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Abstract
The habit model of Campbell and Cochrane (1999) specifies a process

for the ‘surplus ratio’—the excess of consumption over habit, relative to
consumption—rather than an evolution for the habit stock. It’s not im-
mediately apparent if their formulation can be accommodated within the
Markov chain framework of Mehra and Prescott (1985). This note illus-
trates one way to create a Campbell and Cochrane-like model within the
Mehra-Prescott framework. A consequence is that we can perform another
sort of reverse-engineering exercize—we can calibrate the resulting model
to match the stochastic discount factor derived in the Mehra-Prescott frame-
work by Melino and Yang (2003). The Melino-Yang SDF, combined with
Mehra and Prescott’s consumption process, yields asset returns that exactly
match the first and second moments of the data, as estimated by Mehra and
Prescott.

A byproduct of the exercize is an equivalent (in terms of SDFs) rep-
resentation of Campbell-Cochrane preferences as a state-dependent ver-
sion of standard time-additively-separable, constant relative risk aversion
preferences. When calibrated to exactly match the asset return data, both
the utility discount factor and the coefficient of relative risk aversion vary
with the Markov state. Not surprisingly, our Campbell-Cochrane pref-
erences are equivalent to a state-dependent representation with strongly
countercyclical risk aversion. Less expected is the equivalent utility dis-
count factor—it is uniformly greater than one, and countercyclical.

In their analysis, Melino and Yang ruled out state-dependent specifica-
tions where the utility discount factor exceeds one. Our model gives one
plausible rationalization for such a specification.
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1 Introduction

In this note, I demonstrate one way of putting the habit preferences of Camp-
bell and Cochrane (1999) into the two-state Markov chain framework of Mehra
and Prescott (1985). I expect a natural question in the minds of at least a
few readers is, “Why?” The answer is that by situating Campbell-Cochrane
preferences in a Mehra-Prescott economy we can perform another sort of ‘re-
verse engineering’ exercize, complementary to that performed by Campbell
and Cochrane themselves. The reverse engineering draws on the work of
Melino and Yang (2003), who showed us, in the context of a Mehra-Prescott
economy, exactly what the stochastic discount factor (SDF) must look like to
match the first and second moments of asset returns in Mehra and Prescott’s
long sample of returns. We can calibrate our version of Campbell-Cochrane
preferences to match that SDF.

A byproduct of this exercize is that we can derive a state-dependent pref-
erence representation that’s equivalent, in terms of the behavior of its SDF, to
Campbell-Cochrane preferences. That state-dependent representation features
countercyclical variation in both the coefficient of relative risk aversion and the
utility discount factor.

The exercize would be of only pedagogical interest unless it told us some-
thing interesting about one or both of the two approaches to the equity pre-
mium puzzle that it combines. I think it does. While countercyclical risk
aversion has been rightly emphasized as a key mechanism in the Campbell-
Cochrane model, mapping Campbell and Cochrane into a state-dependent pref-
erence specification that matches the returns data shows that a countercyclical
utility discount factor, greater than one, is also important. And, while Melino
and Yang dismiss state-dependent specifications that imply discount factors
greater than one, the model here shows there may be a plausible story that
rationalizes such a specification.

It’s useful to quickly review the features of the two models separately be-
fore combining them. The next two sections do this.

1.1 Campbell and Cochrane

Campbell and Cochrane’s 1999 paper in the Journal of Political Economy employs
habit formation to successfully resolve a number of asset pricing puzzles, in-
cluding Mehra and Prescott’s equity premium puzzle. Campbell and Cochrane
achieve these resolutions by a clever reverse engineering of their representative
agent’s habit process.

Rather than specify a law of motion for the habit stock, Campbell and
Cochrane specify a law of motion for what they call the ‘surplus ratio’, St =
(ct − ht)/ct, where ct is aggregate consumption (the habit is external) and ht is
the habit stock. Their stochastic discount factor, from t to t + 1, is

mt,t+1 = βx−α
t+1

(
St+1

St

)−α

(1)

2



where β is the utility discount factor, and the curvature parameter α, together
with the surplus ratio, determines the agent’s local degree of risk aversion.1 As
Campbell and Cochrane note, countercyclical risk aversion is a key feature of
their specification.

Consumption growth xt+1 is assumed to be i.i.d. lognormal, and the log
surplus ratio is assumed to evolve according to

log(St+1) = (1− φ)s̄ + φ log(St) + λ(St)[log(xt+1)− g] (2)

where g is the mean of log consumption growth, φ controls the persistence of
the surplus ratio process, and the crucial function λ(St) controls the sensitivity
of changes in the surplus ratio to shocks to consumption growth.2

The key to their reverse-engineering is the form of λ(St),which is decreas-
ing in St, hence countercyclical.

1.2 Melino and Yang

Melino and Yang, in their 2003 paper in the Review of Economic Dynamics, per-
form another type of reverse engineering exercize. Using Mehra and Prescott’s
two-state Markov chain for consumption growth, and assuming that consump-
tion growth is a sufficient statistic for the riskless rate and the price-dividend
ratio of an aggregate consumption claim, Melino and Yang derived the stochas-
tic discount factor that, in combination with the Mehra-Prescott consumption
process, yields equity and riskless return processes that exactly match the means
and standard deviations calculated by Mehra and Prescott from their long sam-
ple of asset returns.

Recall that the Mehra-Prescott Markov chain has

xt ∈ {xL, xH} = {0.982, 1.054} (3)

and

P =

[
PLL PLH
PHL PHH

]
=

[
0.43 0.57
0.57 0.43

]
(4)

where Pij = Pr{xt+1 = xj : xt = xi}. Here, L and H denote the low and high
consumption growth states, respectively. Mehra and Prescott’s long sample of
data on returns has an average risk-free rate of 0.8% and an average equity
return of 7%. The standard deviations of the risk-free rate and equity return
are 5.6 percentage points and 16.5 percentage points, respectively.

The Melino-Yang SDF is

m̂ =

[
m̂LL m̂LH
m̂HL m̂HH

]
=

[
1.86 0.24
1.13 0.95

]
(5)

1Campbell and Cochrane show that, locally, relative risk aversion is given by
∣∣∣∣ u′′(ct − ht)ct

u′(ct − ht)

∣∣∣∣ =
α

St
. Here and below, our notation differs slightly from Campbell and Cochrane’s.
2Campbell and Cochrane write λ as a function of log(St), but that difference is immaterial here.
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Any model that reproduces the SDF m̂ within Mehra and Prescott’s Markov
chain framework will exactly match the first and second moments of Mehra
and Prescott’s asset returns data.

More suggestively, one can use m̂ and the Mehra-Prescott Markov transi-
tion matrix (4) to derive risk-neutral probabilities, an insight of Routledge and
Zin (2010). These are given by

ψ̂ =

[
ψ̂LL ψ̂LH
ψ̂HL ψ̂HH

]
=

[
0.85 0.15
0.61 0.39

]
(6)

The Melino-Yang risk neutral probabilities suggest that countercyclical risk
aversion is an important element of any resolution of Mehra and Prescott’s
puzzle. Conditional on being in the low-growth state, for example, the ob-
jective probability of remaining in the low-growth state is just 0.43, versus
ψ̂LL = 0.85. Conditional on being in the high-growth state, the risk neutral
probabilities are quite close to the objective probabilities—ψ̂H,j = {0.61, 0.39}
versus PH,j = {0.57, 0.43}.

However, as Melino and Yang demonstrate—by trying to calibrate various
standard and state-dependent preference specifications so as to produce SDFs
that match m̂—countercyclical risk aversion, while important, is alone not suf-
ficient to resolve the puzzle.

One preference specification that Melino and Yang examine only curso-
rily is that of Campbell and Cochrane, as it appears to require expanding the
model’s state space. Melino and Yang’s calculations show that the asset return
data can be rationalized (using state-dependent preferences) without adding
extra states.

2 A Markov-chain version of Campbell and Cochrane

Consider the log growth rate of the surplus ratio from (2),

log(St+1/St) = (φ− 1)[log(St)− s̄] + λ(St)[log(xt+1)− g]. (7)

A key feature of Campbell and Cochrane’s model is the non-constant response
of growth in the surplus ratio to innovations to consumption growth, captured
in the function λ(St). While Campbell and Cochrane assume φ is close to unity,
the conditional mean of log(St+1/St) is nevertheless non-constant as well.

Could we put Campbell and Cochrane in the Mehra-Prescott framework
simply by writing the surplus ratio St as a function of the Markov state? As
Melino and Yang point out, that approach would not allow us to match the re-
turns data: we’d be effectively adding only one parameter to the SDF, in addi-
tion to α and β, and our SDF would lack the flexibility necessary to match m̂. To
see this, note that across the HH or LL transitions, we would have St+1/St = 1,
while the growth rates across the LH and HL transitions would be inversely
related. The SDF that results would have the form

m =

[
mLL mLH
mHL mHH

]
=

[
βx−α

L θβx−α
H

θ−1βx−α
L βx−α

H

]
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where θ = SH/SL.
Melino and Yang suggest introducing St as an independent state, but view

this as inferior to their own state-dependent-preferences approach, which re-
solves the equity premium puzzle without expanding the set of Markov states.

Distinct from either of those approaches—writing St as a function of xt or
making St an additional state variable—we may note that the level of the sur-
plus ratio doesn’t matter for asset pricing, since the SDF depends only on the
growth rate.

With that in mind, we can capture the spirit of Campbell and Cochrane’s
dynamics—as given in (7)—by writing the log growth rate of the surplus ratio
from t to t + 1 as a function of realized growth (xt+1), with parameters that
depend on the current Markov state (xt):

log(St+1/St) = ν(xt) + λ(xt) log(xt+1). (8)

In Campbell and Cochrane, St is positively related to xt, so we would expect
λ(xt) to be decreasing in xt, just as Campbell and Cochrane’s reverse engineer-
ing leads them to require that their λ(St) to be decreasing in St.

Using (8), we can write the SDF (1) as

mt+1 = βx−α
t+1

(
eν(xt)xλ(xt)

t+1

)−α

= βe−αν(xt)x−α(1+λ(xt))
t+1

Since xt follows a Markov chain, we can write νi for ν(xi) and λi for λ(xi), for
i = L, H. Then, the SDF becomes

m =
[
mi,j
]
=
[

βe−ανi x−α(1+λi)
j

]
. (9)

One drawback of this formulation—though not from the limited perspec-
tive of asset pricing—is that it renders the surplus ratio itself nonstationary.
In Campbell and Cochrane’s model, the surplus ratio is a stationary, though
highly persistent, stochastic process. As we’ll see below, though, the surplus
ratio process described by (8) can be calibrated to be driftless, without affecting
its ability to match the asset returns data.

3 Meeting Melino and Yang

To reverse engineer the surplus ratio in the Mehra-Prescott framework, we at-
tempt to match the SDF (9) to the Melino-Yang SDF m̂ for a suitable choice of
parameters. In other words, the problem is to find α, β, {νL, νH}, {λL, λH} such
that

βe−ανi x−α(1+λi)
j = m̂i,j, (10)

where m̂ is given by (5). As it turns out, there are enough parameters to accom-
plish this matching—for any α and β, we can find {νL, νH}, {λL, λH} such that
(10) holds.
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To see this, take logs and rearrange to get

νi + log(xj)λi =
1
α

[
log(β)− α log(xj)− log(m̂i,j)

]
(11)

There are thus two equations to solve for (νL, λL) and two equations to solve
for (νH , λH). For (νL, λL), we have[

1 log(xL)
1 log(xH)

] [
νL
λL

]
=

1
α

[
log(β)− α log(xL)− log(m̂L,L)
log(β)− α log(xH)− log(m̂L,H)

]
(12)

An analogous expression obtains for (νH , λH). The values are determined
uniquely since [

1 log(xL)
1 log(xH)

]
is invertible using the Mehra-Prescott process.

Solving (12) for λi, i = L, H, gives

λi = −1 +
log (m̂i,L/m̂i,H)

α log(xH/xL)
(13)

With the Mehra-Prescott process, log(xH/xL) = 0.0708, approximately 2 times
the standard deviation of x. For the Melino-Yang SDF, given in (5),

log(m̂L,L/m̂L,H) = 2.03
log(m̂H,L/m̂H,H) = 0.17

Substituting these numbers into (13) gives

λL = −1 +
1
α

28.73

λH = −1 +
1
α

2.42 (14)

Thus, λ is strongly decreasing from the low- to high-growth state, just as Campbell-
Cochrane’s λ is strongly decreasing in the current surplus ratio.

For α = 1, say, the range of our λ is in fact close to the typical range of
Campbell-Cochrane’s λ, if we take as typical values the image under their λ(S)
of a (conditional) two standard deviation interval around their s̄, using the law
of motion (7) and their parameter values.3 Using their parameters—from their
Table 1—at an annual frequency, I calculate this range to be [2.41, 22.80].

The solution for νi, i = L, H, is

νi =
log(β)

α
− 1

α

log(xH) log(m̂i,L)− log(xL) log(m̂i,H)

log(xH/xL)
(15)

3In their notation, this image is λ(s̄± 2λ(s̄)σ).
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Using the values for log(x), from (3), and for log(m̂), from (5), gives

νL =
1
α
(log(β)− 0.100)

νH =
1
α
(log(β)− 0.075) (16)

As one might expect, based on Campbell and Cochrane’s calibration of their
surplus process, the cyclical variation in ν is much smaller than the variation
in λ.

For given α and β, and using Mehra and Prescott’s Markov transition ma-
trix, (14) and (16) imply that the conditional mean of the log growth rate of the
surplus ratio is

EL [log(St+1/St)] =
log(β) + 0.537

α
− 0.022

EH [log(St+1/St)] =
log(β)− 0.046

α
− 0.012 (17)

For example, for α = 1,

EL [log(St+1/St)] = log(β) + 0.515
EH [log(St+1/St)] = log(β)− 0.058

As long as β is not too small, in the low-growth state the surplus ratio is ex-
pected to increase, while in the high-growth state, it’s expected to decline. And,
if log(β) = −(1/2)(0.515− 0.058), a value of β just under 0.8, the uncondi-
tional expectation of log(St+1/St) will be zero. In log terms, the surplus ratio
will be non-stationary, but have zero drift.

4 State-dependent preferences

One can re-interpret the preferences we’ve specified here as a state-dependent
version of the standard time-additively-separable, constant relative risk aver-
sion form, with variation in both the coefficient of relative risk aversion and
the utility discount factor. That is, we may re-write the resulting SDF (9) in the
form

mi,j = βix
−αi
j (18)

The mapping is easily derived from (9), defining βi and αi by

βix
−αi
j = βe−ανi x−α(1+λi)

j (19)

for i, j = L, H. That is,

αi = α(1 + λi)

βi = βe−ανi . (20)
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Combining (20) with (14) and (16)—or directly equating the SDF in (18)
with the Melino-Yang SDF m̂—gives the values of βi and αi consistent with
first and second moments of the asset return data:

L H
αi 28.73 2.42
βi 1.1052 1.0782

As expected, the state-dependent representation features a strongly counter-
cyclical risk aversion coefficient, varying from roughly 2.4 in the high-growth
state to nearly 30 in the low-growth state. That the representation features
state-dependent risk aversion is not surprising, given Campbell and Cochrane’s
interpretation of their habit specification (or the Melino-Yang risk-neutral prob-
abilities).

More surprising is the state-dependence of the utility discount factor; in this
representation, the discount factor is uniformly greater than one and counter-
cyclical (so the rate of time preference is negative and procyclical). An agent
with these preferences ‘upcounts’ future utility in either state, the more so
(more patiently) in the low-growth state. The variation is sizable: the agent’s
rate of time preference differs by about 0.025, or 2.5 percentage points, across
states.

Upcounting on average, of course, helps match the low average risk-free
rate, a fact pointed out early on by Benninga and Protopapadakis Benninga
and Protopapadakis (1990). The countercyclicality of the utility discount fac-
tor, though, is at first glance, puzzling. The parameters have been reverse-
engineered to match Melino and Yang’s SDF, and that SDF corresponds to a
countercylical risk-free rate. One might have expected a lower discount factor
(and higher rate of time preference) in the low-growth state.

It turns out that, without the offsetting countercyclicality of the utility dis-
count factor, the implied risk-free rate (as well as the implied equity return)
would be too countercyclical. Precisely, suppose that we replace β = {βL, βH}
with the average of βL and βH (keeping the behavior of αi the same). The re-
sulting SDF would (roughly) match the mean risk-free rate (0.8%), but with
too high a standard deviation. The model would fail on other dimensions as
well.4

Does Campbell and Cochrane’s own model—rather than just our version of
it—have a state-dependent representation with a utility discount factor that’s
countercyclical and greater than one? Figure 1 shows the result of simulating
Campbell and Cochrane’s model, at an annual frequency, using the parameters
given in their Table 1. In constructing the figure, I simulated the behavior of
their stochastic discount factor (for a given path of consumption growth inno-
vations) and defined βt by

βtx
−αt
t+1 = mt,t+1 (21)

4The standard deviation of the implied risk-free rate in this case is 1.2 percentage points too
high. The volatility of the implied equity return is too high by a similar magnitude, and the implied
equity premium is too high by two percentage points.
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where mt,t+1 is the realization of the SDF from period t to t + 1, xt+1 is (gross)
consumption growth from t to t + 1, and αt = α(1 + λ(St)).

The resulting βt—simulated for 100 periods—is almost always greater than
one. The lower panel of the figure plots the dependence of βt on the log surplus
ratio, verifying the countercyclicality of the utility discount factor.5
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Figure 1: State-dependent utility discount factor in the Campbell-Cochrane
model. The upper panel shows βt over time; the lower panel plots βt against st,
the log surplus ratio. Data are simulated using the annual versions of param-
eters given in Campbell and Cochrane’s Table 1. The simulation starts from
s0 = s̄, and the first 100 periods have been discarded. Consumption growth
innovations were generated using MATLAB’s randn function.

Melino and Yang do not consider exactly the case of an SDF given by (18);
their framework features Epstein-Zin preferences, with potential variation in
one or more of that family’s three parameters (risk aversion, intertemporal sub-
stitution, and discounting). They do, however, look at the case of cyclical risk
aversion and discounting, holding fixed the elasticity of intertemporal substi-
tution. While that case can be calibrated to match the SDF m̂, they dismiss it,
for a variety of technical reasons, on the grounds that the discount factor turns

5All the MATLAB code for this paper can be found at http://www.jimdolmas.net/economics/
current-work.
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out to exceed one in one or both of the Markov states.6

What our exercize shows is that—to the extent one accepts our version of
Campbell-Cochrane preferences—there is a plausible story that’s observation-
ally equivalent (insofar as asset market data are concerned) to state-dependent
preferences with substantial upcounting of future utility.
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