
 

DID RESIDENTIAL ELECTRICITY RATES FALL AFTER 

RETAIL COMPETITION?  

A DYNAMIC PANEL ANALYSIS 

 
MINE YÜCEL AND ADAM SWADLEY 

 
RESEARCH DEPARTMENT 

WORKING PAPER 1105 

 

 

Federal Reserve Bank of Dallas 



1 
 

 

 

 

 

Did Residential Electricity Rates Fall After Retail Competition?*  

A Dynamic Panel Analysis 

May 2011  

Adam Swadley and Mine Yücel 

Federal Reserve Bank of Dallas 

 

Abstract:  A key selling point for the restructuring of electricity markets was the promise of 
lower prices, that competition among independent power suppliers would lower electricity prices 
to retail customers. There is not much consensus in earlier studies on the effects of electricity 
deregulation, particularly for residential customers. Part of the reason for not finding a consistent 
link with deregulation and lower prices was that the removal of the transitional price caps led to 
higher prices. In addition, the timing of the removal of price caps coincided with rising fuel 
prices, which were passed on to consumers in a competitive market. Using a dynamic panel 
model, we analyze the effect of participation rates, fuel costs, market size, a rate cap and a switch 
to competition for 16 states and the District of Columbia. We find that an increase in 
participation rates, price controls, a larger market, and high shares of hydro in electricity 
generation lower retail prices, while increases in natural gas and coal prices increase rates. The 
effects of a competitive retail electricity market are mixed across states, but generally appear to 
lower prices in states with high participation and raise prices in states that have little customer 
participation. 
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Did Residential Rates Fall After Retail Competition? A Dynamic Panel Analysis 

 

I. Introduction 

 Electricity market restructuring has received significant attention in the energy economics 

literature, particularly in the mid-2000s after many states restructured their electricity markets 

and offered retail choice.  A key selling point for the restructuring of electricity markets was the 

promise of lower retail electric prices, that competition among independent power suppliers to 

lure customers from the incumbent utility company’s default or “standard offer” service would 

lower prices to retail customers.    

 There is no consensus among earlier studies on how restructuring affected retail prices.  

Zarnikau and Whitworth (2006), Rose (2004) and  Joskow (2006) note that large commercial and 

industrial customers have realized some cost-saving benefits from competition, while Apt (2005) 

concludes that competition has not lowered electricity rates for industrial users. Joskow (2006) 

finds retail competition lowers both residential and industrial electricity prices, but attributes the 

price decline to non-market artifacts of restructuring legislation and regulated default service 

rather than competitive forces.   In a study focusing on the residential market in Texas, Zarnikau 

and Whitworth (2006) show that electricity rates rose faster in areas of the state that were open to 

retail competition than in areas that were not.  

 It is important to note that the timing of many of these earlier studies of electricity 

restructuring was such that many of the states offering retail choice to residential customers had 

regulated default service, transitional pricing mechanisms, or other price controls in place. These 

temporary price controls varied across states, but their common purpose was to protect 

consumers and power generators from price volatility in the transition to a competitive market.  

As Joskow (2006) notes, there is an inseparability of the effects of these price controls from 
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those of increased competition, resulting in overstated benefits of retail competition. Further, as 

Axelrod, et.al. (2006) point out, the expiration of these price controls led to sharp rate increases 

as price controls were removed and market forces took over. Another factor in the rise of retail 

price was that the expiration of many of these price controls was followed by periods of fuel cost 

increases. Together, these factors contributed significantly to higher electric rates and led many 

to conclude that competition at the wholesale and retail levels had resulted in higher electric rates 

(Axelrod, DeRamus, and Cain, 2006).  In a more recent paper, Kang and Zarnikau (2009) show 

that retail prices declined in Texas after the removal of price caps.   

 The Electric Reliability Council of Texas (ERCOT) market presents an especially 

interesting case for study and a baseline for comparison given its wide regard as the most 

successful retail market in North America (Adib and Zarnikau, 2006). The ERCOT market has 

been successful in attracting a large number of providers offering choice to customers of all 

sizes.  The ERCOT market also leads all other states with 50.6% of residential customers 

choosing a competitive retail electric provider (CREP)1.  In this paper, we use panel data to study 

16 states and the District of Columbia that started retail competition in the late 90s and early 

2000s, and have mainly completed their restructuring and ended their transitional prices.  Among 

these states, only California and Virginia have suspended retail competition for residential 

customers.  Given that transitional pricing ended several years ago in most of these states, we 

have several years of data to study the effects of retail competition.   We contribute to the 

literature in a couple of ways.  We estimate the effects of retail competition and transitional 

pricing on residential electric rates, using Texas as a baseline and estimating separate effects of 

these policies for individual states in our panel where possible. The second major contribution of 

                                                            
1 As of May 2010. Percent of eligible ERCOT area residential customers who have chosen a competitive retail 
electric provider. 
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this paper is to estimate the effect of increased residential customer participation in a competitive 

markets on residential electric rates. The analysis is conducted using a dynamic panel model, 

where cost drivers and participation are allowed to affect residential electric rates with a lag. We 

find that an increase in participation rates, price controls, a larger market, and high shares of 

hydro in electricity generation lower retail prices, while increases in natural gas and coal prices 

increase rates. The effect of moving to a competitive retail electricity market is mixed across 

states, but generally appears to lower prices in states with high participation and raise prices in 

states that have little customer participation. 

II. Data and Model  

 Our goal is to develop a model of electricity prices  for residential customers that takes 

advantage of differences both within and across states that have or have had retail competition in 

their electricity markets. We are interested in examining differences in the effects of retail 

competition programs and transitional pricing schemes across states. Earlier studies (eg, Joskow 

2006) do a panel data analysis of a similar flavor but do not attempt to single out differences 

across states. Further, earlier studies fail to separate the effects of retail competition from 

temporary effects of transitional price controls and level of participation by residential 

customers. We develop a dynamic panel model that accounts for the aforementioned issues. 

 The data employed in our analysis is a monthly panel of 16 states and the District of 

Columbia. The states analyzed are CA, CT, DC, DE ,IL, MA, MD, ME, MI, NH, NJ, NY, OH, 

PA, RI,TX and VA. Table 1 shows these states and the start and completion of their 

restructuring.   The panel contains 3,247 observations and covers a period from January 1990 to 

May 2010. The data are primarily from the U.S. Energy Information Administration (EIA) and 

state Public Utility Commissions. The dependent variable is seasonally adjusted average real 

price per kilowatt-hour (kWh) for residential customers. As a key independent variable, we 



5 
 

include the percent of eligible residential customers who have chosen a competitive provider in 

each state to capture the level of market participation by residential customers. The model allows 

participation by residential customers and various control variables to affect residential electric 

rates at a lag of up to six months. We choose the six month lag length as suggested by the Energy 

Information Administration (EIA, 2007), because fuel costs would take around six months to be 

reflected in customer rates. We use this lag length as a base for our model and assume that other 

cost drivers would take an equal or lesser amount of time to be reflected in customer rates.  

  To control for input costs of electric generating facilities that might be passed on to 

customers, we include the real average cost of coal for electricity generation and the real average 

cost of natural gas for electricity generation. We also include controls for each state’s percentage 

of generation from nuclear and hydro sources. The total number of megawatt hours sold in each 

state is included to control for market size, and the deviation from normal heating and cooling 

degree days is included to capture weather-related demand spikes. We include dummy variables 

to capture months when each state is open to electric competition for residential customers2, and 

months when each state had some sort of price control or transitional pricing (rate cap, rate 

freeze, etc.) in addition to retail competition. Finally, we include a lag of seasonally adjusted 

average real price per kilowatt-hour (kWh) for residential customers in an effort to proxy for 

unknown omitted variables that affect prices historically. This lagged dependent variable may 

also partially pick up fixed pricing schemes offered to customers.  

 

 

 

                                                            
2 While many states had “pilot” periods where some portion of residential customers were able to choose their 
electric provider, the retail competition dummy variable is set =1 only when retail competition is open to ALL 
residential customers. The exception here is Texas, where we make the simplifying assumption that all residential 
customers are eligible to choose their provider. In fact, only about 85% of the Texas residential market is open to 
competition. 
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Estimation 

The baseline model to be estimated is of the form: 

                                  Δyit=(Δxi,t-k)’β+δ(Δyi,t-1)+ fit’γ+Δεit                              (1) 

where x  is a vector of control variables at lags k K={0,1,2,3,4,5,6} believed to influence 

residential electric rates:  

PARTICIPATIONi,t-k  Percent of residential electric customers in state 
i choosing a competitive retail electric provider 
at time t-k  

LNTOTALSALESMWHi,t-k Log of total megawatt hours sold in state i at 
time t-k   

LNCOALPRICEELECGENi,t-k Log of real national average cost of coal for 
electricity generation at time t-k   

LNGASPRICELECGENi,t-k Log of real national average cost of natural gas 
for electricity generation at time t-k   

PCNTHYDROi,t-k Percent of electric generation from hydro in 
state i at time t-k   

PCNTNUCLEARi,t-k Percent of electric generation from nuclear in 
state i at time t-k   

CDDEVi,t-k  
 

Deviation from normal number of cooling 
degree days in state i at time t-k   

HDDEVi,t-k  
 

Deviation from normal number of heating 
degree days in state i at time t-k   

and f is a vector of dummy variables:  

RETAILCOMPit =1 if state i was open to residential retail electric 
competition at time t; =0 otherwise  

RATECAPit =1 if state i had a transitional price control or rate cap in 
place at time t; =0 otherwise 

RETAILCOMPit*STATEi Interaction of STATEi with RETAILCOMPit, defined above  3 
 

RATECAPit*STATEi Interaction of STATEi with RATECAPit, defined above   

εit is a state specific heteroskedastic error term, and β ,δ, and γ are parameters to be estimated.  

                                                            
3 This allows for estimation of a state-specific coefficient for RETAILCOMP that is used to determine the effects of 
retail competition in that state particular state. The RATECAP and the state dummy variable interaction serves an 
analogous purpose. Texas is the omitted state dummy and serves as the baseline for comparison. 
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We first-difference all continuous variables to remove fixed effects that maybe present while 

also addressing nonstationarity of the individual time series. Dummy variables controlling for 

retail competition and transitional pricing schemes enter the model in levels. We adopt the level 

form of the dummy variables to capture effects on residential electricity rates over the time they 

are in place rather through a one-time impact4.   

 The introduction of a lagged dependent variable as a regressor in the framework of a 

usual first-differences model results in inconsistent estimates because of correlation between 

Δyi,t-1 and Δεit , through the shared term εit-1. Several techniques have been suggested to handle 

such situations. Anderson and Hsiao (1982) suggest using an instrumental variables approach to 

estimate a first-differenced equation, where the lagged dependent variable regressor (Δyi,t-1) is 

instrumented using either Δyi,t-2  or  yi,t-2. Arellano (1989) finds efficiency in the approach of 

using the level variable as an instrument in lieu of lagged differences, and Arellano and Bond 

(1991) examine one-step and two-step GMM estimators that essentially expand on the work of 

Anderson-Hsiao (1982) and Holtz-Eakin, Newey, and Rosen (1988). The Arellano-Bond (1991) 

approach considers additional lags of the dependent variable as instruments, thus improving 

efficiency by taking advantage of the additional moment conditions. Kiviet (1995) proposes the 

usual least squares dummy variable approach and develops a bias correction that he finds to be 

more efficient than GMM estimates.  

 We face an additional complication in choosing an appropriate estimation technique 

because we have a long panel, i.e., a long time dimension (large T) and few cross sections (small 

N) while all of the aforementioned solutions assume large N and small T. Judson and Owen 

(1999) address this very topic, conducting a Monte Carlo study to examine the properties of 

                                                            
4 This is a simplifying assumption. Idiosyncrasies across states will result in price controls and retail competition 
affecting prices over varied time periods.   
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these estimators in our situation and that usually faced by macroeconomists. Judson and Owen 

(1999) conclude that even with a fairly long time series, the asymptotic bias should not be 

ignored, although they do find improvement in all estimators as the time dimension of the panel 

increases. The suggested method for the longest timeframe considered with an unbalanced panel 

is the usual least squares dummy variable fixed effects estimator (Judson and Owen, 1999). This 

is consistent with the findings of Nickell (1981) and the suggestion of  Roodman (2006). We also 

consider Judson and Owen’s (1999) suggestion of Arellano-Bond one-step GMM estimation as a 

second best choice. Because Arellano-Bond estimation is an instrumental variables approach, it 

has the added advantage of allowing us to test for and address, if necessary, potentially 

endogenous variables in the model such as PARTICIPATION. 

 Due to the possibility of endogeneity of the PARTICIPATION variable, as well as to 

mitigate any concerns of inconsistency or concerns of spurious correlation resulting from 

nonstationarity of individual time series, we settle on Arellano-Bond one-step difference GMM 

estimation.  A difference-in-Sargan test suggests that in fact, the PARTICIPATION variable is 

not endogenous in this data and therefore does not need to be instrumented. We believe this 

finding is plausible given the length of the time series employed and that in this particular data 

set, well over half of the years in the set contain PARTICIPATION values of zero yet some price 

fluctuation still occurred. We proceed in our analysis operating under this assumption. 

 Because the time dimension of our panel is large, we must be aware of the issue of 

instrument proliferation resulting from Arellano-Bond estimation on data with a large time 

dimension. Using the default Arellano-Bond approach in panels with long time dimensions, the 

number of instruments grows rapidly and causes overfitting of the endogenous variables 

(Cameron and Trivedi, 2010; Roodman, 2006). Roodman (2009) suggests two solutions to this 

problem. The first is limiting the number of lags to be used as instruments to fewer than all 
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available lags as is the default of Arellano-Bond. This results in what Judson and Owen (1999) 

call a “restricted GMM” estimator, which they find to be computationally less-taxing but without 

significant loss of effectiveness. Additionally, Roodman (2009) suggests “collapsing” the 

instrument matrix. This involves horizontally collapsing the usual instrument matrix containing 

an instrument for every lag available at each time period (a matrix that is quadratic in T) to a 

simplified instrument matrix that only adds columns or instruments when additional lags are 

used as instruments. The moment conditions associated with the usual instrument matrix imply 

the moment conditions associated with the collapsed instrument matrix, however, some 

efficiency is lost simply because there are fewer moment conditions to satisfy.   

 We employ both of Roodman’s (2009) suggestions for reducing the instrument count. 

Keeping with a goal of a few, strong instruments we choose to limit our set of instruments to two 

lags of the dependent variable; specifically, instruments for Δyi,t-1 are yi,t-2, yi,t-3. This allows 

efficiency gains over the just-identified case while still keeping the size of the instrument matrix 

under control. Estimation with three lags as instruments results in no observable efficiency gains, 

and more than three lags cannot be confirmed as valid instruments5.  As a check of robustness 

and to increase the model’s flexibility, we also consider an analogous model with the addition of 

year time dummies.  

 We estimate both models with the intention of examining contemporaneous and lagged 

effects. The contemporaneous effect is determined from the coefficient at lag 0. To determine 

lagged effects of our control variables, we perform hypothesis testing on sums of lagged 

coefficients. This allows us to determine the number of months over which the variable has a 

lagged impact on residential electricity rates. 

                                                            
5 As suggested by the Arellano-Bond test for AR(2) in first differences when more than three lags are used as 
instruments. 
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III. Results  

   
 The results from the estimation are generally consistent with our expectations.  Tables 3a 

and 3b show results from the baseline model.  An increase in participation rates takes some time 

to be reflected in lower electricity prices.  Although the contemporaneous effect of the 

participation rate on retail prices is positive and significant, the lagged effects of increased 

participation are negative, significant, and larger in magnitude than the contemporaneous effect. 

A 10 percentage point increase in participation initially raises the price by 2.9 percent but then 

lowers the price by 4.3 percent, with the full effect taking around 6 months to be reflected in 

prices. The positive coefficient estimate on the contemporaneous effect of increased participation 

matches Kang and Zarnikau’s (2009) results.  A higher participation rate implies that a larger 

group of residential customers are switching to competitive retail electricity providers (CREPs), 

increasing the share supplied by competitive retailers, and eventually lowering the overall 

residential price of electricity. The magnitude of the coefficient may seem small, but it is similar 

to estimates by Kang and Zarnikau (2009) for Texas. As Chart 1 shows, the participation rate 

does not start rising for some states until the states are well into restructuring, and really takes off 

after price controls are removed. In the case of Texas, participation rises nearly linearly from the 

start of retail competition, suggesting a transitional pricing scheme that encouraged competition 

early on. These differences illustrate the idiosyncrasies of state transitional pricing schemes that 

provide different incentives for customers to switch providers, and for competitive providers to 

serve residential customers in a given market. These differences and findings are further 

discussed below.  For many states, participation rates are still quite low, but our findings suggest 

that higher participation rates lead to lower retail prices.  
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 The contemporaneous effect of a change in total megawatt hours sold in a state is a 

statistically significant decline in retail prices.  Lagged effects are positive but statistically 

insignificant. If we think of the MWh variable as a measure of the size of the total electricity 

market, then the larger the market, the more suppliers it can support, leading to more competition 

and lower prices. A larger market may also result in lower prices because of economies of scale 

in electricity generation.  

 As would be expected, increases in the prices of fuels used to generate electricity have an 

overall positive effect on retail prices. The effects of the rise in fuel prices come in with a lag, as  

neither coal nor natural gas prices used in electricity generation have a significant 

contemporaneous effect on retail electricity prices. A rise in natural gas prices has a significant 

effect on electricity prices with a lag of two months, reflecting the time required for increased 

fuel costs to be passed to consumers.  As seen in Table 3a, a 10 percent increase in the price of 

natural gas leads to a statistically significant 0.2 percent increase in the price of electricity at the 

end of two months.  To put this in perspective, if an average customer used 1000 KWh per 

month, a 10 percent increase in natural gas prices would imply a small $3.29 increase in the 

customer’s annual electricity bill, assuming the panel mean rate of 13.7 cents/KWh. In the first 

half of our sample, natural gas prices to electricity generators were relatively stable, averaging 

around $2.50 per year. Furthermore, electricity rates in the vast majority of states were still under 

regulation and less sensitive to short run volatility in fuel prices. However, in the second half, as 

restructuring got under way in the 2000s, natural gas prices were very volatile (Chart 2), with 

prices ranging from $4 to $12.  As rate caps ended, consumers who had switched to competitive 

providers and who were in states which depended on natural gas for a majority of their 

generation, such as Massachusetts, Maine, New York, and Texas probably saw their retail prices 

go up substantially as natural gas prices remained high. However, our finding of a relatively 
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small effect of natural gas prices on monthly retail rates is consistent with Bushnell and 

Mansur’s (2005) finding that monthly retail rates do not capture much of the volatility of natural 

gas prices.  Moreover, most generators buy their natural gas with longer contracts, rather than on 

the spot market, dampening the pass-through of short-term gas price volatility.  

 Similarly, an increase in the price of coal has a positive and significant effect for all lags. 

A10 percent increase in the price of coal results in increases in retail electricity prices ranging 

from 2.1 percent in the first month to 2.9 percent through the sixth month.  This effect is much 

larger than the effect of gas prices; however, coal prices have been much less volatile over the 

sample period.   

For states that used either hydro or nuclear as the energy source for electricity generation, 

an increased share of hydro generation lowers retail prices while an increased share of nuclear 

generation has no significant effect on retail prices because all nuclear coefficients are all 

insignificant.   No state in our panel has hydro as their main source of generation, but California, 

New York, and Maine all have a sizable hydro share.  Nuclear is the main source of energy for 

Connecticut’s electricity generation, while Illinois has 48 percent, New York has 31 percent and 

Pennsylvania has a 35 percent share of nuclear in their power generation.  Comparing our results 

to Joskow (2006), we find that signs on our contemporaneous coefficients (which are 

insignificant) are opposite of Joskow’s but that our lagged effects match the sign of Joskow’s 

results. Two points are worth noting here. First, Joskow (2006) uses annual rather than monthly 

data. Second, because we are dealing with monthly data we are primarily interested in the lagged 

effects of these variables since changes in generation costs take some number of months to be 

reflected in customer rates. Thus, it seems plausible that signs on our lagged values using 

monthly data would more closely match Joskow’s (2006) contemporaneous values using annual 

data.  



13 
 

 We would expect deviations from normal heating and cooling degree days to have a 

positive effect on retail prices.  The signs of the coefficients of these variables are mixed, but all 

were insignificant, adding no explanatory power to the estimation. One possible explanation for 

these results could be that the effect of these variables is being picked up by the electricity usage 

variable.   

 Table 3a also shows the state effects of retail competition and transitional pricing (the 

RETAILCOMP and RATECAP variables) on retail prices. The separate state dummy variables for 

RETAILCOMP and RATECAP are useful for two reasons. First, states have had varied levels of 

success in their restructuring efforts. Second, it is likely that the timing of effects from different 

retail competition setups and price controls was quite different. For instance, one state may have 

seen the full effect as soon as a price control was put in place while a different state may have 

seen more gradual price effects. The coefficients on the RETAILCOMP and RATECAP dummies 

are interpreted as the monthly growth of residential electricity rates when retail competition 

and/or a price control is in place. These coefficients are best interpreted if annualized.  

Annualizing the coefficient -.0034 for RETAILCOMP suggests that, holding all else equal, 

having a competitive retail market in Texas caused the average residential electric bill to decline 

at approximately a 4.0 percent annual rate over the sample period. 

  Our results suggest that state effects of competitive markets and transitional pricing are 

somewhat mixed.  For Texas, Connecticut, Maine, and Pennsylvania, moving to a competitive 

retail market lowers retail prices. Texas, Connecticut, and Pennsylvania have relatively high 

participation rates, and Pennsylvania still had some price controls in place over our sample 

period. Although the participation rate for Maine is low in Table 1, Maine’s restructuring 

initiatives differ from many other states and a very high percentage of Maine customers 

essentially get their power through a competitive market. The incentive for Mainers to choose a 
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competitive retail provider is limited because Maine’s standard offer service generation is 

already procured through a competitive bidding process. This keeps prices low and eliminates 

both the incentive for residential customers to choose a different provider and for competitive 

retail providers to serve residential customers in that market. The coefficient for Maine is 

negative and statistically significant suggesting that Maine’s unique style of competition, 

although not dependent on individual customers, may also be effective in lowering retail prices. 

 For the remaining states, the switch to retail competition did not necessarily lower retail 

prices. For CA, DE, IL, MD, MI, NJ, and DC, having a competitive market actually appears to 

have raised rates while MA and NY have statistically insignificant coefficients, implying no 

change in retail prices in these states. It is possible that the participation rate, which starts  rising 

after transitional pricing is eliminated, is picking up much of the effect of restructuring, as would 

be expected if price decreases are driven by competitive forces. The significant (and largely 

positive) coefficients on retail competition in states with relatively low participation suggest that 

higher rates of participation in the retail market are necessary to successfully lower residential 

electric rates.   

 Looking at the effects of price controls on state retail prices, the results for all states 

except for Massachusetts are significant.  For Texas, price controls increased retail prices, a 

finding that agrees with Kang and Zarnikau (2009).  This is likely a function of the design of the 

“price-to-beat” in Texas, which was held relatively high to encourage competitive providers to 

enter the market and to encourage customer switching to competitive retailers.  For the rest of the 

states, rate caps had a significant effect in lowering retail electricity prices.  

As a check of robustness and for added model flexibility, we estimated an additional 

model, adding time dummies to the baseline model.  Tables 4a, 4b, and 4c show that the basic 
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results do not change when time dummies are added. Both the participation and total megawatt 

hours variables become more significant and their coefficients increase slightly.  Most notably, 

the coefficients on retail competition in MI and NJ lose significance, while the coefficients on 

retail competition for MA and NY become negative, implying a fall in retail prices with 

competition, although the coefficients remain insignificant.  The addition of time dummies has 

almost no effect on the RATECAP variables, with the exception of the price control variable 

becoming significant for MA. The time dummies themselves are insignificant 16 out of the 20 

years (table 4c). Interestingly, the coefficients for the time dummies are mostly positive in the 

first half of the sample period and negative in the latter half. Although these coefficients are not 

statistically significant, the negative signs suggest some overall downward movement of retail 

prices over the period. This could suggest that the time dummies in these periods are picking up, 

to some degree, the effects of national level wholesale deregulation initiatives around this time, 

as well as newly restructured wholesale markets overseen by regional transmission operators and 

independent system operators.  

IV. Discussion 

 The recent expiration of transitional price controls in many states’ competitive electricity 

markets has provided us with a data set that allows us to shed light on whether a truly 

competitive retail market lowers rates for residential customers. Our results strongly suggest that 

if such a market is designed correctly, residential customers may benefit from competition 

among electricity providers. Although the level of benefit may vary, evidence also suggests that 

there is no single correct way to implement a successful competitive retail market, as 

demonstrated by the successes of states with very different approaches (Maine and Texas, for 

example).  
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 Our results show that none of the retail electricity market designs yield instant price 

reductions for customers. States that held prices artificially low during the transition to a 

competitive market may have seen lower prices initially; however, the long-run effect of 

artificially depressed prices is a misallocation of resources and an inefficient electricity market. 

Consumers have no incentive to switch to an alternative electricity provider and providers have 

no incentive to enter the market to serve residential customers.  A successfully designed market 

must provide profit opportunities for providers as well as incentives for consumers to switch 

providers. Although this may result in higher-than-desired rates initially, in the long-run 

intensified competition is more to likely yield sustainable lower rates. An alternative seemingly-

successful approach is to procure standard-offer electricity services through a competitive 

bidding process, as in Maine. This approach does not have the dependence on retail customers’ 

participation, but still has the potential to yield some level of benefit resulting from competition.  

 Beyond simply reducing electricity rates, a competitive retail market holds the potential 

to achieve other policy goals through the workings of the marketplace. If increased generation 

from alternative fuels is a policy goal and there are consumers demanding electricity from 

alternate fuels, a competitive retail market can match these customers with their suppliers. As 

Roe et.al. (2001) note, an increased willingness to pay for electricity generated from renewable 

fuels suggests that a competitive retail market may be one step in achieving renewable energy 

goals.  

 It is also important to consider the impacts of new smart grid technologies and alternative 

rate structures on competitive retail electricity markets. Our results show that in the current 

environment, a robust competitive retail electricity market can offer lower average monthly 

electricity rates. As new technologies increase customer price awareness, rate structures such as 

time-of-use and real time pricing—pricing that more closely reflects fluctuations in the 
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wholesale market—offer the potential for greater pricing transparency and even greater average 

monthly savings. However, in this environment retail electricity providers are no longer 

competing with an advertised monthly rate and may offer a wider variety of more complex rate 

plans. Such an environment would obviously benefit customers who have high demand 

elasticities or who have the highest demand during off-peak hours.  Overall reductions in state-

level average monthly prices, as we show in this paper, are less clear.  This is an area for future 

research as smart grid technologies become more widespread in mature competitive markets.   

V.  Conclusion 

 The restructuring of U.S. electricity markets has received a great deal of attention in the 

energy economics literature, particularly in the mid 2000s as many states experimented with 

retail competition. Earlier studies on the effects of restructuring initiatives have failed to reach a 

consensus, particularly as these initiatives apply to residential customers. Previous efforts to 

study this topic were complicated by an inseparability of the effects of temporary transitional 

pricing schemes from the true effects of a competitive market. With several years of data 

following the expiration of many of these temporary pricing schemes, we revisit this issue using 

an econometric approach unique to this literature. Increasing participation in the competitive 

market appears to be a crucial element in reducing residential electric rates, while price 

reductions detected by earlier studies were likely driven by price controls rather than competitive 

forces. With the exception of Maine’s somewhat unique bid-for-generation setup, states that have 

failed to provide the proper market incentives for residential customers to switch to a competitive 

provider and for firms to provide electricity to residential customers have been less successful in 

reducing residential electric rates.  Our findings suggest that with a market design that 

encourages adequate participation, a competitive retail electricity market can benefit residential 

customers.       
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Status of Electric Market Restructuring as of September 2010 
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Table 1.  State Electricity Restructuring 

State  
Main Energy 

Source  
Participation 

Rate  
Retail Comp 

Begin  
Rate Cap 

Begin  
Rate Cap End 

CA  Gas 0.6% Deregulation Suspended September 2001 

CT  Nuclear 24.6% July 2000 July 2000 January 2007 

DC  Petroleum 3.4% January 2001 January 2001 February 2007 

DE  Coal 2.6% October 2000 October 2000 May 2006 

IL  Coal 0.01% May 2002  August 1998 January 2007 

MA  Gas 12.3% March 1998 March 1998 March 2005 

MD  Coal 6.7% July 2000 July 2000 June 2006 

ME  Gas 2.6% March 2000 N/A N/A 

MI  Coal 0.0% January 2002 January 2002 January 2006 

NH Nuclear N/A July 1998 July 1998 May 2006 

NJ  Nuclear 0.5% June 1999 June 1999 August 2003 

NY  Gas 17.9% May 1999 May 1999 August2001 

OH Coal 22% January 2001 January 2001 --- 

PA  Coal 11.3% January 2000 January 2000 January 2011 

RI Gas N/A July 1998 January 1998 January 2004 

TX  Gas 50.6% January 2002 January 2002 January 2007 

VA Coal N/A Deregulation Suspended April 2007 
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Table 2.  State Electricity Generation by Source: 2008 

 

 State CA CT DE IL MA MD ME MI 

Net Gen 
(GWh) 

207,984 30,409 7,523 199,500 42,505 47,360 17,094 114,989 

Percent 
From 

Coal 0.6 14.4 70.0 48.4 25.0 57.5 2.1 60.7 
Petroleum 1.2 1.7 2.9 0.1 5.0 0.9 3.1 0.4 

Gas 60.3 26.5 18.4 2.1 50.6 3.9 43.2 8.4 
Nuclear 6.8 50.8 - 47.7 13.8 31.0 - 27.4 
Hydro 15.8 1.8 - 0.1 2.7 4.2 26.1 1.2 
Other 

Renewables 
9.1 2.4 2.2 1.5 3.0 1.3 23.7 2.3 

 

 State NH NJ NY OH PA RI TX VA DC 

Net Gen 
(GWh) 

10,977 63,674 140,322 153,412 222,351 7,387 404,788 72,679 72.3 

Percen 
From 

Coal 15.1 14.2 13.7 85.2 52.9 - 36.3 43.7 - 
Petroleum 0.6 0.5 2.7 0.9 0.4 0.4 0.3 1.6 100.0 

Gas 30.9 32.6 31.3 1.6 8.4 97.4 47.7 12.8 - 
Nuclear 40.9 50.6 30.8 11.4 35.4 - 10.1 38.4 - 
Hydro 7.1 - 19.0 0.3 1.1 0.1 0.3 1.4 - 
Other 

Renewables 
5.1 1.4 2.4 0.4 1.3 2.1 4.4 3.7 - 
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Table 3a.  Baseline Model Estimation Results6 

 

 

 

 

 

 

                                                            
6
 Coefficients for PARTICIPATION, PCNTHYDRO, and PCNTNUCLEAR have been multiplied by 100 to allow for an interpretation analogous to 

the logged variables. For example, the results for the sum of lags 1-6 of the PARTICPATION variable should be read “a 1 percent increase in 
PARTICIPATION results in a -0.4557 percent decrease in the dependent variable”. 

 

Baseline Model 
Dependent Variable: lnsarprice 1-6 1-5 1-4 1-3 1-2 Lag 1

- - - - - - 0.1158
- - - - - - (0.0730)

0.2959** -0.4480** -0.0275 -0.2254** -0.2287 0.0260 -0.0472
(0.1142) (0.1874) (0.0803) (0.1000) (0.2049) (0.1012) (0.1294)
-0.1255* 0.0777 0.0507 0.0474 0.0266 0.0268 0.0377
(0.0648) (0.1102) (0.1029) (0.0914) (0.0633) (0.0366) (0.0325)
-0.0027 0.2930*** 0.2562*** 0.3083*** 0.3124** 0.1434** 0.2101***
(0.0934) (0.0723) (0.0968) (0.1170) (0.1224) (0.0613) (0.0511)
-0.0102 0.0154 0.0145 0.0111 -0.0039 0.0207** -0.0051
(0.0081) (0.0167) (0.0138) (0.0112) (0.0098) (0.0084) (0.0071)

0.0057 0.0051 -0.0061 -0.0015 -0.0340*** -0.0298*** 0.0011
(0.0140) (0.0355) (0.0195) (0.0239) (0.0104) (0.0106) (0.0095)
-0.0056 0.0069 0.0059 0.0099 0.0067 0.0039 0.0043
(0.0096) (0.0251) (0.0195) (0.0169) (0.0107) (0.0090) (0.0067)
0.000020 -0.000058 -0.000007 -0.000018 0.000005 0.000020 0.000014

(0.000034) (0.000118) (0.000105) (0.000081) (0.000057) (0.000029) (0.000033)
-0.00002 -0.000019 -0.000012 -0.000013 -0.000027 -0.000026 -0.000016
(0.00001) (0.000045) (0.000039) (0.000031) (0.000027) (0.000018) (0.000015)

Wald chi-square (80 d.f.): 
547.72

Prob > Chi2     
0.000

Arellano-Bond test 
for AR(2) in first 
differences:  
z=1.34

Prob > z      
0.180

Prob > Chi2  
0.313

*** significant at 1%; ** significant at 5%; * significant at 10%
Values in parentheses below coefficients are robust standard errors.

lnsarprice

Lagged Effects (Sum of lags)

Sargan test of overidentifying restrictions: 
Chi2(1)=1.02

Contemporaneous 
Effect

participation

hddev

lngaspriceelecgen

lncoalpriceelecgen

pcnthydro

pcntnuclear

cddev

lntotalsalesmwh
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Table 3b.  Baseline Model Estimation Results: Continued 

 

Baseline Model 
Dependent Variable: lnsarprice

-0.0034***
(0.0011)

0.0173***
(0.0034)
-0.0028*
(0.0015)

0.0185***
(0.0042)

0.0034***
(0.0003)

-0.0029***
(0.0004)

0.0058***
(0.0008)
0.0002

(0.0007)
0.0040***
(0.0005)
0.0013**
(0.0005)
0.0002

(0.0006)
-0.0087***

(0.0009)
0.0043***
(0.0006)

Contemporaneous 
Effect

retailcomp+MEretailcomp

retailcomp (TX)

retailcomp+CAretailcomp

retailcomp+CTretailcomp

retailcomp+MDretailcomp

retailcomp+DEretailcomp

retailcomp+ILretailcomp

retailcomp+DCretailcomp

*** significant at 1%; ** significant at 5%;              
* significant at 10%
Values in parentheses below coefficients are robust 
standard errors.

retailcomp+NYretailcomp

retailcomp+PAretailcomp

retailcomp+MAretailcomp

retailcomp+MIretailcomp

retailcomp+NJretailcomp

Baseline Model 
Dependent Variable: lnsarprice

0.0087***
(0.0011)

-0.0155***
(0.0037)

-0.0164***
(0.0044)

-0.0063***
(0.0006)

-0.0070***
(0.0011)
0.0002

(0.0007)
-0.0056***

(0.0009)
-0.0073***

(0.0014)

-0.0169***
(0.0026)

-0.0022***
(0.0007)

*** significant at 1%; ** significant at 5%;              
* significant at 10%
Values in parentheses below coefficients are robust 
standard errors.

ratecap+MAratecap

ratecap+MIratecap

ratecap+NYratecap

ratecap+RIratecap

ratecap+DCratecap

ratecap+MDratecap

Contemporaneous 
Effect

ratecap (TX)

ratecap+CAratecap

ratecap+DEratecap

ratecap+ILratecap
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Table 4a.  Estimation Results with Year Time Dummies Included 

 

 

 

 

 

 

 

 

Baseline Model                       
w/ Time Dummies
Dependent Variable: lnsarprice 1-6 1-5 1-4 1-3 1-2 Lag 1

- - - - - - 0.1284*
- - - - - - (0.0699)

0.3216*** -0.3803*** 0.0232 -0.1760* -0.2005 0.0428 -0.0357
(0.0916) (0.1406) (0.1192) (0.0912) (0.1794) (0.1075) (0.1440)

-0.1280** 0.0634 0.0375 0.0364 0.0173 0.0203 0.0353
(0.0651) (0.1162) (0.1091) (0.0962) (0.0661) (0.0368) (0.0314)
0.0375 0.4736*** 0.3768** 0.3973*** 0.3752*** 0.1852*** 0.2312***

(0.1024) (0.1500) (0.1495) (0.1269) (0.1286) (0.0672) (0.0520)
-0.0042 0.0191 0.0215 0.0166 0.0015 0.0245*** -0.0039
(0.0082) (0.0158) (0.0136) (0.0105) (0.0081) (0.0085) (0.0069)

0.0056 0.0061 -0.0051 -0.0009 -0.0333*** -0.0298*** 0.0003
(0.0139) (0.0370) (0.0211) (0.0248) (0.0117) (0.0113) (0.0098)
-0.0051 0.0089 0.0076 0.0112 0.0077 0.0046 0.0046
(0.0095) (0.0254) (0.0197) (0.0173) (0.0113) (0.0093) (0.0070)
0.000019 -0.000043 0.000006 -0.000008 0.000013 0.000026 0.000016

(0.000033) (0.000128) (0.000114) (0.000090) (0.000065) (0.000033) (0.000033)
-0.000022* -0.000033 -0.000023 -0.000022 -0.000035 -0.000031* -0.000020
(0.000013) (0.000048) (0.000042) (0.000033) (0.000028) (0.000018) (0.000015)

Wald chi-square (100 d.f.): 
401.35

Prob > Chi2     
0.000

Arellano-Bond test 
for AR(2) in first 
differences:  
z=1.59

Prob > z       
0.111

Prob > Chi2  
0.231

*** significant at 1%; ** significant at 5%; * significant at 10%
Values in parentheses below coefficients are robust standard errors.

Lagged Effects (Sum of lags)

lnsarprice

participation

lntotalsalesmwh

lncoalpriceelecgen

pcnthydro

pcntnuclear

Sargan test of overidentifying restrictions: 
Chi2(1)=1.43

lngaspriceelecgen

hddev

cddev

Contemporaneous 
Effect
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Table 4b.  Estimation Results with Year Time Dummies Included: Continued 

 

 

 

 

 

Baseline Model                       
w/ Time Dummies
Dependent Variable: lnsarprice

-0.0042**
(0.0018)

0.0185***
(0.0035)
-0.0031*
(0.0017)

0.0161***
(0.0047)
0.0024*
(0.0014)

-0.0034**
(0.0013)
0.0043**
(0.0020)
-0.0013
(0.0014)
0.0022
0.0019
0.0018

(0.0014)
-0.0011
(0.0017)

-0.0078***
(0.0016)
0.0037**
(0.0016)

retailcomp+MAretailcomp

retailcomp+MIretailcomp

retailcomp+NJretailcomp

retailcomp+NYretailcomp

retailcomp+PAretailcomp

retailcomp+DCretailcomp

*** significant at 1%; ** significant at 5%;              
* significant at 10%
Values in parentheses below coefficients are robust 
standard errors.

retailcomp+MDretailcomp

Contemporaneous 
Effect

retailcomp (TX)

retailcomp+CAretailcomp

retailcomp+CTretailcomp

retailcomp+DEretailcomp

retailcomp+ILretailcomp

retailcomp+MEretailcomp

Baseline Model                       
w/ Time Dummies
Dependent Variable: lnsarprice

0.0074***
(0.0008)

-0.0163***
(0.0033)

-0.0138***
(0.0045)

-0.0057***
(0.0008)

-0.0053***
(0.0017)

0.0028***
(0.0009)
-0.0031*
(0.0017)

-0.0044**
(0.0021)

-0.0145***
(0.0025)

-0.0023**
(0.0010)

*** significant at 1%; ** significant at 5%;              
* significant at 10%
Values in parentheses below coefficients are robust 
standard errors.

ratecap+MDratecap

ratecap+MAratecap

ratecap+MIratecap

ratecap+NYratecap

ratecap+RIratecap

ratecap+DCratecap

ratecap+ILratecap

ratecap (TX)

ratecap+CAratecap

ratecap+DEratecap

Contemporaneous 
Effect
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Table 4c.  Estimation Results with Year Time Dummies Included: Time Dummies 

 

 

 

 

 

 

 

0.0044*** -0.0004
(0.0010) (0.0025)
0.0008 -0.0014

(0.0010) (0.0013)
0.0021* -0.0009
(0.0011) (0.0018)
0.0018** -0.0029
(0.0008) (0.0021)
0.0020 -0.0011

(0.0013) (0.0032)
-0.0001 0.0050
(0.0011) (0.0036)
-0.0023* 0.0040
(0.0012) (0.0030)
-0.0023 -0.0027
(0.0012) 0.0039
-0.0012 -0.0022
(0.0018) (0.0017)
0.0015 -0.0016

(0.0016) (0.0026)
*** significant at 1%; ** significant at 5%; * significant at 10%
Values in parentheses below coefficients are robust standard errors.

1998 2008

1999 2009

2000 2010

1995 2005

1996 2006

1997 2007

1992 2002

1993 2003

1994 2004

Time Dummies
Contemporaneous 

Effect
Time Dummies

Contemporaneous 
Effect

1991 2001
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