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ABSTRACT

This paper evaluates the accuracy of linear and nonlinear estimation methods for dynamic

stochastic general equilibrium models. We generate a largesample of artificial datasets using a

global solution to a nonlinear New Keynesian model with an occasionally binding zero lower

bound (ZLB) constraint on the nominal interest rate. For each dataset, we estimate the nonlin-

ear model—solved globally, accounting for the ZLB—and the linear analogue of the nonlinear

model—solved locally, ignoring the ZLB—with a Metropolis-Hastings algorithm where the

likelihood function is evaluated with a Kalman filter, unscented Kalman filter, or particle filter.

In datasets that resemble the U.S. experience, the nonlinear model estimated with a particle fil-

ter is more accurate and has a higher marginal data density than the linear model estimated with

a Kalman filter, as long as the measurement error variances inthe particle filter are not too big.
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1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stochastic general equilibrium (DSGE) models

has become common practice in the literature over the last 20years. Many central banks also use

these models for forecasting and counterfactual simulations. The estimation procedure sequentially

draws parameters from a proposal distribution, solves the model given that draw, and then evalu-

ates the likelihood function. With linearity and normally distributed shocks, the model solves in a

fraction of a second and it is easy to evaluate the likelihoodfunction exactly with a Kalman filter.1

The financial crisis and subsequent recession compelled many central banks to take unprece-

dented action to reduce their policy rate to its zero lower bound (ZLB), calling into question linear

estimation methods. The ZLB constraint presents a challenge for empirical work because it creates

a kink in the central bank’s policy rule. The constraint has always existed, but when policy rates

were well above zero and the likelihood of hitting the constraint was negligible, it was reasonable to

ignore it. The extended period of near zero policy rates overthe last decade and the increased like-

lihood of future ZLB events due to estimates of a lower natural rate has forced researchers to think

more carefully about the ZLB constraint and its implications (e.g., Laubach and Williams (2016)).

Recent empirical work uses a variety of methods to deal with the nonlinearity imposed by the

ZLB constraint.2 Several papers exclude the post-crisis period from their estimation, skirting the

nonlinearity and justifying the continued use of linear methods (e.g., Aruoba et al. (2018); Chris-

tiano et al. (2015); Cuba-Borda (2014); Del Negro et al. (2015); Galı́ et al. (2012)). While that is a

reasonable approach, at some point it is necessary to incorporate the more recent data and its effects

on the model parameters. Another approach is to ignore the constraint and estimate a linear model

with all available data (e.g., Ireland (2011); Suh and Walker (2016)). That approach maintains the

simplicity of the estimation procedure but potentially provides inaccurate estimates of the param-

eters and model predictions. Recognizing this concern, a few recent papers have estimated a fully

nonlinear model with an occasionally binding ZLB constraint (e.g., Gust et al. (2017); Plante et al.

(2018)).3 This method provides the most comprehensive treatment of the constraint, but it requires

numerically intensive nonlinear solution and estimation techniques. Specifically, it uses projection

methods to solve the model and a particle filter to evaluate the likelihood function with each draw.

This paper takes an important first step toward comparing theaccuracy of linear and nonlinear

estimation methods when the ZLB is present in the data. We specify a true parameterization of

a nonlinear New Keynesian model with an occasionally binding ZLB constraint, solve the model

1Schorfheide (2000) and Otrok (2001) were the first to use these methods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfheide (2007) and Herbst and Schorfheide (2016) for examples.

2See Fernández-Villaverde et al. (2016) for a detailed overview of the various solution and estimation methods.
3Several earlier papers study the effects of the ZLB constraint in calibrated nonlinear models using solution meth-

ods similar to the one for NL-PF (Fernández-Villaverde et al. (2015); Gavin et al. (2015); Keen et al. (2017); Mertens
and Ravn (2014); Nakata (2017); Nakov (2008); Ngo (2014); Richter and Throckmorton (2015); Wolman (2005)).
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globally with a projection method, and generate a large sample of artificial datasets. The datasets

include the most common observables—real GDP growth, inflation, and the nominal interest rate—

as well as the true latent state variables and structural shocks. For each dataset, we estimate the non-

linear model—solved globally, accounting for the ZLB—and the linear analogue of the nonlinear

model—solved locally, ignoring the ZLB—with a random-walkMetropolis-Hastings algorithm.

We combine the solution method with three different filters to evaluate the likelihood: the linear

model estimated with a Kalman filter (Lin-KF), the nonlinearmodel estimated with an unscented

Kalman filter (NL-UKF), and the nonlinear model estimated with a particle filter (NL-PF). Lin-KF

serves as our benchmark since it is the most common method in the literature and the least compu-

tationally expensive. Given the posterior distributions,we calculate the marginal data density for

each method to measure empirical fit and then determine how well each method is able to recover

the true parameters and latent state variables. We also examine how the measurement error (ME)

variances in the observation equation of the filter and the number of quarters that the ZLB binds

in the data affects the accuracy of each method. We measure accuracy with the root-mean square-

error (RMSE) of the parameter draws and filtered state variables relative to the true values. For each

method and dataset, we calculate the RMSE statistic and thenreport quantiles across the datasets.

The federal funds rate was stuck at its ZLB from December 2008to December 2015, or28 of

the last100 quarters. In datasets that resemble the U.S. experience, NL-PF has a clear statistical

advantage over Lin-KF, both in terms of empirical fit and accuracy. The differences in accuracy

are large enough that impulse responses with the Lin-KF parameter estimates are significantly dif-

ferent from the true responses when the ZLB binds. Using the nonlinear solution with the Lin-KF

estimates often makes the impulse responses even more inaccurate. Our results, however, require

small ME variances in the particle filter (e.g.,5% of the variance in the data). Given high enough

variances (e.g.,20% of the variance in the data), the benefits of using NL-PF over Lin-KF with no

ME completely disappear. We conclude that the data must be highly nonlinear for NL-PF to over-

come positive ME variances and have a statistically significant advantage over Lin-KF without ME.

One of the most important aspects of our results is that they serve as a benchmark for alternative

solution and estimation methods. Comparisons of solution methods are typically based on speed

tests and Euler equation errors, which are sometimes misleading because they are conditional on

specific discretization and numerical integration methods.4 Also, while there is a lot of theoretical

work on developing new estimation techniques, there is lesscomparison in terms of accuracy, es-

pecially with nonlinear methods. With our datasets, the accuracy and economic implications of any

new solution method or aspect of the estimation procedure (e.g., a new filter or an alternative to the

random walk Metropolis-Hastings algorithm) is easily compared against the methods examined

4Aruoba et al. (2006) compares various nonlinear solution methods in terms of speed and accuracy using a neo-
classical growth model. Richter et al. (2014) draw comparisons using a New Keynesian model with a ZLB constraint.
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in this paper. With this mode of comparison, a method is tested with the same empirical strategy

applied to most DSGE models. If it turns out that a method is computationally more efficient and

more accurate than the ones we examine, it should become the standard for future empirical work.

Our paper is similar in spirit to Fernández-Villaverde andRubio-Ramı́rez (2005) who find a

neoclassical growth model estimated with NL-PF predicts moments closer to the true moments

than the estimates from Lin-KF using two artificial datasetsas well as actual data. The primary

nonlinearity in their model is high risk aversion, whereas we study the implications of the ZLB con-

straint. The paper closest to ours is Hirose and Inoue (2016). They generate artificial datasets from

a linear model where the ZLB constraint is imposed using anticipated policy shocks and then apply

Lin-KF to estimate the model without the constraint. They find the estimated parameters, impulse

response functions, and structural shocks become less accurate as the frequency and duration of

ZLB events increase in the data. In contrast, we generate data using a global solution to a nonlinear

model and consider alternative estimation methods that usenonlinear filters and global solutions.

We also build on recent empirical work that analyzes the implications of the ZLB constraint

(e.g., Gust et al. (2017); Iiboshi et al. (2018); Plante et al. (2018); Richter and Throckmorton

(2016)). These papers use NL-PF to estimate a nonlinear model similar to ours using actual data

from the U.S. or Japan that includes the recent ZLB period. Our contribution is to determine the ac-

curacy of these nonlinear methods and show under what conditions they outperform other methods.

We find the ME variances in the particle filter play an important role in the estimation proce-

dure. Positive ME variances are necessary to prevent degeneracy—a situation when all but a few

particle weights are near zero. Canova et al. (2014) show thedownside of introducing ME is that

the posterior distributions of some parameters do not contain the truth in a Smets and Wouters

(2007) model estimated with Lin-KF. To prevent degeneracy and increase the accuracy of the par-

ticle filter, most papers set large ME variances.5 Similar to our results, Cuba-Borda et al. (2017)

show ME reduces the accuracy of the likelihood function using a calibrated model with an occa-

sionally binding borrowing constraint. Herbst and Schorfheide (2017) develop a tempered particle

filter that sequentially reduces the ME variances. They assess its accuracy against the Kalman

filter on actual U.S. data with a linear DSGE model and find it outperforms the basic, unadapted,

bootstrap particle filter. In our analysis, we set the ME variances and then compare the posterior

estimates with several alternative values using a particlefilter that adapts to the current observation.

The paper proceeds as follows.Section 2describes our data generating process, including the

true model and parameters.Section 3outlines the estimation and computational procedures.Sec-

tion 4defines our accuracy measures and reports the results of our estimation.Section 5concludes.

5Some papers set the MEstandard deviationsto20% or25% of the sample standard deviations, which is equivalent
to setting the MEvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide (2007); Doh (2011);
Herbst and Schorfheide (2016); van Binsbergen et al. (2012)). Others directly set the ME variances to10% or 25% of
the sample variances (e.g., Bocola (2016); Gust et al. (2017); Plante et al. (2018); Richter and Throckmorton (2016)).
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2 DATA GENERATING PROCESS

To test the accuracy of recent linear and nonlinear estimation methods, we generate a large number

of artificial datasets from a New Keynesian model with an occasionally binding ZLB constraint,

where the frequency and duration of ZLB events controls the degree of nonlinearity in each dataset.

2.1 MODEL A representative household chooses{ct, nt, bt}∞t=0 to maximize expected lifetime

utility, E0

∑∞
t=0 β

tat[log(ct−hcat−1)−χn1+η
t /(1+η)], whereβ is the subjective discount factor,χ

determines the steady state labor supply,1/η is the Frisch elasticity of labor supply,c is consump-

tion, ca is aggregate consumption,h is the degree of external habit persistence,n is labor hours,b

is the real value of a privately-issued1-period nominal bond,E0 is the mathematical expectation

operator conditional on information available in period0, anda is a preference shock that follows

at = 1− ρa + ρaat−1 + σaεa,t, 0 ≤ ρa < 1, εa ∼ N(0, 1). (1)

An increase inat makes households more impatient, which increases demand inperiod t. The

household’s choices are constrained byct + bt/(it(1 + s̄)) = wtnt + bt−1/πt + dt, whereπ is the

gross inflation rate,w is the real wage rate,i is the gross nominal interest rate,s̄ is the steady-state

risk premium on the nominal bond, andd is a real dividend from ownership of intermediate firms.

The first order conditions to the household’s constrained optimization problem are given by

atλt = ct − hcat−1,

wt = χatn
η
t λt,

1 = β(1 + s̄)Et[(λt/λt+1)(it/πt+1)].

The production sector consists of a continuum of monopolistically competitive intermediate

goods firms and a final goods firm. Intermediate firmf ∈ [0, 1] produces a differentiated good,

yt(f), according toyt(f) = ztnt(f), wheren(f) is the labor hired by firmf andzt = gtzt−1 is

technology, which is common across firms. Deviations from the balanced growth rate,ḡ, follow

gt = ḡ + σgεg,t, εg ∼ N(0, 1). (2)

The final goods firm purchasesyt(f) units from each intermediate firm to produce the final

good,yt ≡ [
∫ 1

0
yt(f)

(ǫ−1)/ǫdf ]ǫ/(ǫ−1), whereǫ > 1 is the elasticity of substitution. It then maxi-

mizes dividends to determine its demand function for intermediate goodf , yt(f) = (pt(f)/pt)
−ǫyt,

wherept = [
∫ 1

0
pt(f)

1−ǫdf ]1/(1−ǫ) is the price level. Following Rotemberg (1982), each intermedi-

ate firm pays a price adjustment cost,adjt(f) ≡ ϕ(pt(f)/(π̄pt−1(f))−1)2yt/2, whereϕ > 0 scales

the cost and̄π is the gross inflation rate along the balanced growth path. Given that functional form,
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firm f choosesnt(f) andpt(f) to maximize the expected discounted present value of futuredivi-

dends,Et

∑∞
k=t qt,kdk(f), subject to its production function and the demand for its product, where

qt,t ≡ 1, qt,t+1 ≡ β(λt/λt+1) is the pricing kernel between periodst andt+1, qt,k ≡
∏k>t

j=t+1 qj−1,j,

anddt(f) = pt(f)yt(f)/pt−wtnt(f)−adjt(f). In symmetric equilibrium, all firms make identical

decisions (i.e.,pt(f) = pt, nt(f) = nt, andyt(f) = yt). Therefore, the optimality conditions imply

yt = ztnt, (3)

ϕ(πt/π̄ − 1)(πt/π̄) = 1− ǫ+ ǫwt/zt + βϕEt[(λt/λt+1)(πt+1/π̄ − 1)(πt+1/π̄)(yt+1/yt)]. (4)

Whenϕ = 0,wt/zt = (ǫ−1)/ǫ, which is the inverse of a firm’s markup of price over marginalcost.

The central bank sets the gross nominal interest rate,i, according to

it = max{1, int }, (5)

int = (int−1)
ρi (̄ı(πt/π̄)

φπ(ygdpt /(ygdpt−1ḡ))
φy)1−ρi exp(σiεi,t), 0 ≤ ρi < 1, εi ∼ N(0, 1), (6)

whereygdp is real GDP (the level of output minus the resources lost due to price adjustment costs),

in is the gross notional interest rate,ı̄ andπ̄ are the steady-state or target values of the inflation and

nominal interest rates, andφπ andφy determine the central bank’s responses to deviations of infla-

tion from the target rate and deviations of real GDP growth from the balanced growth rate. When

the net notional rate is positive,it = int . When it is negative, the ZLB binds andit = 1. A more neg-

ative net notional rate means the central bank is more constrained and the model is more nonlinear.

The model does not possess a steady-state due to the unit rootin technology,zt. Therefore, we

redefine the subset of variables with a trend in terms of technology (i.e.,x̃t ≡ xt/zt). The detrended

equilibrium system includes the two stochastic processes,(1) and (2), the ZLB constraint, (5), and

ỹgt = gtỹ
gdp
t /ỹgdpt−1, (7)

atλ̃t = c̃t − hc̃t−1/gt, (8)

w̃t = χatỹ
η
t λ̃t, (9)

1 = β(1 + s̄)Et[(λ̃t/λ̃t+1)(it/(πt+1gt+1))], (10)

ϕ(πt/π̄ − 1)(πt/π̄) = 1− ǫ+ ǫw̃t + βϕEt[(λ̃t/λ̃t+1)(πt+1/π̄ − 1)(πt+1/π̄)(ỹt+1/ỹt)], (11)

c̃t = (1− ϕ(πt/π̄ − 1)2/2)ỹt ≡ ỹgdpt , (12)

int = (int−1)
ρi (̄ı(πt/π̄)

φπ(ỹgt /ḡ)
φy)1−ρi exp(σiεi,t). (13)

A competitive equilibrium consists of infinite sequences ofquantities,{c̃t, ỹt, ỹgt , λ̃t}∞t=0, prices,

{w̃t, it, i
n
t , πt}∞t=0, and exogenous variables,{at, gt}∞t=0, that satisfy the detrended equilibrium sys-

tem, given the initial conditions,{c̃−1, i
n
−1, a0, g0, εi,0}, and sequences of shocks,{εg,t, εa,t, εi,t}∞t=1.
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Subjective Discount Factor β 0.9955 Inflation Gap Response φπ 2.0
Frisch Elasticity of Labor Supply 1/η 3 Output Gap Response φy 0.5
Elasticity of Substitution ǫ 6 Habit Persistence h 0.5
Steady-State Labor Hours n̄ 0.33 Preference Shock Persistence ρa 0.8
Steady-State Risk Premium s̄ 0.0060 Notional Rate Persistence ρi 0.8
Steady-State Growth Rate ḡ 1.0034 Growth Rate Shock SD σg 0.0150
Steady-State Inflation Rate π̄ 1.0048 Preference Shock SD σa 0.0150
Rotemberg Price Adjustment Cost ϕ 100 Notional Rate Shock SD σi 0.0025

Table 1: Parameter values for the data generating process.

2.2 PARAMETER VALUES Table 1shows the true model parameters. In general, the true param-

eters were chosen so our data generating process is characteristic of actual U.S. data. The steady-

state growth rate (̄g), inflation rate (̄π), and risk-premium (̄s) are equal to the time averages of per

capita real GDP growth, the percent change in the GDP implicit price deflator, and the Baa corpo-

rate bond yield relative to the yield on the 10-Year Treasuryfrom 1992Q1-2016Q4 (100 quarters).

The subjective discount factor,β, is set to0.9955, which is the time average of the values im-

plied by the steady-state consumption Euler equation and the federal funds rate. The corresponding

annualized steady-state nominal interest rate is2.7%, which is consistent with the sample average

and current long-run estimates of the federal funds rate. The leisure preference parameter,χ, is set

so steady-state labor equals1/3 of the available time. The elasticity of substitution between inter-

mediate goods,ǫ, is set to6, which matches the estimate in Christiano et al. (2005) and corresponds

to a20% average markup of price over marginal cost. The Frisch elasticity of labor supply,1/η,

is set to3 to match the macro estimate in Peterman (2016). The other parameters are set to round

numbers that are in line with the posterior parameter estimates from similar models in the literature.

2.3 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy

function iteration algorithm described in Richter et al. (2014), which is based on the theoretical

work on monotone operators in Coleman (1991). We discretizethe endogenous state variables and

approximate the exogenous states,st, gt, andεi,t, using theN-state Markov chain in Rouwenhorst

(1995). The Rouwenhorst method is attractive because it only requires us to interpolate along the

dimensions of the endogenous state variables, which makes the solution more accurate and faster

than quadrature methods. To obtain initial conjectures forthe nonlinear policy functions, we solve

the log-linear analogue of our nonlinear model with Sims’s (2002) gensys algorithm. Then we

minimize the Euler equation errors on every node in the statespace and compute the maximum

distance between the updated policy functions and the initial conjectures. Finally, we replace the

initial conjectures with the updated policy functions and iterate until the maximum distance is

below the tolerance level. SeeAppendix Bfor a more detailed description of the solution method.

We generate data for real GDP growth, the inflation rate, and the nominal interest rate by

simulating the model using the nonlinear policy functions,so the vector of observables is given by

6
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xt = [ỹgt , πt, it]. We also save the other variables in the equilibrium system to calculate the accuracy

of the estimated states. Each simulation is initialized with a draw from the ergodic distribution and

contains104 quarters. We use the first4 quarters as a training period when filtering the data, so our

accuracy measures are based on the last100 quarters of each data set. We chose this data length

because it is similar to what most researchers use when estimating DSGE models with actual data.
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Figure 1: Probability mass functions of the number quartersthe ZLB binds in our datasets.

We create640 datasets to ensure large differences in their degree of nonlinearity.Figure 1plots

histograms of the number of quarters the ZLB binds in each dataset. Some of our results are based

on a subset of the datasets, so we provide a histogram for the first128 datasets and all640 datasets.

The fraction of quarters where the ZLB binds largely determines the degree of nonlinearity in the

data, which will affect the accuracy of each estimation method. The ZLB binds in at least1 quarter

in 574 of the640 datasets. On average, the ZLB binds in about6 of the100 quarters in each dataset.

When we condition on datasets where the ZLB binds for at least5 (10, 15, 25) quarters, the average

increases to10 (14.3, 19.2, 28) quarters. The average when the ZLB binds for at least25 quarters

equals the number of quarters that the federal funds rate wasstuck at zero over the last100 quarters.

Another important statistic is the duration of the longest ZLB event in a given dataset because it

is a key indicator of the severity of the ZLB constraint. Across all datasets, the average duration of

the longest ZLB event is about3.3 quarters. Conditional on datasets with at least5 (10, 15, 25) ZLB

quarters, that value increases to about5 (6.5, 8.5, 10.1) quarters. These values fall well short of the

28 quarter ZLB event in the U.S. from December 2008 to December 2015. However, recent esti-

mates of the notional rate indicate it was close to zero for large portions of that period, suggesting

the Fed was not constrained for all 28 quarters (Gust et al. (2017); Plante et al. (2018)). Datasets

with longer durations than we consider would increase the importance of using nonlinear methods.

7
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3 ESTIMATION METHODS

We estimate the model described insection 2.1with Bayesian methods. For each data set, we

draw parameters from a proposal distribution, solve the model conditional on that draw, filter the

data to evaluate the likelihood function, and use a random walk Metropolis-Hastings algorithm to

determine whether to accept or reject the draw. We examine the accuracy of several estimation

methods. First, we estimate the log-linear analogue of the nonlinear model, solved using Sims’s

(2002) gensys algorithm, with a Kalman filter (Lin-KF). Thismethod is by far the least computa-

tionally expensive and the most common approach in the literature for estimating DSGE models.

Second, we estimate the nonlinear model with a particle filter (NL-PF). We follow Algorithm

12 in Herbst and Schorfheide (2016) and adapt the bootstrap particle filter described in Fernández-

Villaverde and Rubio-Ramı́rez (2007) to include the information contained in the current observa-

tion, so the model better matches extreme outliers in the data. NL-PF is far better equipped to han-

dle the nonlinearities in the data, but it also imposes a muchlarger computational burden than Lin-

KF because it requires us to solve the nonlinear model for each draw from the proposal distribution.

Finally, as a potential middle-ground between Lin-KF and NL-PF, we estimate the nonlinear

model with an unscented Kalman filter (NL-UKF) following Julier and Uhlmann (1997). The

unscented Kalman filter modifies the basic Kalman filter for nonlinear models. It propagates a de-

terministic set of points through the nonlinear state equation to approximate the mean and variance

of the conditional state distribution, whereas the particle filter approximates the entire distribution

using a much larger number of points. Therefore, the unscented Kalman filter is faster than the par-

ticle filter but potentially less accurate.Appendix Cdescribes each estimation procedure in detail.

The measurement equation is independent of the solution method and given byxt = Hst + ξt,

wherest = [c̃t, ỹt, ỹ
g
t , λ̃t, w̃t, it, i

n
t , πt, at, gt]

′ is the state of the system,H is an observable selection

matrix, andξ ∼ N(0, R) is a vector of measurement errors (MEs) with covariance matrix R. The

primary difference between estimating the linear and nonlinear models is the state equation. In

the former case, it is given byst = T (ϑ)st−1 + M(ϑ)εt and in the latter case it is given byst =

Ψ(ϑ, st−1, εt), whereϑ = [β, η, ǫ, n̄, s̄, ḡ, π̄, ϕ, φπ, φy, h, ρa, ρi, σg, σa, σi]
′ is a vector of parameters,

T andM are the transition and impact matrices from the linear solution,Ψ is a vector-valued func-

tion of the nonlinear equilibrium system of equations, andεt = [εg,t, εa,t, εi,t]
′ is a vector of shocks.

Table 2displays information about the priors. The prior means are set to the true parame-

ter values to isolate the influence of other aspects of the estimation procedure, such as the solution

method and filter. Different prior means would most likely affect the accuracy of the estimation and

contaminate our results. The prior standard deviations arerelatively diffuse to give the algorithm

the flexibility to search the parameter space and consistentwith the values used in the literature.

We are free to set the ME variances to zero when we use the Kalman filter, since the number of

8
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Parameter Dist. Mean (SD) Parameter Dist. Mean (SD) Parameter Dist. Mean (SD)

ϕ Norm 100.00 h Beta 0.5000 σg IGam 0.0150
(25.000) (0.2000) (0.0150)

φπ Norm 2.0000 ρa Beta 0.8000 σa IGam 0.0150
(0.2500) (0.2000) (0.0150)

φy Norm 0.5000 ρi Beta 0.8000 σi IGam 0.0025
(0.2500) (0.2000) (0.0025)

Table 2: Prior distributions, means, and standard deviations of the estimated parameters.

observables is equal to the number of shocks. The particle filter, however, always requires positive

ME variances to avoid degeneracy. Unfortunately, there is very little consensus in the literature

on how to set these values, despite their potentially large effect on the posterior estimates. For

example, Ireland (2004) allows for cross- and auto-correlated MEs. However, he finds the real

business cycle model’s out-of-sample forecasts improve when the ME covariance matrix is diag-

onal. Guerrón-Quintana (2010) finds that introducing i.i.d. MEs and fixing their variance to10%

or 20% of the standard deviation of the data improves the empiricalfit and forecasting properties

of a medium-scale New Keynesian models. Fernández-Villaverde and Rubio-Ramı́rez (2007) es-

timate the ME variances instead of fixing them, but Doh (2011)argues that approach can lead to

complications because the ME variances are similar to bandwidths in nonparameteric estimation.

Given those findings, we decided to use a diagonal ME covariance matrix and fix the variances,

consistent with most other papers that use a particle filter (e.g., An and Schorfheide (2007); Bo-

cola (2016); Doh (2011); Gust et al. (2017); Plante et al. (2018); van Binsbergen et al. (2012)). We

consider three values for the ME variance of real GDP growth,inflation, and the nominal interest

rate:5%, 10%, and20% of their variance in the data. These percentages capture thewide range of

values in the literature. As a benchmark, we also use0% ME variances when we estimate Lin-KF.

Our estimation procedure has three stages. First, we conduct a mode search to create an initial

variance-covariance matrix for the estimated parameters.The covariance matrix is based on the

parameters corresponding to the90th percentile of the likelihoods from5,000 draws. Second, we

perform an initial run of the Metropolis-Hastings algorithm with 25,000 draws from the posterior

distribution. We burn off the first5,000 draws and use the remaining draws to update the variance-

covariance matrix from the mode search. Third, we conduct a final run of the Metropolis-Hastings

algorithm. We obtain100,000 draws from the posterior distribution and then thin by100 to limit the

effects of serial correction. Therefore, each posterior distribution contains a sample of1,000 draws.

The algorithm is programmed in Fortran using Open MPI and executed on a cluster. We run the

chains in parallel across several supercomputers. When we estimate Lin-KF, each chain uses a sin-

gle core. To estimate NL-UKF and NL-PF, each chain uses20 cores because we parallelize the non-

linear solution across the nodes in the state space. For example, if a cluster has100 cores available,

we can simultaneously run100 Lin-KF chains but only5 NL-PF chains. To increase the accuracy

9
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of the particle filter, we evaluate the likelihood function on each core. Since each NL-PF chain uses

20 cores, we obtain20 likelihoods and then determine whether to accept or reject acandidate draw

based on the median likelihood. This step reduces the variance of the likelihoods from seed effects

at no additional computational cost. The filter uses40,000 particles for our main results, but we also

examine the accuracy of NL-PF when the filter uses20,000 and80,000 particles inAppendix A.

Lin-KF (1 core) NL-UKF (20 cores) NL-PF (20 cores)

Seconds per Draw 0.0020 3.1767 8.6813
(0.0019, 0.0023) (2.3042, 5.3735) (6.4974, 13.9510)

Hours per Dataset 0.0737 114.7 313.5
(0.0670, 0.0836) (83.2, 194.0) (234.6, 503.8)

Table 3: Medians and(5%, 95%) credible sets of the estimation times.

Table 3 reports the medians and credible sets of the computing timesfor each estimation

method across128 datasets. We approximate the times by calculating the average seconds per draw

across the1,000 draws from the posterior distribution. We also provide hours per dataset, which

we extrapolated by multiplying seconds per draw by130,000 draws and dividing by3,600 seconds

per hour. We report the times for Lin-KF, NL-UKF, and NL-PF on1, 20, and20 cores, respectively.

For each method, we set the ME variances to5%. The estimation times depend on the hardware,

but there are a couple interesting points. One, with 20 cores, NL-UKF used only about3.2 seconds

per draw, which corresponds to115 hours or less than5 days per dataset. Therefore, nonlinear

estimation is possible in a reasonable amount of time on a single workstation. Two, even NL-PF

finished in less than2 weeks, which made it feasible for us to estimate a large number of datasets.

4 POSTERIORESTIMATES AND ACCURACY

4.1 ACCURACY MEASURES We measure the accuracy of each estimation method by calculat-

ing the root-mean square-error in the estimated parameters, RMSEθ, and filtered state variables,

RMSEs. In the former case, the error is the difference between a draw from the posterior dis-

tribution, θ̂d, and the true parameter,θ̃. In the latter case, the error is the difference between the

median filtered state variables based on a draw from the posterior distribution,ŝd, and the true state

variables,̃s. For parameteri, state variablej, datasetk, and methodh, the statistics are given by

RMSEθ
i,k,h = 1

θ̃i

√

1
Nd

∑Nd

d=1(θ̂d,i,k,h − θ̃i)
2, (14)

RMSEs
j,k,h =

∑T
t=1

√

1
Nd

∑Nd

d=1(ŝd,j,k,h,t − s̃j,t)
2, (15)

whereNd = 1000 is the number of posterior draws after thinning andT = 100 is the number of

quarters in each data sample.θ̂d,i,k,h ∼ p(θi|k, h) is thedth draw of parameteri from its posterior

10
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distribution, conditional on datasetk and estimation methodh. ŝd,j,k,h,t is jth median filtered state

variable based on parameter drawd, conditional on datasetk, estimation methodh, and quartert.

There are two primary benefits of theRMSE statistics. One, they assess the accuracy of the

entire distribution, rather than just the median draw. Specifically, theRMSE statistics naturally

weight the errors according to their posterior distribution, so the errors near the center of the distri-

bution have a larger weight than the errors in the tails. Two,we are able to obtain an overall measure

of accuracy across the estimated parameters becauseRMSEθ is normalized by the true parameter,

θ̃i, to remove scale differences. Similarly, we report the accuracy of the state variables by summing

the errors across all periods in our sample.Appendix Ashows how well each method is able to re-

cover the true means, standard deviations, and covariancesin each dataset. For each statistic, we re-

port quantiles across the datasets to identify differencesin the accuracy of each estimation method.

4.2 PARAMETER ESTIMATES AND MARGINAL DATA DENSITIES We begin by comparing the

posterior parameter estimates to the true values intable 4. There are three estimation methods: the

linear model estimated with a Kalman filter and0% ME variances (Lin-KF-0%), the linear model

estimated with a Kalman filter and5% ME variances (Lin-KF-5%), and the nonlinear model esti-

mated with a particle filter and5% ME variances (NL-PF-5%). We report the medians and90%

credible sets for each parameter and method after pooling the draws from all datasets and the sub-

sample of datasets where the ZLB binds for at least15 quarters. Differentiating the results based on

the frequency of ZLB events shows how the amount of nonlinearity in the data affects the estimates.

In the unconditional sample, it appears there is little benefit to using NL-PF-5%, even though

the ZLB binds on average for6 quarters. For all but two parameters, the median NL-PF-5% esti-

mates are further from the truth than the Lin-KF-0% estimates and the values are similar to the Lin-

KF-5% estimates. The benefits of NL-PF-5% are clearer when the data spends at least15 quarters

at the ZLB. While most of the NL-PF-5% estimates are just as accurate as they were in the uncon-

ditional sample, the Lin-KF-0% and Lin-KF-5% estimates are typically farther from the truth. NL-

PF-5% has the biggest advantage in estimating the persistence andstandard deviation of the prefer-

ence shock (ρa andσa) because those parameters affect the frequency and duration of ZLB events.

However, the median NL-PF-5% estimates are less accurate than the linear estimates alongsome

dimensions, in spite of the nonlinearity in the data. For example, the true price adjustment cost pa-

rameter is100, but it increases from105.8 in the unconditional sample to111.5 in the ZLB sample.

The second to last row intable 4shows the median and90% credible sets of the marginal data

densities,ℓ, across our datasets. The density is based on Geweke’s (1999) harmonic mean estima-

tor, which indicates how well each method fits the data. We adjust the values for the number of

mode search draws where the nonlinear solution method did not converge, so the prior density in-

tegrates to one. In the unconditional sample, the differences between the median data densities are

11
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Unconditional (640 datasets) ZLB quarters≥ 15 (53 datasets)
Ptr Truth Lin-KF-0% Lin-KF-5% NL-PF-5% Lin-KF-0% Lin-KF-5% NL-PF-5%

ϕ 100 98.5 105.9 105.8 103.3 110.8 111.5
(63.7, 136.7) (70.6, 144.0) (70.7, 143.8) (69.7, 139.7) (76.8, 147.4) (78.4, 148.0)

φπ 2.0 1.982 2.006 2.034 1.981 2.009 2.081
(1.584, 2.385) (1.610, 2.408) (1.647, 2.432) (1.592, 2.380) (1.621, 2.407) (1.699, 2.473)

φy 0.5 0.497 0.496 0.506 0.473 0.467 0.487
(0.227, 0.805) (0.219, 0.806) (0.230, 0.815) (0.215, 0.773) (0.202, 0.774) (0.217, 0.786)

h 0.5 0.483 0.481 0.492 0.474 0.471 0.498
(0.322, 0.625) (0.317, 0.625) (0.335, 0.630) (0.326, 0.604) (0.321, 0.602) (0.357, 0.624)

ρa 0.8 0.808 0.831 0.811 0.857 0.877 0.838
(0.649, 0.910) (0.677, 0.926) (0.668, 0.883) (0.752, 0.931) (0.778, 0.944) (0.748, 0.894)

ρi 0.8 0.801 0.821 0.816 0.818 0.840 0.819
(0.730, 0.852) (0.752, 0.872) (0.748, 0.866) (0.755, 0.862) (0.778, 0.885) (0.755, 0.867)

σg 0.015 0.0146 0.0136 0.0137 0.0145 0.0134 0.0139
(0.0112, 0.0190) (0.0104, 0.0178) (0.0105, 0.0180) (0.0115, 0.0186) (0.0106, 0.0174) (0.0109, 0.0180)

σa 0.015 0.0160 0.0158 0.0145 0.0186 0.0185 0.0157
(0.0116, 0.0223) (0.0114, 0.0224) (0.0108, 0.0191) (0.0139, 0.0262) (0.0138, 0.0265) (0.0120, 0.0202)

σi 0.0025 0.0024 0.0021 0.0022 0.0022 0.0019 0.0022
(0.0020, 0.0030) (0.0016, 0.0027) (0.0017, 0.0028) (0.0018, 0.0028) (0.0014, 0.0024) (0.0016, 0.0028)

ℓ 1280.4 1280.3 1282.2 1278.9 1278.5 1290.8
(1260.5, 1301.0) (1260.3, 1300.4) (1263.1, 1303.7) (1257.3, 1296.1) (1257.8, 1296.9) (1266.1, 1307.9)

∆ℓ − −0.085 1.882 − −0.365 10.857∗
(−3.360, 2.213) (−3.709, 11.111) (−3.532, 1.872) (3.825, 18.631)

Table 4: Posterior medians and(5%, 95%) credible sets of the estimated parameters and marginal datadensities. An
asterisk indicates the differences in the marginal data densities (values different from 0) are significant at a10% level.

small across the three methods. When we condition on datasets where the ZLB binds for at least15

quarters, the nonlinear model fits the data better, while thelinear models fit the data slightly worse.

To get an indication of whether the differences in empiricalfit are statistically significant, we

compute the distribution of the differences between an alternative method and Lin-KF-0% with

each dataset. The difference between any two median densityvalues,∆ℓ, is known as the Bayes

factor (in logs). A value greater than4.6 (log 102) is viewed as decisive evidence in favor of the

alternative method. The median and90% credible sets of the differences are shown in the last

row. Positive values indicate an alternative method fits thedata better than Lin-KF-0%. If the

credible set does not include zero, it indicates that the differences in the marginal data densities

are statistically significant at the10% level. The results confirm our previous findings. NL-PF-5%

does not provide a statistically significant advantage across all datasets. However, when restricting

attention to datasets with at least15 ZLB quarters, the differences are significant and decisive.

These results demonstrate that the data must contain a reasonable amount of nonlinearity for the

nonlinear model to have a statistically significant advantage over the linear model in fitting the data.

4.3 PARAMETER ACCURACY Table 5shows how well each estimation method is able to recover

the true parameters. For each parameter, dataset, and method, we first calculateRMSEθ as well

as the sum of the errors across the parameters (bottom row, denoted byΣ). We then calculate the

ratio of the errors with each alternative method relative tothe error with Lin-KF-0% and report
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the median and90% credible sets of the ratios across the datasets. A value less(greater) than one

indicates an alternative method is more (less) accurate than Lin-KF-0%. If the credible set does not

include one, it indicates that the differences in accuracy are statistically significant at the10% level.

Unconditional (640 datasets) ZLB quarters≥ 15 (53 datasets) ZLB quarters≥ 25 (8 datasets)
Ptr Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5%

ϕ 1.058 1.042 1.137 1.111 1.134∗ 1.176∗
(0.834, 1.246) (0.830, 1.261) (0.861, 1.257) (0.825, 1.342) (1.022, 1.357) (1.016, 1.387)

φπ 0.993 0.991 0.999 1.032 1.014 1.107
(0.923, 1.069) (0.856, 1.127) (0.926, 1.080) (0.774, 1.322) (0.972, 1.060) (0.857, 1.379)

φy 1.014 1.013 1.018 1.021 1.022 0.965
(0.947, 1.096) (0.882, 1.166) (0.952, 1.126) (0.763, 1.252) (0.969, 1.127) (0.731, 1.237)

h 1.021 0.971 1.027 0.953 1.003 0.893
(0.941, 1.108) (0.817, 1.179) (0.935, 1.127) (0.669, 1.240) (0.941, 1.158) (0.664, 1.263)

ρa 1.046 0.827 1.158∗ 0.774∗ 1.135∗ 0.659∗
(0.777, 1.300) (0.626, 1.075) (1.030, 1.355) (0.504, 0.996) (1.058, 1.291) (0.502, 0.884)

ρi 1.162 1.061 1.353 1.026 1.339∗ 0.922
(0.708, 1.612) (0.709, 1.471) (0.910, 1.945) (0.745, 1.490) (1.173, 1.566) (0.633, 1.155)

σg 1.147 1.104 1.203 1.097 1.120 1.048
(0.748, 1.403) (0.712, 1.394) (0.823, 1.382) (0.858, 1.347) (0.891, 1.373) (0.955, 1.332)

σa 1.010 0.771 0.999 0.508∗ 0.953 0.399∗
(0.845, 1.268) (0.399, 1.160) (0.865, 1.267) (0.271, 0.681) (0.856, 1.196) (0.260, 0.598)

σi 1.645 1.392 1.797∗ 1.223 1.537∗ 0.925
(0.696, 2.226) (0.726, 1.907) (1.022, 2.721) (0.824, 1.854) (1.325, 2.103) (0.639, 1.223)

Σ 1.069 0.987 1.123∗ 0.923 1.102∗ 0.825∗
(0.958, 1.189) (0.864, 1.101) (1.042, 1.205) (0.734, 1.071) (1.042, 1.167) (0.720, 0.954)

Table 5: Median and(5%, 95%) credible sets of the root-mean square-error in the estimated parameters relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (values different from 1) are significant at a10% level.

Across all datasets, the nonlinear model has a slight advantage over Lin-KF-0% along a few di-

mensions, including the sum of the errors across all parameters. However, none of the differences

are statistically significant, even though the ZLB binds on average for6 quarters. When we condi-

tion on datasets where the ZLB binds for at least15 quarters, the results change. Positive ME vari-

ances in the Kalman filter lead to even less accurate estimates than in the unconditional sample, in-

cluding two parameters (σi andρa) that are significantly different from Lin-KF-0%. In contrast, the

nonlinear model becomes relatively more accurate along most dimensions. The differences are sta-

tistically significant for the two parameters (ρa andσa) with the largest impact on whether the ZLB

binds each quarter. Interestingly, the sum of the errors is not statistically different from Lin-KF-0%.

When turning to the small subset of datasets where the ZLB binds for at least25 quarters, the re-

sults are even more stark. The total error as well as four of the nine parameters with Lin-KF-5% are

statistically less accurate than Lin-KF-0%. The opposite is true of the nonlinear model. The total

error, as well as theRMSE in two of the nine parameters, is statistically less than Lin-KF-0%. Two

key takeaways emerge from these results: (1) Positive ME variances in the observation equation of

the filter hurt the accuracy of the estimation; (2) the data must be highly nonlinear for the particle

filter to overcome positive ME variances and become statistically more accurate than Lin-KF-0%.
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h\ME 5% 10% 20% 5% 10% 20%

Unconditional (128 datasets) ZLB quarters≥ 5 (64 datasets)

Lin-KF 1.070 1.161∗ 1.304∗ 1.099 1.195∗ 1.318∗
(0.965, 1.189) (1.023, 1.319) (1.133, 1.490) (0.996, 1.191) (1.049, 1.344) (1.187, 1.544)

NL-UKF 0.995 1.077 1.227∗ 0.980 1.062 1.203∗
(0.870, 1.132) (0.937, 1.252) (1.051, 1.450) (0.867, 1.148) (0.937, 1.272) (1.038, 1.480)

NL-PF 0.994 1.071 1.208∗ 0.971 1.045 1.185∗
(0.857, 1.091) (0.942, 1.233) (1.056, 1.432) (0.842, 1.097) (0.946, 1.241) (1.038, 1.480)

ZLB quarters≥ 10 (31 datasets) ZLB quarters≥ 15 (13 datasets)

Lin-KF 1.090 1.180∗ 1.318∗ 1.090∗ 1.199∗ 1.335∗
(0.992, 1.187) (1.077, 1.342) (1.125, 1.428) (1.042, 1.194) (1.083, 1.338) (1.132, 1.405)

NL-UKF 0.948 1.033 1.167∗ 0.939 1.026 1.132∗
(0.800, 1.144) (0.904, 1.235) (1.035, 1.408) (0.796, 1.174) (0.862, 1.203) (1.036, 1.285)

NL-PF 0.941 1.013 1.145 0.905 0.974 1.106
(0.785, 1.063) (0.882, 1.198) (0.970, 1.358) (0.735, 1.031) (0.792, 1.126) (0.921, 1.265)

(a) Median and(5%, 95%) credible sets of the root-mean square-error in the estimated parameters relative to Lin-KF-0%.

h\ME 5% 10% 20% 5% 10% 20%

Unconditional (128 datasets) ZLB quarters≥ 5 (64 datasets)

Lin-KF 0.082 −2.486 −10.376 −0.099 −2.840 −11.756
(−4.97, 3.83) (−11.20, 4.50) (−26.11, 3.32) (−5.04, 2.37) (−11.24, 3.39) (−26.25, 3.62)

NL-UKF −0.098 −1.998 −10.077 1.829 −1.801 −10.903
(−9.14, 14.33) (−15.05, 7.01) (−27.08, 3.41) (−9.43, 14.54) (−15.52, 7.08) (−27.39, 3.58)

NL-PF 1.763 −1.077 −9.404 4.930 −0.260 −9.920
(−6.58, 22.52) (−12.89, 11.98) (−25.75, 4.95) (−6.31, 23.16) (−13.25, 12.52) (−27.39, 3.58)

ZLB quarters≥ 10 (31 datasets) ZLB quarters≥ 15 (13 datasets)

Lin-PF −0.304 −3.096 −11.852 −0.283 −3.011 −11.763∗
(−4.10, 2.37) (−11.00, 3.39) (−26.25, 1.49) (−2.92, 1.71) (−9.03, 1.04) (−23.57,−3.39)

NL-UKF 3.084 −1.301 −10.954 4.427 −0.928 −13.669∗
(−3.59, 14.54) (−9.32, 7.08) (−24.11, 2.36) (−0.64, 14.54) (−5.41, 7.08) (−21.68,−2.04)

NL-PF 7.855 1.502 −9.810 9.638∗ 1.855 −10.257∗
(−0.46, 23.16) (−8.43, 12.52) (−23.62, 2.83) (6.59, 23.16) (−2.25, 12.52) (−20.44,−0.56)

(b) Median and(5%, 95%) credible sets of the marginal data densities relative to Lin-KF-0%.

Table 6: Comparison of the root-mean square-error (top panel) and marginal data densities (bottom panel) with an
expanded set of specifications. An asterisk indicates the differences from Lin-KF-0% are significant at a10% level.

4.4 ADDITIONAL SPECIFICATIONS Table 6examines a much broader set of specifications. The

table shows results for the nonlinear model estimated with the unscented Kalman filter (NL-UKF)

and for each specification with10% and20% ME variances. We also condition on datasets with

at least5 quarters and at least10 quarters at the ZLB to provide more variation in the degree of

nonlinearity in the data. To accommodate the additional specifications, we lowered the number of

datasets from640 to 128, though most of the previous results are robust to the smaller sample size.

The top panel shows the parameter accuracy for each method relative to Lin-KF-0%. The val-

ues are based on the total error across the parameters so theyare analogous to the values in the

bottom row oftable 5. There are several key findings. One, the ME variances have a large impact

on accuracy. Regardless of the estimation method and dataset, lower ME variances lead to more ac-
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curate estimates. As the ME variances increase, the filter ismore likely to treat extreme realizations

in the data as ME, even though outliers are the most informative about the true parameter values.

Setting the ME variances to0% treats all tail realizations as informative variations in the data.

Two, for a given value of the ME variances, NL-PF is more accurate than the other methods

and the differences in accuracy become larger as the fraction of time spent at the ZLB increases.

Three, NL-UKF is consistently more accurate than Lin-KF andthe accuracy increases when

the data is more nonlinear, similar to our results with NL-PF. NL-UKF is always less accurate

than NL-PF, but takes less than half as much time to estimate NL-PF and it is nearly as accurate.

Therefore, it may be reasonable to prefer NL-UKF for some models, even though it is less accurate.

Four, if the ME variances are too large, Lin-KF-0% is more accurate than both NL-UKF and

NL-PF, even if the data is highly nonlinear. For example, when the ZLB binds for at least15

quarters and the ME variances are set to5%, NL-PF is considerably more accurate than Lin-KF-

0%, whereas the opposite result occurs with20% ME variances. When using all of the datasets,

NL-PF-20% is statistically less accurate than Lin-KF-0%. These results are important, since it is

common in the literature to specify large ME variances to increase the accuracy of the particle filter.

The values in the bottom panel are the marginal data densities for the same specifications in the

top panel, relative to Lin-KF-0%. These values are analogous to those in the bottom row oftable 4.

There are several similarities with the accuracy results. One, the data density always increases

as the ME variances decline. Two, NL-PF typically has the highest data density and the advan-

tage over the Lin-KF-0% density increases with the number of ZLB quarters in the data. The one

counterexample is when the ME variances are equal to20%. Given a sufficiently high ME vari-

ance, any improvement in the data density from using a nonlinear model instead of a linear model is

completely washed away, even when the data spends many quarters at the ZLB. This result demon-

strates that the presence of ME variance significantly biases the estimates. Any research that com-

pares the estimates from linear and nonlinear models could erroneously conclude there is either no

or a very small benefit to using the nonlinear model simply because the ME variances are too large.

4.5 ACCURACY OF THE LATENT STATES Table 7shows how well each method is able to

recover the latent preference shock state across time. For each dataset, we calculateRMSEs,

which sums the errors across time based on the median filteredstates. Just like in previous tables,

we calculate the ratio of the errors with each alternative method relative to the error with Lin-KF-

0% and report the median and90% credible sets of the ratios across the datasets. We focus on the

preference shock state because it has the largest impact on whether the ZLB binds in each period. It

is also the only state variable that is persistent across time and not linked to one of the observables.

Similar to the results for the parameters, the accuracy of the filtered states improves as the ME

variances decrease, regardless of the estimation method. As long as the ME variances are suffi-
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h\ME 5% 10% 20% 5% 10% 20%

Unconditional (128 datasets) ZLB quarters≥ 5 (64 datasets)

Lin-KF 1.139 1.268∗ 1.402∗ 1.190∗ 1.310∗ 1.408∗
(0.99, 1.64) (1.04, 1.84) (1.15, 2.25) (1.02, 1.59) (1.10, 1.96) (1.16, 2.29)

NL-UKF 0.720∗ 0.840 1.016 0.702∗ 0.828 0.963
(0.53, 0.96) (0.62, 1.10) (0.71, 1.47) (0.46, 0.91) (0.58, 1.04) (0.66, 1.37)

NL-PF 0.705∗ 0.826 1.008 0.674∗ 0.789 0.928
(0.52, 0.88) (0.59, 1.09) (0.68, 1.39) (0.44, 0.87) (0.55, 1.04) (0.66, 1.37)

ZLB quarters≥ 10 (31 datasets) ZLB quarters≥ 15 (13 datasets)

Lin-KF 1.261∗ 1.411∗ 1.445∗ 1.296∗ 1.536∗ 1.585∗
(1.04, 1.63) (1.12, 2.02) (1.19, 2.31) (1.05, 1.68) (1.06, 2.07) (1.08, 2.30)

NL-UKF 0.692∗ 0.789 0.895 0.685∗ 0.689 0.878
(0.43, 0.88) (0.46, 1.02) (0.63, 1.32) (0.34, 0.96) (0.41, 1.03) (0.52, 1.28)

NL-PF 0.615∗ 0.714∗ 0.883 0.568∗ 0.681∗ 0.833
(0.34, 0.79) (0.41, 0.95) (0.55, 1.29) (0.31, 0.78) (0.37, 0.98) (0.43, 1.24)

Table 7: Median and(5%, 95%) credible sets of the root-mean square-error in the preference shock state (a) relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (values different from 1) are significant at a10% level.

ciently low (e.g.,5% of the variance in the data), both NL-UKF and NL-PF provide statistically

more accurate estimates of the preference shock state across all datasets. When we condition on

datasets that spend a larger number of quarters at the ZLB, the differences in accuracy between the

linear and nonlinear estimation methods become even larger, particularly with NL-PF. The non-

linear model provides significantly more accurate estimates than the linear model for two reasons.

One, the nonlinear model accounts for the expectation of entering, staying at, and exiting the ZLB.

Two, a lower preference shock state generates simultaneousdeclines in inflation and real GDP

growth that make the ZLB more likely to bind and for a longer duration, which is exacerbated by

the fact that it is highly persistent. Therefore, historical estimates of the state variables are the most

accurate with a method that sets small ME variances and uses both a nonlinear solution and filter.

4.6 IMPULSE RESPONSES To show the economic implications of the parameter bias and solu-

tion method, we compare generalized impulse response functions (GIRFs) to the true GIRFs across

our estimation methods. The advantage of using GIRFs over traditional impulse response functions

is that we can more accurately compare the effects of shocks in different states of the economy. To

compute GIRFs, we follow the procedure in Koop et al. (1996).Given an initial state, we first cal-

culate the mean of10,000 model simulations using random shocks in every quarter (i.e., the base-

line path). We then calculate a second mean from another set of 10,000 simulations, but this time

the shock in the first quarter (e.g., a preference shock) is replaced with the desired shock size. The

GIRF is defined as the difference between the two mean paths. SeeAppendix Dfor further details.

Figure 2shows the responses of real GDP growth to a negative2 standard deviation preference

shock. A preference shock is a proxy for a change in demand because it determines households’

degree of patience. Negative shocks cause households to postpone consumption to future periods,
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Figure 2: Generalized impulse responses of real GDP growth (in percentage point differences) to a−2 standard
deviation preference shock. Shaded regions are the(5%, 95%) credible sets of the estimated responses across the53
datasets that spend at least15 quarters at the ZLB. The GIRFs are conditional on the posterior means from Lin-KF-0%
(left column), NL-PF-5% (middle column), and Lin-PF-0% solved with the nonlinear solution method (right column).

which reduces current real GDP growth. We focus on this shock, rather than the technology growth

or monetary policy shocks, because it is the primary mechanism for generating ZLB events in the

model. GIRFs are calculated with the true nonlinear model and the estimated linear and nonlinear

models, which are parameterized at the posterior mean estimates for each of the53 datasets that

spend at least15 quarters at the ZLB. We use that subset since those datasets look more like recent

U.S. data and better highlight the potential shortfalls of linear estimation methods. The Lin-KF-0%

estimates are shown in the left column and the NL-PF-5% estimates are provided in the middle col-

umn. We also show what happens if estimates are obtained withLin-KF-0% and then the responses

are computed with the nonlinear solution method (right column), as some other papers have done.

The true response (solid line) is compared to the estimated median response (dashed line). The

90% credible sets (shaded regions) show variation in the estimated GIRFs across the datasets. In

the top row, the GIRFs are initialized at the true stochasticsteady state and in the bottom row they

are initialized in a ZLB state. The ZLB state is the average state in quarters when the notional rate

is between−0.6% and−0.4% in a long simulation of the true model. In the ZLB state, the average

notional rate is−0.5%, which equals the 2008Q4 estimate for the U.S. from Plante etal. (2018).

In steady state (top panel), while not significant, the median Lin-KF-0% response on impact is
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bigger than the truth since the estimates must compensate for the absence of the ZLB in the so-

lution. However, the median NL-PF-5% response closely follows the truth. If researchers instead

computed GIRFs with the nonlinear solution using estimatesfrom Lin-KF-0%, they would signifi-

cantly overpredict the effect of the shock on impact and be worse off than using the linear solution.

The effect of the shock is independent of the state of the economy in a linear model, so Lin-

KF-0% predicts the same1% decline in real GDP growth in the ZLB state (bottom panel) as it does

in steady state. However, the true response of real GDP growth is much larger (−1.4%) because

the ZLB amplifies the effect of the shock in the data. When the nominal interest rate is far from

the ZLB, the drop in real GDP growth is damped by the monetary policy response. When the ZLB

binds, the central bank cannot respond by lowering its policy rate, which leads to the larger decline

in real GDP growth. Therefore, the true response is far outside the Lin-KF-0% credible set. In con-

trast, the median NL-PF-5% response coincides with the true response of real GDP growthin the

ZLB state. If estimates are obtained with Lin-KF-0% and the GIRFs are computed with the nonlin-

ear solution, the median impact (−1.8%) is significantly different from the truth. Researchers are

equally worse off using the linear and nonlinear solution with the Lin-KF-0% parameter estimates.

The key takeaway from these simulations is that the errors inestimating the parameters and

latent states, as shown in previous tables, will generate significant errors in the model’s predictions.

5 CONCLUSION

This paper examines the accuracy of linear and nonlinear estimation methods for DSGE models

using artificial datasets generated from a nonlinear New Keynesian model with an occasionally

binding ZLB constraint. We find the accuracy of each method crucially depends on the size of the

ME variances in the observation equation and the number of quarters the ZLB binds in the data.

As long as the ME variances are not too large (e.g., less than5% of the variance in the data) and

there is a sufficient presence of the ZLB in the data (more than15% of quarters in the sample), the

nonlinear model estimated with a particle filter is statistically more accurate than the linear model

estimated with a Kalman filter. These findings are particularly important in light of the recent ZLB

experience in the U.S., Japan, and the Euro Area and the increased likelihood of future ZLB events.

Over the last decade, researchers have used a variety of posterior samplers, solution methods,

and filters for policy analysis. Our framework provides a unified way to assess the relative perfor-

mance of different methods applied to our datasets. For example, a promising alternative to the ran-

dom walk Metropolis-Hastings (RWMH) algorithm is the sequential Monte Carlo (SMC) method

first applied to a DSGE model by Creal (2007). Herbst and Schorfheide (2014) find SMC is better

suited for multimodal and irregular posterior distributions than RWMH, and parallelization helps

reduce the numerical cost of SMC even though it performs significantly more evaluations of the

likelihood function than a typical RWMH algorithm. A popular alternative to our global solution
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method is to use the Smolyak method to discretize the state space, low-order Chebyshev polynomi-

als to approximate the policy functions, and fixed-point iteration (e.g., Fernández-Villaverde et al.

(2015); Gust et al. (2017); Judd et al. (2014)). Our results can also serve as a benchmark for contin-

ued improvements to the particle filter, such as the temperedparticle filter proposed by Herbst and

Schorfheide (2017). Finally, while the UKF is a significant improvement over the Kalman filter, the

central difference Kalman filter has the potential to further improve accuracy (Andreasen (2013)).

Aside from studying our model with an occasionally binding ZLB constraint, researchers could

compare estimation methods applied to artificial datasets generated by models with other poten-

tially important nonlinearities, such as asymmetric adjustment costs, firm default, borrowing con-

straints, search frictions, and stochastic volatility. Another line of research could examine the role

of model misspecification. For example, one could generate datasets with a global solution to a

medium-scale model and then ask how well a small-scale modelcan recover key parameters. We

believe this line of work will uncover key nonlinear features and deliver methodological advances.
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A A DDITIONAL RESULTS

Table 8shows the accuracy of several unconditional moments in the data. We obtain1,000 simu-

lations of100 quarters for each estimation method, posterior draw, and dataset. We then take the

median of each moment across the1,000 simulations and compute theRMSE across the posterior

draws. Finally, we normalize theRMSE for a given moment by the error with Lin-KF-0% and re-

port the median and(5%, 95%) credible sets across the datasets. Similar to previous tables, a num-

ber less than one indicates an alternative method predicts amoment closer to the truth than the one

predicted by Lin-KF-0%. Credible sets that include one imply statistically insignificant differences.

Unconditional (640 datasets) ZLB quarters≥ 15 (53 datasets) ZLB quarters≥ 25 (8 datasets)
Moment Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5%

mean(̃cg) 0.942∗ 0.749 0.940∗ 0.740 0.943 0.831
(0.90, 0.99) (0.57, 1.38) (0.90, 0.98) (0.56, 1.48) (0.90, 1.01) (0.53, 1.93)

mean(π) 0.998 0.504∗ 0.999 0.504∗ 0.997 0.506∗
(0.99, 1.01) (0.42, 0.68) (0.99, 1.01) (0.42, 0.79) (0.99, 1.00) (0.46, 0.89)

mean(i) 0.998 0.382∗ 0.998 0.383∗ 0.995 0.392∗
(0.99, 1.01) (0.31, 0.57) (0.99, 1.01) (0.32, 0.56) (0.99, 1.01) (0.35, 0.57)

std(̃cg) 1.197 1.169 0.984 1.059 1.004 1.062
(0.71, 1.49) (0.69, 1.50) (0.68, 1.52) (0.62, 1.60) (0.65, 1.44) (0.46, 1.45)

std(π) 1.048 1.066 0.787 0.690 0.752∗ 0.686∗
(0.71, 1.38) (0.56, 1.50) (0.65, 1.18) (0.44, 1.49) (0.65, 0.80) (0.39, 0.79)

std(i) 1.008 0.883 0.763 0.394∗ 0.702∗ 0.330∗
(0.66, 1.41) (0.30, 1.42) (0.56, 1.11) (0.23, 0.82) (0.56, 0.79) (0.19, 0.42)

corr(̃cgt ,c̃gt−1
) 1.040 0.992 1.044 0.953 1.013 0.968

(0.96, 1.13) (0.83, 1.20) (0.96, 1.14) (0.71, 1.22) (0.94, 1.20) (0.65, 1.39)

corr(πt,πt−1) 1.003 0.846 1.127∗ 0.833 1.131∗ 0.749
(0.77, 1.22) (0.68, 1.03) (1.01, 1.28) (0.59, 1.04) (1.05, 1.19) (0.60, 1.01)

corr(it,it−1) 1.094 0.834 1.231∗ 0.714 1.154∗ 0.603∗
(0.76, 1.41) (0.64, 1.12) (1.07, 1.54) (0.49, 1.11) (1.04, 1.35) (0.45, 0.75)

corr(̃cg,i) 1.123 1.133 1.169 1.166 1.122∗ 1.241
(0.88, 1.40) (0.87, 1.46) (0.98, 1.37) (0.89, 1.57) (1.02, 1.35) (0.87, 1.66)

corr(̃cg,π) 1.079 1.086 1.110 1.164 1.111 1.176
(0.89, 1.29) (0.90, 1.37) (0.88, 1.32) (0.99, 1.54) (0.89, 1.27) (0.88, 1.66)

corr(i,π) 1.028 0.952 1.035 0.825 1.013 0.694
(0.92, 1.17) (0.65, 1.30) (0.92, 1.20) (0.52, 1.10) (0.93, 1.15) (0.55, 1.01)

Table 8: Medians and(5%, 95%) credible sets of the root-mean square-error of the unconditional moments relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (values different from 1) are significant at a10% level.

Unconditionally, NL-PF-5% predicts means that are closer to the truth than the estimates with

the linear models, since the nonlinear solution accounts for differences between the determinis-

tic and stochastic steady states. In datasets with many ZLB quarters, NL-PF-5% is also closer

to the truth for other moments, such as some of the standard deviations, serial-correlations, and

cross-correlations. For example, when conditioning on datasets with at least25 ZLB quarters, NL-

PF-5% is significantly closer to the truth than Lin-KF-0% for mean(π), mean(i), std(π), std(i),

andcorr(it, it−1) because it accounts for changes in volatility and persistence induced by the ZLB.

Table 9shows how the number of particles in NL-PF-5% affects the posterior estimates. We

report the medians and(5%, 95%) credible sets of the marginal data densities and estimated param-
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Unconditional (128 datasets) ZLB quarters≥ 15 (13 datasets)
Ptr NL-PF-5%-20k NL-PF-5%-40k NL-PF-5%-80k NL-PF-5%-20k NL-PF-5%-40k NL-PF-5%-80k

ϕ 106.3 106.1 106.2 113.2 113.1 113.5
(71.8, 144.3) (71.9, 144.4) (71.9, 144.3) (78.3, 151.2) (78.6, 150.6) (79.5, 151.5)

φπ 2.037 2.037 2.037 2.056 2.052 2.053
(1.655, 2.432) (1.655, 2.430) (1.658, 2.429) (1.668, 2.444) (1.663, 2.448) (1.674, 2.452)

φy 0.513 0.511 0.512 0.511 0.510 0.514
(0.239, 0.823) (0.239, 0.822) (0.238, 0.824) (0.251, 0.812) (0.250, 0.811) (0.254, 0.811)

h 0.487 0.487 0.487 0.484 0.485 0.484
(0.334, 0.622) (0.334, 0.621) (0.334, 0.622) (0.352, 0.614) (0.351, 0.614) (0.354, 0.616)

ρa 0.814 0.813 0.814 0.850 0.849 0.849
(0.679, 0.885) (0.677, 0.885) (0.678, 0.885) (0.761, 0.898) (0.762, 0.898) (0.764, 0.898)

ρi 0.815 0.815 0.815 0.812 0.811 0.813
(0.749, 0.866) (0.749, 0.866) (0.749, 0.866) (0.752, 0.866) (0.750, 0.866) (0.751, 0.867)

σg 0.0136 0.0136 0.0136 0.0137 0.0137 0.0137
(0.0104, 0.0178) (0.0104, 0.0178) (0.0104, 0.0178) (0.0110, 0.0183) (0.0109, 0.0183) (0.0109, 0.0184)

σa 0.0143 0.0143 0.0143 0.0147 0.0147 0.0147
(0.0109, 0.0185) (0.0109, 0.0185) (0.0109, 0.0185) (0.0111, 0.0193) (0.0111, 0.0192) (0.0111, 0.0192)

σi 0.0022 0.0022 0.0022 0.0023 0.0023 0.0023
(0.0018, 0.0028) (0.0018, 0.0028) (0.0018, 0.0028) (0.0017, 0.0029) (0.0017, 0.0029) (0.0017, 0.0029)

ℓ 1283.2 1283.2 1283.1 1292.3 1292.3 1292.3
(1266.6, 1303.0) (1266.7, 1302.9) (1266.7, 1303.0) (1269.7, 1307.0) (1269.7, 1307.0) (1269.7, 1307.1)

Table 9: Posterior medians and(5%, 95%) credible sets of the estimated parameters and marginal datadensities.

eters with20,000, 40,000 (baseline specification), and80,000 particles. We find almost no variation

in the medians or credible sets, even when conditioning on datasets that spend at least15 quarters

at the ZLB. Although these results clearly depend on the model specification and the number of ob-

servables, they indicate that it is safe to use a smaller number of particles than what is traditionally

used in the literature. Adapting the particle filter to the current observation and performing multiple

runs of the filter for each draw most likely improved accuracyand played a major role in our results.

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system fromsection 2.1as

E[f(st+1, st, εt+1)|zt, ϑ] = 0,

wheref is a vector-valued function,st ≡ [c̃t, ỹ
g
t , ỹt, λ̃t, wt, it, i

n
t , πt, at, gt]

′ is a vector of variables,

εt ≡ [εg,t, εa,t, εi,t]
′ is a vector of shocks,zt ≡ [gt, at, εi,t, i

n
t−1, c̃t−1]

′ is a vector of state variables,

andϑ ≡ [β, η, ǫ, n̄, s̄, ḡ, π̄, ϕ, φπ, φy, h, ρa, ρi, σg, σa, σi]
′ is a vector of all the model parameters.

There are many ways to discretize the exogenous state variables,gt, at, andεi,t. We use the

Markov chain in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other

methods for approximating autoregressive processes. The bounds onint−1 andct−1 are respectively

set to±2.5% and±4% of the deterministic steady state to contain the filtered state variables based

on posterior draws. We discretize the state variables into(8, 12, 8, 7, 7) evenly-spaced points. In
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total, there areD = 37,632 nodes in the state space, and the realization ofzt on noded is denoted

zt(d). The Rouwenhorst method provides integration nodes,[gt+1(m), at+1(m), σi,t+1(m)], with

weights,φ(m), for m ∈ {1, . . . ,M}. Since the exogenous variables evolve according to a Markov

chain, the number of future realizations is the same as the state variables,(8, 12, 8), orM = 768.

For the policy functions, we approximatec̃t(zt) andπgap
t (zt) ≡ πt(zt)/π̄. Our choice of policy

functions, while not unique, simplifies solving for the other variables in the nonlinear system of

equations givenzt. The following steps outline our global policy function iteration algorithm:

1. Using Sims’s (2002)gensys algorithm to solve the log-linear model without the ZLB im-

posed. Then map that solution onto the discretized state space to initializec̃0 andπgap
0 .

2. On iterationj ∈ {1, . . . , Niter} and for eachd ∈ {1, . . . , D}, use Chris Sims’scsolve

to find c̃t andπgap
t to satisfyE[f(·)|zt(d), ϑ] ≈ 0, whereNiter is the number of iterations.

Guessing̃ct = c̃j−1(d) andπgap
t = π

gap
j−1(d), approximateE[f(·)|zt(d), ϑ] as follows:

(a) Solve for{ỹt, int , it, λ̃t, w̃t} given c̃t, π
gap
t , andzt(d).

(b) Linearly interpolate the policy functions,c̃j−1 andπgap
j−1, at the updated state variables,

zt+1(m), to obtainc̃t+1(m) andπgap
t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{c̃t+1(m), πgap
t+1(m)}Mm=1, solve for the other elements ofst+1(m) and compute:

E[f(st+1, st(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)f(st+1(m), st(d), εt+1(m)).

Whencsolve converges, set̃cj(d) = c̃t andπgap
j (d) = πgap

t .

3. Repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|c̃j − c̃j−1|, |πgap
j − π

gap
j−1|}.

When that occurs, the algorithm has converged to an approximate nonlinear solution.

C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estimate our model with artificial data

of 100 quarters. To measure how well the model fits the data, we use the adapted particle filter

described in Algorithm 12 in Herbst and Schorfheide (2016),which modifies the basic filter in

Stewart and McCarty (1992) and Gordon et al. (1993) to betteraccount for the outliers in the data.

C.1 METROPOLIS-HASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, and bounds of each element of the vector

of Ne estimated parameters,θ ≡ [ϕ, φπ, φy, h, ρa, ρi, σg, σa, σi]
′.
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2. The artificial data consists of real GDP growth, the inflation rate, and the nominal interest

rate,xt ≡ [ỹgt , πt, it]
′, whereNx = 3 is the number of observable variables.

3. Find the posterior mode to initialize the preliminary Metropolis-Hastings step.

(a) For alli ∈ {1, . . . , Nm}, whereNm = 5,000, apply the following steps:

i. Draw θ̂i from the joint prior distribution and calculate its densityvalue:

log ℓpriori =
∑Ne

j=1 log p(θ̂i,j|µj, σ
2
j ),

wherep is the prior density function of parameterj with meanµj and varianceσ2
j .

ii. Given θ̂i, solve the model according toAppendix B. If the algorithm converges,

then compute the stochastic steady state, otherwise repeatstep 3(a)i and redraŵθi.

iii. If the stochastic steady state exists, then use the particle filter in section C.2to ob-

tain the log-likelihood value for the model,log ℓmodel
i , otherwise repeat step 3(a)i.

iv. The posterior log-likelihood islog ℓposti = log ℓpriori + log ℓmodel
i

(b) Calculatemax(log ℓpost1 , . . . , log ℓpostNm
) and find the corresponding parameter vector,θ̂0.

4. Approximate the covariance matrix for the joint posterior distribution of the parameters,Σ,

which is used to obtain candidate draws during the preliminary Metropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. Stack theNm,sub = (1 − p)Nm

draws in aNm,sub ×Ne matrix,Θ̂, and definẽΘ = Θ̂−∑Nm,sub

i=1 θ̂i,j/Nm,sub.

(b) CalculateΣ = Θ̃′Θ̃/Nm,sub and verify it is positive definite, otherwise repeat step 3.

5. Perform an initial run of the random walk Metropolis-Hastings algorithm.

(a) For alli ∈ {0, . . . , Nd}, whereNd = 25,000, perform the following steps:

i. Draw a candidate vector of parameters,θ̂candi , where

θ̂i
cand ∼







N(θ̂0, c0Σ) for i = 0,

N(θ̂i−1, cΣ) for i > 0.

We setc0 = 0 and tunec to target an overall acceptance rate of roughly30%.

ii. Calculate the prior density value,log ℓpriori , of the candidate draw,̂θcandi as in 3(a)i.

iii. Given θ̂candi , solve the model according toAppendix B. If the algorithm converges,

compute the stochastic steady state, otherwise repeat 5(a)i and draw a neŵθcandi .
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iv. If the stochastic steady state exists, then use the particle filter in section C.2to

obtain the log-likelihood value for the model,log ℓmodel
i , otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(θ̂i, log ℓi) =



















(θ̂candi , log ℓcandi ) if i = 0,

(θ̂candi , log ℓcandi ) if min(1, ℓcandi /ℓi−1) > û,

(θ̂i−1, log ℓi−1) otherwise,

where û is a draw from a uniform distribution,U[0, 1], and the posterior log-

likelihood associated with the candidate draw islog ℓcandi = log ℓpriori + log ℓmodel
i .

(b) Burn the firstNb = 5000 draws and use the remaining sample to calculate the mean

draw, θ̄preMH =
∑NpreMH

i=Nb+1 θ̂i, and the covariance matrix,ΣpreMH . We follow step 4 to

calculateΣpreMH but use allNd −Nb draws instead of just the upperpth percentile.

6. Following the procedure in step 5, perform a final run of theMetropolis-Hastings algorithm,

whereθ̂0 = θ̄preMH andΣ = ΣpreMH. We setNd = 100,000 and keep every100th draw.

The remaining1,000 draws form a representative sample from the joint posteriordensity.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition ofst from Appendix Bis referred

to as the state vector, which should not be confused with the state variables for the nonlinear model.

1. Initialize the filter by drawing{εt,p}0t=−24 for all p ∈ {0, . . . , Np} and simulating the model,

whereNp is the number of particles. We initialize the filter with the final state vector,s0,p,

which is approximately a draw from the model’s ergodic distribution. We setNp = 40,000.

2. Fort ∈ {1, . . . , T}, sequentially filter the data with the linear or nonlinear model as follows:

(a) Forp ∈ {1, . . . , Np}, draw shocks from an adapted distribution,εt,p ∼ N(ε̄t, I), where

ε̄t maximizesp(ξt|st)p(st|s̄t−1) ands̄t−1 =
∑Np

p=1 st−1,p/Np is the mean state vector.

i. Use the model solution to update the state vector,st, givens̄t−1 and a guess for̄εt.

Definesht ≡ Hst, whereH selects the observable variables from the state vector.

ii. Calculate the measurement error,ξt = s
h
t −xt, which is assumed to be multivariate

normally distributed,p(ξt|st) = (2π)−3/2|R|−1/2 exp(−ξ′tR
−1ξt/2), whereR ≡

diag(σ2
me,ỹg , σ

2
me,π, σ

2
me,i) is the measurement error covariance matrix.

iii. The probability of observing the current state,st, givens̄t−1, is given by

p(st|s̄t−1) = (2π)−3/2 exp(−ε̄′tε̄t/2).
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iv. Maximizep(ξt|st)p(st|s̄t−1) ∝ exp(−ξ′tR
−1ξt/2) exp(−ε̄′tε̄t/2) by solving for the

optimalε̄t. We converted MATLAB’sfminsearch routine to Fortran.

(b) Use the model solution to predict the state vector,st,p, givenst−1,p andεt,p.

(c) Calculateξt,p = s
h
t,p − xt. The unnormalized weight on particlep is given by

ωt,p =
p(ξt|st,p)p(st,p|st−1,p)

g(st,p|st−1,p,xt)
∝

exp(−ξ′t,pR
−1ξt,p/2) exp(−ε′t,pεt,p/2)

exp(−(εt,p − ε̄t)′(εt,p − ε̄t)/2)
.

Without adaptation,̄εt = 0 andωt,p = p(ξt|st,p), as in a basic bootstrap particle filter.

The time-t contribution to the log-likelihood isℓmodel
t =

∑Np

p=1 ωt,p/Np.

(d) Normalize the weights,Wt,p = ωt,p/
∑Np

p=1 ωt,p. Then use systematic resampling with

replacement from the swarm of particles as described in Kitagawa (1996) to get a set

of particles that represents the filter distribution and reshuffle{st,p}Np

p=1 accordingly.

3. The log-likelihood islog ℓmodel =
∑T

t=1 log ℓ
model
t .

C.3 UNSCENTED KALMAN FILTER A well-known alternative to the Unscented Kalman Filter

(UKF) is the Extended Kalman Filter (EKF). We focus on UKF instead of EKF because EKF does

not perform well when the state equation is poorly approximated with linearization, which occurs

in our model when the notional rate is negative. EKF relies ona linear approximation of the state

equation to predict the covariance of the state vector, whereas UKF nonlinearly propagates a deter-

ministic set of points, more accurately approximating the mean and covariance of the state vector.

1. Initialize the state vector,s0, at the stochastic steady state. Initialize the state covariance

matrix, P0, so that it solves the Lyapunov equationP0 − T ′P0T = MM ′, whereT is the

state transition matrix andM is the shock impact matrix of the solution to the linear model.

2. Fort ∈ {1, . . . , T}, sequentially filter the data with the nonlinear model as follows:

(a) Augment the estimated state vector and covariance matrix.

i. Augment the state vector to include the expected value of the shocks and measure-

ment error,sat−1 ≡ [s′t−1, E(ε′t), E(ξ′t)]
′ = [s′t−1, 0, 0]

′, which hasNs
a elements.

ii. Similarly, augment the state covariance matrix,P , with the shocks covariance ma-

trix, I (the identity matrix), and the measurement error covariance matrix,R,

P a
t−1 ≡







Pt−1 0 0

0 I 0

0 0 R






.
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iii. Create a distribution of augmented state vectors with2Ns
a + 1 sigma points,

s
a
t−1,i =



















s
a
t−1 for i = 0,

s
a
t−1 −

√
3Li for i = 1, . . . , Ns

a ,

s
a
t−1 +

√
3Li−N

s
a for i = Ns

a + 1, . . . , 2Ns
a ,

whereLi is ith column column of the lower triangular Cholesky factorL of P a
t−1,

such thatP a
t−1 = LL′. The respective weights are

ωi =







1−Ns
a/3 for i = 0,

1/6 for i = 1, . . . , 2Ns
a .

(b) For i = 0, . . . , 2Ns
a , first use the nonlinear solution to update the state vector,st|t−1,i

givensat−1,i, and then compute the predicted state vector and covariancematrix,

st|t−1 =

2N
s
a

∑

i=0

ωist|t−1,i, Pt|t−1 =

2N
s
a

∑

i=0

ωi(st|t−1,i − st|t−1)(st|t−1,i − st|t−1)
′.

This prediction step mirrors the basic Kalman filter, exceptthe predictions are weighted

averages across the sigma points based on the augmented state vector and covariance

matrix. Given the predictions, calculate the Kalman gain,Kt = Pt|t−1H
′S−1

t , where

St =

2N
s
a

∑

i=0

ωi(s
h
t|t−1,i − s

h
t|t−1)(s

h
t|t−1,i − s

h
t|t−1)

′,

s
h
t|t−1,i = Hst|t−1,i, sht|t−1 = Hst|t−1, and the measurement error,ξt = xt − s

h
t|t−1.

(c) Update the state vector and covariance matrix estimates,

st = st|t−1 +Ktξt,

Pt = Pt|t−1 −KtStK
′
t.

This update step is the same as the basic Kalman filter. The time-t contribution to the

log-likelihood islog ℓmodel
t = −(log |St|+ ξ′tS

−1
t ξt +Nx log 2π)/2.

3. The log-likelihood is thenlog ℓmodel =
∑T

t=1 log ℓ
model
t .

29



ATKINSON, RICHTER & T HROCKMORTON: ACCURACY OF L INEAR AND NONLINEAR ESTIMATION

D GENERALIZED IMPULSE RESPONSEFUNCTIONS

The general procedure for calculating GIRFs is described inKoop et al. (1996). The GIRFs are

based on the average path from repeated model simulations and generated with the following steps:

1. Initialize each simulation with the desired state vector, s0 (e.g., the stochastic steady state).

To calculate the stochastic steady state, we simulate the model without shocks. The stochas-

tic steady state is defined as the state vector where|st−st−1| converges to zero, which differs

from the deterministic steady state since the policy functions embed higher order moments.

2. Draw random growth rate, preference, and monetary policyshocks,{εt}Nt=0, for each simu-

lation, whereN is the simulation length. From the initial state vector,s0, simulateNGIRF

equilibrium paths,{xj
t(s0)}Nt=0, wherej ∈ {1, 2, . . . , NGIRF} andNGIRF = 10,000.

3. Using the same draws of shocks from step 2, replace the preference shock in period one

with a 2 standard deviation shock (i.e., setεa,1 = 2σa). Then simulate the model with these

alternate sequences of shocks to obtainNGIRF equilibrium paths,{xj
t(s0, εa,1)}Nt=0.

4. Average across theNGIRF simulations from steps 2 and 3 to obtain average paths given by

x̄t(s0) = N−1
GIRF

∑NGIRF

j=1 x
j
t (s0), x̄t(s0, εa,1) = N−1

GIRF

∑NGIRF

j=1 x
j
t(s0, εa,1).

5. The difference between the two average paths is a GIRF.
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