
 

 

Why Are Big Banks Getting 
Bigger? 
Ricardo T. Fernholz and Christoffer Koch 

     
Federal Reserve Bank of Dallas 

    Research Department 
    Working Paper 1604 



Why Are Big Banks Getting Bigger?∗

Ricardo T. Fernholz†

Claremont McKenna College

Christoffer Koch‡

Federal Reserve Bank of Dallas

This Version: February 18, 2016

Abstract

The U.S. banking sector has become substantially more concentrated since the 1990s,
raising questions about both the causes and implications of this consolidation. We address
these questions using nonparametric empirical methods that characterize dynamic power
law distributions in terms of two shaping factors — the reversion rates (a measure of cross-
sectional mean reversion) and idiosyncratic volatilities of assets for different size-ranked
banks. Using quarterly data for subsidiary commercial banks and thrifts and their par-
ent bank-holding companies, we show that the greater concentration of U.S. bank-holding
company assets is a result of lower mean reversion, a result consistent with policy changes
such as interstate branching deregulation and the repeal of Glass-Steagall. In contrast, the
greater concentration of both U.S. commercial bank and thrift assets is a result of higher
idiosyncratic volatility, yet, idiosyncratic volatility of parent bank-holding company assets
fell. This contrast suggests that diversification through non-banking activities has reduced
the idiosyncratic asset volatilities of the largest bank-holding companies and affected sys-
temic risk.
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1 Introduction

The U.S. banking sector has undergone a tremendous transformation over the last half century.

A small group of the largest banks holds more assets than ever before, a trend that accelerated

after large-scale bank deregulation in the late 1990s (Kroszner and Strahan, 1999; Kroszner

and Strahan, 2014).1 Indeed, the ten largest bank-holding companies (BHCs) controlled about

70 percent of total banking assets by 2010 (Figure 1). The Great Recession and Financial Crisis,

characterized by the spectacular failures of large financial institutions such as Lehman Brothers

and Bear Stearns, raise a number of concerns about this rise in bank asset concentration.

First, greater asset concentration may reflect fundamental changes in the nature of banking

activities, such as a shift away from traditional banking towards non-banking activities within

the largest financial institutions (DeYoung and Torna, 2013). This shift may contribute to added

risk within financial intermediaries and hence within the banking system as a whole. Second,

greater asset concentration could alter the network structure of the financial system, leading to

more financial instability through greater exposure to shocks affecting large and systemically

important financial institutions (SIFIs). A growing literature has emphasized the potential

for idiosyncratic, firm-level shocks to have significant macroeconomic consequences (Gabaix,

2011), especially in industries such as banking where interlinkages and contagion between

entities are common (Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi, 2012; Caballero and

Simsek, 2013).

We explore the causes and implications of rising U.S. bank asset concentration using non-

parametric empirical methods to describe the dynamics of the distribution of banking assets

for U.S. commercial banks, thrifts, and BHCs. Our general methods, which are new to eco-

nomics but are well-established in statistics, characterize the stationary distribution of bank

assets in terms of only two econometric factors—the reversion rates (a measure of the rate of

cross-sectional mean reversion) and idiosyncratic volatilities of bank assets.2 In particular, our

new techniques yield an asymptotic statistical identity in which the distribution of bank assets

1Greenwood and Scharfstein (2013) and Philippon (2015) provide detailed analyses of the growth and evolu-
tion of the U.S. financial sector more broadly.

2Fernholz (2016b) presents the methodology in detail. For an application to the U.S. wealth distribution, see
Fernholz (2016a).
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is described by the relationship

bank asset concentration =
idiosyncratic volatility of bank assets

reversion rates of bank assets
. (1.1)

This identity, which obtains under minimal assumptions, shows that bank asset concentration

is decreasing in reversion rates and increasing in idiosyncratic volatility. We are thus able to

simultaneously investigate changes in both idiosyncratic bank asset volatility and the power

law structure of the bank size distribution in a unified and robust econometric framework.

How do we interpret these two shaping econometric factors? The reversion rates of bank

assets measure the different growth rates of different sized banks and encompass economic

mechanisms such as regulatory and competition policy in the banking sector (Kroszner and

Strahan, 1999; Kroszner and Strahan, 2014) as well as preferences, constraints, and strategic

choices that drive asset growth for different sized banks (Corbae and D’Erasmo, 2013). The

idiosyncratic asset volatilities measure the intensity of firm-specific shocks. These include

unanticipated changes to bank liabilities and defaults on bank assets caused by shocks to bor-

rowers’ production technologies (Corbae and D’Erasmo, 2013). One of our novel contributions

is to measure the changing magnitude of these shocks for both BHCs and their subsidiary com-

mercial banks and thrifts. This exercise reveals the changing nature of diversification through

non-banking activities for the largest U.S. financial institutions. It also reveals changes in one

important potential source of contagion and systemic risk—idiosyncratic volatility (Acemoglu

et al., 2012).

Using quarterly data on the assets of commercial banks, thrifts, and their parent BHCs,

we estimate reversion rates and idiosyncratic volatilities of bank assets over a period during

which the size distribution of these three categories of financial intermediaries became more

concentrated. Our estimates reveal that the cause of higher concentration among both U.S.

commercial banks and thrifts after the mid-1990s is an increase in idiosyncratic asset volatility,

especially for the largest banks and thrifts. In contrast, we find that the primary driver of

higher concentration among BHCs during this same time period is a fall in cross-sectional

mean reversion as measured by the reversion rates of bank assets—the idiosyncratic volatilities

of BHCs’ total asset holdings actually decreased after the mid-1990s.

The fall in the idiosyncratic asset volatilities for BHCs is surprising given the observed rise
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in idiosyncratic asset volatilities for commercial banks and thrifts, many of which are sub-

sidiaries of BHCs. This contrast suggests that diversification through non-banking activities

has more than offset the higher volatilities of BHCs’ traditional banking assets. The fall in

idiosyncratic BHC asset volatility also reveals the surprising result that even as one source of

potential contagion—concentration—has intensified, another important source—idiosyncratic

volatility—has diminished. In other words, bigger banks are not necessarily riskier banks.

From 1975 to 2015, commercial bank assets as a share of GDP increased by about 70 per-

cent. Not only did the U.S. banking system grow in size relative to the economy as a whole,

but its composition and concentration also drastically changed starting in the 1990s (Janicki

and Prescott, 2006). Over the last three decades, for example, the number of U.S. commercial

banks has fallen from more than 14,000 to less than 6,000 while the average size of commercial

banks has simultaneously increased five-fold in terms of real total assets. Several explanations

for these changes have been proposed, including the gradual removal of interstate branch-

ing restrictions combined with increasing returns to scale (Hughes, Mester, and Moon, 2001;

Wheelock and Wilson, 2012) and the repeal of the Glass-Steagall Act through the passage

of the Gramm-Leach-Bliley Act in 1999 (Lucas, 2013). Our findings regarding the decrease

in the reversion rates of BHC assets are consistent with these structural and policy changes,

since these changes are the very economic factors that affect asset growth rates for the largest

financial institutions.

One of this paper’s central contributions is to connect and extend three different and dis-

parate literatures—power laws, bank size distributions, and the importance of idiosyncratic

shocks for aggregate economic outcomes. This is accomplished using nonparametric empir-

ical methods for dynamic power law distributions that characterize the role of idiosyncratic

shocks as a shaping force of the bank size distribution.

Our rank-based empirical methods are new to economics, but are well-established and

the subject of active research in statistics.3 These empirical techniques are flexible and allow

us to estimate and quantify the distributional effect of idiosyncratic volatilities across every

rank in the bank size distribution. Furthermore, our methods are robust and avoid model

misspecification issues since they allow for asset growth rates and volatilities that vary across

3See, for example, Banner, Fernholz, and Karatzas (2005), Pal and Pitman (2008), Ichiba, Papathanakos,
Banner, Karatzas, and Fernholz (2011), and Shkolnikov (2011).
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different bank characteristics including rank. In this sense, our approach extends earlier anal-

yses based on Gibrat’s law (1931). We also provide techniques for estimating reversion rates

and idiosyncratic volatilities using panel data and for generating confidence intervals around

these estimates.

Idiosyncratic volatility is a root cause of contagion and systemic risk emanating from net-

works and also a contributing factor for aggregate volatility. A recent literature emphasizes

the potential for entity-specific volatility to affect aggregate volatility both in closed (Car-

valho and Grassi, 2015) and open economy environments (Di Giovanni and Levchenko, 2012).

Gabaix (2011), for example, estimates that approximately one-third of U.S. output volatility

can be explained by idiosyncratic shocks to the 100 largest domestic firms. Similarly, Carvalho

and Gabaix (2013) show that “fundamental volatility”—volatility only derived from microeco-

nomic shocks—may be an important contributor to aggregate volatility and its evolution over

time. They also point to the growth of the financial sector as the chief cause of the recent

rise of macroeconomic volatility that put an end to the Great Moderation (Stock and Watson,

2003).

By any measure of importance, the banking sector includes some of the largest and most

interconnected U.S. corporates. In fact, over the last 15 years about a quarter of corporate prof-

its accrued to the financial sector, peaking at a 40 percent share in 2002.4 Acemoglu et al. (2012)

analyze how interconnections across industries allow for the possibility of cascade effects in

which microeconomic, idiosyncratic shocks lead to aggregate fluctuations. The central role of

the financial sector as a hub of the payment and credit system makes the analysis of idiosyn-

cratic volatilities in the banking sector all the more important. Furthermore, the combination

of complexity and opacity among financial intermediaries gives idiosyncratic volatilities in

that sector an added significance (Caballero and Simsek, 2013). Indeed, the failure of financial

institutions like Lehman Brothers or Bear Stearns often lead to greater dislocation than fail-

ures in other industries. We contribute to this literature by providing empirical estimates of

idiosyncratic asset volatilities for different ranked U.S. financial intermediaries and describing

the changes in these volatilities since the 1990s.

Many researchers have identified the special relevance of the size distribution of the bank-

ing sector. Kashyap and Stein (2000) and Ghossoub and Reed (2015), for example, analyze how

4National Income and Product Accounts (NIPA) table 6.16
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the bank size distribution influences the propagation of monetary policy. Gray and Malone

(2008) discuss the implications of different bank size distributions for large scale private-public

risk transfers. Beck, Demirgüç-Kunt, and Levine (2006) examine the relationship between the

bank size distribution and banking crises.

The rest of this paper is organized as follows. Section 2 discusses the panel data we use for

BHCs, commercial banks, and thrifts. Section 3 presents our nonparametric empirical methods

for dynamic power law distributions and uses those methods to characterize the U.S. bank size

distribution in terms of two econometric factors. This section also describes how to estimate

these two shaping factors using panel data. Section 4 summarizes our main empirical results

and discusses their statistical significance. Section 5 concludes.

2 Data

We analyze three different sets of U.S. depositories separately: (i) bank-holding companies,

(ii) commercial banks, and (iii) thrifts. These institutions have to file quarterly balance sheets

(“report on conditions”) and income statements (“report on income”) with their regulator.

BHCs are regulated by the Federal Reserve, and commercial banks and thrifts are regulated

by the Federal Reserve, the Office of the Comptroller of the Currency (OCC), and the Federal

Deposit Insurance Company (FDIC). Note that thrifts were supervised by the Office of Thrift

Supervision (OTS) until 2011.

These quarterly balance sheets are publicly available from the Federal Financial Institu-

tions Examination Council (FFIEC) and from the Federal Reserve Bank of Chicago. Since this

paper focuses on the factors that shape the size distribution, the only variable we use is total

institution assets, which is variable mnemonic bhck2170 for BHCs, rcon2170 for commercial

banks, and svgl2170 for thrifts. In order to enable an in kind comparison of mean reversion

and idiosyncratic volatilities, we aggregate bank and thrift assets within a single bank-holding

company via the regulatory high-holder variable rssd9248 (REG_HH_1_ID). For example, one

of the largest U.S. multi-bank-holding companies Citicorp (RSSD ID: 3375370) holds two com-

mercial banks Citibank, N.A. (RSSD ID: 476810) and Department Stores National Bank (RSSD ID:

3382547) as well as hundreds of non-bank entities.

We extract regulatory data from the so-called “call” reports. This is a repeated N × T
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cross-section where N is the number of depository entities in the cross-section and T is the

quarter. Within our sample, the maximum number of BHCs per quarter is 2,338 (2005 Q2), the

maximum number of commercial banks per quarter is 15,273 (1977 Q2), and the maximum

number of thrifts per quarter is 4,025 (1979 Q4). The sampling of quarterly reports varies

over time, with size thresholds in reporting changing the number of reporting entities. The

minimum number of reporting entities is 966 BHCs (2007 Q4), 6,570 commercial banks (2014

Q4), and 638 thrifts (2011 Q4). Since our empirical approach requires a fixed number of ranks

over time, we size-rank all depositories within reporting quarter and restrict our analysis to

the largest 500 BHCs, the largest 3,000 commercial banks, and the largest 400 thrift institutions

each quarter.

Data for commercial banks go back further in time than data for thrifts and BHCs. The

available data start in 1986 Q4 for BHCs, 1960 Q4 for commercial banks, and 1984 Q1 for thrifts.

Data is available until the most recent quarter for BHCs and commercial banks, and until 2011

Q4 for thrifts. Because we follow these categories of financial intermediaries over multiple

decades, entry and exit as well as other factors constantly change the individual institutions

that occupy the top ranks. In other words, we do not follow a fixed panel of BHCs, commercial

banks, or thrifts every quarter, but instead a changing set of the largest depositories in each

quarter.

If we consider all BHCs together, we find that the annualized average growth rate of total

assets was 7.3% during the 1986 Q4 – 2014 Q4 time period. Similarly, for all commercial banks

together and all thrifts together, we find that the annualized average growth rates of total

assets were 7.5% and 1.0% during the 1960 Q4 – 2014 Q4 and 1984 Q1 – 2011 Q4 time periods,

respectively.

3 A Nonparametric Approach to the Bank Size Distribution

We use the nonparametric empirical methods for dynamic power law distributions detailed

by Fernholz (2016b) to characterize the U.S. distribution of bank assets.5 These methods are

well-established in statistics, and yield an asymptotic identity that describes the distribution

5For brevity, we refer directly to Fernholz (2016b) on several occasions and thus leave out certain technical
details and proofs.
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of bank assets according to the relationship

bank asset concentration =
idiosyncratic volatility of bank assets

reversion rates of bank assets
. (3.1)

This econometric identity motivates our empirical strategy. In particular, equation 3.1 implies

that any increase in bank asset concentration must be caused, in an econometric sense, by

either an increase in idiosyncratic asset volatility or a decrease in reversion rates.

3.1 Setup and Results

Bank Asset Dynamics

Consider a banking economy that consists of N > 1 banks. Time is continuous and denoted

by t ∈ [ 0, ∞), and uncertainty in this economy is represented by a filtered probability space

(Ω,F ,Ft, P). Let B(t) = (B1(t), . . . , BM(t)), t ∈ [0, ∞), be an M-dimensional Brownian motion

defined on the probability space, with M ≥ N. We assume that all stochastic processes are

adapted to {Ft; t ∈ [0, ∞)}, the augmented filtration generated by B.

The total assets of each bank i = 1, . . . , N in this economy are given by the process ai. Each

of these asset processes evolves according to the stochastic differential equation

d log ai(t) = µi(t) dt +
M

∑
z=1

δiz(t) dBz(t), (3.2)

where µi and δiz, z = 1, . . . , M, are measurable and adapted processes. The growth rates and

volatilities µi and δiz are general and essentially unrestricted, having only to satisfy a few basic

regularity conditions.6 Indeed, equation (3.2) together with these regularity conditions implies

that the asset processes for the banks in the economy are continuous semimartingales, which

represent a broad class of stochastic processes.7 According to the martingale representation

theorem (Nielsen, 1999), any plausible continuous process for asset holdings can be written in

the nonparametric form of equation (3.2). This lack of structure allows for asset growth rates

and volatilities that vary across different bank characteristics and hence provides a framework

6These conditions ensure basic integrability of equation (3.2) and require that no two banks’ assets are per-
fectly correlated over time. See Appendix A of Fernholz (2016b) for details.

7Continuous semimartingales are more general than Itô processes, which are common in the continuous-time
finance literature (Nielsen, 1999). For a detailed discussion, see Karatzas and Shreve (1991).
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that is more general than analyses based on the equal growth rates and volatilities of Gibrat’s

law (Gabaix, 1999; Gabaix, 2009).

It is useful to describe the dynamics of total assets for all banks in the economy, which we

denote by a(t) = a1(t) + · · ·+ aN(t). In order to do so, we first characterize the covariance of

assets across different banks over time. For all i, j = 1, . . . , N, let the covariance process ρij be

given by

ρij(t) =
M

∑
z=1

δiz(t)δjz(t). (3.3)

Applying Itô’s Lemma to equation (3.2), it is not hard to show that the dynamics of the process

for total assets in the economy a are given by

d log a(t) = µ(t) dt +
N

∑
i=1

M

∑
z=1

θi(t)δiz(t) dBz(t), a.s., (3.4)

where

µ(t) =
N

∑
i=1

θi(t)µi(t) +
1
2

(
N

∑
i=1

θi(t)ρii(t)−
N

∑
i,j=1

θi(t)θj(t)ρij(t)

)
, (3.5)

and, for all i = 1, . . . , N, θi(t) is the share of total assets held by bank i at time t,

θi(t) =
ai(t)
a(t)

. (3.6)

Rank-Based Bank Asset Dynamics

In order to characterize the distribution of bank assets, it is necessary to consider the dynamics

of bank assets by rank. To accomplish this, we introduce notation for bank rank based on total

asset holdings. For k = 1, . . . , N, let a(k)(t) represent the assets held by the bank with the k-th

most assets of all the banks in the economy at time t, so that

max(a1(t), . . . , aN(t)) = a(1)(t) ≥ a(2)(t) ≥ · · · ≥ a(N)(t) = min(a1(t), . . . , aN(t)). (3.7)

Next, let θ(k)(t) be the share of total assets held by the k-th largest bank at time t, so that

θ(k)(t) =
a(k)(t)

a(t)
, (3.8)
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for k = 1, . . . , N.

The next step is to describe the dynamics of the ranked bank asset processes a(k) and

ranked asset share processes θ(k), k = 1, . . . , N. We introduce the notion of a local time in

order to describe these dynamics. This is necessary as we cannot simply apply Itô’s Lemma

in this setting since the rank function is not differentiable.

For any continuous process x, the local time at 0 for x is the process Λx defined by

Λx(t) =
1
2

(
|x(t)| − |x(0)| −

∫ t

0
sgn(x(s)) dx(s)

)
. (3.9)

As detailed by Karatzas and Shreve (1991), the local time for x measures the amount of time

the process x spends near zero. As we demonstrate below, local times are closely related to

the rate at which the asset holdings of different banks cross-sectionally revert to the mean.

To be able to link bank rank (denoted by k) to bank index (denoted by i), let pt be the

random permutation of {1, . . . , N} such that for 1 ≤ i, k ≤ N,

pt(k) = i if a(k)(t) = ai(t). (3.10)

This definition implies that pt(k) = i whenever bank i is the k-th largest bank in the economy.

It is not difficult to show that for all k = 1, . . . , N, the dynamics of the ranked bank asset

processes a(k) and ranked asset share processes θ(k) are given by89

d log a(k)(t) = d log apt(k)(t) +
1
2

dΛlog a(k)−log a(k+1)
(t)− 1

2
dΛlog a(k−1)−log a(k)(t), a.s., (3.11)

and

d log θ(k)(t) = d log θpt(k)(t) +
1
2

dΛlog θ(k)−log θ(k+1)
(t)− 1

2
dΛlog θ(k−1)−log θ(k)

(t), a.s. (3.12)

To understand equation (3.11), note that the local time terms in this equation only contribute

to a(k)(t) if the k-th largest bank’s assets either fall to the level of the (k + 1)-th largest bank’s

assets (this corresponds to Λlog a(k)−log a(k+1)
) or rise to the level of the (k− 1)-th largest bank’s

8Throughout this paper, we shall use the convention that Λlog a(0)−log a(1)(t) = Λlog a(N)−log a(N+1)
(t) = 0. We

shall also write dxpt(k)(t) to refer to the process ∑N
i=1 1{i=pt(k)}dxi(t).

9A formal derivation of these equations is provided by Fernholz (2016b).
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assets (this corresponds to Λlog a(k−1)−log a(k)). In the former case, the positive local time term

ensures that the asset holdings of the k-th largest bank are always larger than those of the

(k + 1)-th largest bank. Conversely, in the latter case, the negative local time term ensures that

the k-th largest bank is always smaller than the (k− 1)-th largest bank. A similar logic applies

to equation (3.12) for the ranked asset share processes θ(k).

Using the definition of the asset shares θi(t) from equation (3.6), if we subtract equation

(3.4) from equation (3.2), then we have that for all i = 1, . . . , N,

d log θi(t) = µi(t) dt +
M

∑
z=1

δiz(t) dBz(t)− µ(t) dt−
N

∑
i=1

M

∑
z=1

θi(t)δiz(t) dBz(t). (3.13)

Because equation (3.12) describes the dynamics of the ranked asset share processes θ(k) in

terms of the dynamics of the asset share processes θi, we can substitute equation (3.13) into

equation (3.12) to get that

d log θ(k)(t) =
(

µpt(k)(t)− µ(t)
)

dt +
M

∑
z=1

δpt(k)z(t) dBz(t)−
N

∑
i=1

M

∑
z=1

θi(t)δiz(t) dBz(t)

+
1
2

dΛlog θ(k)−log θ(k+1)
(t)− 1

2
dΛlog θ(k−1)−log θ(k)

(t),

(3.14)

a.s., for all k = 1, . . . , N. Equation (3.14), in turn, implies that the process log θ(k) − log θ(k+1)

satisfies, a.s., for all k = 1, . . . , N − 1,

d
(

log θ(k)(t)− log θ(k+1)(t)
)
=
(

µpt(k)(t)− µpt(k+1)(t)
)

dt + dΛlog θ(k)−log θ(k+1)
(t)

− 1
2

dΛlog θ(k−1)−log θ(k)
(t)− 1

2
dΛlog θ(k+1)−log θ(k+2)

(t)

+
M

∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)
dBz(t).

(3.15)

Reversion Rates

Let αk equal the time-averaged limit of the expected growth rate of assets for the k-th largest

bank at time t, µpt(k), relative to the expected growth rate of assets for all banks in the economy,

µ, so that

αk = lim
T→∞

1
T

∫ T

0

(
µpt(k)(t)− µ(t)

)
dt, (3.16)
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for k = 1, . . . , N. It is worth emphasizing that the growth rates µpt(k) in equation (3.16) can

vary over time and across any bank characteristics. The key insight is that by averaging

these different and changing growth rates over time for each rank k, we obtain rank-based

relative growth rates αk that allow us to characterize the distribution of bank assets, as we

shall demonstrate below.

The relative growth rates αk are a measure of the rate at which bank assets revert to the

mean. We shall refer to the −αk as reversion rates, since lower values of αk (and hence higher

values of −αk) imply faster cross-sectional mean reversion.

For all k = 1, . . . , N, let κk equal the time-averaged limit of the local time process Λlog θ(k)−log θ(k+1)
,

so that

κk = lim
T→∞

1
T

Λlog θ(k)−log θ(k+1)
(T). (3.17)

Let κ0 = 0, as well. The parameters αk and κk are related by αk − αk+1 = 1
2κk−1 − κk +

1
2κk+1,

for all k = 1, . . . , N − 1. This relationship between reversion rates and local times is useful for

estimating the reversion rates.

Idiosyncratic Volatilities

In a similar manner, we wish to define the time-averaged limit of the volatility of the pro-

cess log θ(k) − log θ(k+1), which measures the relative asset holdings of adjacent banks in the

distribution of bank assets. For all k = 1, . . . , N − 1, let σk be given by

σ2
k = lim

T→∞

1
T

∫ T

0

M

∑
z=1

(
δpt(k)z(t)− δpt(k+1)z(t)

)2
dt. (3.18)

As with the growth rates in equation (3.16), the asset volatilities implied by the parameters

δpt(k)z in equation (3.18) can vary over time and across any bank characteristics. These different

and changing volatilities are averaged over time for each rank k, and this yields rank-based

volatilities σk that, together with the reversion rates −αk, entirely determine the shape of the

distribution of bank assets.

Each volatility parameter σk measures the standard deviation of the process log θ(k) −

log θ(k+1). In the presence of both idiosyncratic, bank-specific shocks and aggregate shocks,

these volatility parameters will measure only the intensity of idiosyncratic shocks since ag-
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gregate shocks that affect all banks have no impact on the relative asset holdings of adjacent

banks in the distribution.

Note, however, that the volatility parameters σk measure the idiosyncratic asset volatilities

of both the k-th and (k + 1)-th largest banks together (because they measure the volatility

of log θ(k) − log θ(k+1) rather than log θ(k)). As a consequence, in order to obtain values that

correspond to idiosyncratic asset volatilities for one single ranked bank, it is necessary to

appropriately adjust the estimated values of σk reported in Table 1 and Figures 4 to 6 below.

In particular, these estimated values must be divided by the square root of two.

The Distribution of Bank Assets

The stable version of the process log θ(k) − log θ(k+1) is the process log θ̂(k) − log θ̂(k+1) defined

by

d
(

log θ̂(k)(t)− log θ̂(k+1)(t)
)
= −κk dt + dΛlog θ̂(k)−log θ̂(k+1)

(t) + σk dB(t), (3.19)

for all k = 1, . . . , N − 1.10 The stable version of log θ(k) − log θ(k+1) replaces all of the pro-

cesses from the right-hand side of equation (3.15) with their time-averaged limits, with the

exception of the local time process Λlog θ(k)−log θ(k+1)
. Throughout this paper, we shall assume

that the limits in equations (3.16)-(3.18) do in fact exist.11 By considering the stable version of

these relative asset holdings processes, we are able to obtain a simple characterization of the

distribution of bank assets.

Theorem 3.1. There is a stationary distribution of bank assets in this economy if and only if α1 + · · ·+

αk < 0, for k = 1, . . . , N − 1. Furthermore, if there is a stationary distribution of bank assets, then for

k = 1, . . . , N − 1, this distribution satisfies

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (3.20)

Theorem 3.1 provides an analytic rank-by-rank characterization of the entire distribution

of bank assets that matches the intuitive form of equation (3.1).12 This characterization is

10For each k = 1, . . . , N− 1, equation (3.19) implicitly defines another Brownian motion B(t), t ∈ [0, ∞). These
Brownian motions can covary in any way across different k.

11Note that the existence of the limits in equations (3.16)-(3.18) is a weaker assumption than the existence of a
stationary distribution of bank assets (Banner, Fernholz, and Karatzas, 2005).

12We refer the reader to Fernholz (2016b) for a proof of the theorem.
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achieved despite minimal assumptions on the processes that describe the dynamics of bank

assets over time. Indeed, as long as the relative growth rates, volatilities, and local times that

we take limits of in equations (3.16)-(3.18) do not change drastically and frequently over time,

then the distribution of the stable versions of θ(k) from Theorem 3.1 will accurately reflect the

distribution of the true versions of these ranked asset share processes.

According to Theorem 3.1, two factors describe the bank size distribution. The first factor is

the reversion rates of bank assets, measured by −αk, and the second factor is the idiosyncratic

volatility of bank assets, σk. Both factors vary across different ranks in the distribution, thus

going beyond simpler formulations based on the equal growth rates and volatilities imposed

by Gibrat’s law. The theorem shows that an increase in reversion rates lowers the concentration

of bank assets, while an increase in idiosyncratic volatility raises the concentration of bank

assets.13 Any change in the bank size distribution is caused by a corresponding change in at

least one of these two factors that shape the distribution.

Central to our empirical approach is the implication of Theorem 3.1 that only two factors

shape the distribution of bank assets. Our goal is to measure these two shaping factors and

investigate how they changed over time. This analysis allows us to determine the cause, in an

econometric sense, of the large increase in the concentration of U.S. bank assets observed in

the last few decades.

3.2 Gibrat’s Law, Zipf’s Law, and Pareto Distributions

It is useful to see how our rank-based, nonparametric approach nests many common examples

of random growth processes from other literatures as special cases. We shall focus on the

influential example of Gibrat’s law, and also describe the conditions that are necessary for

Gibrat’s law to give rise to Zipf’s law.

According to Gabaix (2009), the strongest form of Gibrat’s law for banks imposes asset

growth rates and volatilities that do not vary across different sized banks. In terms of the

reversion rates −αk (which measure relative asset growth rates for different size-ranked banks)

and idiosyncratic volatilities σk, this requirement is equivalent to there existing some common

13Note that this latter result is consistent with the results of Gabaix (2009) and Benhabib, Bisin, and Zhu (2011).
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α < 0 and σ > 0 such that

α = α1 = · · · = αN−1, (3.21)

and

σ = σ1 = · · · = σN−1. (3.22)

In terms of equation (3.20) from Theorem 3.1, then, Gibrat’s law yields asset shares that satisfy

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
=

σ2

−4kα
a.s., (3.23)

for all k = 1, . . . , N − 1.

The distribution of bank assets follows a Pareto distribution if a plot of asset shares as a

function of rank, using log scales for both axes, appears as a straight line.14 Furthermore, if

the slope of such a straight line plot is -1, then bank asset shares obey Zipf’s law (Gabaix,

1999). According to equation (3.23), for all k = 1, . . . , N − 1, the slope of such a log-log plot in

the case Gibrat’s law is given by

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
log k− log k + 1

≈ −kE
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=
−kσ2

−4kα
=

σ2

4α
. (3.24)

Equation (3.24) shows that Gibrat’s law yields a Pareto distribution in which the log-log plot

of asset shares versus rank has slope σ2/4α < 0, which is equivalent to the Pareto distribution

having parameter −4α/σ2 > 0. Furthermore, we see that bank asset shares obey Zipf’s law

only if σ2 = −4α, in which case the log-log plot has slope -1.

Theorem 3.1 thus demonstrates that Gibrat’s law and Zipf’s law are special cases of general

power law distributions in which asset growth rates and volatilities potentially vary across dif-

ferent ranks in the distribution. Indeed, equation (3.20) implies that any power law exponent

can obtain in any part of the distribution curve. This flexibility is a novel feature of our em-

pirical methodology and is necessary to accurately match the empirical bank size distribution.

As we show in Section 4, asset growth rates and volatilities for all categories of financial in-

termediaries that we examine differ across ranks in a statistically significant and economically

meaningful way.

14See the discussions in Newman (2006) and Gabaix (2009).

17



3.3 Estimation

Perhaps the most important implication of Theorem 3.1 is that an understanding of rank-based

bank asset dynamics is sufficient to describe the entire distribution of U.S. bank assets. Ac-

cording to the theorem, it is not necessary to directly model and estimate bank asset dynamics

by name, denoted by index i. Instead, if we can estimate the time-averaged rank-based relative

growth rates, αk, and the time-averaged rank-based volatilities, σk, then we can describe the

full distribution of bank assets using equation (3.20).

Using our detailed panel data for U.S. bank assets, we can estimate these rank-based pa-

rameters directly. This is accomplished using discrete-time approximations of the continuous

processes that yielded Theorem 3.1.

For the estimation of the volatility parameters σk, we use the discrete-time approximation

of equation (3.18) above. In particular, these estimates are given by

σ2
k =

1
T − 1

T−1

∑
t=1

[(
log θpt(k)(t + 1)− log θpt(k+1)(t + 1)

)
−
(

log θpt(k)(t)− log θpt(k+1)(t)
)]2

,

(3.25)

for all k = 1, . . . , N − 1. Note that T is the total number of quarters in the time period

over which we estimate these parameters. Equation (3.25) shows that the parameters σk are

estimated by measuring the standard deviations of changes over time in the log asset shares of

the k-th largest bank relative to the (k + 1)-th largest bank (changes over time in log θpt(k)(t)−

log θpt(k+1)(t)) for all ranks k = 1, . . . , N − 1.

We also wish to estimate the rank-based relative growth rates αk. In order to accomplish

this, we first estimate the local time parameters κk and then use the relationship that exists

between these local times and the αk parameters.

Lemma 3.2. The relative growth rate parameters αk and the local time parameters κk satisfy

αk =
1
2

κk−1 −
1
2

κk, (3.26)

for all k = 1, . . . , N − 1, and αN = −(α1 + · · ·+ αN−1).
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Lemma 3.3. The ranked asset share processes θ(k) satisfy the stochastic differential equation

d log
(

θpt(1)(t) + · · ·+ θpt(k)(t)
)
= d log

(
θ(1)(t) + · · ·+ θ(k)(t)

)
−

θ(k)(t)
2(θ(1)(t) + · · ·+ θ(k)(t))

dΛlog θ(k)−log θ(k+1)
(t), a.s.,

(3.27)

for all k = 1, . . . , N.

Lemmas 3.2 and 3.3 together allow us to generate estimates of the rank-based relative

growth rates αk.15 In order to accomplish this, we first estimate the local time processes

Λlog θ(k)−log θ(k+1)
using the discrete-time approximation of equation (3.27). This discrete-time

approximation implies that for all k = 1, . . . , N,

log
(

θpt(1)(t + 1) + · · ·+ θpt(k)(t + 1)
)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
=

log
(

θpt+1(1)(t + 1) + · · ·+ θpt+1(k)(t + 1)
)
− log

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
−

θpt(k)(t)

2
(

θpt(1)(t) + · · ·+ θpt(k)(t)
) (Λlog θ(k)−log θ(k+1)

(t + 1)−Λlog θ(k)−log θ(k+1)
(t)
)

,

(3.28)

which, after simplification and rearrangement, yields16

Λlog θ(k)−log θ(k+1)
(t + 1)−Λlog θ(k)−log θ(k+1)

(t) =
[

log
(

θpt+1(1)(t + 1) + · · ·+ θpt+1(k)(t + 1)
)

− log
(

θpt(1)(t + 1) + · · ·+ θpt(k)(t + 1)
) ]2

(
θpt(1)(t) + · · ·+ θpt(k)(t)

)
θpt(k)(t)

.

(3.29)

As with our estimates of the volatility parameters σk, we estimate the values of the local times

in equation (3.29) for t = 1, . . . , T − 1, where T is the total number of quarters in the time

period over which we are estimating. We also set Λlog θ(k)−log θ(k+1)
(1) = 0, for all k = 1, . . . , N.

Equation (3.29) states that the change in the local time process Λlog θ(k)−log θ(k+1)
is increasing

in the difference between the time t + 1 asset holdings of the largest k banks at time t + 1 and

the time t + 1 asset holdings of the largest k banks at time t, a nonnegative number.17 Of

15We refer the reader to Fernholz (2016b) for the simple proofs of Lemmas 3.2 and 3.3.
16Note that θpt(k)(t + 1) denotes the assets at time t + 1 of the bank that is k-th largest at time t, while

θpt+1(k)(t + 1) denotes the assets at time t + 1 of the bank that is k-th largest at time t + 1.
17Because of entry and exit, there are banks that appear in our data set at time t but not at time t + 1, and
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course, this difference measures the intensity of cross-sectional mean reversion, since a large

difference implies that the largest k banks at time t have seen their assets grow substantially

slower than some other subset of banks that had smaller total asset holdings at time t and are

now themselves the largest banks in the economy.

After estimating the local times in equation (3.29), we then use equation (3.17) to generate

estimates of κk according to

κk =
1
T

Λlog θ(k)−log θ(k+1)
(T), (3.30)

for all k = 1, . . . , N. Finally, we can use the relationship between the parameters αk and κk

established by Lemma 3.2. This is accomplished via equation (3.26), which yields estimates of

each αk using our estimates of the parameters κk from equation (3.30). Note that according to

Lemma 3.2, the reversion rates −αk, which measure the rate of cross-sectional mean reversion,

are increasing in the local time parameters κk. This is not surprising given our observation

from equation (3.29) that the estimated local time processes Λlog θ(k)−log θ(k+1)
are measuring the

intensity of mean reversion.

After estimating the parameters αk and σk for each rank k = 1, . . . , N, we smooth these

estimates across different ranks using a standard Gaussian kernel smoother. Using these

smoothed estimates, we calculate the sum of the absolute values of the difference between

the observed asset shares θ(k) and those predicted by our estimates according to equation

(3.20) from Theorem 3.1. Next, we smooth the estimated parameters αk and σk a second

time and again calculate the absolute deviation between the observed asset shares and those

predicted by equation (3.20). This process of smoothing the estimated parameters and then

calculating the absolute deviation between prediction and data is repeated until this deviation

is minimized.18

One of the principle motivations of this paper is the changes in the bank size distribution

that have occurred in the last few decades. Figures 1 to 3 show these substantial changes over

time for bank-holding companies, commercial banks, and thrifts. According to the figures, the

U.S. bank size distribution began to transition from one distribution to another at some point

vice versa. The calculations in equations (3.25) and (3.29), however, require that banks stay in the data set for two
consecutive quarters. It is thus necessary to restrict our calculations at each time t to only those banks that are in
the data set at time t and time t + 1.

18More precisely, we calculate the absolute deviation between prediction and data by smoothing the param-
eters αk and σk between 1 and 100 times and then choosing the number of smoothings that achieves the lowest
total absolute deviation within this range.
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in the 1990s. In the context of our empirical approach, this transition implies that a long-run

change in reversion rates −αk and idiosyncratic volatilities σk occurred at this same point in

time. It is necessary, then, to estimate the quarter in which this transition began as well as two

sets of reversion rates and volatilities—one before the transition, and one after it.

In order to estimate these objects, we use a procedure similar to the smoothing procedure

that minimizes the absolute deviation between prediction and data as described above. First,

we select a quarter as the start date for the transition from one distribution to another. Next,

we estimate two sets of reversion rates −αk and idiosyncratic volatilities σk using data before

and after our transition start date (this follows the procedure described above). Finally, we

calculate the sum of the absolute values of the difference between the observed asset shares

θ(k) and those predicted by our estimated reversion rates and volatilities according to equation

(3.20). Note that the predicted asset shares are different before and after the transition start

date, since the estimated factors differ for these two periods as well. We repeat this procedure

over a set of plausible start dates for the transition from one distribution to another and

then choose the transition start date that minimizes the sum of absolute deviations between

prediction and data.19

4 Empirical Results

The intuitive version of our statistical identity in equation (3.1) motivates our empirical strat-

egy in this paper. By estimating reversion rates −αk and idiosyncratic volatilities σk for U.S.

bank-holding companies, commercial banks, and thrifts, we can examine how these two shap-

ing factors changed over time. According to Theorem 3.1, this analysis offers an econometric

explanation of the increased concentration in banking assets observed after the mid-1990s for

all three categories of banking institutions (Figures 1 to 3). Furthermore, as emphasized by

Acemoglu et al. (2012), measures of changing idiosyncratic volatilities yield information about

changing U.S. financial stability.

19These plausible start dates range from the early 1990s through 2000. Start dates outside this range yield
substantially higher deviations between prediction and data.
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4.1 Point Estimates

Idiosyncratic Volatilities

One of this paper’s main contributions is to analytically characterize the role of idiosyncratic

volatility as a shaping force of the bank size distribution. We first examine the idiosyncratic

volatilities σk across the size distribution of bank-holding companies, commercial banks, and

thrifts, recalling that commercial banks and thrifts are often subsidiaries of BHCs.

Section 3 provides a procedure for estimating idiosyncratic volatilities across different

ranks using panel data. In Figures 4, 5, and 6, we plot, respectively, the estimated standard

deviations of the idiosyncratic volatilities of asset holdings for different ranked U.S. BHCs,

commercial banks, and thrifts. These values of σk, averaged across quartiles, are also reported

in the first two columns of Table 1.

Figure 4 plots the idiosyncratic asset volatilities for the 500 largest U.S. BHCs from 1986

Q2 – 1997 Q4 and then from 1998 Q1 – 2014 Q4. According to Figure 4, the idiosyncratic

asset volatilities for BHCs decreased after 1997 Q4, with the largest decreases occurring for

medium-sized BHCs. In section 4.2, we confirm that these changes are in fact most statistically

significant for medium-sized BHCs. Similarly, Figure 5 plots the idiosyncratic asset volatilities

for the 3,000 largest U.S. commercial banks from 1960 Q4 – 1998 Q1 and then from 1998 Q2

– 2014 Q4. In contrast to BHCs, this figure shows that, especially for the largest commercial

banks, idiosyncratic volatilities increased after 1998 Q1. The other common subsidiary of

BHCs, thrifts, also experienced a similar increase in idiosyncratic asset volatilities. Figure 6

plots the idiosyncratic volatilities for the 400 largest U.S. thrifts from 1984 Q1 – 1998 Q1 and

then from 1998 Q2 – 2011 Q4 and shows this increase in the later period. Importantly, the

measured decrease in the idiosyncratic asset volatilities of BHCs over time shown in Figure 4

is in stark contrast to the measured increase in the idiosyncratic asset volatilities of commercial

banks and thrifts.

Our paper is the first to reveal this surprising contrast in the changes in idiosyncratic

volatilities of BHC assets as compared to commercial bank and thrift assets. This estimated

divergence is notable because we group commercial banks (thrifts) that are owned by the

same parent BHC together into one single commercial bank (thrift) entity. After all, it would

be natural to expect an increase in the idiosyncratic asset volatilities of subsidiary commercial
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banks and thrifts to coincide with an increase in the idiosyncratic asset volatilities of their

parent BHCs. Figures 4 to 6, however, clearly refute this simple view.

A full analysis of the possible underlying economic causes of the opposing changes in

asset volatilities of BHCs in contrast to commercial banks and thrifts is beyond the scope of

this paper and likely a promising direction for future research. There are many potential

causes of these changes—an exogenous structural change in the economic environment, a

change in policy or incentives related to corporate governance, or an endogenous response to

the removal of interstate branching restrictions (Kroszner and Strahan, 1999). Our empirical

analysis in this paper only measures the distributional effect of these changes in volatility.

However, by documenting these changes we are also able to draw conclusions about changing

U.S. financial stability, even if the precise structural cause of these changes remains an open

question.

Reversion Rates

The observed increase in the concentration of bank-holding company, commercial bank, and

thrift assets in Figures 1 to 3 must be caused by either an increase in idiosyncratic volatilities

σk, a decrease in reversion rates −αk, or both. Indeed, equation (3.20) from Theorem 3.1 states

that

E
[
log θ̂(k)(t)− log θ̂(k+1)(t)

]
=

σ2
k

−4(α1 + · · ·+ αk)
, a.s. (4.1)

Given the observed decrease in idiosyncratic asset volatilities of BHCs (σk) observed in Figure

4, then, it must be that cross-sectional mean reversion (−αk) decreased in 1998 Q1 – 2014 Q4

relative to 1986 Q2 – 1997 Q4. Figure 7 confirms that this is in fact the case—the fall in mean

reversion of BHC assets more than offset the fall in the idiosyncratic volatility and led to the

rise in BHC asset concentration.

Similar to BHCs, commercial bank and thrift assets also grew more concentrated after 1997,

but this concentration occurs at the same time as the idiosyncratic volatilities of commercial

bank and thrift assets, as measured by the parameters σk, rose. Consequently, our empirical

approach does not have a clear prediction about the direction of change of the reversion rates

of commercial bank and thrift assets, as measured by the parameters −αk. Figures 8 to 9 reveal

that these reversion rates actually increased for the largest commercial banks and thrifts after
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1997, with the magnitude of this change larger for thrifts than for commercial banks.20 In both

cases, however, these increases in cross-sectional mean reversion are of a smaller magnitude

than the decrease in mean reversion for BHC assets shown in Figure 7. For commercial banks

and thrifts, then, both mean reversion and idiosyncratic volatility rose, but the rise in idiosyn-

cratic volatility ruled and led to the rise in commercial bank and thrift asset concentration.

A number of potential economic explanations can account for these observed changes in

mean reversion rates. In particular, legislative changes in the mid-1990s such as the repeal

of the Glass-Steagall Act that separated commercial and investment banking (Lucas, 2013)

are consistent with relatively faster asset growth for the largest BHCs and hence less mean

reversion. Further effects may stem from persistent effects of the liberalization of inter-state

branching restrictions discussed in Kroszner and Strahan (1999) and Kroszner and Strahan

(2013) or changes in the scale economies of the banking industry discussed in Wheelock and

Wilson (2012) and Wheelock and Wilson (2015). Finally, to the extent that the underlying

size distribution of business firms is determined by the distribution of managerial talent, it

is possible that these changes in the bank size distribution are being driven by a change in

managerial talent (Lucas, 1978). While it is beyond the scope of this paper, future empirical

work that attempts to link these changes in the economic environment to the changes in cross-

sectional mean reversion we document in this paper should yield useful insight.

What do we learn from the idiosyncratic volatilities and reversion rates?

We can draw three more conclusions from our findings. First, the naive view that a more con-

centrated banking sector is always a riskier banking sector need not hold. A growing literature

emphasizes the potential for idiosyncratic, firm-level shocks to affect aggregate macroeco-

nomic outcomes. Within this literature, both Acemoglu et al. (2012) and Caballero and Simsek

(2013) show that such contagion is likely most pernicious in industries with complex and

opaque interlinkages. Given the complex interlinkages of the banking and finance industries,

there are reasons to worry about both concentration of assets and idiosyncratic asset volatility.

Indeed, as Gabaix (2011) shows, firm-level shocks are most likely to lead to aggregate volatility

in concentrated industries that are dominated by a few large firms.

We find that U.S. bank-holding company assets have grown more concentrated since the

20The last two columns of Table 1 also report changing values of αk averaged across quartiles.
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1990s while the idiosyncratic volatility of BHC assets has decreased over this same time period.

Therefore, to the extent that idiosyncratic shocks might be a source of aggregate risk for

the financial sector, our results show that this source of risk has decreased over the last few

decades. This is true despite the increase in concentration of BHC assets. Of course, we do

not directly measure systemic risk or complexity in the financial sector, so we cannot conclude

that the overall threat of contagion in this sector has decreased. Instead, we show that one

important source of potential contagion—idiosyncratic volatility—has diminished, even as

another more obvious source—concentration—has intensified.

Second, the contrasting changes in asset volatilities for different categories of banking in-

stitutions yield insight into asset diversification. Compare Figure 4 to Figures 5 and 6. There

is a rise in the idiosyncratic asset volatilities of subsidiary commercial banks and thrifts af-

ter the 1990s combined with a simultaneous fall in the idiosyncratic asset volatilities of their

parent BHCs. This contrasting result suggests that the non-banking activities of BHCs have

strengthened intra-institutional risk-sharing and increased diversification, changes that have

more than offset the rise in the idiosyncratic volatility of BHCs’ commercial banking activities.

This has led to a fall in the idiosyncratic volatility of their total assets. As a consequence, id-

iosyncratic asset volatilities—an important source of potential contagion—for the largest U.S.

financial institutions have actually declined since the 1990s. To our knowledge, this paper is

the first to uncover this surprising finding.

Third, we can see from Figures 4 to 9 that the shaping parameters αk and σk vary across

different ranks in our data sets. Such variation in growth rates and idiosyncratic volatilities

across different ranks is inconsistent with Gibrat’s law (Gibrat, 1931), the special case of our

general approach discussed in Section 3.2. In this sense, our nonparametric empirical frame-

work extends previous studies based on the equal growth rates and volatilities imposed by

Gibrat’s law in a way that allows us to better match the empirical bank size distribution. This

added empirical flexibility and realism allows us to observe contrasting changes in idiosyn-

cratic volatility for parent and subsidiary financial institutions. Because this revealed diver-

gence has intriguing implications, the value added from our empirical framework is likely to

yield similar economic and policy insight when applied to other economic questions.
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Goodness of Fit

It is useful to examine how well our rank-based empirical approach matches the data. Figure

10 shows the average share of total assets held by different ranked U.S. bank-holding compa-

nies from 1986 Q2 – 1997 Q4 together with the shares predicted for these BHCs using equation

(3.20) from Theorem 3.1 estimated over this same time period.21 This figure also displays the

minimum and maximum shares held by different ranked BHCs during these same years. Fig-

ure 11 shows these same quantities for different ranked U.S. BHCs from 1998 Q1 – 2014 Q4.

In addition to displaying the minimum and maximum shares held by different ranked BHCs

during these years, this figure also displays the size distribution at the end of the sample

period (the dot-dashed blue line).

Figures 10 and 11 are constructed using the cross-sectional mean reversion and idiosyn-

cratic volatility parameters from Figures 4 and 7. Together with equation (3.20) from Theorem

3.1, these parameter values yield stationary distribution values for each rank asset share θ(k),

k = 1, . . . , N.22 As the two figures demonstrate, equation (3.20) estimated over these two dif-

ferent time periods is able to approximately match the observed U.S. BHC size distribution.

Furthermore, the predicted shares also generate an increased concentration in BHC assets for

the 1998 Q1 – 2014 Q4 time period. As detailed above (Figures 4 and 7), this increased con-

centration is a result of a decrease in mean reversion of asset holdings for the largest BHCs.

Figures 12 and 13 show the average share of total assets held by different ranked U.S.

commercial banks for 1960 Q4 – 1998 Q1 and 1998 Q2 – 2014 Q4, respectively. These figures

also report the asset shares predicted using estimates of αk and σk over these same time periods.

The fit of equation (3.20) is slightly better for commercial banks than for BHCs, but crucially,

our empirical approach yields increased predicted asset concentration for both BHCs and

commercial banks for the 1998 Q1 – 2014 Q4 and 1998 Q2 – 2014 Q4 time periods, respectively.

These predictions are, of course, consistent with the data and hence offer an econometric

explanation for one of the central questions behind this paper.

Similarly, Figures 14 and 15 show the average share of total assets held by different ranked

U.S. thrifts from 1984 Q1 – 1998 Q1 and 1998 Q2 – 2011 Q4, respectively, together with the

21The figure displays asset shares as a function of rank, using log scales for both axes. As discussed in Section
3.2, if asset shares follow a Pareto distribution, then such a figure will appear as a straight line (Newman, 2006;
Gabaix, 2009).

22Note that we apply the same procedure to generate predicted asset shares for commercial banks and thrifts.
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shares predicted using our methods of estimation over these same time periods. As in the case

of BHCs and commercial banks, these figures demonstrate the reasonably good fit of equation

(3.20) from Theorem 3.1 to the observed size distribution for U.S. thrifts.

Finally, Figures 11, 13, and 15 show that the size distributions predicted by equation (3.20)

for BHCs, commercial banks, and thrifts are similar to the size distributions observed at the

end of the sample periods (represented by the dot-dashed blue lines in the figures). This sug-

gests that the transition from one bank asset distribution to a more concentrated distribution

starting in the 1990s appears to be complete. In the absence of any further changes in the U.S.

banking environment, our results do not point to any further increases in the concentration of

banking assets over the coming years.

4.2 Confidence Intervals and Statistical Significance

It is not possible to generate confidence intervals and p-values using classical techniques in

this setting because the empirical distribution of the reversion rates −αk and idiosyncratic

volatilities σk is unknown. However, using bootstrap resampling, it is possible to generate

confidence intervals and determine the statistical significance of our results in Figures 4 to

9. Because our most interesting results relate to the changes in the idiosyncratic volatilities

σk observed across different time periods, for brevity we shall focus only on the statistical

significance of these changes in this section. It is straightforward to perform a similar analysis

for the reversion rates −αk confirming that the most substantial changes observed in Figures

7 to 9 are statistically significant.

In Figures 16 to 21, we report point estimates and 95% confidence intervals based on the

results of 10,000 bootstrap resample estimates of the idiosyncratic volatilities σk for different

ranked U.S. bank-holding companies, commercial banks, and thrifts, across different time

periods as in Figures 4 to 6.23 Figures 16 and 17 show that the average σk for medium-sized

BHCs for each time period is outside of the other time period’s confidence interval, a result that

strongly suggests that these estimates are different from each other in a statistically significant

way. We confirm that this is in fact the case below. In a similar manner, Figures 18 to 21

suggest a statistically significant difference between our estimates for the largest commercial

23More precisely, the size of the confidence intervals are generated by the bootstrap resample estimates and
then these intervals are centered around our point estimates from Figures 4 to 6.
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banks’ and thrifts’ idiosyncratic volatilities across different time periods.

Fortunately, questions of statistical significance are easily addressed using this same method

of bootstrap resampling. Figure 22 shows the probability that the idiosyncratic volatilities σk

for different ranked U.S. BHCs from 1986 Q2 – 1997 Q4 are less than or equal to the σk from

1998 Q1 – 2014 Q4. The figure also shows the probability that the σk for different ranked U.S.

commercial banks from 1960 Q4 – 1998 Q1 are greater than or equal to the σk from 1998 Q2 –

2014 Q4 as well as the probability that the σk for different ranked U.S. thrifts from 1984 Q1 –

1998 Q1 are greater than or equal to the σk from 1998 Q2 – 2011 Q4.

Like the confidence intervals displayed in Figures 16 to 21, these probabilities are based

on the results of 10,000 bootstrap resample estimates of the idiosyncratic volatilities σk. More

specifically, these probabilities are generated by randomly choosing quarters from each time

period and each data set (BHCs, commercial banks, and thrifts) with replacement, and then

recalculating the idiosyncratic volatilities σk for each time period as in equation (3.25).24 This

process is repeated 10,000 times. Finally, we generate the probabilities in Figure 22 by ex-

amining the number of resampled data sets in which the estimated σk in time period one is

greater than (less than) or equal to the estimated σk in time period two for commercial banks

and thrifts (BHCs). This procedure is repeated for every rank in the size distribution of BHCs,

commercial banks, and thrifts.

The computed probabilities shown in Figure 22 are essentially sets of p-values for the

hypotheses that there were no decreases in the idiosyncratic asset volatilities for U.S. BHCs

after 1997 Q4, and that there were no increases in the idiosyncratic asset volatilities for U.S.

commercial banks and thrifts after 1998 Q1. As we see from the figure, then, one of the most

important results discussed in this section—the rise in the idiosyncratic asset volatilities of the

largest subsidiary commercial banks and thrifts after 1998 Q1—is statistically significant at the

1% level. The figure also shows that the fall in the idiosyncratic asset volatilities of medium-

sized BHCs after 1997 Q4 is statistically significant at either the 1% or 5% levels, and that this

fall is nearly significant at the 10% level for the largest BHCs.

24As before, these recalculated σk are centered around our point estimates from Figures 4 to 6.
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5 Conclusion

This paper explores the implications and causes of the growing concentration of U.S. bank-

ing assets in recent decades. In order to accomplish this, we use a nonparametric empirical

approach to dynamic power law distributions in which the distribution of banking assets

is characterized in terms of two econometric factors—the reversion rates and idiosyncratic

volatilities of assets for different size-ranked banks. We describe how to estimate these two

factors using panel data and then perform such an estimation using data on the asset hold-

ings of subsidiary commercial banks and thrifts and their parent bank-holding companies

from 1960 to the present. This paper is the first, to our knowledge, to estimate these factors

and show that the greater concentration of U.S. commercial bank and thrift assets after the

1990s is a result of increased idiosyncratic asset volatility while the increased concentration

of BHC assets over this same period is a result of decreased cross-sectional mean reversion

(as measured by the reversion rates). Surprisingly, the idiosyncratic volatility of BHC assets

actually decreased after the 1990s. Using bootstrap resampling, we show that most of these

changes in volatility over time are statistically significant. Given that our empirical techniques

are valid for essentially any dynamic power law distribution, a promising direction for future

research may be to investigate whether changes similar to those we document in the banking

and finance industries have occurred in other industries.

While our results answer questions about the cause, in an econometric sense, of the grow-

ing concentration of U.S. banking assets, they also raise a number of questions. The contrast

between the increase in the idiosyncratic asset volatilities of commercial banks and thrifts and

the decrease in the idiosyncratic asset volatilities of their parent BHCs is of particular inter-

est. Because commercial banks and thrifts are subsidiaries of BHCs, this result suggests that

diversification through non-banking activities has reduced the idiosyncratic volatility of BHC

assets. The details as to how this diversification occurred and why there is a larger decrease

for medium-sized BHCs than for large or small BHCs, however, remain open questions for

future research. There also remains an open question as to why the idiosyncratic asset volatil-

ities of commercial banks and thrifts—which are typically modeled as exogenous—increased

after the mid-1990s. The decline in cross-sectional mean reversion of BHC assets is consistent

with legislative changes in the mid-1990s, such as the repeal of the Glass-Steagall Act (Lucas,
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2013), that allowed large BHCs to grow even larger, as well as documented changes in the

scale economies of the banking industry (Wheelock and Wilson, 2012). However, the relative

impact of these different factors on the rate of cross-sectional mean reversion (the reversion

rates) of BHC assets is an open question for future research.

Following the nonparametric approach described by Fernholz (2016b), this paper is the

first to rigorously characterize the role of idiosyncratic asset volatility as a shaping force of

the bank-size distribution. A growing literature emphasizes the potential for idiosyncratic,

firm-level shocks to affect aggregate macroeconomic outcomes, especially in concentrated,

complex, and interconnected industries such as banking and finance (Gabaix, 2011; Acemoglu

et al., 2012; Caballero and Simsek, 2013). In this sense, our results for U.S. BHCs show that

even as one obvious source of potential contagion—concentration—has intensified, another

important source—idiosyncratic volatility—has diminished. Of course, we do not directly

measure systemic risk in the financial sector and hence cannot conclude that the overall threat

of contagion in this sector has either increased or decreased. Future research that attempts

to measure these contrasting effects on the threat of contagion is likely to yield useful insight

and information.
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Tables and Figures

Bank-Holding Companies

σk αk

Rank 1986 Q1 – 1997 Q4 1998 Q1 – 2014 Q4 1986 Q1 – 1997 Q4 1998 Q1 – 2014 Q4
Top 25% 24.1% 22.8% -2.33% -1.08%
25%-50% 22.0% 20.1% -1.44% -0.97%
50%-75% 32.0% 20.2% 1.39% -0.17%

75%-100% 19.2% 16.7% -0.74% -0.37%

Commercial Banks

σk αk

Rank 1960 Q4 – 1998 Q1 1998 Q2 – 2014 Q4 1960 Q4 – 1998 Q1 1998 Q2 – 2014 Q4
Top 25% 21.1% 23.5% -1.40% -1.70%
25%-50% 18.3% 18.7% -0.83% -0.35%
50%-75% 16.1% 16.4% -0.58% -0.36%

75%-100% 15.7% 16.3% -0.34% -0.40%

Thrifts

σk αk

Rank 1984 Q1 – 1998 Q1 1998 Q2 – 2011 Q4 1984 Q1-1998 Q1 1998 Q2 – 2011 Q4
Top 25% 25.0% 29.9% -1.93% -3.37%
25%-50% 24.2% 29.7% -0.83% -0.37%
50%-75% 20.9% 19.4% -0.51% -0.78%

75%-100% 19.9% 21.6% -0.16% 1.34%

Table 1: Idiosyncratic volatilities σk and minus the reversion rates αk averaged by quartiles for
U.S. BHCs, commercial banks, and thrifts.
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Fig. 1: Share of total assets held by the largest U.S. bank-holding companies for 1986 – 2014.
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Fig. 2: Share of total assets held by the largest U.S. commercial banks for 1960 – 2014.
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Fig. 3: Share of total assets held by the largest U.S. thrifts for 1984 – 2011.
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Fig. 4: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S. bank-
holding companies.

36



0 500 1000 1500 2000 2500 3000

15

20

25

30

Rank

S
ig

m
a 

(%
)

1960 Q4 - 1998 Q1
1998 Q2 - 2014 Q4

More Volatility

Fig. 5: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S.
commercial banks.
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Fig. 6: Standard deviations of idiosyncratic asset volatilities (σk) for different ranked U.S.
thrifts.
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Fig. 7: Minus the reversion rates (αk) for different ranked U.S. bank-holding companies.
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Fig. 8: Minus the reversion rates (αk) for different ranked U.S. commercial banks.
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Fig. 9: Minus the reversion rates (αk) for different ranked U.S. thrifts.
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Fig. 10: Shares of total assets held by the 500 largest U.S. bank-holding companies for 1986 Q2
– 1997 Q4 as compared to the predicted shares.
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Fig. 11: Shares of total assets held by the 500 largest U.S. BHCs for 1998 Q1 – 2014 Q4 as
compared to the predicted shares.
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Fig. 12: Shares of total assets held by the 3,000 largest U.S. commercial banks for 1960 Q4 –
1998 Q1 as compared to the predicted shares.
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Fig. 13: Shares of total assets held by the 3,000 largest U.S. commercial banks for 1998 Q2 –
2014 Q4 as compared to the predicted shares.
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Fig. 14: Shares of total assets held by the 400 largest U.S. thrifts for 1984 Q1 – 1998 Q1 as
compared to the predicted shares.
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Fig. 15: Shares of total assets held by the 400 largest U.S. thrifts for 1998 Q2 – 2011 Q4 as
compared to the predicted shares.
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Fig. 16: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. bank-holding companies.
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Fig. 17: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. bank-holding companies.
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Fig. 18: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. commercial banks.
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Fig. 19: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. commercial banks.
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Fig. 20: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. thrifts.
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Fig. 21: Standard deviations of idiosyncratic asset volatilities (σk) and 95% confidence intervals
for different ranked U.S. thrifts.
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Fig. 22: Probability that σk in time period 1 is greater (less) than or equal to σk in time period
2 for different ranked U.S. commercial banks and thrifts (bank-holding companies).
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