

bt
qt+1µt+1S

′
(
It+1

It

)(
It+1

It

)2

.

(B7)

Entrepreneurs and banks: The capital utilization rate is given by:

rkt = a′(ut). (B8)

The balance sheet of the entrepreneurial sector is given by:

qtKt = Nt +Bt, (B9)

where

Bt =
φ
(
EtR

k
t+1/Rt

)
1− φ

(
EtRk

t+1/Rt

)Ft(p∗t )Nt,

Rk
t =

rkt ut + qt(1− δ)− a(ut)

qt−1

.

The law of motion for the aggregate net worth is given by:

Nt = γ
[
Rk
t (Nt−1 +Bt−1)−Rt−1Bt−1

]
+ ξYt. (B10)
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The average credit spread is defined as:

CSt =
Xt

Bt

−Rt =

φEtRkt+1

1−φ (p∗t )
φ

1−φ
∫ p∗t
p
t

p−
1

1−φdFt(p)

φ(EtRkt+1/Rt)
1−φ(EtRkt+1/Rt)

Ft(p∗t )
−Rt

=

(
Rt − φEtRk

t+1

1− φ

) (p∗t )
φ

1−φ
∫ p∗t
p
t

p−
1

1−φdFt(p)

Ft(p∗t )
−Rt. (B11)

The banks’ zero profit condition is given by:

∫ p∗t

p
t

[
pft(p)−

Rt

EtRk
t+1

pft(p)−
Rt

EtRk
t+1

Ft(p)

](
1

p

) 1
1−φ

dp = 0. (B12)

Market clearing: The market clearing condition for the consumption good is given by:

Yt = Ct + It + a(ut)Kt−1. (B13)

The GDP is defined as GDPt = Ct + It.

Nominal wage rigidity: A system of equations for the model with nominal wage rigidity

is given by (B1)-(B13) with three modifications. First, equation (B2) is replaced by:

wt = ψKw,t/Fw,t, (B14)

where

Fw,t = ht/ct + βξwEt

[
(wt/wt+1)

λw
1−λw (1/πt+1)

1
1−λw Fw,t+1

]
,

Kw,t = h
1+1/ν
t + βξwEt

[
(wt/wt+1)

λw(1+1/ν)
1−λw (1/πt+1)

λw(1+1/ν)
1−λw Kw,t+1

]
.

In these equations a subsidy is implicitly assumed so that equation (B14) is identical to

(B2) in steady state. Second, the nominal bond is available for households so that the

following Euler equations holds:

1 = Etβ
Ct
Ct+1

Rn
t

πt+1

, (B15)

where Rn
t is the nominal interest rate and πt+1 is the inflation rate. Third, the nominal
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interest rate follows a simple policy rule that depends only on current inflation:

log(Rn
t /R

n) = rπ log(πt), (B16)

where Rn is the nominal interest rate in steady state. To summarize, a system of equa-

tions for the model with nominal wage rigidity consists of (B1) and (B3)-(B16) with two

additional unknowns {Rn
t , πt}.

B2. Steady State

In calculating steady state, four target values are set for L, CS, 1 − F ∗, and h, where

L = qK/N is a leverage and F ∗ = F (p∗). For the same number of parameters, φ, p, γ,

and ψ, their values are pinned down along with steady state values for other endogenous

variables. For normalization, h is set as h = 1.

From (B1), R = 1/β. Equation (B7) implies q = 1. From (B8) and the assumed

functional form of a(·), u = 1.

Fix rk. From (B4), K is given as K = u−1[rk/(αh1−α)]1/(α−1). Output Y is given by (B3)

as Y = (uK)αh1−α. Wage w is given by (B5) as w = (1−α)(uK)αh−α. Investment I is given

by (B6) as I = δK. Consumption C is given by (B13) as C = Y − I − a(u)K. Equation

(B2) pins down parameter ψ as ψ = w/(h1/νC). Net worth N is given as N = qK/L.

Equation (B9) gives the loan as B = qK −N . Equation (B10) pins down parameter γ as

γ =
N − ξY

RkN + (Rk −R)B
,

where Rk = [rku+ q(1− δ)− a(u)]/q. The assumption of Rk − R > 0 ensures that γ < 1.

Equation (B9) pins down φ is given as

φ =
R

Rk

L− 1

F ∗ + L− 1
.

Because F ∗ = (p∗ − p)/(1 − p), threshold p∗ is given by p∗ = F ∗(1 − p) + p. Parameter p

is pinned down by solving (B11) for p:

CS =
R− φRk

φ

[(p∗/p)
φ

1−φ − 1]

(1− p)F ∗
−R,
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where p∗ = F ∗(1− p) + p. With p and p∗ in hand, adjust rk to satisfy (B12):

0 =
1− φ
1− 2φ

(
1− 2

Rk/R

)[
(p∗)

1−2φ
1−φ − p

1−2φ
1−φ

]
−

p

Rk/R

1− φ
φ

[
(p∗)−

φ
1−φ − p−

φ
1−φ

]
.

In the nominal model, Rn = R and π = 1 in steady state.

B3. Derivation of Equation (28)

Define st ≡ EtR
k
t+1/Rt. Keeping in mind that Re/Rf and F (p) in equation (10) in the

paper correspond to st and Ft(p) = (p− p
t
)/(1− p

t
), respectively, log-linearizing equation

(10) yields:

p̂∗t = χ3ŝt + υt,

with

χ3 =
− 1−φ

1−2φ

(
(p∗)

1−2φ
1−φ − p

1−2φ
1−φ

)
(1− 2/s)(p∗)

1−2φ
1−φ + (p/s)(p∗)−

φ
1−φ

. (B17)

Because it is assumed that equation (10) in the paper has a unique solution, the comparative

statistic analysis implies χ3 > 0. Next, log-linearizing equation (24) in the paper yields:

ŝt =
(1− φs)qK

B
(q̂t + K̂t − N̂t) + (1− φs)

(
− p∗

p∗ − p
p̂∗t +

1− p̄
1− p

p

p∗ − p
υt

)
.

Combining the above two log-linearized equations leads to equation (28):

ŝt = −χ1

(
N̂t − q̂t − K̂t

)
− χ2υt,

where

χ1 =

{
1 +

(1− φs)p∗

p∗ − p
χ3

}−1
(1− φs)qK

B
> 0, (B18)

χ2 =

{
1 +

(1− φs)p∗

p∗ − p
χ3

}−1
(1− φs)
p∗ − p

(
p∗ − p1− p∗

1− p

)
> 0. (B19)

B4. Countercyclical Wage Markup

In the paper, to overcome the co-movement problem between consumption and hours

worked, nominal wage rigidity is introduced. As mentioned in the paper, however, what is

important for addressing the problem is not nominal wage rigidity per se, but a counter-
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Figure S1: Impulse responses to a lemons shock

cyclical markup in wages. To see it clearly, a model, which is identical to the full model in

the paper but with nominal wage rigidity replaced by an exogenous countercyclical markup

in wages, is studied. In particular, such a model is the real model, presented in Section B1,

with equation (B2) replaced by:

wt = λw,tψh
1/ν
t Ct, (B20)

where λw,t is an exogenous countercyclical markup in wages, given by λw,t = (Yt/Y )−ω. In

steady state, equations (B2) and (B20) coincide, but in dynamics the markup fluctuates

countercyclically, where the degree of countercylicality is governed by parameter ω > 0.

Figure S1 plots impulse responses to a persistent lemons shock with its AR(1) coefficient

given by ρe = 0.8 for the full model (red lines) and the real model with an exogenous markup

in wages (blue lines), where ω is set as ω = 1.4. The value of ω is not too high, given that

a wage markup is about twice as volatile as output as reported by Gali, Gertler, and

Lopez-Salido (2007). Overall, the two models show similar responses to the lemons shock.

Importantly, consumption does not increase but decrease gradually for the model with an

exogenous markup in wages. Figure S1 confirms that the co-movement problem can be

overcome even in the real model if a markup in wages moves countercyclically enough.
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C. Other Models

C1. Risk-Shock Model

A risk-shock model is the full model that replaces the four equations pertaining to financial

frictions, (B9)-(B12), and the good-market clearing condition, (B13), with the following

equations:

qtKt = LtNt, (C1)

0 = Et

[
[1− Γt+1(ω̄t+1)] st+1 +

Γ′t+1(ω̄t+1) {[Γt+1(ω̄t+1)− µGt+1(ω̄t+1)] st+1 − 1}
Γ′t+1(ω̄t+1)− µG′t+1(ω̄t+1)

]
, (C2)

0 = [Γt+1(ω̄t+1)− µGt+1(ω̄t+1)] st+1Lt − Lt + 1, (C3)

Nt = γ [1− Γt(ω̄t)]R
k
tLt−1Nt−1 + ξYt, (C4)

CSt = Et
ω̄t+1R

k
t+1Lt

Lt − 1
−Rt, (C5)

where

Gt+1(ω̄) =

∫ ω̄

0

ωdF r
t+1(ω),

Γt+1(ω̄) =
[
1− F r

t+1(ω̄)
]
ω̄ +Gt+1(ω̄),

st = EtR
k
t+1/Rt,

and F r
t denotes a log-normal distribution with mean zero: F r

t = logN (−σ2
t /2, σ

2
t ). The

standard deviation of F r
t is time varying and is given by σt = σ0e

υrt , where υrt is a risk shock.

Equation (C1) defines a leverage Lt and equation (C2) summarizes entrepreneurs’ optimal

choice of contract, where ω̄t is a threshold of an idiosyncratic shock to entrepreneurs. If a

realized idiosyncratic shock is less than ω̄t, entrepreneurs go bankrupt. Equation (C3) is a

zero-profit condition of banks, equation (C4) is the law of motion for the net worth, and

equation (C5) defines the credit spread. For the detail of the derivation of these equations,

see CMR (2014) or Christiano and Ikeda (2013, Section 6).

Regarding parameter values, the monitoring cost, µ, is set at 0.2, which is the lower

bound of the range of 0.2 to 0.36 that Carlstrom and Fuerst (1997) argued as empirically

relevant. The standard deviation in steady state, σ0, and the surviving rate, γ, are jointly

set to hit the same targets as in the full model: qK/N = 2 and CS = 1.88. The results

presented in the main text are robust to the value of µ within its range of 0.2 to 0.36.
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C2. Shocks to Lenders’ Perception of Borrowers’ Quality

Let ηt denote a perception shock. A threshold, p∗t , is determined by equation (B12) with

p
t

given by p
t

= peυt+ηt , where υt is a lemons shock. The aggregate loan Bt is given by the

integral of an individual bank loan,

Bn,t(p) =

[
1

1− φ

(
p∗t
p

) φ
1−φ

− 1

]
Nn,t,

over the range of [peυt , p∗t ] and over individual net worth:

Bt =
Nt

1− peυt

∫ p∗t

peυt

[
1

1− φ

(
p∗t
p

) φ
1−φ

− 1

]
dp,

=

[
1

1− 2φ

(p∗t )
φ

1−φ

1− peυt
(

(p∗t )
1−2φ
1−φ − (peυt)

1−2φ
1−φ

)
−
p∗t − peυt

1− peυt

]
Nt. (C6)

The aggregate repayment Xt under banks’ perception of borrowers’ riskiness is given by

the integral of an individual bank repayment,

Xn,t(p) =

[
φEtR

k
t+1

1− φ
(p∗t )

φ
1−φ

](
1

p

) 1
1−φ

Nn,t

over the range of [peυt , p∗t ] and over individual net worth:

Xt =Nt

[
φEtR

k
t+1

1− φ
(p∗t )

φ
1−φ

1− peυt

]∫ p∗t

peυt
p−

1
1−φdp,

=
EtR

k
t+1(p∗t )

φ
1−φ

1− peυt
(

(peυt)−
φ

1−φ − (p∗t )
− φ

1−φ

)
Nt. (C7)

The credit spread is given by CSt = Xt/Bt, where Bt and Xt are given by (C6) and (C7)

respectively. The actual aggregate repayment X̃t received by banks ex-post is given by

X̃t =

∫ p∗t

peυt

pXn,t(p)

1− peυt
dp =Nt

[
φEtR

k
t+1

1− φ
(p∗t )

φ
1−φ

1− peυt

]∫ p∗t

peυt
p1− 1

1−φdp,

=

[
φEtR

k
t+1

1− 2φ

(p∗t )
φ

1−φ

1− peυt

](
(p∗t )

1−2φ
1−φ − (peυt)

1−2φ
1−φ

)
Nt. (C8)
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With a perception shock, the law of motion for the net worth (B10) is replaced by:

Nt = γ
[
Rk
t (Nt−1 +Bt−1)− X̃t−1

]
+ ξYt,

where Bt and X̃t are given by (C6) and (C8), respectively.
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