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ABSTRACT

This paper develops a new way to quantify the effect of uncertainty and other higher-order
moments. First, we estimate a nonlinear model using Bayesian methods with data on uncer-
tainty, in addition to common macro time series. This key step allows us to decompose the
exogenous and endogenous sources of uncertainty, calculate the effect of volatility following
the cost of business cycles literature, and generate data-driven policy functions for any higher-
order moment. Second, we use the Euler equation to analytically decompose consumption into
several terms—expected consumption, theex-antereal interest rate, and theex-antevariance
and skewness of future consumption, technology growth, andinflation—and then use the pol-
icy functions to filter the data and create a time series for the effect of each term. We apply our
method to a familiar New Keynesian model with a zero lower bound constraint on the nominal
interest rate and two stochastic volatility shocks, but it is adaptable to a broad class of models.
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1 INTRODUCTION

There is widespread agreement that uncertainty decreases economic activity. The debate rests on
whether the effect is quantitatively significant, which is difficult to determine for two reasons. One,
uncertainty is unobserved, so there is disagreement on whatconstitutes a good measure. Until re-
cently, the literature has relied on proxies for uncertainty, such as realized or implied volatility, in-
dexes based on keywords in print or online media, and survey-based forecast dispersion, which are
often weakly correlated with each other and loosely connected with the definition of uncertainty.
Two, uncertainty is endogenous. Not only can uncertainty affect economic activity, as intuition
suggests, what is happening in the economy can also affect uncertainty. A few of the mechanisms
emphasized in the literature include financial frictions and constraints that create an adverse feed-
back loop between net worth and asset prices [Brunnermeier and Sannikov (2014)], incomplete in-
formation that endogenously gives rise to pessimism duringrecessions [Fajgelbaum et al. (2017);
Saijo (2017); Van Nieuwerburgh and Veldkamp (2006)], and a zero lower bound (ZLB) constraint
on the short-term nominal interest rate that restricts a central bank’s ability to stabilize the economy
[Plante et al. (2018)]. As a consequence, it is difficult to quantify the causal effect of uncertainty.

There are two common ways to study the effects of uncertainty. Empirically, the literature often
adds a measure of uncertainty to the variables in a vector autoregression (VAR) and then computes
impulse responses using a recursive identification scheme.While that approach is easy to imple-
ment, the responses depend on where uncertainty is ordered in the list of variables. If uncertainty is
ordered first, then subsequent variables in the VAR, which reflect information about the state of the
economy, have no contemporaneous effect on the responses toan uncertainty shock. If it is ordered
last, then none of the preceding variables in the VAR contemporaneously depend on uncertainty,
so an uncertainty shock has no effect on impact. Therefore, the modeler must specify whether the
uncertainty series is exogenous or endogenous. The challenges are even greater when accounting
for multiple sources of uncertainty. In a theoretical model, the most common way to determine the
effects of uncertainty is with impulse responses to stochastic volatility shocks. While that is also a
fine approach, it ignores the fact that all dynamic models possess intrinsic sources of uncertainty.1

This paper develops a new way to quantify the effect of uncertainty and other higher-order mo-
ments. First, we estimate a nonlinear model with Bayesian methods using the uncertainty series
from Jurado et al. (2015) and Ludvigson et al. (2017), in addition to common macro time series.
We chose those series over other popular measures of uncertainty because they are constructed
with a rich set of macro and financial variables and are based on theex-antevariance of a given
variable—the same statistic we use to measure uncertainty—which focuses on predictability in-
stead ofex-postvariability. This key step allows us to decompose the exogenous and endogenous
sources of uncertainty, calculate the effect of volatilityfollowing the cost of business cycles litera-
ture, and generate data-driven policy functions for any higher-order moment. Second, we use the
consumption Euler equation to analytically decompose current consumption into several terms—
expected future consumption, theex-antereal interest rate, and theex-antevariance and skewness
of future consumption, technology growth, and inflation—and then use the policy functions to filter
the data at each posterior draw and create a time series for the effect of each term on consumption.

Our approach improves on previous methods in four importantways. One, it directly links the
measures of uncertainty in our model—second moments—to equivalent measures in the data with
likelihood based methods, whereas previous work relied on first moments such as real activity and

1We discuss the uncertainty literature in detail insection 2. See Bloom (2014) for a survey of the recent literature.
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interest rates. Two, it captures the effect of exogenous sources of uncertainty as well as the uncer-
tainty that naturally arises in dynamic macro models, whichwe refer to as endogenous uncertainty.
Three, it quantifies not only the effects of uncertainty but also other higher-order moments, such as
the skewness of consumption and the covariance between consumption and inflation, which have
received less attention in the literature. Four, it accounts for theex-anteeffects of uncertainty over
horizons beyond one quarter by recursively decomposing expected consumption into expected fu-
ture real interest rates and higher-order moments. To summarize, our decomposition quantifies the
overall effect of uncertainty and other higher-order moments in each period by accounting for the
combination of first and second moment shocks that best explain both macro and uncertainty data.2

We apply our new methodology to a textbook New Keynesian model with an occasionally bind-
ing ZLB constraint on the nominal interest rate and two stochastic volatility shocks—one to the risk
premium on a1-period nominal bond and the other to the growth rate of technology. The Fed cut
its policy rate to its ZLB in December 2008 and uncertainty about real GDP increased at the same
time. Plante et al. (2018) find that uncertainty about futurereal GDP growth increased because the
ZLB restricted the Fed’s ability to stabilize the economy. Thus, the ZLB endogenously generates
uncertainty that depends on how severely the Fed is constrained. The stochastic volatility shocks
generate time-varying exogenous uncertainty. The risk premium volatility shock introduces finan-
cial or demand uncertainty, while the technology growth volatility shock adds supply uncertainty.

Although we use a familiar model as a starting point for understanding the effects of higher-
order moments, our method is adaptable to a broad class of models. For example, it can be applied
to models with limited information, irreversible investment, borrowing constraints, search frictions,
heterogeneous agents, or other important sources of time-varying endogenous uncertainty. While
those features may make the model too costly to estimate, approximate solutions are attainable
either locally with perturbation methods or globally with projection methods. With a solution in
hand, it is possible to calculate theex-antevariance or skewness surrounding any endogenous vari-
able and then link it to an empirical measure while filtering the data. Given a particular calibration,
the filter can then generate time series for the terms in any Euler equation. Therefore, our method
provides a way to compare the effect of uncertainty or other high-order moments across models.

Over a1-quarter horizon, we find consumption uncertainty reduced consumption by less than
0.01% in every quarter, similar to the volatility shocks in our model, because expected consumption
hides the influence of higher-order moments in future periods. Over horizons long enough to elim-
inate expected consumption, consumption uncertainty on average reduced consumption by0.06%
and the peak effect was0.15% during the Great Recession, of which roughly one-third was due to
the ZLB constraint. Inflation uncertainty and both consumption and inflation skewness had much
smaller impacts on consumption. When we extend our baselinemodel without capital so house-
holds can invest, the average effect of consumption uncertainty increases to−0.08% and the peak
effect rises to−0.22%, but the differences from the baseline model are statistically insignificant.
Using the capital Euler equation, we find rental rate uncertainty had a small effect on consumption,
but uncertainty about Tobin’sq had roughly half as large of an effect as consumption uncertainty.

2Decompositions of equilibrium conditions have been used tostudy other topics. Basu and Bundick (2015) derive
a similar decomposition to ours in an endowment economy model to provide intuition for how the Fed can offset the
effects of uncertainty at and away from the ZLB, but they do not quantify the terms. Parker and Preston (2005) use the
Euler equation to decompose consumption growth into a forecast error, the real interest rate, a measure of preferences,
and a precautionary saving channel. Chung and Leeper (2007), Hall and Sargent (2011), Berndt et al. (2012), and
Mason and Jayadev (2014) all use the government budget constraint to determine the key drivers of government debt.
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We conduct two exercises to uncover the drivers of our results. Both are easily applied to other
models. One, we decompose uncertainty into its endogenous and exogenous sources using coun-
terfactual simulations. The uncertainty that naturally arises in the economy due to first moment
shocks accounted for about95% of total consumption uncertainty. However, nearly all of the vari-
ation in uncertainty was driven by the volatility shocks. One exception is when the Fed was con-
strained. In 2009Q1, about8.5% of the increase in uncertainty was due to endogenous uncertainty
while 38% was due to the endogenous amplification of second moment shocks. Two, we determine
the relative importance of each parameter in our model for the results of our Euler equation decom-
position using posterior predictive analysis. While priceadjustment costs play an important role as
others have emphasized, we find the coefficient of relative risk aversion and the monetary response
to inflation had the largest impact on the transmission of uncertainty among the deep parameters.

We conclude our analysis by calculating the welfare effectsof volatility following the cost of
business cycles literature. We also compare impulse responses to a financial uncertainty shock
in our nonlinear model to the same shock in a linear VAR using arecursive identification scheme,
since that is the most common way to identify the effects of uncertainty in the literature. Using data
simulated from the nonlinear model, we find the VAR generatesa quantitatively similar response
of consumption growth to a financial uncertainty shock in samples with and without ZLB events.
While these results paint VAR methods in a positive light, wepoint out several reasons for caution.

The paper proceeds as follows.Section 2places our work within the vast literature on uncer-
tainty. Section 3describes our model as well as the exogenous and endogenous sources of uncer-
tainty. Section 4outlines our solution and estimation procedures.Section 5provides our estimation
results, including the parameter estimates and the effectsof uncertainty and skewness on consump-
tion. Section 6shows how our results change when we introduce capital.Section 7draws compar-
isons between the impulse responses in our nonlinear model and a linear VAR.Section 8concludes.

2 RELATED L ITERATURE

The literature finds mixed results on the effects of uncertainty, depending on the methodology. The
VAR literature often uses a Cholesky decomposition to identify the effects of a proxy for uncer-
tainty. For example, Alexopoulos and Cohen (2009) develop aproxy based on the number ofNew
York Timesarticles on uncertainty; Bachmann et al. (2013) use forecaster disagreement from the
Business Outlook Survey; Basu and Bundick (2017), Bekaert et al. (2013), and Bloom (2009) use
implied stock market volatility; Jurado et al. (2015) develop an index for theex-antevariance sur-
rounding a broad set of macro variables; Leduc and Liu (2016)create a measure based on the frac-
tion of respondents from Michigan Survey of Consumers who report uncertainty as a reason why
it is a bad time to purchase vehicles. Depending on the shock size, an increase in those proxies is
associated with a peak decline in production or employment ranging from close to0% to over1%.

A couple papers develop different identification schemes. Ludvigson et al. (2017) use event and
correlation constraints to restrict the set of impulse responses and determine if uncertainty causes
or is caused by changes in real activity. They find financial uncertainty causes sharp declines in
real activity, but not macro uncertainty. Negative shocks to real activity increase macro uncertainty
but have little effect on financial uncertainty. Caldara et al. (2016) use a two-step penalty function
approach to distinguish between financial and uncertainty shocks. They show the response of
industrial production depends on the proxy for uncertaintyand whether it is ordered before or after
the financial indicator, with a very similar range as the literature finds with recursive identification.

3



RICHTER & T HROCKMORTON: A NEW WAY TO QUANTIFY THE EFFECT OFUNCERTAINTY

There are three main approaches to modeling uncertainty with theoretical models: shocks to the
cross-sectional standard deviation of firm-level productivity, shocks to the volatility of aggregate
exogenous variables, and endogenously-driven sources. When investment is partially irreversible,
Bloom (2009) and Bloom et al. (2016) find simultaneous shocksto the volatility of aggregate
and firm-level productivity cause roughly a2% decline in output, though shocks of that nature
are infrequent. In contrast, Bachmann and Bayer (2013) find firm-level uncertainty shocks are a
small source of business cycle fluctuations, contributing2%-5% of the variance of output. Chugh
(2016) calibrates a financial accelerator model without irreversible investment using firm-level
data and obtains a similar result as Bachmann and Bayer (2013). Christiano et al. (2014) estimate
a financial accelerator model with aggregate data and find uncertainty shocks account for60% of
the fluctuations in output. Gilchrist et al. (2014) combine irreversible investment and a financial
accelerator mechanism to show that both features are important for the transmission of uncertainty.
Although we do not examine firm-level shocks, our method is adaptable to these types of models.

Research that studies the effects of aggregate volatility shocks has considered many different
exogenous sources of uncertainty. In a small open-economy real business cycle model, Fernández-
Villaverde et al. (2011) examine volatility shocks to a country-specific interest rate spread. They
find a one standard deviation shock reduces output0.15%-0.2% in Argentina and Ecuador but only
0.01%-0.02% in Brazil and Venezuela. Other papers use closed-economy New Keynesian models.
For example, Mumtaz and Zanetti (2013) focus on monetary policy volatility shocks in a model
without capital. They find doubling the volatility reduces output growth by only0.03%, about five
times less than their VAR result. Born and Pfeifer (2014) introduce variable capital utilization and
investment adjustment costs. They show a simultaneous two standard deviation increase in uncer-
tainty about government spending, monetary policy, and capital and labor taxes reduces output by
only 0.065%. In contrast, Fernández-Villaverde et al. (2015) find a volatility shock to only capital
taxes reduces output by0.1% and the effects are larger when the ZLB binds. Leduc and Liu (2016)
include search frictions and habit formation and find a one standard deviation increase in technol-
ogy volatility increases unemployment by about2.6%, consistent with their VAR evidence. In a
textbook model with recursive preferences, Basu and Bundick (2017) find a one standard deviation
preference volatility shock—a proxy for demand uncertainty—reduces output by0.2%. However,
de Groot et al. (2018) show the way the shock enters their preferences creates an asymptote in the
parameter space that amplifies the response of output. Without the asymptote, preference volatility
shocks have very little real effects. The exogenous volatility shocks in our model also have a small
impact, but the effect of consumption uncertainty from our Euler equation decomposition is an or-
der of magnitude larger than the responses to either volatility shock. Those results emphasize the
importance of accounting for theex-anteeffects of uncertainty over horizons beyond one quarter.

As an alternative to exogenous uncertainty shocks, severalpapers propose models that endoge-
nously generate uncertainty. One segment emphasizes the role of a financial sector under complete
information, where the severity and duration of financial crises are stochastic. Most papers focus
on crises that result from financial frictions and collateral constraints [Brunnermeier and Sannikov
(2014); He and Krishnamurthy (2014); Mendoza (2010)], while a few papers incorporate the role
of firm default [Arellano et al. (2016); Gourio (2014); Navarro (2014)]. Another segment examines
the implications of incomplete information. Some of the papers feature learning with aggregate
shocks [Fajgelbaum et al. (2017); Saijo (2017); Van Nieuwerburgh and Veldkamp (2006)], while
others focus on firm-specific shocks [Ilut and Saijo (2016); Straub and Ulbricht (2015)]. In these
models, an adverse shock under asymmetric learning lowers economic activity and makes it harder
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for households to learn about the economy, which amplifies the effects of first moment shocks.
Our paper bridges the gap between the stochastic volatilityand endogenous uncertainty literatures
by providing a flexible methodology that is easily applied tomodels with both types of uncertainty.

Our paper is also related to the cost of business cycles literature. Lucas (1987) examines the
welfare cost of “instability” by calculating the fraction of consumption goods a household would
give up each period to eliminate volatility. With constant relative risk aversion preferences, he
finds the welfare cost of the consumption volatility in post-World War II data ranges from0.008%
(log utility) to 0.17% (risk aversion,γ = 20). The conclusion is that the cost of instability is
insignificant. Several papers have examined these estimates in different settings. For example,
Tallarini (2000) finds much higher welfare costs with non-expected utility in a model that matches
asset prices and volatilities of macro aggregates. Otrok (2001), however, finds the welfare costs are
similar to Lucas’s estimate in a model disciplined to match the persistence in the data. Lester et al.
(2014) calculate welfare for several types of preferences and parameter specifications. They find
Lucas’s estimates overstate the cost of business cycles andin some parts of the parameter space
volatility increases welfare. We build on this literature by calculating welfare at each point in our
sample using an estimated model that matches both macro and uncertainty data. We find the wel-
fare costs of first moment shocks are well within the range Lucas reported. Second moments shocks
have an even smaller welfare effect, consistent with the values reported in Xu (2017). We view
this important exercise as complementary to our Euler equation decomposition. However, one ma-
jor advantage of our decomposition is that it tells us which moments (e.g., uncertainty, skewness,
covariance) are most important, while still being able to decompose the effects of specific shocks.

3 NEW KEYNESIAN MODEL AND UNCERTAINTY MEASURES

We use a New Keynesian model similar to An and Schorfheide (2007), except it includes a ZLB
constraint and stochastic volatility on technology growthand the risk premium on a nominal bond.

3.1 FIRMS The production sector consists of a continuum of monopolistically competitive inter-
mediate goods firms and a final goods firm. Intermediate firmf ∈ [0, 1] produces a differentiated
good,yt(f), according toyt(f) = ztnt(f), wheren(f) is the labor hired by firmf andzt = gtzt−1

is technology, which is common across firms. Deviations fromthe balanced growth rate,ḡ, follow

gt = (1− ρg)ḡ + ρggt−1 + σε,tεt, 0 ≤ ρg < 1, ε ∼ N(0, 1), (1)

σε,t = σ̄ε(σε,t−1/σ̄ε)
ρσε exp(σξξt), 0 ≤ ρσε

< 1, ξ ∼ N(0, 1), (2)

where the standard deviation of the technology shock,σε, follows an independent log-normal pro-
cess (σε andε are uncorrelated) to add a source of time-varying supply uncertainty to the model.

The final goods firm purchasesyt(f) units from each intermediate firm to produce the final
good,yt ≡ [

∫ 1

0
yt(f)

(θ−1)/θdf ]θ/(θ−1), according to a Dixit and Stiglitz (1977) aggregator, where
θ > 1 controls the elasticity of substitution between any two goods. It then maximizes dividends
to determine its demand function for intermediate goodf , yt(f) = (pt(f)/pt)

−θyt, wherept =

[
∫ 1

0
pt(f)

1−θdf ]1/(1−θ) is the price level. Following Rotemberg (1982), each intermediate firm pays
a cost to adjust its price level,adjt(f) ≡ ϕf [pt(f)/(π̄pt−1(f))− 1]2yt/2, whereϕf > 0 scales the
size of the cost and̄π is the gross inflation rate along the balanced growth path. Therefore, firmf
choosesnt(f) andpt(f) to maximize the expected discounted present value of futuredividends,
Et

∑

∞

k=t qt,kdk(f), subject to its production function and the demand for its product, whereqt,t ≡
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1, qt,t+1 ≡ β(c̃t/c̃t+1)
γ is the pricing kernel between periodst and t + 1, qt,k ≡

∏k>t
j=t+1 qj−1,j,

dt(f) = pt(f)yt(f)/pt − wtnt(f)− adjt(f), and a tilde denotes a variable relative to the level of
technology (̃x = x/z). In symmetric equilibrium, all firms make identical decisions (i.e.,pt(f) =
pt, nt(f) = nt, andyt(f) = yt), so the production function and the optimality conditionsreduce to

ỹt = nt, (3)

mct = w̃t, (4)

ϕf(π
gap
t − 1)πgap

t = 1− θ + θmct + βϕfEt[(c̃t/c̃t+1)
γ(πgap

t+1 − 1)πgap
t+1(ỹt+1/ỹt)], (5)

whereπgap
t ≡ πt/π̄ is the inflation gap. In the special case where prices are perfectly flexible (i.e.,

ϕf = 0), w̃t = (θ−1)/θ, which equals the inverse of the gross markup of price over marginal cost.

3.2 HOUSEHOLDS The representative household chooses{ct, nt, bt}
∞

t=0 to maximize expected
lifetime utility, E0

∑

∞

t=0 β
t[((ct/zt)

1−γ−1)/(1−γ)−χn1+η
t /(1+η)], whereγ is the coefficient of

relative risk aversion,χ > 0 is a preference parameter that determines the steady state labor supply,
1/η is the Frisch elasticity of labor supply,c is consumption,n is labor hours,b is the real value
of a privately-issued1-period nominal bond that is in zero net supply, andE0 is the mathematical
expectation operator conditional on information in period0. Following An and Schorfheide (2007),
households receive utility from consumption relative to the level of technology, which is a proxy for
the habit stock. That assumption allows us to use additivelyseparable preferences and parameterize
the degree of risk aversion while maintaining a balanced growth path. The household’s choices are
constrained byct + bt/(itst) = wtnt + bt−1/πt + dt, whereπ is the gross inflation rate,w is the
real wage rate,i is the gross nominal interest rate set by the central bank, and d is a real dividend
received from owning the intermediate goods firms. Following Smets and Wouters (2007) and
Gust et al. (2017),s is a shock to the risk premium on the nominal bond and it evolves according to

st = (1− ρs) + ρsst−1 + συ,tυt, 0 ≤ ρs < 1, υ ∼ N(0, 1), (6)

συ,t = σ̄υ(συ,t−1/σ̄υ)
ρσ exp(σζζt), 0 ≤ ρσυ

< 1, ζ ∼ N(0, 1), (7)

where the standard deviation of the risk premium shock,συ, follows an independent log-normal
process (συ andυ are uncorrelated) to introduce time-varying demand uncertainty into the model.

The first order conditions to the household’s constrained optimization problem imply

w̃t = χnη
t c̃

γ
t , (8)

1 = βEt[(c̃t/c̃t+1)
γ(stit/(π̄π

gap
t+1gt+1))]. (9)

Equation (9) is the consumption Euler equation that we will use to examine the economic effects of
the real interest rate and higher-order moments, includingconsumption uncertainty and skewness.

3.3 MONETARY POLICY The central bank sets the gross nominal interest rate according to

it = max{1, int }, (10)

int = (int−1)
ρi (̄ı(πgap

t )φπ(gtỹ
gdp
t /(ḡỹgdpt−1))

φy)1−ρi exp(σννt), 0 ≤ ρi < 1, ν ∼ N(0, 1), (11)

whereygdp is real GDP (i.e., the level of output minus the resources lost due to price adjustment
costs),in is the gross notional interest rate,ı̄ andπ̄ are the inflation and interest rate targets, which
equal their values along the balanced growth path, andφπ andφy are the responses to deviations
of inflation from the target rate and deviations of real GDP growth from the balanced growth rate.
When the ZLB binds, a more negative net notional rate means the central bank is more constrained.
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3.4 COMPETITIVE EQUILIBRIUM The aggregate resource constraint is given by

c̃t = ỹgdpt , (12)

ỹgdpt = [1− ϕf(π
gap
t − 1)2/2]ỹt. (13)

In order to make the model stationary, we redefined all of the variables that grow along the balanced
growth path in terms of technology (i.e.,x̃t ≡ xt/zt). A competitive equilibrium consists of infinite
sequences of quantities,{c̃t, ỹt, ỹ

gdp
t , nt}

∞

t=0, prices,{w̃t, mct, it, i
n
t , π

gap
t }∞t=0, and exogenous vari-

ables,{st, gt, σε,t, συ,t}
∞

t=0, that satisfy the detrended equilibrium system, (1)-(13), given the initial
conditions,{c−1, i

n
−1, s0, a0, ν0, σε,0, συ,0}, and the five sequences of shocks,{εt, υt, νt, ξt, ζt}

∞

t=1.

3.5 MEASURES OFUNCERTAINTY The stochastic volatility processes, (2) and (7), create ex-
ogenous sources of time-varying supply and demand uncertainty. Uncertainty is measured by the
ex-antestandard deviation of future technology growth and the future risk premium, which equal

Ug,t ≡
√

Et[(gt+1 −Etgt+1)2] =
√

Et[σ2
ε,t+1],

Us,t ≡
√

Et[(st+1 − Etst+1)2] =
√

Et[σ2
υ,t+1].

We classify these types of uncertainty as exogenous becausethey fluctuate due to temporary
changes in the standard deviation of each shock. For example, if the volatility of technology
growth temporarily increases, then supply uncertainty also increases and lowers economic activity.

Uncertainty also arises endogenously in any nonlinear model. Following Plante et al. (2018),
the endogenous uncertainty surrounding trended consumption growth,cgt ≡ gtc̃t/c̃t−1, is given by

Ucg,t ≡
√

Et[(c
g
t+1 − Et[c

g
t+1])

2], (14)

which is the same way we measure exogenous uncertainty, except it is calculated with an endoge-
nous variable. Both measures of uncertainty remove the predictable component of the forecasted
variable instead of only a constant trend, so they distinguish between uncertainty and conditional
volatility. However, the endogenous uncertainty measure not only fluctuates due to exogenous
volatility shocks, but also due to events that happen in the economy. For example, when the no-
tional interest rate is negative, the economy is more sensitive to first moment shocks that adversely
affect the economy, which increases the endogenous uncertainty about consumption growth. The
ZLB constraint also creates uncertainty by amplifying the effect of the exogenous volatility shocks.
When the ZLB does not bind, first moment shocks still affectUcg but the magnitudes are smaller.3

4 NUMERICAL METHODS AND DECOMPOSITION

4.1 SOLUTION METHOD We solve the nonlinear model with the policy function iteration algo-
rithm described in Richter et al. (2014), which is based on the theoretical work on monotone op-
erators in Coleman (1991). The presence of stochastic volatility complicates the solution method
because the realizations ofg ands depend on the realizations of the stochastic volatility processes.

We discretize the state space and then approximate the stochastic volatility processes, (2) and
(7), and first moment shocks,ε, υ, andν, using theN-state Markov chain described in Rouwen-
horst (1995). The Rouwenhorst method is attractive becauseit only requires us to interpolate along

3With a nonlinear solution, it is easy to calculate the endogenous uncertainty surrounding any variable in a model.
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the dimensions of the endogenous state variables, which makes the solution more accurate and
faster than quadrature methods. For each combination of thefirst and second moment shocks, we
calculate the future realizations of technology and the risk premium according to (1) and (6). To
obtain initial conjectures for the nonlinear policy functions, we solve the log-linear analogue of
our nonlinear model with Sims’s (2002) gensys algorithm. Then we minimize the Euler equation
errors on every node in the discretized state space and compute the maximum distance between the
updated policy functions and the initial conjectures. Finally, we replace the initial conjectures with
the updated policy functions and iterate until the maximum distance is below the tolerance level.

The algorithm produces nonlinear policy functions for consumption and inflation. To estimate
the model, we also create a policy function for consumption growth uncertainty, (14), by interpo-
lating the policy function for consumption given the updated state and then numerically integrating
using the Rouwenhorst weights. SeeAppendix Efor a detailed description of the solution method.

1986 1990 1994 1998 2002 2006 2010 2014
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Macro Uncertainty (MacroU )

Financial Uncertainty (F inU )

Stock Market Volatility (V XO)

Forecast Dispersion (SPF )

Figure 1: Measures of uncertainty in the data.

4.2 ESTIMATION PROCEDURE We estimate the nonlinear model with quarterly data on per
capita real GDP,RGDP/CNP , the GDP implicit price deflator,DEF , the federal funds rate,
FFR, the macro uncertainty series in Jurado et al. (2015),MacroU , and the financial uncertainty
series in Ludvigson et al. (2017),FinU , from 1986Q1 to 2016Q2. The observables are given by

x̂
data
t ≡













log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1)
log(DEFt/DEFt−1)
log(1 + FFRt/100)/4

(MacroUt − µMacroU)/σMacroU

(FinUt − µF inU)/σF inU













,

whereµ andσ denote time mean and standard deviation.Appendix Adescribes our data sources.
Figure 1plots the standardized 1-quarter aheadMacroU andFinU series, which inform the

parameters in our model and ensure it produces the same fluctuations in uncertainty as the data. The
uncertainty series are based on a factor augmented vector autoregression (FAVAR) that accounts
for 132 macroeconomic and147 financial variables. Repeated simulations of the FAVAR are used
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to obtain estimates of uncertainty for each macro (financial) variable and then averaged to obtain
theMacroU (FinU) time series. The benefit of these particular series is that they are calculated
in the same way as (14), so they distinguish between uncertainty and conditionalvolatility, and
they reflect the uncertainty surrounding a large set of macro(financial) variables. Examples of
the variables in theMacroU series include output, employment, housing starts, interest rates, and
prices, while theFinU series includes dividends, returns, spreads, and the Fama-French factors.

For comparison, we also plot two other popular measures of uncertainty: the Chicago Board
Options Exchange S&P 100 Volatility Index (V XO) and the dispersion in forecasts of real GDP
growth1-quarter ahead from the Survey of Professional Forecasters(SPF ). The different uncer-
tainty measures generally move together, but they also showsignificant independent variation. For
example, sharp increases in theV XO, SPF , andFinU series occur with some regularity, but they
are far less frequent in theMacroU series. After the start of the Great Recession, the correlations
between the uncertainty measures all exceeded0.7, but they are near0.4 prior to that date. The one
exception is the correlation betweenFinU and theV XO, which was above0.8 in both subperiods.

Balanced Growth Discount Factor̄β 0.9987 Real GDP Growth Rate ME SD σme,yg 0.00268
Frisch Elasticity of Labor Supply1/η 3 Inflation Rate ME SD σme,π 0.00109
Elasticity of Substitution θ 6 Federal Funds Rate ME SD σme,i 0.00094
Balanced Growth Labor Supply n̄ 0.33 Macro Uncertainty ME SD σme,macrou 0.44721
Number of Particles Np 40,000 Financial Uncertainty ME SD σme,finu 0.44721

Table 1: Calibrated parameters for the nonlinear model and particle filter.

We calibrate four parameters that are not well-informed by our data (table 1). The discount fac-
tor along the balanced growth path,β̄, is calibrated to0.9987 to match(1/T )

∑T
t=1(1+Gt/400)(1+

Πt)/(1 + FFRt/100)
1/4, whereT is the sample size,Gk is the annual utilization-adjusted growth

rate of technology from Fernald (2012) andΠk = log(DEFk/DEFk−1). The preference param-
eter,χ, is set so the labor supply along the balanced growth path equals1/3 of the available time.
The elasticity of substitution between intermediate goods, θ, is set to6, which matches the estimate
in Christiano et al. (2005) and corresponds to a20% average markup of price over marginal cost.
The Frisch labor supply elasticity,1/η, is set to3, to match the macro estimate in Peterman (2016).

We use Bayesian methods to estimate the remaining parameters in our model. For each draw
from the parameter distribution, we solve the nonlinear model and approximate the likelihood
using a particle filter. We determine whether to accept a drawwith a random walk Metropolis-
Hastings algorithm. The filter uses40,000 particles and systematic resampling with replacement
following Kitagawa (1996). To help the model better match outliers during the Great Recession,
we adapt the particle filter described in Fernández-Villaverde and Rubio-Ramı́rez (2007) to include
the information contained in the current observation according to Algorithm 12 in Herbst and
Schorfheide (2016). SeeAppendix Ffor a more complete description of our estimation procedure.

A major difference from other filters is that the particle filter requires measurement error (ME)
to avoid degeneracy—a situation when all but a few particle weights are near zero, so the equation
linking the observables to equivalent variables in the model is given byx̂data

t = x̂
model
t + ξt, where

x̂
model
t = [log(gtỹ

gdp
t /ỹgdpt−1), log(πt), log(it), (Ucg,t − µUcg

)/σUcg
, (Us,t − µUs

)/σUs
],

ξ ∼ N(0,Σ) is a vector of MEs, andΣ = diag([σ2
me,yg , σ

2
me,π, σ

2
me,i, σ

2
me,macrou, σ

2
me,finu]). It is

not practical to estimate the ME variances because they are inversely related to the model like-
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lihood. The Metropolis-Hastings algorithm would prefer lower ME variances, which would de-
crease the effective sample size in the particle filter and reduce its accuracy. Following Herbst
and Schorfheide (2016), we set the ME variance of real GDP growth, the inflation rate, and both
uncertainty series to20% of their variance in the data. However, the ME variance for the policy
rate is set to2% of its variance in the data because the federal funds rate is less noisy and it affects
the level of uncertainty predicted by the model near the ZLB.We decided to link consumption
growth uncertainty to the macro uncertainty index and risk premium uncertainty to the financial
uncertainty index because Ludvigson et al. (2017) find financial uncertainty is an exogenous im-
pulse that causes recessions, whereas macro uncertainty endogenously responds to other shocks
that affect the business cycle. In our baseline model, consumption uncertainty is equal to real GDP
uncertainty and it is determined endogenously, whereas risk premium uncertainty is exogenous.

The entire algorithm is programmed in Fortran using Open MPIand executed on a cluster with
512 cores. We parallelize the nonlinear solution by distributing the nodes in the state space across
the available cores. To increase the accuracy of the filter, we calculate the model likelihood on each
core and then evaluate whether to accept a candidate draw based on the median likelihood. This
key step reduces the variance of the model likelihood acrossmultiple runs of the particle filter.
Our estimation procedure has three stages. First, we conduct a mode search to create an initial
variance-covariance matrix for the parameters. The covariance matrix is based on the parameters
corresponding to the90th percentile of the likelihoods from5,000 draws. Second, we perform an
initial run of the Metropolis Hastings algorithm with25,000 draws from the posterior distribution.
We burn off the first5,000 draws and use the remaining draws to update the variance-covariance
matrix from the mode search. Third, we conduct a final run of the Metropolis Hastings algorithm.
We obtain100,000 draws from the posterior distribution and then thin by100 to limit the effects of
serial correction in the parameter draws, so our final analysis is based on a sample of1,000 draws.

4.3 EULER EQUATION DECOMPOSITION Our goal is to determine how changes in uncertainty
affect consumption, taking into account all first and and second moment shocks as well as endoge-
nous dynamics. One way to quantify the effect of uncertaintyis by decomposing the consumption
with the Euler equation, (9). A third-order approximation around the balanced growth path implies

ĉt ≈ Etĉt+1 −
1
γ
r̂t − covt(π̂t+1, ĉt+1)− covt(ĝt+1, ĉt+1)−

1
γ
covt(π̂t+1, ĝt+1) (15)

− 1
2γ
(vart ĝt+1 + vart π̂t+1 + γ2 vart ĉt+1) +

1
6γ
(skewt ĝt+1 + skewt π̂t+1 + γ3 skewt ĉt+1),

wherevart, skewt, andcovt denote the variance, third moment, and covariance of a variable condi-
tional on information at timet, r̂t ≡ ı̂t+ ŝt−Etπ̂t+1−Etĝt+1 is theex-antereal interest rate, and a
hat denotes log deviation from the balanced growth path.Appendix Bprovides a detailed deviation.

We omitted higher-order covariance terms, such ascovt(π̂
2
t+1, ĉt+1), as well as fourth-order and

higher terms because they had almost no effect on consumption in our sample. The variance, skew-
ness, and covariance terms quantify the effect of the uncertainty, upside and downside risk, and the
pairwise linear relationships between consumption, inflation, and technology growth next period.
Higher risk aversion means households are less willing to intertemporally substitute consumption
goods, which makes them less sensitive to the real interest rate and more sensitive to the variance
and skewness of consumption next period. Much of our analysis will focus on the variance of con-
sumption. That term will have the same effect on current consumption regardless of which Euler
equation is used for the decomposition because the pricing kernel always enters in the same way.
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The decomposition shows how the different types of uncertainty and skewness affect economic
activity over a1-quarter horizon. If we recursively substitute for expected consumption, we obtain

ĉt ≈ Etĉt+q −
1
γ
Et

∑q
j=1 r̂t+j−1

−
∑q

j=1(covt(π̂t+j , ĉt+j) + covt(ĝt+j, ĉt+j) +
1
γ
covt(π̂t+j , ĝt+j))

− 1
2γ

∑q
j=1(vart ĝt+j + vart π̂t+j + γ2 vart ĉt+j)

+ 1
6γ

∑q
j=1(skewt ĝt+j + skewt π̂t+j + γ3 skewt ĉt+j),

(16)

whereq ≥ 1 is the forecast horizon. The sum of each variance term overq quarters captures the
effect of a given type of uncertainty, conditional on expected consumption in quarterq. Whenq
becomes sufficiently large, the conditional expectation drops out of the decomposition, so we are
able to determine the unconditional effects of each higher-order moment. Over a1-quarter horizon,
expected consumption closely tracks current consumption,which hides the effect of higher-order
moments in future quarters. By decomposing expected futureconsumption, we can show how the
uncertainty, skewness, and covariance terms affect consumption over horizons beyond one quarter.4

Given a draw from the posterior distribution, we quantify the effect of each term on consump-
tion in three steps. First, we create policy functions for the10q+1 variables in the decomposition by
integrating across10,000 q-quarter simulations initialized at each node in the state space. Although
the variables are represented in deviations from the balanced growth path, the policy functions in-
herit the nonlinearities from the solution. Second, we create time series for the variables in the de-
composition at each horizon by interpolating the policy functions at the median filtered states and
shocks in each time period. Third, we weight each variable byits coefficient in the decomposition.

5 ESTIMATED EFFECTS OFUNCERTAINTY

We first show the posterior parameter distributions, impulse responses, and sources of consumption
uncertainty. Then we show the results of our Euler equation decomposition and analyze which pa-
rameters are most important. The section concludes with calculations of the cost of business cycles.

5.1 PRIOR AND POSTERIORDISTRIBUTIONS The first four columns oftable 2display the es-
timated parameters and information about the priors. The prior for the coefficient of relative risk
aversion is taken from An and Schorfheide (2007). The priorsfor the steady state growth rate and
the target inflation rate are set to the average per capita GDPgrowth rate and the average inflation
rate over our sample period. The priors for the monetary policy parameters, which follow Guerrón-
Quintana and Nason (2013), are chosen so the distributions cover the values in Taylor (1993) as
well as stronger responses that could explain data during the ZLB period. The priors for the per-
sistence parameters are diffuse, but all of the means, except for the growth rate, are set to0.6 since
a modest degree of persistence is needed to explain the data.The priors for the standard deviations
are also diffuse but less diffuse than in An and Schorfheide (2007) and Smets and Wouters (2007),
since our nonlinear model generates more volatility than analogous unconstrained linear models.

The last four columns display the posterior means, standarddeviations, and90% credible sets
for the estimated parameters. Low frequency movements in the macro and financial uncertainty
time series coupled with sharp increases in both series during the Great Recession generate highly

4After iterating, we obtainEt[covt+j(xt+j+1, yt+j+1)] = covt(xt+j , yt+j)− covt(Et+j [xt+j+1], Et+j [yt+j+1])
by the law of total covariance. In our derivation, we ignore the second term because its effects are quantitatively small.
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Prior Posterior

Parameter Dist. Mean SD Mean SD 5% 95%

Risk Aversion (γ) Gamm 2.0000 0.5000 3.00551 0.44806 2.35252 3.81243
Price Adjustment Cost (ϕ) Norm 100.0000 20.0000 141.00914 19.95554 110.36190 175.77686
Inflation Response (φπ) Norm 2.0000 0.2500 2.54332 0.19854 2.21212 2.85598
Output Response (φy) Norm 0.5000 0.2000 1.04678 0.15152 0.79593 1.29649
Average Growth (̄g) Norm 1.0040 0.0010 1.00439 0.00058 1.00337 1.00534
Average Inflation (̄π) Norm 1.0055 0.0010 1.00649 0.00041 1.00579 1.00718
Int. Rate Persistence (ρi) Beta 0.6000 0.2000 0.84086 0.01902 0.80740 0.87024
Growth Persistence (ρg) Beta 0.4000 0.2000 0.51433 0.12352 0.29503 0.70706
Risk Persistence (ρs) Beta 0.6000 0.2000 0.91050 0.01084 0.89163 0.92723
Growth SV Persistence (ρσε

) Beta 0.6000 0.2000 0.95721 0.01890 0.92614 0.98109
Risk SV Persistence (ρσυ

) Beta 0.6000 0.2000 0.93308 0.01617 0.90404 0.95725
Int. Rate Shock SD (σν) IGam 0.0025 0.0025 0.00127 0.00017 0.00102 0.00157
Growth Shock SD (̄σε) IGam 0.0075 0.0075 0.00371 0.00054 0.00288 0.00463
Risk Shock SD (̄συ) IGam 0.0025 0.0025 0.00139 0.00022 0.00107 0.00177
Growth SV Shock SD (σξ) IGam 0.1000 0.0250 0.11216 0.02350 0.07647 0.15372
Risk SV Shock SD (σζ) IGam 0.1000 0.0250 0.11855 0.02218 0.08428 0.15666

Table 2: Prior and posterior distributions of the estimatedparameters. The last two columns show the5th and95th per-
centiles of each marginal posterior distribution. The model is estimated with quarterly data from 1986Q1 to 2016Q2.

persistent stochastic volatility processes with large shock standard deviations. For example, a two
standard deviation supply uncertainty shock causes a25.1% increase in the volatility of technology
growth with a half-life of about15.9 quarters. The monetary policy parameters imply a high degree
of interest rate smoothing and strong responses to real GDP growth and inflation, which are neces-
sary for the model to explain the long ZLB period. The mean estimates of the annualized technol-
ogy growth and inflation rates are1.77% and2.62%, which are slightly higher than the values in
the data since they are unconditional and under-represent the effects of the ZLB period. The mean
coefficient of relative risk aversion is consistent with An and Schorfheide (2007). The Rotemberg
price adjustment cost parameter implies a slope of the Phillips curve of about0.035, which is in line
with other estimates in the literature. Overall, the priorsand posterior means are consistent with
Gust et al. (2017), who estimate a similar model with an occasionally binding ZLB constraint but
without stochastic volatility.Appendix Gprovides additional estimation diagnostics, including the
kernel densities of the parameters, median filtered states and shocks, and unconditional moments.

5.2 IMPULSE RESPONSES We begin our analysis by showing impulse responses to first and
second moment shocks to illustrate the underlying dynamicsin the model. Figure 2plots the
responses to a2 standard deviation positive risk premium, risk premium volatility, growth, and
growth volatility shock. The parameters are set to their posterior means and the simulations are
initialized at two different states. Our benchmark simulation is initialized at the stochastic steady
state and reflective of any state of the economy where there isvirtually no expectation of hitting the
ZLB. We compare those responses to the responses when the notional rate is negative by initializing
the simulation at the filtered state vector corresponding to2009Q2. The effect of mean reversion
is removed from the responses by plotting the percentage point difference (percent change for
uncertainty) from a counterfactual simulation without a shock in the first quarter. Uncertainty is
measured by the expected volatility of the1-quarter-ahead forecast error for consumption growth.
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Figure 2: Impulse responses to a2 standard deviation positive shock at and away from the ZLB. The steady-state
simulation (solid line) is initialized at the stochastic steady state. The other simulation (dashed line) is initialized at
the filtered state corresponding to 2009Q2 so the ZLB binds. The vertical axes are in percentage point deviations from
the baseline simulation, except uncertainty is a percent change. The horizontal axes denote the time period in quarters.

The risk premium and growth volatilities are initialized attheir stochastic steady states in both
simulations, so the level shocks are not amplified by exogenous changes in volatility over time and
the impact effects of the volatility shocks are not distorted by the log-normal volatility processes.

A higher risk premium (first column) in either initial state causes households to postpone con-
sumption, which lowers consumption growth and inflation on impact. When the Fed is not con-
strained by the ZLB, it responds to the shock by reducing its policy rate. The impact on uncertainty
is small since the Fed is able to stabilize the economy. In 2009Q2, the higher risk premium leads to
an expected ZLB duration of2 quarters on impact. The Fed cannot respond by lowering its policy
rate, which causes a larger decline in consumption. The result is a larger increase in uncertainty
since households expect a wider range of future realizationof consumption growth. In other words,
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the model endogenously generates uncertainty when the ZLB binds due to a risk premium shock.
Similar to the level shock, a positive shock to the volatility of the risk premium (second column)

lowers consumption growth and inflation. In steady state, the Fed adjusts its policy rate to stabilize
the economy, so the effect of the volatility shock is small even though uncertainty rises far more
than it does in response to the level shock. When the ZLB binds, however, the increase in uncer-
tainty nearly doubles, which magnifies the effect on consumption growth and inflation. Hence, the
model also endogenously creates uncertainty by amplifyingthe effects of second moment shocks.

Level and volatility shocks to technology growth have qualitatively and quantitatively different
effects than risk premium shocks. A positive shock to technology growth (third column) increases
consumption growth and decreases inflation like a typical supply shock, so the Fed faces a tradeoff
between stabilizing inflation and real GDP growth unlike with a risk premium shock. In steady
state, the policy rate immediately increases since the response to the real GDP gap dominates the
response to the inflation gap. In 2009Q2 the ZLB initially binds, but the increase in the notional
rate causes a quick exit from the ZLB after1 quarter. The delayed increase in the policy rate causes
a slightly larger boost in consumption growth and a smaller decline in inflation. In contrast with
the risk premium shock, a positive growth shock causes uncertainty to decline because it reduces
the probability that the ZLB binds next period. However, theresponses are smaller in magnitude.

Growth volatility shocks cause bigger changes in uncertainty than level shocks. Similar to a risk
premium volatility shock, a positive growth volatility shock (fourth column) reduces consumption
growth and inflation, which leads to a lower nominal rate. However, the responses differ in a
few ways. One, growth volatility directly affects consumption volatility. Therefore, uncertainty
increases more than it does in response to a risk premium volatility shock. Two, the response of
uncertainty is similar in both initial states. Three, the increase in uncertainty away from the ZLB
is much larger than the increase from a risk premium volatility shock. Therefore, growth volatility
shocks play a larger role in explaining the fluctuations in uncertainty when the ZLB does not bind.

5.3 SOURCES OFUNCERTAINTY The impulse responses show uncertainty can arise in our non-
linear model due to exogenous volatility shocks or first moment shocks that interact with the econ-
omy. Figure 3adecomposes consumption growth uncertainty into its exogenous and endogenous
sources using counterfactual simulations conditional on the mean parameterization of our model.
To isolate the contribution of technology growth uncertainty, we turn off the risk premium volatil-
ity shocks. Similarly, we zero out the technology growth volatility shocks to identify the amount
of risk premium uncertainty. We then turn off both volatility shocks to determine the amount of
endogenous uncertainty. We also show the endogenous amplification of the exogenous volatility
shocks when the Fed was most constrained using the solution to the unconstrained nonlinear model.

On average about95% of consumption growth uncertainty is due to the uncertaintythat occurs
without second moment shocks, which we refer to as endogenous uncertainty. However, most of
thechangesin uncertainty are driven by the exogenous volatility shocks. Growth volatility shocks
are the key driver in most periods, but risk premium volatility shocks play an important role in cer-
tain parts of our sample. Typically, endogenous uncertainty is fairly constant, but it increases when
the policy rate is near or at its ZLB, which occurs in the mid 2000s and from 2009 to the end of the
sample. The sharp increase in uncertainty in 2009, however,primarily occurred due to the endoge-
nous amplification of the exogenous volatility shocks, rather than through first moment shocks.
The markers in 2009Q1 show the counterfactual increase in uncertainty that would have occurred
if the Fed was not constrained. Those results indicate that about8.5% ((0.48−0.43)/(1.03−0.43))
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Figure 3: Sources of uncertainty in our baseline model.

of the increase in uncertainty in 2009Q1 was due to endogenous uncertainty and about38%
((1.03− 0.82)/(1.03− 0.48)) was due to the endogenous amplification of second moment shocks.

Despite some nonlinear interactions between the exogenousvolatility shocks and the ZLB, we
are able to approximate the relative contribution of each volatility shock over time, similar to a vari-
ance decomposition in a linear model. The dark bars infigure 3brepresent the technology growth
counterfactual relative to the endogenous uncertainty counterfactual (circles minus diamonds) and
the light bars represent the risk premium counterfactual relative to the endogenous uncertainty
counterfactual (triangles minus diamonds), which is approximately equal to consumption growth
uncertainty relative to the endogenous uncertainty counterfactual (solid minus diamonds). The re-
sults reiterate that technology growth uncertainty is typically the biggest contributor to consump-
tion growth uncertainty, but the two sources of exogenous uncertainty typically move together.
There are two notable exceptions. One, the model predicts that risk premium uncertainty precedes
the 2001 recession. Two, technology growth uncertainty increases before the rise in risk premium
uncertainty during the Great Recession, but the effects of risk premium uncertainty linger while the
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impact of technology growth uncertainty is negligible for afew years after the Great Recession.
During the Great Recession, technology growth and risk premium volatility shocks have nearly
equal roles. By the end of the sample, consumption growth uncertainty declined to its lowest point.

5.4 EULER EQUATION DECOMPOSITION The rest of this section focuses on the effects of un-
certainty and other higher-order moments.Figure 4shows the filtered time series of the terms in
the Euler equation decomposition in (16) over different forecast horizons. The values on the ver-
tical axes are the effects on current consumption in percentage point deviations from the balanced
growth path. The top panel shows the decomposition over a 1-quarter horizon. We separate the
first-order terms (left panel) from the higher-order terms (right panel) so the effects of expected
consumption and the real interest rate do not drown out the effects of the higher-order terms. We
also plot current consumption in the top left panel so it is easier to see the contribution of each term.

Over a1-quarter horizon, the changes in consumption are almost entirely driven by expecta-
tions about consumption next quarter. The real interest rate had a smaller role, typically reducing
consumption by about0.1%. The peak effect was−0.37% during the Great Recession, but that
effect quickly declined as the economy rebounded. The higher-order terms show uncertainty about
consumption in the next quarter had time-varying adverse effects on current consumption. Uncer-
tainty had by far its largest effect during the Great Recession, since the ZLB constraint made the
economy more sensitive to adverse shocks and increased the expected volatility of future consump-
tion. However, that effect was short-lived because the notional rate was negative only until 2011.

The quantitative effects of uncertainty were small throughout our sample. Even during the
Great Recession, the peak increase in uncertainty reduced consumption by less than0.01%. Con-
sumption skewness and both inflation uncertainty and inflation skewness also had very little effect
on current consumption. Interestingly, the effects of uncertainty over a one-quarter horizon have a
similar magnitude as the impact effects of the two exogenousvolatility shocks shown infigure 2.
However, both sets of results significantly understate the impacts of uncertainty because they hide
the effects that future real interest rates and higher-order moments have on expected consumption.

The middle left panel shows how expected consumption affected current consumption over
horizons up to24 quarters. Once again, we plot the filtered time series for current consumption as
a percent deviation from the balanced growth path. In most periods, the differences between cur-
rent and expected consumption were much larger over horizons beyond1-quarter, which indicates
that other factors, such as the real interest rate and uncertainty, explained a larger fraction of the
changes in consumption. We focus on a24-quarter horizon because it is long enough that expected
consumption barely matters for current consumption. For example, in 2009Q2—the last quarter of
the Great Recession—expected consumption in 2009Q3 explained74.3% of the decline in current
consumption, whereas expected consumption in 2015Q3 explained only1.6% of the decline. Over
those same horizons, the contribution of consumption uncertainty increased from2.9% to 11.9%.

The middle right panel shows the effect of consumption uncertainty over the horizons shown in
the left panel, but the values on the vertical axis are cumulative effects (i.e., the sum of the impact in
each quarter over a given horizon). Although the effect of consumption uncertainty is small when it
is conditional on expected consumption over a1-quarter horizon, it is more significant over longer
horizons that decompose the influence of expected future consumption. Over a24-quarter horizon,
consumption uncertainty on average decreases current consumption by about0.06% and the largest
effect was about0.15% in 2009Q1, which accounted for16.6% of the total decline in that quarter.

The other higher order moments are shown in the bottom left panel. During the Great Re-
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Figure 4: Filtered decomposition of the effects on current consumption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentage point deviation of detrended consumption from its steady state.
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cession, the peak effects of technology growth uncertainty, inflation uncertainty, and consumption
skewness over a24-quarter horizon were−0.023%, −0.005%, and−0.001%, respectively, and
the average effects were much smaller. We do not show the effect of inflation skewness because
it is near zero throughout the sample. It is not surprising that inflation uncertainty and skewness
had such small effects on consumption because the Fed aggressively targeted inflation throughout
our sample. However, we expected a larger effect of consumption skewness, especially during the
Great Recession. The ZLB constraint creates downside risk since it prevents the Fed from respond-
ing to adverse shocks through conventional channels. Evidently, those effects on consumption are
small when controlling for other terms. The covariance between inflation and consumption reduced
consumption by about0.02% on average, the second largest effect behind consumption uncertainty.

The bottom right panel shows the effect of consumption uncertainty over a24-quarter horizon
along with two of the counterfactuals shown infigure 3a. First, we plot the effect of consumption
uncertainty after removing the influence of the ZLB using thesolution to the unconstrained nonlin-
ear model. The differences from the baseline path show how much the ZLB increased the adverse
effects of uncertainty. In most quarters, the differences are small because there is a low probabil-
ity of going to and staying at the ZLB. Larger differences between the two paths occurred from
2008Q4 to 2009Q4, when the notional rate was well below zero and there was a strong expectation
of staying at the ZLB. For example, in 2009Q1 consumption uncertainty reduced consumption by
about0.06 percentage points more than it would have if the Fed was not constrained. Second, we
restore the ZLB constraint but zero out both of the exogenousvolatility shocks. Since first moment
shocks are the main source of most of the uncertainty in the economy, they are also the primary
source of the adverse effects of consumption uncertainty. At its peak, endogenous uncertainty only
increased the adverse effects of consumption uncertainty by about0.01 percentage points, whereas
exogenous volatility shocks played a much larger role during the last two recessions. For example,
the volatility shocks without the ZLB contributed about0.04 percentage points to the decline in
consumption growth in 2009Q1 and their amplification contributed another0.06 percentage points.

The bottom right panel also plots the total effect of uncertainty—the sum of consumption, tech-
nology growth, and inflation uncertainty—on consumption over a24-quarter horizon. On average,
total uncertainty reduced current consumption by about0.07% with a maximum decline of0.17%.

The results infigure 4are based on the mean parameterization of our model. Although numeri-
cally intensive, it is also possible to generate time seriesfor the terms in the decomposition for each
of the1,000 draws from our posterior distribution.Figure 5shows the1 standard deviation (16%-
84%) credible sets for the effects of the three types uncertainty over a 24-quarter horizon. The left
panel shows the effects of consumption uncertainty while the right panel shows the effects of tech-
nology growth and inflation uncertainty. In a typical quarter, the effect of consumption uncertainty
ranges from−0.01% to+0.015% of the median effect. The effects, however, are more asymmetric
during recessions. For example, during the peak of the GreatRecession there was a68% chance
consumption uncertainty decreased current consumption byat least0.12% and it could have de-
creased it by as much as0.25%. The effects of technology growth and inflation uncertaintyare al-
ways much smaller than consumption uncertainty, even in thetail of the parameter distribution. In
all three cases, the credible sets are considerably tighterthan the range of estimates in the literature.

5.5 KEY PARAMETERS In addition to quantifying the contribution of each source of uncertainty,
we also determine the relative importance of each parameterfor our Euler equation decomposition
by conducting posterior predictive analysis with the drawsfrom the joint posterior density,{θ̂i}1000i=1 .
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Figure 5:68% credible sets of the filtered effects on current consumption. The vertical bars denote NBER recessions.
The vertical axes are the contribution to the percentage point deviation of detrended consumption from its steady state.

We focus on the effect of consumption uncertainty over a24-quarter horizon, which is given by

h(θ, t) ≡ −(γ/2)
∑24

j=1 vart(ĉt+j |θ, v̄t, z̄t),

whereθ is a vector of estimated parameters andv̄t andz̄t are the median filtered states and shocks
conditional on the posterior mean parameterization. Fixing the states and shocks allows us to
isolate the role of each parameter. We already calculateh(θ̂i, t) for all i to generate the credible
sets infigure 5, which represent the actual effects of consumption uncertainty given each posterior
draw. Defineθ̄i,ℓ as theith posterior draw conditional on the posterior mean of parameterℓ. As
a counterfactual, we first calculateh(θ̄i,ℓ, t) using the procedure described at the end ofsection 4.
We then calculate the root mean-squared deviation (RMSD) from that counterfactual, given by

RMSD(ℓ, t) =

√

1
1000

∑1000
i=1 (h(θ̂i, t)− h(θ̄i,ℓ, t))

2.

For our analysis, we calculate the RMSD for each of the16 estimated parameters across the
entire sample. A higher RMSD implies a given parameter has a bigger impact on the effect of
consumption uncertainty on current consumption.Figure 6plots time series of the RMSD for
the nine most consequential parameters. The risk premium persistence (ρs) and shock standard
deviation (συ) have the largest average RMSDs. Of the deep parameters, thecoefficient of relative
risk aversion (γ) and the monetary response to inflation (φπ) are the most consequential. There is
also considerable variation in the importance of the parameters across time. For example, during
recessions the RMSD of each parameter increases, but the process parameters (right panel) become
relatively more important than the deep parameters. Outside recessions, the deep parameters (left
panel) are relatively more important, though the average RMSD of each parameter is much lower.

The major benefit of the RMSD statistic is that it summarizes the relative importance of a
given parameter in every quarter of our sample, but it does not indicate whether a given parameter
increases or decreases the effect of uncertainty. However,by conditioning on a particular quarter,
we can determine the sign.Figure 7shows scatter plots of the deviation,∆i,ℓ,t ≡ h(θ̂i, t) −
h(θ̄i,ℓ, t), in 2008Q4 for all posterior draws, conditional on parameter ℓ. In other words, it shows the
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Figure 6: Time series of the root mean-squared deviation of the effect of consumption uncertainty over a24-quarter
horizon (i.e., the effect at the posterior draw minus the effect after fixing the indicated parameter at its posterior mean).
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Figure 7: Scatter plots of the effect of consumption uncertainty on consumption over a24-quarter horizon in 2008Q4
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changes in the effect of consumption uncertainty that occurwhen a particular parameter deviates
from its posterior mean. Therefore, a positive (negative) value of∆i,ℓ,t indicates that consumption
uncertainty has a smaller (larger) adverse effect on current consumption for a given posterior draw.

The results depend on how each parameter affects expected future volatility. The dashed diag-
onal line is the linear trend. When the parameters governingthe risk premium (ρs, ρσυ

, σ̄υ, andσζ)
are above their posterior means (shown by the dashed vertical line) consumption uncertainty has
a much larger adverse effect because the variance of the exogenous process and hence expected
volatility increase (i.e., the trend line slopes downward). For example, the posterior mean persis-
tence of the risk premium,ρs, is 0.911. When that value is two standard deviations higher (0.932),
consumption uncertainty reduces consumption by0.13 percentage points more than at its poste-
rior mean. Similarly, a higher price adjustment cost parameter causes uncertainty to have a larger
effect because stickier prices make households more sensitive to changes in the nominal interest
rate. Larger values of the other parameters reduce the effect of uncertainty. An increase in the
coefficient of relative risk aversion makes households lesswilling to substitute across time, which
makes consumption less volatile. Thus, consumption uncertainty has a smaller adverse effect, even
though households react more strongly to expected volatility. A higher monetary response to infla-
tion has a similar effect because it also reduces expected future volatility. Interest rate smoothing
is a form of commitment by the Fed to reduce future inflation volatility, so the higher persistence
reduces expected volatility. Finally, a higher average growth rate raises the steady-state nominal
interest rate, which decreases the likelihood of ZLB eventsand therefore expected future volatility.

These results are particularly useful given the degree of parameter uncertainty in the literature.
By extrapolating from the trend line, it is easy to obtain a rough estimate for the effects of consump-
tion uncertainty and the likelihood of that outcome given any parameterization of the model. It is
also possible to conduct a similar exercise for the other high-order moments in the decomposition.

5.6 WELFARE The cost of business cycles literature provides an alternative way to quantify the
effects of uncertainty than our Euler equation decomposition. That literature uses welfare analysis
to determine the consequences of different levels of volatility. The main difference between the two
methods is that our Euler equation decomposition quantifiesthe effects of different higher order
moments—including uncertainty—within aparticular model, whereas the welfare analysis quanti-
fies the effects of volatility by comparingdifferentmodels. Specifically, the cost of business cycles
literature measures the compensating variation of switching from a low to a high volatility model.

Given the household’s constant relative risk aversion utility function in our baseline model, the
compensating variation between modelsL (lower volatility) andH (higher volatility) is given by

λt = 1−

[

EtWc(c
H) + 1/((1− γ)(1− β))− EtWn(n

H) + EtWn(n
L)

EtWc(cL) + 1/((1− γ)(1− β))

]1/(1−γ)

, (17)

where

EtWc(c̃
ϑ) = E[

∑

∞

j=t β
j−t[((c̃ϑj )

1−γ − 1)/(1− γ)]|Ω̂t],

EtWn(n
ϑ) = E[

∑

∞

j=t β
j−t[χ(nϑ

j )
1+η/(1 + η)]|Ω̂t],

are the expected present-value of the household’s utility from consumption and disutility from la-
bor conditional on its information set at timet, Ω̂t, which contains the median filtered state and the
posterior mean parameters. Also,c̃ϑ andnϑ are the optimal choices of detrended consumption and
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labor conditional on modelϑ ∈ {H,L}. We denote the higher (lower) volatility economy with
anH (L), where the expected path of consumption is lower (higher) due to precautionary saving.
Therefore,λt is the fraction of consumption goods in the low volatility economy that would com-
pensate the household for the lower consumption path in the higher volatility economy. Whenλt >
0 the household is better off in the lower volatility economy.Appendix Cshows how to deriveλt.

We computeWc andWn for four different models: (1) the baseline model, (2) the model
without the ZLB imposed, (3) the model without volatility shocks, and (4) the model without any
shocks (equivalent to its deterministic steady state). In each case, we approximateWc andWn by
integrating across1,000 Monte Carlo simulations of10,000 quarters. Each simulation is condi-
tional on the state of the economy in a particular period and the posterior mean parameterization.
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Figure 8: Percent of consumption goods under lower volatility needed to compensate the household for higher volatil-
ity. In each period, the welfare cost is conditional on the median filtered state from the posterior mean parameterization.

Figure 8shows four estimated compensating variations: the effect of all shocks (models (1)
and (4), x markers); the effect of only the stochastic volatility shocks (models (1) and (3), circles
markers); the effect of only the first-moment shocks (models(3) and (4), triangle markers); and
the effect of only the ZLB constraint (models (1) and (2), diamond markers). The compensating
variation is shown as the percent of consumption goods in thelower volatility or no ZLB models.

In the baseline model, the household requires compensationof about0.03% in every period to
be indifferent to a world in which there is no volatility (i.e., the constant path of consumption and
labor in the deterministic steady state), similar to the value in Lucas (1987) withγ = 2. There is
a small increase in the welfare cost during recessions. Across the sample, about75% of the com-
pensation stems from the volatility induced by the first-moment shocks to productivity growth, the
risk premium, and the interest rate. The remainder is due to the second-moment shocks and the
endogenous amplification of both first- and second-moment shocks by the ZLB. Compensation for
the uncertainty coming from second-moment shocks to productivity growth and the risk premium
is higher than the compensation required for the endogenousuncertainty induced by the ZLB.
Also, the higher welfare cost at the end of the Great Recession comes mostly from the interaction
of second-moment shocks with the ZLB rather than first-moment shocks interacting with the ZLB.
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6 THE EFFECT OFCAPITAL ACCUMULATION

In our baseline model without capital, real GDP is equal to consumption and the only way house-
holds can save is by investing in a1-period nominal bond, which is in zero net supply. This section
extends the model so households can also invest in capital. In the data, investment is more volatile
than real GDP, especially during recessions, so it is important to add capital to the model since it
allows output, consumption, and investment to have different, potentially time-varying, volatilities.

The final goods firm’s problem is unchanged. Intermediate firmf ∈ [0, 1] produces a differ-
entiated good,yt(f), according toyt(f) = kt−1(f)

α(ztnt(f))
1−α. It then chooses its capital and

labor inputs,nt(f) andkt−1(f), and its price,pt(f), to maximize the same profit function as in the
baseline model. In symmetric equilibrium, the production function and optimality conditions are

ỹt = (k̃t−1/gt)
αn1−α

t , (18)

αw̃tnt = (1− α)rkt (k̃t−1/gt), (19)

mct = w̃1−α
t (rkt )

α/((1− α)1−ααα), (20)

and the Phillips curve, (5), which is identical except for the change in the marginal cost definition.
The household chooses{ct, nt, bt, xt, kt}

∞

t=0 to maximize the same utility function subject to

ct + xt + bt/(itst) = wtnt + rkt kt−1 + bt−1/πt + dt,

kt = (1− δ)kt−1 + xt(1− ϕx(x
g
t − 1)2/2),

wherex is investment in physical capital,xg
t ≡ xt/(ḡxt−1) is the growth rate of investment relative

to the balanced growth rate,ϕx > 0 scales the size of the cost to adjusting investment, andk is the
capital stock, which earns a real returnrk and depreciates at rateδ. In addition to the first-order con-
ditions in the model without capital, (8) and (9), there are two new optimality conditions given by

qt = βEt[(c̃t/c̃t+1)
γ(rkt+1 + qt+1(1− δ))/gt+1], (21)

1 = qt[1− ϕx(x̃
g
t − 1)2 − ϕxx̃

g
t (x̃

g
t − 1)] + βϕxḡEt[qt+1(c̃t/c̃t+1)

γ(x̃g
t+1)

2(x̃g
t+1 − 1)/gt+1]. (22)

The detrended law of motion for capital and the aggregate resource constraint are given by

k̃t = (1− δ)(k̃t−1/gt) + x̃t(1− ϕx(x̃
g
t − 1)2/2), (23)

c̃t + x̃t = ỹgdpt . (24)

Once again, we redefined variables that grow along the balanced growth path in terms of technol-
ogy. A competitive equilibrium includes infinite sequencesof quantities,{c̃t, ỹt, ỹ

gdp
t , nt, x̃t, k̃t}

∞

t=0,
prices,{w̃t, it, i

n
t , π

gap
t , mct, qt, r

k
t }

∞

t=0, and exogenous variables,{st, gt, σε,t, συ,t}
∞

t=0, that satisfy
the detrended equilibrium system, (1), (2), (5)-(11), (13), and (18)-(24), given the initial conditions,
{c−1, i

n
−1, x−1, k−1, s0, a0, ν0, σε,0, συ,0}, and the five sequences of shocks,{εt, υt, νt, ξt, ζt}

∞

t=1.
The model is numerically too costly to estimate, so we calibrate the three new parameters. The

capital depreciation rate,δ, is calibrated to0.025. The cost share of capital,α, and the invest-
ment adjustment cost parameter,ϕx, are set to0.19 and4.06, respectively, which equal the mean
posterior estimates in Gust et al. (2017). Although there are some differences between our model
and the one in Gust et al. (2017) (e.g., their model includes sticky wages and variable capital uti-
lization, whereas our model has stochastic volatility), webelieve these parameter values provide a
good approximation of what we would obtain if we estimated the model with Bayesian methods.
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Fortunately, introducing capital does not change the consumption Euler equation we used to
construct the decomposition in the model without capital. We generate policy functions for each
term in the decomposition in the same way as the model withoutcapital, except we filter the data
with per capita real fixed investment growth in addition to the five observables we previously used.
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Figure 9: Filtered decomposition of the effects on current consumption. The shaded regions denote NBER recessions.
The vertical axes are the contribution to the percentage point deviation of detrended consumption from its steady state.

Figure 9shows the influence of the different types of uncertainty. The left panel plots the
effects of consumption uncertainty over a 24-quarter horizon in the models with and without cap-
ital. In the capital model, consumption uncertainty on average decreases current consumption by
0.08%, which is only0.02 percentage points more than in our baseline model without capital. The
difference is more pronounced when the ZLB first binds. In 2008Q4 consumption uncertainty low-
ered consumption by0.22% compared with only0.14% in the baseline model, but that discrepancy
quickly dissipated. Furthermore, the median effect in the capital model is typically in the left tail
of the credible set implied by the baseline model. The right panel shows the impact of technology
growth and inflation uncertainty in the model with capital—the two other types of uncertainty in
the bond Euler equation. Both terms have nearly identical effects to those in the baseline model.5

A major benefit of the capital model is that it provides a new Euler equation, (21), that we can
use to quantify the effects of the uncertainty about the realrental rate of capital and Tobin’sq on
current consumption. Using the method insection 4.3, a third-order Taylor approximation implies

γĉt ≈ γEtĉt+1 − ((β/ḡ)r̄kEtr̂
k
t+1 + (β/ḡ)(1− δ)Etq̂t+1 − q̂t −Etĝt+1)

− 1
2
(γ2 vart ĉt+1 + vart ĝt+1 + (β/ḡ)r̄k vart r̂

k
t+1 + (β/ḡ)(1− δ) vart q̂t+1)

− γ covt(ĉt+1, ĝt+1) + γ(β/ḡ)r̄k covt(ĉt+1, r̂
k
t+1) + γ(β/ḡ)(1− δ) covt(ĉt+1, q̂t+1)

+ (β/ḡ)r̄k covt(ĝt+1, r̂
k
t+1) + β((1− δ)/ḡ) covt(ĝt+1, q̂t+1)

+ 1
6
(γ3 skewt ĉt+1 + skewt ĝt+1 − (β/ḡ)r̄k skewt r̂

k
t+1 − β((1− δ)/ḡ) skewt q̂t+1),

(25)

which we can once again iterate forward to eliminate the influence of expected future consumption.
Several terms enter the same way as our previous decomposition. For example, theex-antevariance

5Consumption and inflation skewness as well as the covarianceterms also have very similar effects in both models.
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of consumption and technology growth appear in (15) and (25), so they have the exact same effect
on consumption. The rental rate and Tobin’sq variance terms replace the inflation variance term.

The right panel also plots the new uncertainty terms over a 24-quarter horizon. Rental rate un-
certainty has a similarly small effect as inflation uncertainty. Unlike the other higher-order terms,
uncertainty about Tobin’sq has almost half as large of an effect on consumption as consumption
uncertainty, which shows the importance of capital adjustment costs for the transmission of uncer-
tainty. Overall, uncertainty about the return on capital (rental rate and Tobin’sq) has a larger influ-
ence on consumption than uncertainty about the real return on a risk-free nominal bond (inflation).

7 COMPARISON WITH THETRADITIONAL VAR A PPROACH

Due to the nonlinearities introduced by stochastic volatility and the ZLB constraint, we are inter-
ested in whether alinear VAR, commonly employed in the literature on uncertainty, can recover
the dynamic relationship between uncertainty and real activity predicted by our baselinenonlinear
model. We focus on the impulse response of consumption growth to a change in financial uncer-

tainty,Us,t =
√

Et[σ2
υ,t+1]. Since financial uncertainty is exogenous in our structuralmodel, it is

easy for us to compare its effects to those in a VAR model and assess accuracy. The shocks in
the VAR are identified recursively and the variables—financial uncertainty, consumption growth,
inflation, wage growth, the risk premium, and the interest rate—are ordered from first to last in the
same way as Christiano et al. (2005).6 Appendix Dprovides further information about our VAR.

Figure 10shows the responses to a 2 standard deviation financial uncertainty shock. The first
subplot shows the predictions of our baseline model given different initializations of the state.
When the response is initialized at the stochastic steady state (solid line), where the notional rate,
i∗, is1.2%, the effect of financial uncertainty on consumption growth is negligible across the whole
horizon. However, when the response is initialized at the median filtered state corresponding to
2009Q2 (dashed line), wherei∗ = −0.4% initially, consumption growth declines by0.07%. We
alternatively initialize the response at an average state vector across simulated quarters at the ZLB
such thati∗ = −1.5% initially (dashed-dotted line). In that case, the financialuncertainty shock
leads to a0.1% decrease in consumption growth on impact. In summary, our baseline model
predicts the impact effect of financial uncertainty on consumption growth depends on the state of
the economy, particularly the notional rate which determines how severely the Fed is constrained.

The simulated VARs in the next three subplots are estimated with data from short-sample sim-
ulations of the baseline model conditional on the posteriormean parameterization. The solid lines
represent the median response and the shaded regions represent the16%-84% credible sets. The
first simulated VAR is estimated using artificial data without any ZLB events (i.e.,i∗ > 0 always).
The response of consumption growth to a financial uncertainty shock is close to zero across the
whole horizon, which is very similar to the prediction of ourbaseline model initialized at steady
state. The next two simulated VARs are estimated with artificial data where the notional rate falls
below−0.4% or −1.5% for at least one quarter, so the responses represent averages across quar-
ters when the ZLB does and does not bind. Given these initial states, the median impact effects
of financial uncertainty on consumption growth are−0.06% and−0.10%, respectively. Although
the responses are not significantly different from zero, themedian impact of financial uncertainty
shocks identified by the VAR decreases as the quantity and severity of ZLB events increase in the

6We obtain very similar results using bivariate VARs with uncertainty ordered first and consumption growth second.
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Figure 10: Impulse responses of consumption growth to a 2 standard deviation increase in financial uncertainty. The
solid lines are the median responses and the shaded regions denote the1 standard deviation (16%-84%) credible sets.

simulated data and it is quantitatively similar to our structural model. Therefore, thelinear VAR
does a good job capturing the endogenous amplification of exogenous financial uncertainty shocks.

Finally, we estimate the same VAR with actual U.S. data. The second to last subplot excludes
the Great Recession and subsequent ZLB period (1986Q1-2007Q4), while the last subplot is based
on the sample used to estimate our baseline model (1986Q1-2016Q2). Qualitatively, the results are
similar to the predictions of our structural model—the effect of uncertainty is more pronounced
when the ZLB period is included in the sample, both on impact and over time. However, there
are two notable differences from our structural model. One,in the full sample the response of
consumption growth is significantly negative over the entire horizon, instead of only on impact.
Two, the impact effect is significantly negative in the truncated sample that omits the ZLB period.

The differences between the responses in the simulated and actual VARs have two potential
explanations. One, there are features of the economy besides the ZLB constraint that amplify the
impact effect of financial uncertainty shocks. Potential examples include borrowing constraints,
irreversible investment, and limited information. Any of these features would increase the impact
effect of financial uncertainty in the pre-ZLB period. Two, financial uncertainty is not purely ex-
ogenous and also fluctuates due to events that are happening in the economy (i.e., first moment
shocks that increase theex-antevariance of the risk premium). In this case, with uncertainty or-
dered first, the VAR would over-predict the effect of financial uncertainty because it would assume
all changes in uncertainty are exogenous. In reality, both explanations likely play important roles.
Furthermore, the challenges associated with classifying uncertainty as endogenous or exogenous
become even more severe when accounting for multiple types of uncertainty in the VAR model.

A major advantage of our Euler equation decomposition is that it does not require us to take a
stand on whether a given type of uncertainty is endogenous orexogenous. It can also account for
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multiple forms of uncertainty and how they nonlinearly interact with the economy. In other words,
our decomposition is able to quantify the overall effect of all types of uncertainty in each period by
accounting for the first and second moment shocks that best explain macro and uncertainty data. It
also has the added advantage of being able to quantify the effects of other higher-order moments.

8 CONCLUSION

The literature has primarily examined the effects of uncertainty through stochastic volatility shocks
in theoretical models and impulse responses to proxies for uncertainty in VAR models. We develop
a new way to quantify the effects of uncertainty that accounts for both exogenous and endogenous
sources of uncertainty. First, we estimate a nonlinear New Keynesian model, linking measures
of uncertainty in the data to equivalent measures in the model. This step allows us to decompose
the sources of uncertainty, calculate the welfare effects of first and second moment shocks, and
generate policy functions for any higher-order moment in a model that not only matches macro
aggregates but also measures of uncertainty in the data. Second, we use the Euler equation to ana-
lytically decompose consumption into first, second, and third moments and then filter the data at the
posterior mean to create a time series for the effects of eachhigher-order moment on consumption.

A major benefit of our method is its flexibility. It can be used to examine the economic effects of
any type of uncertainty in a broad class of models. While somemodels are too costly to estimate,
it is usually possible to calculate theex-antevariance or skewness surrounding any endogenous
variable in the model and then link it to an empirical measurewhile filtering the data in a calibrated
model. For example, one could compute the uncertainty surrounding the exchange rate in an open
economy model, any financial variable in a model with a banking sector, or a commodity in a
multi-sector model. Similarly, one could generate time series for the terms in any Euler equation
to determine the effects of various higher-order moments onconsumption. Importantly, our method
provides a way to compare the effect of uncertainty or any other high-order moment across models.

Using a familiar New Keynesian model, our decomposition reveals that uncertainty had a rela-
tively small impact. Despite the nonlinearity induced by the ZLB constraint and stochastic volatil-
ity shocks, consumption uncertainty never reduced consumption by more than0.22%, even during
the Great Recession, and the welfare cost of volatility never exceeded0.04% of consumption. With
these important benchmarks in hand, future research could introduce additional sources of endoge-
nous uncertainty, such as borrowing constraints, search frictions, firm default, limited information,
irreversible investment, or heterogeneity to examine whether a larger effect of uncertainty emerges.
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A DATA SOURCES

We drew from the following data sources to estimate our VAR and New Keynesian models:

1. Financial Uncertainty index: Monthly. Source: Ludvigson et al. (2017),h = 3 (1-quarter
forecast horizon). Data available fromhttp://www.sydneyludvigson.com/.

2. Macro Uncertainty Index : Monthly. Source: Jurado et al. (2015),h = 3 (1-quarter forecast
horizon). Data available fromhttp://www.sydneyludvigson.com/.
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3. Real GDP: Quarterly, chained 2009 dollars, seasonally adjusted. Source: Bureau of Eco-
nomic Analysis, National Income and Product Accounts, Table 1.1.6 (FRED ID: GDPC1).

4. Personal Consumption Expenditures, Nondurable Goods: Monthly, billions of dollars,
seasonally adjusted. Source: Bureau of Economic Analysis,National Income and Product
Accounts, Table 2.8.5 (FRED ID: PCEND).

5. Personal Consumption Expenditures, Services: Monthly, billions of dollars, seasonally
adjusted. Source: Bureau of Economic Analysis, National Income and Product Accounts,
Table 2.8.5 (FRED ID: PCES).

6. GDP Deflator: Quarterly, seasonally adjusted, index 2009=100. Source:Bureau of Eco-
nomic Analysis, National Income and Product Accounts, Table 1.1.9 (FRED ID: GDPDEF).

7. Average Hourly Earnings: Monthly, production and nonsupervisory employees, dollars per
hour, seasonally adjusted. Source: Bureau of Labor Statistics (FRED ID: AHETPI).

8. Interest Rate Spread (Risk Premium): Monthly, Moody’s seasoned Baa corporate bond
yield relative to the yield on 10-Year treasury bond. Source: Board of Governors of the
Federal Reserve System, Selected Interest Rates, H.15 (FRED ID: BAA10YM)

9. Effective Federal Funds Rate:Daily. Source: Board of Governors of the Federal Reserve
System, Selected Interest Rates, H.15 (FRED ID: FEDFUNDS).

10. Civilian Noninstitutional Population : Monthly. Source: U.S. Bureau of Labour Statistics,
Current Population Survey (FRED ID: CNP16OV).

11. Fixed Investment: Quarterly, billions of dollars, seasonally adjusted. Source: Bureau of
Economic Analysis, National Income and Product Accounts, Table 1.1.5 (FRED ID: FPI).

We applied the following transformations to the above series:

12. Per Capita Real GDP: 1,000,000×Real GDP/Population.

13. Real PCE, Nondurable Goods: Average PCE Nondurables in 2009×(PCE Nondurables
Quantity Index/100). Quantity Index FRED ID: DNDGRA3M086SBEA.

14. Real PCE, Services: Average PCE Nondurables in 2009×(PCE Services Quantity Index/100).
Quantity Index FRED ID: DSERRA3M086SBEA.

15. Per Capita Real PCE: 1,000,000×(Real PCE Nondurables+Real PCE Services)/Population.

16. Real Wage: 100×Average Hourly Earnings/Price Index.

17. Real Investment: Average FPI in 2009×(FPI Quantity Index/100). Quantity Index FRED
ID: A007RA3Q086SBEA.

18. Per Capita Real Investment: 1,000,000×Real Investment/Population.

We converted the monthly or daily time series to a quarterly frequency by applying time averages
over each quarter. In order, the variables used to estimate our VAR model are series 1, 15, 6, 16, 8,
and 9. The observables used to estimate our nonlinear model without capital include series 12, 6,
9, 1, and 2. When we filter the data using the model with capital, we add series 18 as an observable.
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B EULER EQUATION DECOMPOSITION

The bond Euler equation is given by

1 = βEt[(c̃t/c̃t+1)
γ(stit/(gt+1πt+1))] = Et[exp(̂ıt + ŝt − π̂t+1 − ĝt+1 + γ(ĉt − ĉt+1))],

where a hat denotes log deviation from the balanced growth path. After reorganizing, we obtain

−(̂ıt + ŝt + γĉt) = log( Et[exp(−π̂t+1 − ĝt+1 − γĉt+1)])
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,

where the second equality follows from the Maclaurin seriesfor ex = 1+ x+ x2/2 + x3/6 + · · · .
Subsequently applying a third-order Maclaurin series tolog(1− x) ≈ −x− x2/2− x3/3 implies

ı̂t + ŝt + γĉt ≈ Et[π̂t+1] + Et[ĝt+1] + γEt[ĉt+1]
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after dropping the higher-order terms. Therefore, currentconsumption is approximated by

γĉt ≈ γEtĉt+1 − r̂t −
1
2
(vart π̂t+1 + vart ĝt+1 + γ2 vart ĉt+1)
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wherer̂t = ı̂t + ŝt −Etπ̂t+1 −Etĝt+1 is theex-antereal rate,vart(xt+1) = Et[x̂
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of x, andcovt(xt+1, yt+1) = Et[xt+1yt+1]− Et[xt+1]Et[yt+1] is the covariance betweenx andy.

The derivation of (25) follows very similar steps, although it contains significantly more terms.
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C WELFARE COST DERIVATION

The representative household’s preferences are given by
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∞
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Solving forλt yields (17) in the main text.

D VECTORAUTOREGRESSIONMODEL

The structural VAR model is given by

A0yt = a0 + A1yt−1 + · · ·+ Apyt−p + εt, t = 1, . . . , T,

whereεt ∼ N(0, I). The reduced-form VAR model is obtained by invertingA0 and is given by

yt = b0 +B1yt−1 + · · ·+Bpyt−p + υt, t = 1, . . . , T,

whereb0 = A−1
0 a0 is aK×1 vector of intercepts,Bj = A−1

0 Aj areK×K coefficient matrices for
j = 1, . . . , p, υt = A−1

0 εt is aK × 1 vector of shocks that has a multivariate normal distribution
with zero mean and variance-covariance matrixΣ, andy is aK×1 vector of endogenous variables.

The VAR is either estimated with data generated by the baseline model or analogous variables
in U.S. data and the variables are ordered as in Christiano etal. (2005). The data consists of the
financial uncertainty series in Ludvigson et al. (2017),FinU , the per capita real consumption
growth rate (nondurables+ services), the GDP implicit price deflator inflation rate, the real wage
growth rate (production and nonsupervisory employees), the risk premium (BAA corporate bond
yield − 10 year treasury yield), and the federal funds rate. A description of our data sources
is provided inAppendix A. We estimate the Actual VAR with up to four lags and calculatethe
Bayesian information criterion (BIC). We rewrite the modelasYT = βX+U and calculate the least
squares estimates,β̂ andΣ̂. For example, whenp = 4 the parameters areβ = [b0, B1, B2, B3, B4]
and the regressors areX = [1, Y ′

T−1, Y
′

T−2, Y
′

T−3, Y
′

T−4]
′ whereYT−i = [y1−i, . . . , yT−i] andU =

[υ1, . . . , υT ]. The structural shocks are identified by a Cholesky decomposition, Σ̂ = (Â−1
0 )′Â−1

0 .
According to the BIC, the data prefers a VAR model with one lag, so we focus on that specification.
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E SOLUTION METHOD

E.1 BASELINE MODEL We begin by writing the equilibrium system of equations compactly as

E[f(vt+1,vt)|Ωt] = 0,

wheref is a vector-valued function,v = (s, g, σε, συ, c̃, ỹ, ỹ
gdp, n, w̃, i, in, πgap), andΩ = {S, P, z}

is the information set, which contains the structural model, S, its parameters,P , and the state vec-
tor, zt = (νt, log(σε,t), log(συ,t), gt, st, mpt−1). Sinceint−1 andỹgdpt−1 only appear in the policy rule,
we eliminate a state variable by definingmpt−1 = (int−1)

ρi(ỹgdpt−1)
φy(ρi−1) and rewriting the rule as

int = mpt−1(̄ı(π
gap
t )φπ(gtỹ

gdp
t /ḡ)φy)1−ρi exp(σννt).

There are many ways to discretize the normally-distributedand autoregressive exogenous state
variables,νt, log(σε,t), andlog(συ,t). We follow Rouwenhorst (1995), which Kopecky and Suen
(2010) show outperforms other methods for approximating autoregressive processes. The bounds
on gt, st, andmpt−1 are set to±3%, ±2%, and±2% of steady state, which are wide enough to
contain the filtered state variables given the posterior draws. We discretize the state variables into
(4, 9, 7, 7, 7, 7) points respectively, such that they are evenly spaced in each dimension. Therefore,
there areD = 86,436 nodes in the state space, and the realization ofzt on noded is denotedzt(d).

The Rouwenhorst method is also used to obtainM integration nodes with weights,{φ(m)}Mm=1,
that correspond to the shocks,{νt+1(m), log(σε,t+1)(m), log(συ,t+1)(m), εt+1(m), υt+1(m)}Mm=1.
We use the same number of points,(4, 9, 7, 7, 7), as the respective state variables, soM = 12,348.
The processes forgt+1 andst+1 do not have a standard autoregressive form because the standard
deviations of the shocks are time-varying. Therefore, we chose not use the Rouwenhorst method
to discretize the processes forg ands. Instead, the first moment shocks and log volatility processes
are discretized separately with the Rouwenhorst method, soc̃t+1(m) andπgap

t+1(m) are interpolated
at realizations ofgt+1(m) andst+1(m) that can occur in between the nodes in the state space.

The following steps outline our policy function iteration algorithm:

1. Obtain initial conjectures for̃c0 andπgap
0 from the log-linear model without the ZLB im-

posed using Sims’s (2002)gensys algorithm and map it to the discretized state space.

2. For iterationj, implement the following steps with the ZLB imposed ford ∈ {1, . . . , D}:

(a) Solve for{ỹt, ỹ
gdp
t , int , it, w̃t, mpt} given c̃t = c̃j−1(d), π

gap
t = π

gap
j−1(d), andzt(d).

(b) Linearly interpolate the policy functions,̃cj−1 andπgap
j−1, at the updated state vector,

zt+1(m), to obtainc̃t+1(m) andπgap
t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{c̃t+1(m), πgap
t+1(m)}Mm=1, solve for the other elements ofvt+1(m) and compute

E [f(vt+1,vt(d))|Ωt(d)] ≈
∑M

m=1 φ(m)f(vt+1(m),vt(d)),

(d) Use Chris Sims’csolve to find c̃t andπgap
t that satisfyE[f(·)|Ωt(d)] = 0.

3. Using the argument ofcsolve on iterationj as an initial conjecture for iterationj + 1,
repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|c̃j − c̃j−1|, |π

gap
j − π

gap
j−1|}.

When that occurs, the algorithm has converged to an approximate nonlinear solution.
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Figure 11: Distribution of Euler equation and Phillips curve errors in base 10 logarithms

Figure 11shows the distribution of the absolute value of the errors inbase10 logarithms for
the consumption Euler equation and the Phillips curve. For example, an error of−3 means there
is a mistake of 1 consumption good for every1,000 goods. The mean Euler equation error is
−3.96 and the mean Phillips curve error is−2.32. By construction, the errors on nodes used in
the solution algorithm are less than the convergence criterion, 10−6. The larger average errors
are due to linear interpolation of the policy functions withrespect to the(gt, st, mpt−1) states. To
measure the errors between the nodes, we created a new grid with a total ofD = 850,500 nodes
by increasing the number of points in the(gt, st, mpt−1) dimensions to(15, 15, 15). We used
the same number of points in the(νt, log(σε,t), log(συ,t)) dimensions since they are discretized
with the Rouwenhorst method, which means the correspondingintegration weights and nodes are
state dependent. Therefore, the reported errors are consistent with the accuracy of the integral
calculated when solving the model. Calculating the errors between the nodes corresponding to the
exogenous state variables would require changing the numerical integration method (e.g., Gauss-
Hermite quadrature). We decided not to show those errors because then the accuracy of the integral
used to compute the errors would be inconsistent with the methods used to compute the solution.

E.2 CAPITAL MODEL We solve the model with capital in the same way as the baselinemodel
without capital. The state vector is the same as the baselinemodel, except it includes two additional
endogenous state variables,xt−1 andkt−1. The bounds ongt, st, mpt−1, xt−1 andkt−1 are set
to ±3%, ±1.5%, ±2%, ±10%, and±7% of steady state. We discretize the state variables into
(4, 7, 7, 7, 7, 7, 7, 11) points respectively, so there areD = 5,176,556 nodes in the state space. We
use the most points on the capital dimension because it has the widest grid. Once again, we set the
number of points on each shock equal to the number of points onthe corresponding state variable.

F ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate our model with quarterly data
from 1986Q1 to 2016Q2. To measure how well the model fits the data, we use the adapted particle
filter described in Algorithm 12 in Herbst and Schorfheide (2016), which modifies the filter in
Stewart and McCarty (1992) and Gordon et al. (1993) to betteraccount for the outliers in the data.
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F.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, and bounds of each element of the vector
of Ne estimated parameters,θ ≡ {γ, ϕ, φπ, φy, ḡ, π̄, ρi, ρg, ρs, ρσε

, ρσυ
, σν , σε, συ, σξ, σζ}.

2. The vector ofNx observables consists of per capita real GDP,RGDP/CNP , the GDP
deflator,DEF , the federal funds rate,FFR, the macro uncertainty series in Jurado et al.
(2015),MacroU , and the financial uncertainty series in Ludvigson et al. (2017), FinU ,
from 1986Q1 to 2016Q2. Therefore,Nx = 5 and the row vector of observables is given by

x̂
data
t ≡













log(RGDPt/CNPt)− log(RGDPt−1/CNPt−1)
log(DEFt/DEFt−1)
log(1 + FFRt/100)/4

(MacroUt − µMacroU)/σMacroU

(FinUt − µF inU)/σF inU













T

,

whereµ andσ denote mean and standard deviation across time andt ∈ {1, . . . , T}. When
we filter the data using the model with capital, we add per capita real investment,RI/CNP ,
to the vector of observables, sox̂data

t also includeslog(RIt/CNPt)− log(RIt−1/CNPt−1).

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For alli ∈ {1, . . . , Nm}, whereNm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its densityvalue:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

wherep is the prior density function of parameterj with meanµj and varianceσ2
j .

ii. Given θ̂i, solve the model according toAppendix E. If the algorithm converges,
then compute the stochastic steady state, otherwise repeatstep 3(a)i and redraŵθi.

iii. If the stochastic steady state exists, then use the particle filter in section F.2to ob-
tain the log-likelihood value for the model,log ℓmodel

i , otherwise repeat step 3(a)i.

iv. The posterior log-likelihood islog ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculatemax(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector,θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters,Σ,
which is used to draw candidates during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. Stack theNm,sub = (1 − p)Nm

draws in aNm,sub ×Ne matrix,Θ̂, and definẽΘ = Θ̂−
∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) CalculateΣ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

(a) For alli ∈ {0, . . . , Nd}, whereNd = 25,000, perform the following steps:
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i. Draw a candidate vector of parameters,θ̂candi , where

θ̂i
cand ∼

{

N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We setc0 = 0 and tunec to target an overall acceptance rate of roughly30%.

ii. Calculate the prior density value,log ℓpriori , of the candidate draw,̂θcandi as in 3(a)i.

iii. Given θ̂candi , solve the model according toAppendix E. If the algorithm converges,
compute the stochastic steady state, otherwise repeat 5(a)i and draw a neŵθcandi .

iv. If the stochastic steady state exists, then use the particle filter in section F.2to
obtain the log-likelihood value for the model,log ℓmodel

i , otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =











(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if log ℓcandi − log ℓi−1 > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution,U[0, 1], and the posterior log-
likelihood associated with the candidate draw islog ℓcandi = log ℓpriori + log ℓmodel

i .

(b) Burn the firstNb = 5000 draws and use the remaining sample to calculate the mean
draw, θ̄preMH =

∑NpreMH

i=Nb+1 θ̂i, and the covariance matrix,ΣpreMH . We follow step 4 to
calculateΣpreMH but use allNd −Nb draws instead of just the upperpth percentile.

6. Following the procedure in step 5, perform a final run of theMetropolis-Hastings algorithm,
whereθ̂0 = θ̄preMH andΣ = ΣpreMH. We setNd = 100,000 and keep every100th draw.
The remaining1,000 draws form a representative sample from the joint posteriordensity.

F.2 ADAPTED PARTICLE FILTER The following steps outline the filter:

1. Initialize the filter by drawinget,p = {νt,p, εt,p, υt,p, ξt,p, ζt,p}
0
t=−24 for all p ∈ {0, . . . , Np}

and simulating the model, whereNp is the number of particles. We initialize the filter with
the final state vector,z0,p, which is a draw from the ergodic distribution. We setNp = 40,000.

2. For allp ∈ {1, . . . , Np} apply the following steps:

(a) Draw a vector of shocks from an adapted distribution,et,p ∼ N(ēt, I), whereēt is
chosen to maximizep(µt|zt)p(zt|zt−1) andzt−1 =

∑Np

p=1 zt−1,p/Np is the state vector.

i. Givenzt−1 and a guess for̄et, obtainzt, and the endogenous variables,wt.

ii. Transform the predictions for real GDP (ỹgdp), inflation (π), the policy rate (i), con-
sumption growth uncertainty, and risk premium uncertaintyaccording tôxmodel

t =
[

log(gtỹ
gdp
t /ỹgdpt−1), log(πt), log(it), (Ucg,t − µUcg

)/σUcg
, (Us,t − µUs

)/σUs

]

. When

we add capital to the baseline model,x̂
model
t also includeslog(gtx̃t/x̃t−1).
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iii. Calculate the difference between the model predictions and the data,µt = x̂
model
t −

x̂
data
t , which is assumed to be multivariate normally distributed with density:

p(µt|zt) = (2π)−3/2|H|−1/2 exp(−µ′

tH
−1µt/2),

whereH ≡ diag(σ2
me,cg , σ

2
me,π, σ

2
me,i, σ

2
me,macrou, σ

2
me,finu) is the measurement er-

ror covariance matrix.H also includesσ2
me,x in the model with capital.

iv. The probability of observing the current state,zt, givenzt−1, is given by

p(zt|zt−1) = (2π)−3/2 exp(−ē
′

tēt/2).

v. Maximizep(µt|zt)p(zt|zt−1) ∝ exp(−µ′

tH
−1µt/2) exp(−ē

′

tēt/2) by solving for
the optimal̄et. We converted MATLAB’sfminsearch routine to Fortran.

(b) Obtainzt,p, and the vector of endogenous variables,wt,p, givenzt−1,p andet,p.

(c) Calculate,µt,p = x̂
model
t,p − x̂

data
t . The unnormalized weight on particlep is given by

ωt,p =
p(µt|zt,p)p(zt,p|zt−1,p)

g(zt,p|zt−1,p, x̂data
t )

∝
exp(−µ′

t,pH
−1µt,p/2) exp(−e

′

t,pet,p/2)

exp(−(et,p − ēt)′(et,p − ēt)/2)
.

If there was no adaptation, then̄et = 0 andωt,p = p(µt|zt,p), as it is in a basic filter.
The contribution to the model’s likelihood in periodt is ℓmodel

t =
∑Np

p=1 ωt,p/Np.

(d) Normalize the weights,Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with
replacement from the swarm of particles as described in Kitagawa (1996) to get a set
of particles that represents the filter distribution and reshuffle{zt,p}

Np

p=1 accordingly.

3. Apply step 2 for allt ∈ {1, . . . , T}. The log-likelihood is thenlog ℓmodel =
∑T

t=1 log ℓ
model
t .

G BASELINE MODEL ESTIMATION DIAGNOSTICS

Real GDP Growth (̂ygdpt ) Inflation Rate (πt) Interest Rate (it)

Mean SD Mean SD Mean SD

Data 1.41 2.40 2.18 0.99 3.68 2.77
Model 1.78 2.27 2.56 0.93 4.83 1.43

(1.10, 2.49) (1.56, 3.25) (1.99, 3.11) (0.63, 1.37) (3.59, 6.05) (0.89, 2.16)

Autocorrelations Cross-Correlations

(ŷgdpt , ŷgdpt−1) (πt, πt−1) (it, it−1) (ŷgdpt , πt) (ŷgdpt , it) (πt, it)

Data 0.31 0.63 0.99 0.03 0.18 0.50
Model 0.27 0.76 0.91 −0.11 0.16 0.32

(0.02, 0.51) (0.63, 0.86) (0.83, 0.96) (−0.46, 0.19) (−0.09, 0.44) (−0.16, 0.68)

Table 3: Unconditional moments. For each draw from the posterior distribution, we run10,000 simulations with the
same length as the data. To compute the moments, we first calculate time averages and then the means and quantiles
across the simulations. The values in parentheses are(5%, 95%) credible sets. All values are annualized net rates.
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Figure 12: Trace plots. We obtained100,000 draws from each posterior distribution and kept every100th draw.
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Figure 13: Prior (solid lines) and posterior kernel (dashedlines) densities of the estimated parameters.
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Figure 14: Time paths of the data (dashed line) and the medianfiltered series from the baseline model (solid line).
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Figure 15: Median paths of the estimated shocks normalized by their respective posterior mean standard deviation.
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