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ABSTRACT

This paper evaluates the accuracy of linear and nonlinganason methods for dynamic
stochastic general equilibrium models. We generate a kagwle of artificial datasets using a
global solution to a nonlinear New Keynesian model with acas@nally binding zero lower
bound (ZLB) constraint on the nominal interest rate. Fohedataset, we estimate the nonlin-
ear model—solved globally, accounting for the ZLB—and thedr analogue of the nonlinear
model—solved locally, ignoring the ZLB—with a Metropoli$astings algorithm where the
likelihood function is evaluated with a Kalman filter, unsted Kalman filter, or particle filter.
In datasets that resemble the U.S. experience, the nontimadel estimated with a particle fil-
ter is more accurate and has a higher marginal data denaityttie linear model estimated with
a Kalman filter, as long as the measurement error variandég iparticle filter are not too big.
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1 INTRODUCTION

Using Bayesian methods to estimate linear dynamic stoclgesteral equilibrium (DSGE) models
has become common practice in the literature over the lageads. Many central banks also use
these models for forecasting and counterfactual simulatidhe estimation procedure sequentially
draws parameters from a proposal distribution, solves theéaingiven that draw, and then evalu-
ates the likelihood function. With linearity and normallgtlibuted shocks, the model solves in a
fraction of a second and it is easy to evaluate the likelifoodtion exactly with a Kalman filte.
The financial crisis and subsequent recession compelleg oeriral banks to take unprece-
dented action to reduce their policy rate to its zero lowemut(ZLB), calling into question linear
estimation methods. The ZLB constraint presents a chal&rgempirical work because it creates
a kink in the central bank’s policy rule. The constraint higags existed, but when policy rates
were well above zero and the likelihood of hitting the coaistirwas negligible, it was reasonable to
ignore it. The extended period of near zero policy rates thestast decade and the increased like-
lihood of future ZLB events due to estimates of a lower ndt@i@ has forced researchers to think
more carefully about the ZLB constraint and its implicasda.g., Laubach and Williams (2016)).
Recent empirical work uses a variety of methods to deal vaghnonlinearity imposed by the
ZLB constraint® Several papers exclude the post-crisis period from théimasion, skirting the
nonlinearity and justifying the continued use of linear hoets (e.g., Aruoba et al. (2018); Chris-
tiano et al. (2015); Cuba-Borda (2014); Del Negro et al. 80Gali et al. (2012)). While thatis a
reasonable approach, at some pointitis necessary to m@atgthe more recent data and its effects
on the model parameters. Another approach is to ignore th&i@int and estimate a linear model
with all available data (e.g., Ireland (2011); Suh and Wa{kR@16)). That approach maintains the
simplicity of the estimation procedure but potentially yices inaccurate estimates of the param-
eters and model predictions. Recognizing this concernyadeent papers have estimated a fully
nonlinear model with an occasionally binding ZLB consttdeng., Gust et al. (2017); Plante et al.
(2018))2 This method provides the most comprehensive treatmeneafdhstraint, but it requires
numerically intensive nonlinear solution and estimateehiniques. Specifically, it uses projection
methods to solve the model and a particle filter to evaluadikielihood function with each draw.
This paper takes an important first step toward comparing¢haracy of linear and nonlinear
estimation methods when the ZLB is present in the data. Weifgpe true parameterization of
a nonlinear New Keynesian model with an occasionally bigdihB constraint, solve the model

1Schorfheide (2000) and Otrok (2001) were the first to useetimesthods to generate draws from the posterior
distribution of a linear DSGE model. See An and Schorfhe2®®7) and Herbst and Schorfheide (2016) for examples.

2See Fernandez-Villaverde et al. (2016) for a detaileddgwrof the various solution and estimation methods.

3Several earlier papers study the effects of the ZLB comdthaicalibrated nonlinear models using solution meth-
ods similar to the one for NL-PF (Fernandez-Villaverdele(2015); Gavin et al. (2015); Keen et al. (2017); Mertens
and Ravn (2014); Nakata (2017); Nakov (2008); Ngo (2014hRir and Throckmorton (2015); Wolman (2005)).



globally with a projection method, and generate a large $awipartificial datasets. The datasets
include the most common observables—real GDP growth, iofladand the nominal interest rate—
as well as the true latent state variables and structurakshé&or each dataset, we estimate the non-
linear model—solved globally, accounting for the ZLB—ahe tinear analogue of the nonlinear
model—solved locally, ignoring the ZLB—with a random-walletropolis-Hastings algorithm.
We combine the solution method with three different filtersvtaluate the likelihood: the linear
model estimated with a Kalman filter (Lin-KF), the nonlineaodel estimated with an unscented
Kalman filter (NL-UKF), and the nonlinear model estimatedha particle filter (NL-PF). Lin-KF
serves as our benchmark since it is the most common methbd lité¢rature and the least compu-
tationally expensive. Given the posterior distributions, calculate the marginal data density for
each method to measure empirical fit and then determine hdveaeh method is able to recover
the true parameters and latent state variables. We alsomsdow the measurement error (ME)
variances in the observation equation of the filter and theber of quarters that the ZLB binds
in the data affects the accuracy of each method. We meastuesay with the root-mean square-
error (RMSE) of the parameter draws and filtered state vimsaklative to the true values. For each
method and dataset, we calculate the RMSE statistic and-¢ipent quantiles across the datasets.
The federal funds rate was stuck at its ZLB from December 20@ecember 2015, a8 of
the last100 quarters. In datasets that resemble the U.S. experienc®M\las a clear statistical
advantage over Lin-KF, both in terms of empirical fit and aecy. The differences in accuracy
are large enough that impulse responses with the Lin-KFpeter estimates are significantly dif-
ferent from the true responses when the ZLB binds. Using timimear solution with the Lin-KF
estimates often makes the impulse responses even moraiateccOur results, however, require
small ME variances in the particle filter (e.§% of the variance in the data). Given high enough
variances (e.g20% of the variance in the data), the benefits of using NL-PF owedF with no
ME completely disappear. We conclude that the data mustdygynnonlinear for NL-PF to over-
come positive ME variances and have a statistically sigamtiadvantage over Lin-KF without ME.
One of the most important aspects of our results is that theesas a benchmark for alternative
solution and estimation methods. Comparisons of solutiethods are typically based on speed
tests and Euler equation errors, which are sometimes rdisigdecause they are conditional on
specific discretization and numerical integration mettfodtso, while there is a lot of theoretical
work on developing new estimation techniques, there isdesgparison in terms of accuracy, es-
pecially with nonlinear methods. With our datasets, theiesxy and economic implications of any
new solution method or aspect of the estimation proceduge @new filter or an alternative to the
random walk Metropolis-Hastings algorithm) is easily cargdl against the methods examined

4Aruoba et al. (2006) compares various nonlinear solutiothods in terms of speed and accuracy using a neo-
classical growth model. Richter et al. (2014) draw compassusing a New Keynesian model with a ZLB constraint.



in this paper. With this mode of comparison, a method is tbgfliéh the same empirical strategy
applied to most DSGE models. If it turns out that a method mmatationally more efficient and
more accurate than the ones we examine, it should becomtatiaasd for future empirical work.
Our paper is similar in spirit to Fernandez-Villaverde dwbio-Ramirez (2005) who find a
neoclassical growth model estimated with NL-PF predictsn@iots closer to the true moments
than the estimates from Lin-KF using two artificial datasetsvell as actual data. The primary
nonlinearity in their model is high risk aversion, whereasstudy the implications of the ZLB con-
straint. The paper closest to ours is Hirose and Inoue (201®y generate artificial datasets from
a linear model where the ZLB constraint is imposed usinggrgted policy shocks and then apply
Lin-KF to estimate the model without the constraint. Theyfihe estimated parameters, impulse
response functions, and structural shocks become lessaée@s the frequency and duration of
ZLB events increase in the data. In contrast, we generadeudatg a global solution to a nonlinear
model and consider alternative estimation methods thamhosknear filters and global solutions.
We also build on recent empirical work that analyzes the icagibns of the ZLB constraint
(e.g., Gust et al. (2017); liboshi et al. (2018); Plante et(2018); Richter and Throckmorton
(2016)). These papers use NL-PF to estimate a nonlinearlmmdiar to ours using actual data
from the U.S. or Japan that includes the recent ZLB period.contribution is to determine the ac-
curacy of these nonlinear methods and show under what conslihey outperform other methods.
We find the ME variances in the particle filter play an impottate in the estimation proce-
dure. Positive ME variances are necessary to prevent deyggrea situation when all but a few
particle weights are near zero. Canova et al. (2014) showdthaside of introducing ME is that
the posterior distributions of some parameters do not conkee truth in a Smets and Wouters
(2007) model estimated with Lin-KF. To prevent degenerauwyiacrease the accuracy of the par-
ticle filter, most papers set large ME varianéeSimilar to our results, Cuba-Borda et al. (2017)
show ME reduces the accuracy of the likelihood function gisircalibrated model with an occa-
sionally binding borrowing constraint. Herbst and Scheidle (2017) develop a tempered particle
filter that sequentially reduces the ME variances. Theysas#s accuracy against the Kalman
filter on actual U.S. data with a linear DSGE model and find tpetforms the basic, unadapted,
bootstrap particle filter. In our analysis, we set the ME ataces and then compare the posterior
estimates with several alternative values using a paftitdethat adapts to the current observation.
The paper proceeds as followSection 2describes our data generating process, including the
true model and parameterSection 3outlines the estimation and computational proceduses-
tion 4 defines our accuracy measures and reports the results aftouagon.Section Sconcludes.

SSome papers set the MiEandard deviationt 20% or 25% of the sample standard deviations, which is equivalent
to setting the MBvariancesto 4% or 6.25% of the sample variances (e.g., An and Schorfheide (2007); R611);
Herbst and Schorfheide (2016); van Binsbergen et al. (30@hers directly set the ME varianceslt@f or 25% of
the sample variances (e.g., Bocola (2016); Gust et al. (2®1ante et al. (2018); Richter and Throckmorton (2016)).



2 DATA GENERATING PROCESS

To test the accuracy of recent linear and nonlinear estimatiethods, we generate a large number
of artificial datasets from a New Keynesian model with an emrzally binding ZLB constraint,
where the frequency and duration of ZLB events controls dggek of nonlinearity in each dataset.

2.1 MoODEL A representative household choodes n., b; };°, to maximize expected lifetime
utility, Eo 352, Blar[log(c; —het,) —xn, 7/ (14-n)], wheres is the subjective discount factay,
determines the steady state labor supply, is the Frisch elasticity of labor supplyjs consump-
tion, ¢* is aggregate consumptioh,s the degree of external habit persistences labor hours)

is the real value of a privately-issuéeperiod nominal bondFE is the mathematical expectation
operator conditional on information available in perigdinda is a preference shock that follows

ar =1 —po+ pati—1 + 04€ar, 0 < p, <1, g, ~N(0,1). (1)

An increase ini; makes households more impatient, which increases demaperiod¢. The
household’s choices are constrainedcby- b, /(i,(1 + §)) = winy + by_1/m + di, wherer is the
gross inflation ratey is the real wage raté,is the gross nominal interest ratas the steady-state
risk premium on the nominal bond, adds a real dividend from ownership of intermediate firms.
The first order conditions to the household’s constraindtropation problem are given by

a
Clt)\t = Ct — th_l,
— n
wy = XN A,

1= B(1+ 8)E[(Ae/ A1) (ie/Tes1)]-

The production sector consists of a continuum of monopolily competitive intermediate
goods firms and a final goods firm. Intermediate fifne [0, 1] produces a differentiated good,
yi(f), according toy,(f) = zmn(f), wheren(f) is the labor hired by firmy andz, = ¢,z is
technology, which is common across firms. Deviations froelthlanced growth rate, follow

Gt =G+ 0444, €4 ~ N(0,1). (2)

The final goods firm purchasesg(f) units from each intermediate firm to produce the final
good,y;, = [fol y,(f) e V/eqf]e/(«<=1) wheree > 1 is the elasticity of substitution. It then maxi-
mizes dividends to determine its demand function for intstiate good', v (f) = (p:(f)/pe) Y1
wherep, = [fol pi(f)'<df]*/(~9) is the price level. Following Rotemberg (1982), each intedin
ate firm pays a price adjustment castj;(f) = ¢(p:(f)/(7pi—1(f))—1)?y; /2, wherep > 0 scales
the cost and is the gross inflation rate along the balanced growth patver@hat functional form,
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firm f chooses:(f) andp,(f) to maximize the expected discounted present value of futivre
dends.E: Y -, q.1di(f), subject to its production function and the demand for itglpct, where
Gt = 1, geiv1 = B(Ae/Aey1) is the pricing kernel between periotdandt+1, ¢, = Hfjttﬂ Q-1
andd,(f) = p(/)ye(f) /o —wini(f) —adj(f). In symmetric equilibrium, all firms make identical

decisions (i.ep:(f) = pi, e (f) = n4, andy, (f) = ). Therefore, the optimality conditions imply

Yt = Z¢Ny, (3)
(/T = 1)(m/7) =1 — e+ ewy/ 2+ BoE[( A/ i) (o1 /T = 1) (M1 /T) (Werr /ye)]- - (4)

Wheny = 0, w;/z = (e—1)/¢, which is the inverse of a firm’s markup of price over margist.
The central bank sets the gross nominal interest iaéecording to

iy = max{1,i/}, (5)
i = (7)) (@m/7)% (g1 (y159)) %) 7 exp(oieis), 0 < pi < 1, & ~N(0, 1), (6)

wherey9?% is real GDP (the level of output minus the resources lost dyeite adjustment costs),
1" is the gross notional interest ratggndr are the steady-state or target values of the inflation and
nominal interest rates, ang and¢, determine the central bank’s responses to deviations afinfl
tion from the target rate and deviations of real GDP growtimfthe balanced growth rate. When
the net notional rate is positivg,= i;'. Whenitis negative, the ZLB binds and= 1. A more neg-
ative net notional rate means the central bank is more @nstt and the model is more nonlinear.
The model does not possess a steady-state due to the unit technologyy;. Therefore, we
redefine the subset of variables with a trend in terms of telclyy (i.e.,z; = x;/z). The detrended
equilibrium system includes the two stochastic procegdg¢and @), the ZLB constraint,), and

g = 9" 152, (7)

ah = & — héy_1 /g, (8)

Wy = Xy S‘ta )

1= B(1 4 8)E[(Ae/ M) it/ (Te419041))), (10)

p(m /7 — 1)(me/7) = 1 — € + €y + BB (M/Aesr) (T /7 — 1) (Tesr /T) (e /3)], (A1)
& = (1—o(m/7 = 1)°/2)i = 5™, (12)

iy = (i) (W /) (57 /)%) 77 exp(oies ). (13)

A competitive equilibrium consists of infinite sequencesyafntities,{¢;, 4, 77, S\t};'io, prices,
{ay, 1y, 17, m }52,4, @aNd exogenous variablesy,, g, 152, that satisfy the detrended equilibrium sys-
tem, given the initial conditiong¢_;, i™ 4, ao, 9o, €i,0}, and sequences of shocKs, ;, e,.¢, i1 }52 ;-
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Subjective Discount Factor B 0.9955 Inflation Gap Response O 2.0
/

Frisch Elasticity of Labor Supply 1/ 3 Output Gap Response Dy 0.5
Elasticity of Substitution € 6 Habit Persistence h 0.5
Steady-State Labor Hours n 0.33 Preference Shock Persistence p, 0.8
Steady-State Risk Premium 3 0.0060 Notional Rate Persistence Pi 0.8
Steady-State Growth Rate g 1.0034 Growth Rate Shock SD Og 0.0150
Steady-State Inflation Rate T 1.0048 Preference Shock SD Oq 0.0150
Rotemberg Price Adjustment Cost ¢ 100 Notional Rate Shock SD o; 0.0025

Table 1: Parameter values for the data generating process.

2.2 PARAMETER VALUES Table 1shows the true model parameters. In general, the true param-
eters were chosen so our data generating process is chistactd actual U.S. data. The steady-
state growth rateg), inflation rate {), and risk-premiumg) are equal to the time averages of per
capita real GDP growth, the percent change in the GDP implicie deflator, and the Baa corpo-
rate bond yield relative to the yield on the 10-Year Treadtogn 1992Q1-2016Q4100 quarters).
The subjective discount facta?, is set t00.9955, which is the time average of the values im-
plied by the steady-state consumption Euler equation anfittteral funds rate. The corresponding
annualized steady-state nominal interest rafe7%, which is consistent with the sample average
and current long-run estimates of the federal funds rate.l@isure preference parameterjs set
so steady-state labor equal& of the available time. The elasticity of substitution begwenter-
mediate goods, is set tas, which matches the estimate in Christiano et al. (2005) anegsponds
to a20% average markup of price over marginal cost. The Frischielgsof labor supply,1 /7,
is set to3 to match the macro estimate in Peterman (2016). The othanyeers are set to round
numbers that are in line with the posterior parameter eséigfeom similar models in the literature.

2.3 SOLUTION AND SIMULATION METHODS We solve the nonlinear model with the policy
function iteration algorithm described in Richter et al012), which is based on the theoretical
work on monotone operators in Coleman (1991). We discrétieendogenous state variables and
approximate the exogenous statesg;, ande; , using theN-state Markov chain in Rouwenhorst
(1995). The Rouwenhorst method is attractive becauseytregjuires us to interpolate along the
dimensions of the endogenous state variables, which mhkesotution more accurate and faster
than quadrature methods. To obtain initial conjectureshifemonlinear policy functions, we solve
the log-linear analogue of our nonlinear model with Sim&802) gensys algorithm. Then we
minimize the Euler equation errors on every node in the Spéee and compute the maximum
distance between the updated policy functions and thelmitinjectures. Finally, we replace the
initial conjectures with the updated policy functions atetate until the maximum distance is
below the tolerance level. Ség@pendix Bfor a more detailed description of the solution method.
We generate data for real GDP growth, the inflation rate, &ednominal interest rate by
simulating the model using the nonlinear policy functiststhe vector of observables is given by
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x; = (97,7, 1;]. We also save the other variables in the equilibrium systeralculate the accuracy
of the estimated states. Each simulation is initializedhaitiraw from the ergodic distribution and
containsl04 quarters. We use the firgtguarters as a training period when filtering the data, so our
accuracy measures are based on thelld&uarters of each data set. We chose this data length
because it is similar to what most researchers use whenastgrDSGE models with actual data.

640 Data Sets

128 Data Sets
16 : ; :

ZLB Quarters= 0 = 66

ZLB Quarters> 5 = 346
ZLB Quarters> 10 = 147 | T
ZLB Quarters> 15 = 53
ZLB Quarters> 20 = 16
ZLB Quarters> 25 =8

ZLB Quarters=0 =16 | 60
ZLB Quarters> 5 = 64
ZLB Quarters> 10 = 31| {1 90
ZLB Quarters> 15 =13 | |
ZLB Quarters> 20 =5
ZLB Quarters> 25 = 2

14

12

40

30

6
20
4
2 10
0 0
0 5 10 15 20 25 0 5 10 15 20 25 30 35
ZLB Binds (Quarters) ZLB Binds (Quarters)

Figure 1: Probability mass functions of the number quattezsZL B binds in our datasets.

We creat&40 datasets to ensure large differences in their degree oingamity. Figure 1plots
histograms of the number of quarters the ZLB binds in eachsdtt Some of our results are based
on a subset of the datasets, so we provide a histogram forshe2ft datasets and abld0 datasets.
The fraction of quarters where the ZLB binds largely detessithe degree of nonlinearity in the
data, which will affect the accuracy of each estimation mdtfiThe ZLB binds in at leastquarter
in 574 of the640 datasets. On average, the ZLB binds in alsooitthe 100 quarters in each dataset.
When we condition on datasets where the ZLB binds for at e@ist, 15, 25) quarters, the average
increases ta0 (14.3, 19.2, 28) quarters. The average when the ZLB binds for at [@asjuarters
equals the number of quarters that the federal funds ratstwelk at zero over the lasb0 quarters.

Another important statistic is the duration of the longdsB£vent in a given dataset because it
is a key indicator of the severity of the ZLB constraint. Ass@ll datasets, the average duration of
the longest ZLB event is aboB13 quarters. Conditional on datasets with at |é530, 15, 25) ZLB
quarters, that value increases to albio(.5, 8.5, 10.1) quarters. These values fall well short of the
28 quarter ZLB event in the U.S. from December 2008 to Decer@d&5. However, recent esti-
mates of the notional rate indicate it was close to zero fgelgortions of that period, suggesting
the Fed was not constrained for all 28 quarters (Gust et @L7R Plante et al. (2018)). Datasets
with longer durations than we consider would increase thgoitance of using nonlinear methods.
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3 ESTIMATION METHODS

We estimate the model describedsaction 2.1with Bayesian methods. For each data set, we
draw parameters from a proposal distribution, solve theehodnditional on that draw, filter the
data to evaluate the likelihood function, and use a randotk Matropolis-Hastings algorithm to
determine whether to accept or reject the draw. We exammadhuracy of several estimation
methods. First, we estimate the log-linear analogue of tmimear model, solved using Sims’s
(2002) gensys algorithm, with a Kalman filter (Lin-KF). Thmeethod is by far the least computa-
tionally expensive and the most common approach in thetitee for estimating DSGE models.
Second, we estimate the nonlinear model with a particle {iNe-PF). We follow Algorithm
12 in Herbst and Schorfheide (2016) and adapt the bootsamigle filter described in Fernandez-
Villaverde and Rubio-Ramirez (2007) to include the infation contained in the current observa-
tion, so the model better matches extreme outliers in thee ddt-PF is far better equipped to han-
dle the nonlinearities in the data, but it also imposes a nfargfer computational burden than Lin-
KF because it requires us to solve the nonlinear model fdr desow from the proposal distribution.
Finally, as a potential middle-ground between Lin-KF and-RIE, we estimate the nonlinear
model with an unscented Kalman filter (NL-UKF) following ikrl and Uhlmann (1997). The
unscented Kalman filter modifies the basic Kalman filter fanlimear models. It propagates a de-
terministic set of points through the nonlinear state equdb approximate the mean and variance
of the conditional state distribution, whereas the pagtitter approximates the entire distribution
using a much larger number of points. Therefore, the unsddflman filter is faster than the par-
ticle filter but potentially less accurat@ppendix Cdescribes each estimation procedure in detail.
The measurement equation is independent of the solutiomadetnd given bk, = Hs; + &,
wheres, = (¢, U, 7, e, Wy, iy, ir, s, ag, g¢)' 1S the state of the systerfy, is an observable selection
matrix, and{ ~ N(0, R) is a vector of measurement errors (MEs) with covarianceimatr The
primary difference between estimating the linear and maali models is the state equation. In
the former case, it is given by = 7'(9)s;—1 + M (9)e; and in the latter case it is given By =
U(,8_1,6¢), Wwhered = [3,1,€,1,8, G, 7,0, Or, by, R, pa, pi, 04, 0a, 0;]' iS @avector of parameters,
T andM are the transition and impact matrices from the linear smtut is a vector-valued func-
tion of the nonlinear equilibrium system of equations, angt [, ;. 4., €;+)' IS @ vector of shocks.
Table 2displays information about the priors. The prior means atets the true parame-
ter values to isolate the influence of other aspects of thmagbn procedure, such as the solution
method and filter. Different prior means would most likelieaf the accuracy of the estimation and
contaminate our results. The prior standard deviationsedagively diffuse to give the algorithm
the flexibility to search the parameter space and consigtiémthe values used in the literature.
We are free to set the ME variances to zero when we use the IKdllea, since the number of



Parameter Dist. Mean (SD) Parameter  Dist. Mean (SD) Paemet Dist. Mean (SD)

® Norm 100.00 h Beta 0.5000 og IGam 0.0150
(25.000) (0.2000) (0.0150)
On Norm 2.0000 Da Beta 0.8000 Oa IGam 0.0150
(0.2500) (0.2000) (0.0150)
Oy Norm 0.5000 Di Beta 0.8000 o; IGam 0.0025
(0.2500) (0.2000) (0.0025)

Table 2: Prior distributions, means, and standard deviatid the estimated parameters.

observables is equal to the number of shocks. The partitde tilowever, always requires positive
ME variances to avoid degeneracy. Unfortunately, thereery little consensus in the literature
on how to set these values, despite their potentially laffgeteon the posterior estimates. For
example, Ireland (2004) allows for cross- and auto-coteeldMEs. However, he finds the real
business cycle model’s out-of-sample forecasts improvenvthe ME covariance matrix is diag-
onal. Guerron-Quintana (2010) finds that introducingli.MEs and fixing their variance tt)%
or 20% of the standard deviation of the data improves the empificahd forecasting properties
of a medium-scale New Keynesian models. Fernandez-¥ittler and Rubio-Ramirez (2007) es-
timate the ME variances instead of fixing them, but Doh (2Grjues that approach can lead to
complications because the ME variances are similar to batidsvin nonparameteric estimation.
Given those findings, we decided to use a diagonal ME covegiaratrix and fix the variances,
consistent with most other papers that use a patrticle fiitgy.,(An and Schorfheide (2007); Bo-
cola (2016); Doh (2011); Gust et al. (2017); Plante et al180van Binsbergen et al. (2012)). We
consider three values for the ME variance of real GDP groimttgtion, and the nominal interest
rate: 5%, 10%, and20% of their variance in the data. These percentages captureidesrange of
values in the literature. As a benchmark, we also0J$eME variances when we estimate Lin-KF.
Our estimation procedure has three stages. First, we coaduode search to create an initial
variance-covariance matrix for the estimated paramefEng covariance matrix is based on the
parameters corresponding to t@&h percentile of the likelihoods from,000 draws. Second, we
perform an initial run of the Metropolis-Hastings algontiwith 25,000 draws from the posterior
distribution. We burn off the firsi,000 draws and use the remaining draws to update the variance-
covariance matrix from the mode search. Third, we conducia fun of the Metropolis-Hastings
algorithm. We obtairi 00,000 draws from the posterior distribution and then thinlbg to limit the
effects of serial correction. Therefore, each posteristritiution contains a sample 600 draws.
The algorithm is programmed in Fortran using Open MPI andabesl on a cluster. We run the
chains in parallel across several supercomputers. Whestmeate Lin-KF, each chain uses a sin-
gle core. To estimate NL-UKF and NL-PF, each chain @8esres because we parallelize the non-
linear solution across the nodes in the state space. Forgeaifra cluster has00 cores available,
we can simultaneously rur)0 Lin-KF chains but onlys NL-PF chains. To increase the accuracy



of the particle filter, we evaluate the likelihood functiom@ach core. Since each NL-PF chain uses
20 cores, we obtaif0 likelihoods and then determine whether to accept or rejeandidate draw
based on the median likelihood. This step reduces the \@&iafthe likelihoods from seed effects
at no additional computational cost. The filter u$e$900 particles for our main results, but we also
examine the accuracy of NL-PF when the filter us@900 and80,000 particles inAppendix A

Lin-KF (1 core) NL-UKF (20 cores) NL-PF (20 cores)
Seconds per Draw 0.0020 3.1767 8.6813

(0.0019, 0.0023) (2.3042, 5.3735) (6.4974, 13.9510)
Hours per Dataset 0.0737 114.7 313.5

(0.0670, 0.0836) (83.2,194.0) (234.6,503.8)

Table 3: Medians anb%, 95%) credible sets of the estimation times.

Table 3reports the medians and credible sets of the computing tforesach estimation
method acros$28 datasets. We approximate the times by calculating the geexaconds per draw
across thd 000 draws from the posterior distribution. We also provide Isoper dataset, which
we extrapolated by multiplying seconds per drawiB§,000 draws and dividing by,600 seconds
per hour. We report the times for Lin-KF, NL-UKF, and NL-PF 20, and20 cores, respectively.
For each method, we set the ME variance5§% The estimation times depend on the hardware,
but there are a couple interesting points. One, with 20 ¢cdtedJKF used only abous.2 seconds
per draw, which corresponds 1d5 hours or less thaf days per dataset. Therefore, nonlinear
estimation is possible in a reasonable amount of time onglesworkstation. Two, even NL-PF
finished in less thad weeks, which made it feasible for us to estimate a large nuwitdatasets.

4 POSTERIORESTIMATES AND ACCURACY

4.1 ACCURACY MEASURES We measure the accuracy of each estimation method by cilcula
ing the root-mean square-error in the estimated parametarss £, and filtered state variables,
RMSE?®. In the former case, the error is the difference between & ¢h@m the posterior dis-
tribution, 8,4, and the true parametet, In the latter case, the error is the difference between the
median filtered state variables based on a draw from theparstistribution,s;, and the true state
variabless. For parametet, state variablg, datasek, and method, the statistics are given by

RMSE! ), = 50/ S0 (Buiaon — 0:)°, (14)

RMSE;, , = 2321 \/N% Zfivil(gd,j,k,h,t — §j1)%, (15)

whereN; = 1000 is the number of posterior draws after thinning ad= 100 is the number of
guarters in each data sampd?gﬂ‘,kvh ~ p(0;|k, h) is thedth draw of parameterfrom its posterior
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distribution, conditional on datasktand estimation metholl 5, x .. is jth median filtered state
variable based on parameter dréyconditional on datasét, estimation method, and quartet.
There are two primary benefits of tH&\/ SE statistics. One, they assess the accuracy of the
entire distribution, rather than just the median draw. Spadly, the RM SE statistics naturally
weight the errors according to their posterior distribntigo the errors near the center of the distri-
bution have a larger weight than the errors in the tails. Tmeare able to obtain an overall measure
of accuracy across the estimated parameters bedauser’ is normalized by the true parameter,
6;, to remove scale differences. Similarly, we report the eacyiof the state variables by summing
the errors across all periods in our sampppendix Ashows how well each method is able to re-
cover the true means, standard deviations, and covarianeash dataset. For each statistic, we re-

port quantiles across the datasets to identify differenctdge accuracy of each estimation method.

4.2 PMRAMETER ESTIMATES AND MARGINAL DATA DENSITIES We begin by comparing the
posterior parameter estimates to the true valuéstile 4 There are three estimation methods: the
linear model estimated with a Kalman filter adfd ME variances (Lin-KF3%), the linear model
estimated with a Kalman filter aridds ME variances (Lin-KF5%), and the nonlinear model esti-
mated with a particle filter an8% ME variances (NL-PF%). We report the medians ad%
credible sets for each parameter and method after poolendrws from all datasets and the sub-
sample of datasets where the ZLB binds for at Iéasjuarters. Differentiating the results based on
the frequency of ZLB events shows how the amount of nonlihearthe data affects the estimates.
In the unconditional sample, it appears there is little ieb® using NL-PF5%, even though
the ZLB binds on average f@rquarters. For all but two parameters, the median NL5PFesti-
mates are further from the truth than the Lin-K%-estimates and the values are similar to the Lin-
KF-5% estimates. The benefits of NL-PB¢ are clearer when the data spends at leéasfuarters
at the ZLB. While most of the NL-PEY% estimates are just as accurate as they were in the uncon-
ditional sample, the Lin-KB% and Lin-KF+5% estimates are typically farther from the truth. NL-
PF5% has the biggest advantage in estimating the persistencsamdard deviation of the prefer-
ence shockq(, ands,) because those parameters affect the frequency and ducdit B events.
However, the median NL-PE% estimates are less accurate than the linear estimates sbomg
dimensions, in spite of the nonlinearity in the data. Fomepke, the true price adjustment cost pa-
rameter isl00, but it increases from05.8 in the unconditional sample td 1.5 in the ZLB sample.
The second to last row itable 4shows the median arii)% credible sets of the marginal data
densities/, across our datasets. The density is based on Geweke’s)([i@98onic mean estima-
tor, which indicates how well each method fits the data. Wesidhe values for the number of
mode search draws where the nonlinear solution method didomverge, so the prior density in-
tegrates to one. In the unconditional sample, the diffe¥sietween the median data densities are
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Unconditional (640 datasets)

ZLB quarterdl5 (53 datasets)

Ptr  Truth Lin-KF0% Lin-KF-5% NL-PF-5% Lin-KF-0% Lin-KF-5% NL-PF-5%
%) 100 98.5 105.9 105.8 103.3 110.8 111.5
(63.7,136.7) (70.6, 144.0) (70.7,143.8) (69.7,139.7) (76.8,147.4) (78.4,148.0)
On 2.0 1.982 2.006 2.034 1.981 2.009 2.081
(1.584, 2.385) (1.610, 2.408) (1.647, 2.432) (1.592, 2.380) (1.621,2.407) (1.699, 2.473)
Dy 0.5 0.497 0.496 0.506 0.473 0.467 0.487
(0.227, 0.805) (0.219, 0.806) (0.230, 0.815) (0.215,0.773) (0.202, 0.774) (0.217, 0.786)
h 0.5 0.483 0.481 0.492 0.474 0.471 0.498
(0.322, 0.625) (0.317, 0.625) (0.335, 0.630) (0.326, 0.604) (0.321, 0.602) (0.357, 0.624)
Da 0.8 0.808 0.831 0.811 0.857 0.877 0.838
(0.649, 0.910) (0.677,0.926) (0.668, 0.883) (0.752,0.931) (0.778,0.944) (0.748, 0.894)
Di 0.8 0.801 0.821 0.816 0.818 0.840 0.819
(0.730, 0.852) (0.752,0.872) (0.748, 0.866) (0.755, 0.862) (0.778, 0.885) (0.755, 0.867)
o, 0.015 0.0146 0.0136 0.0137 0.0145 0.0134 0.0139
(0.0112,0.0190)  (0.0104,0.0178)  (0.0105,0.0180)  (0.0115,0.0186)  (0.0106,0.0174)  (0.0109,0.0180)
o, 0.015 0.0160 0.0158 0.0145 0.0186 0.0185 0.0157
(0.0116,0.0223)  (0.0114,0.0224)  (0.0108,0.0191)  (0.0139,0.0262)  (0.0138,0.0265)  (0.0120,0.0202)
o; 0.0025 0.0024 0.0021 0.0022 0.0022 0.0019 0.0022
(0.0020,0.0030)  (0.0016,0.0027)  (0.0017,0.0028)  (0.0018,0.0028)  (0.0014,0.0024)  (0.0016,0.0028)
Y4 1280.4 1280.3 1282.2 1278.9 1278.5 1290.8
(1260.5,1301.0)  (1260.3,1300.4)  (1263.1,1303.7)  (1257.3,1296.1) (1257.8,1296.9)  (1266.1, 1307.9)
Al — —0.085 1.882 — —0.365 10.857*

(—3.360,2.213)

(—3.709,11.111)

(—3.532,1.872)

(3.825,18.631)

Table 4: Posterior medians af@l%, 95%) credible sets of the estimated parameters and marginatidaities. An
asterisk indicates the differences in the marginal dataitles (values different from 0) are significant at@s level.

small across the three methods. When we condition on databete the ZLB binds for at leakt
guarters, the nonlinear model fits the data better, whiléinlkear models fit the data slightly worse.
To get an indication of whether the differences in empirfcadre statistically significant, we
compute the distribution of the differences between anrratése method and Lin-KBY with
each dataset. The difference between any two median desasitgs,A/, is known as the Bayes

factor (in logs). A value greater than6 (log 10?) is viewed as decisive evidence in favor of the
alternative method. The median afp@’ credible sets of the differences are shown in the last
row. Positive values indicate an alternative method fitsdh better than Lin-KB%. If the
credible set does not include zero, it indicates that thierdihces in the marginal data densities
are statistically significant at thi®% level. The results confirm our previous findings. NL-Pk-
does not provide a statistically significant advantagesscadl datasets. However, when restricting
attention to datasets with at lealst ZLB quarters, the differences are significant and decisive.
These results demonstrate that the data must contain anegde@mount of nonlinearity for the
nonlinear model to have a statistically significant advgetaver the linear model in fitting the data.

4.3 RRAMETER ACCURACY Table 5shows how well each estimation method is able to recover
the true parameters. For each parameter, dataset, anddne#dirst calculateR M SE? as well

as the sum of the errors across the parameters (bottom raateteby>’). We then calculate the
ratio of the errors with each alternative method relativéhi error with Lin-KF0% and report
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the median and0% credible sets of the ratios across the datasets. A valu¢desater) than one
indicates an alternative method is more (less) accurateltimaKF-0%. If the credible set does not
include one, itindicates that the differences in accuraestatistically significant at thed% level.

Unconditional (640 datasets) ZLB quartersl5 (53 datasets) ZLB quarters25 (8 datasets)
Ptr Lin-KF-5% NL-PF5% Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5%
%) 1.058 1.042 1.137 1.111 1.134* 1.176*
(0.834, 1.246) (0.830,1.261) (0.861,1.257) (0.825,1.342) (1.022,1.357) (1.016,1.387)
O 0.993 0.991 0.999 1.032 1.014 1.107
(0.923,1.069) (0.856,1.127) (0.926, 1.080) (0.774,1.322) (0.972, 1.060) (0.857,1.379)
Dy 1.014 1.013 1.018 1.021 1.022 0.965
(0.947,1.096) (0.882,1.166) (0.952,1.126) (0.763, 1.252) (0.969, 1.127) (0.731,1.237)
h 1.021 0.971 1.027 0.953 1.003 0.893
(0.941,1.108) (0.817,1.179) (0.935,1.127) (0.669, 1.240) (0.941,1.158) (0.664, 1.263)
Pa 1.046 0.827 1.158* 0.774* 1.135* 0.659*
(0.777,1.300) (0.626,1.075) (1.030, 1.355) (0.504, 0.996) (1.058,1.291) (0.502, 0.884)
Pi 1.162 1.061 1.353 1.026 1.339* 0.922
(0.708,1.612) (0.709, 1.471) (0.910, 1.945) (0.745, 1.490) (1.173, 1.566) (0.633,1.155)
o 1.147 1.104 1.203 1.097 1.120 1.048
(0.748,1.403) (0.712,1.394) (0.823,1.382) (0.858, 1.347) (0.891,1.373) (0.955,1.332)
04 1.010 0.771 0.999 0.508* 0.953 0.399*
(0.845,1.268) (0.399, 1.160) (0.865, 1.267) (0.271,0.681) (0.856, 1.196) (0.260, 0.598)
i 1.645 1.392 1.797* 1.223 1.537* 0.925
(0.696, 2.226) (0.726,1.907) (1.022,2.721) (0.824,1.854) (1.325,2.103) (0.639, 1.223)
> 1.069 0.987 1.123* 0.923 1.102* 0.825*
(0.958,1.189) (0.864,1.101) (1.042,1.205) (0.734,1.071) (1.042,1.167) (0.720, 0.954)

Table 5: Median and5%, 95%) credible sets of the root-mean square-error in the estanadeameters relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (\@tiferent from 1) are significant atl®% level.

Across all datasets, the nonlinear model has a slight adgardver Lin-KF8% along a few di-
mensions, including the sum of the errors across all paemmetiowever, none of the differences
are statistically significant, even though the ZLB binds warage for6 quarters. When we condi-
tion on datasets where the ZLB binds for at lestjuarters, the results change. Positive ME vari-
ances in the Kalman filter lead to even less accurate essrtfaa in the unconditional sample, in-
cluding two parametersr{ andp,,) that are significantly different from Lin-KB%. In contrast, the
nonlinear model becomes relatively more accurate along dim&nsions. The differences are sta-
tistically significant for the two parameters,(@ndo,) with the largest impact on whether the ZLB
binds each quarter. Interestingly, the sum of the errorstistatistically different from Lin-KF3%.

When turning to the small subset of datasets where the ZL&slJor at leas5 quarters, the re-
sults are even more stark. The total error as well as foureofithe parameters with Lin-KE% are
statistically less accurate than Lin-KB¢. The opposite is true of the nonlinear model. The total
error, as well as th& M S E in two of the nine parameters, is statistically less thanKi0%. Two
key takeaways emerge from these results: (1) Positive Miawvees in the observation equation of
the filter hurt the accuracy of the estimation; (2) the datatbe highly nonlinear for the particle
filter to overcome positive ME variances and become stediyimore accurate than Lin-K&%.
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hM\ME 5% 10% 20% 5% 10% 20%

Unconditional (128 datasets) ZLB quarters (64 datasets)
Lin-KF 1.070 1.161* 1.304* 1.099 1.195* 1.318*
(0.965,1.189) (1.023,1.319) (1.133,1.490) (0.996,1.191) (1.049, 1.344) (1.187,1.544)
NL-UKF 0.995 1.077 1.227* 0.980 1.062 1.203*
(0.870,1.132) (0.937,1.252) (1.051, 1.450) (0.867,1.148) (0.937,1.272) (1.038, 1.480)
NL-PF 0.994 1.071 1.208* 0.971 1.045 1.185*
(0.857,1.091) (0.942,1.233) (1.056, 1.432) (0.842,1.097) (0.946,1.241) (1.038, 1.480)
ZLB quarters> 10 (31 datasets) ZLB quarters15 (13 datasets)
Lin-KF 1.090 1.180* 1.318* 1.090* 1.199* 1.335*
(0.992,1.187) (1.077,1.342) (1.125,1.428) (1.042,1.194) (1.083,1.338) (1.132, 1.405)
NL-UKF 0.948 1.033 1.167* 0.939 1.026 1.132*
(0.800, 1.144) (0.904, 1.235) (1.035, 1.408) (0.796,1.174) (0.862, 1.203) (1.036, 1.285)
NL-PF 0.941 1.013 1.145 0.905 0.974 1.106
(0.785,1.063) (0.882,1.198) (0.970,1.358) (0.735,1.031) (0.792,1.126) (0.921,1.265)

(a) Median and5%, 95%) credible sets of the root-mean square-error in the estinzeameters relative to Lin-K8%.

hM\ME 5% 10% 20% 5% 10% 20%
Unconditional (128 datasets) ZLB quarters$ (64 datasets)
Lin-KF 0.082 —2.486 —10.376 —0.099 —2.840 —11.756
(—4.97,3.83) (—11.20,4.50) (—26.11, 3.32) (—5.04,2.37) (—11.24,3.39) (—26.25,3.62)
NL-UKF —0.098 —1.998 —10.077 1.829 —1.801 —10.903
(—9.14, 14.33) (—15.05,7.01) (—27.08,3.41)  (—9.43,14.54) (—15.52, 7.08) (—27.39, 3.58)
NL-PF 1.763 —1.077 —9.404 4.930 —0.260 —9.920
(—6.58,22.52)  (—12.89,11.98)  (—25.75,4.95)  (—6.31,23.16)  (—13.25,12.52) (—27.39, 3.58)
ZLB quarters> 10 (31 datasets) ZLB quarters15 (13 datasets)
Lin-PF —0.304 —3.096 —11.852 —0.283 —3.011 —11.763*
(—4.10,2.37) (—11.00, 3.39) (—26.25, 1.49) (—2.92,1.71) (—9.03,1.04) (—23.57, —3.39)
NL-UKF 3.084 —1.301 —10.954 4.427 —0.928 —13.669*
(—3.59,14.54) (—9.32,7.08) (—24.11,2.36)  (—0.64,14.54) (—5.41,7.08) (—21.68, —2.04)
NL-PF 7.855 1.502 —9.810 9.638* 1.855 —10.257*
(—0.46,23.16) (—8.43,12.52) (—23.62, 2.83) (6.59, 23.16) (—2.25,12.52) (—20.44, —0.56)

(b) Median and 5%, 95%) credible sets of the marginal data densities relative teKFr0%.

Table 6: Comparison of the root-mean square-error (toplpand marginal data densities (bottom panel) with an
expanded set of specifications. An asterisk indicates ffereinces from Lin-KF8% are significant at 40% level.

4.4 ADDITIONAL SPECIFICATIONS Table 6examines a much broader set of specifications. The

table shows results for the nonlinear model estimated \wighunscented Kalman filter (NL-UKF)

and for each specification witth% and20% ME variances. We also condition on datasets with

at leasts quarters and at lea$t quarters at the ZLB to provide more variation in the degree of

nonlinearity in the data. To accommodate the additionatifipations, we lowered the number of

datasets fron640 to 128, though most of the previous results are robust to the snedlaple size.
The top panel shows the parameter accuracy for each metladidedo Lin-KF-0%. The val-

ues are based on the total error across the parameters sarthapalogous to the values in the

bottom row oftable 5 There are several key findings. One, the ME variances haagea impact

on accuracy. Regardless of the estimation method and ddtager ME variances lead to more ac-
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curate estimates. As the ME variances increase, the filbeois likely to treat extreme realizations
in the data as ME, even though outliers are the most infoumatbout the true parameter values.
Setting the ME variances t¥ treats all tail realizations as informative variationshe tlata.
Two, for a given value of the ME variances, NL-PF is more aataithan the other methods
and the differences in accuracy become larger as the fresfibme spent at the ZLB increases.
Three, NL-UKF is consistently more accurate than Lin-KF #mel accuracy increases when
the data is more nonlinear, similar to our results with NL-RE-UKF is always less accurate
than NL-PF, but takes less than half as much time to estimat€Nand it is nearly as accurate.
Therefore, it may be reasonable to prefer NL-UKF for some@maven though itis less accurate.
Four, if the ME variances are too large, Lin-Ki% is more accurate than both NL-UKF and
NL-PF, even if the data is highly nonlinear. For example, wiige ZLB binds for at least5
quarters and the ME variances are seitg NL-PF is considerably more accurate than Lin-KF-
0%, whereas the opposite result occurs vty ME variances. When using all of the datasets,
NL-PF-20% is statistically less accurate than Lin-Ki%. These results are important, since it is
common in the literature to specify large ME variances togase the accuracy of the patrticle filter.
The values in the bottom panel are the marginal data des&ati¢he same specifications in the
top panel, relative to Lin-KFBY%. These values are analogous to those in the bottom rosbtd 4
There are several similarities with the accuracy resultae,@he data density always increases
as the ME variances decline. Two, NL-PF typically has thénbgg data density and the advan-
tage over the Lin-KR% density increases with the number of ZLB quarters in the.dEt@ one
counterexample is when the ME variances are equald. Given a sufficiently high ME vari-
ance, any improvement in the data density from using a neatimodel instead of a linear model is
completely washed away, even when the data spends mangiguairthe ZLB. This result demon-
strates that the presence of ME variance significantly bitseestimates. Any research that com-
pares the estimates from linear and nonlinear models cotddeously conclude there is either no
or a very small benefit to using the nonlinear model simplyabise the ME variances are too large.

4.5 ACCURACY OF THE LATENT STATES Table 7shows how well each method is able to
recover the latent preference shock state across time. debr @dataset, we calculafe)M S E?,
which sums the errors across time based on the median fikeatsk. Just like in previous tables,
we calculate the ratio of the errors with each alternativéha relative to the error with Lin-KF-
0% and report the median a0% credible sets of the ratios across the datasets. We focuseon t
preference shock state because it has the largest impadtethev the ZLB binds in each period. It
is also the only state variable that is persistent acrossainal not linked to one of the observables.
Similar to the results for the parameters, the accuracyeofiliered states improves as the ME
variances decrease, regardless of the estimation meth®dbng as the ME variances are suffi-
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hM\ME 5% 10% 20% 5% 10% 20%

Unconditional (128 datasets) ZLB quarters$ (64 datasets)
Lin-KF 1.139 1.268* 1.402* 1.190* 1.310* 1.408*
(0.99,1.64) (1.04,1.84) (1.15, 2.25) (1.02,1.59) (1.10,1.96) (1.16,2.29)
NL-UKF 0.720* 0.840 1.016 0.702* 0.828 0.963
(0.53,0.96) (0.62,1.10) (0.71,1.47) (0.46,0.91) (0.58,1.04) (0.66,1.37)
NL-PF 0.705* 0.826 1.008 0.674* 0.789 0.928
(0.52,0.88) (0.59,1.09) (0.68,1.39) (0.44,0.87) (0.55,1.04) (0.66,1.37)
ZLB quarters> 10 (31 datasets) ZLB quarters15 (13 datasets)
Lin-KF 1.261* 1.411* 1.445* 1.296* 1.536* 1.585*
(1.04,1.63) (1.12,2.02) (1.19,2.31) (1.05,1.68) (1.06, 2.07) (1.08,2.30)
NL-UKF 0.692* 0.789 0.895 0.685* 0.689 0.878
(0.43,0.88) (0.46,1.02) (0.63,1.32) (0.34,0.96) (0.41,1.03) (0.52,1.28)
NL-PF 0.615* 0.714* 0.883 0.568* 0.681* 0.833
(0.34,0.79) (0.41,0.95) (0.55,1.29) (0.31,0.78) (0.37,0.98) (0.43,1.24)

Table 7: Median an¢%, 95%) credible sets of the root-mean square-error in the prefersinock state:) relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (\@tiferent from 1) are significant atl®% level.

ciently low (e.g.,5% of the variance in the data), both NL-UKF and NL-PF providatistically
more accurate estimates of the preference shock statesadtamatasets. When we condition on
datasets that spend a larger number of quarters at the ZeBjfferences in accuracy between the
linear and nonlinear estimation methods become even |gogeticularly with NL-PF. The non-
linear model provides significantly more accurate estisitttan the linear model for two reasons.
One, the nonlinear model accounts for the expectation efrigngf, staying at, and exiting the ZLB.
Two, a lower preference shock state generates simultargslies in inflation and real GDP
growth that make the ZLB more likely to bind and for a longeration, which is exacerbated by
the fact that it is highly persistent. Therefore, historestimates of the state variables are the most
accurate with a method that sets small ME variances and agslesimonlinear solution and filter.

4.6 IMPULSE RESPONSES To show the economic implications of the parameter bias ahd s
tion method, we compare generalized impulse responsadmsdiGIRFS) to the true GIRFs across
our estimation methods. The advantage of using GIRFs aasititvnal impulse response functions
is that we can more accurately compare the effects of shaakfférent states of the economy. To
compute GIRFs, we follow the procedure in Koop et al. (19@dyen an initial state, we first cal-
culate the mean af0,000 model simulations using random shocks in every quarter {he base-
line path). We then calculate a second mean from anothef $6t@0 simulations, but this time
the shock in the first quarter (e.g., a preference shockpiaced with the desired shock size. The
GIRF is defined as the difference between the two mean pagle(®endix Dfor further details.
Figure 2shows the responses of real GDP growth to a negatstandard deviation preference
shock. A preference shock is a proxy for a change in demanalisedt determines households’
degree of patience. Negative shocks cause householdstpmppesonsumption to future periods,
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Figure 2: Generalized impulse responses of real GDP grontpdrcentage point differences) to-& standard
deviation preference shock. Shaded regions aréi¥ie95%) credible sets of the estimated responses across3the
datasets that spend at leaStquarters at the ZLB. The GIRFs are conditional on the pastemeans from Lin-KF3%
(left column), NL-PF5% (middle column), and Lin-PB% solved with the nonlinear solution method (right column).

which reduces current real GDP growth. We focus on this shatker than the technology growth
or monetary policy shocks, because it is the primary meshafor generating ZLB events in the
model. GIRFs are calculated with the true nonlinear modeltha estimated linear and nonlinear
models, which are parameterized at the posterior mean a&stnfior each of thé3 datasets that
spend at leastb quarters at the ZLB. We use that subset since those datasktsibre like recent
U.S. data and better highlight the potential shortfallsSrad&r estimation methods. The Lin-KF%
estimates are shown in the left column and the NL5P¥estimates are provided in the middle col-
umn. We also show what happens if estimates are obtained.imitkiF-0% and then the responses
are computed with the nonlinear solution method (right ooi), as some other papers have done.

The true response (solid line) is compared to the estimagztian response (dashed line). The
90% credible sets (shaded regions) show variation in the etuin@IRFs across the datasets. In
the top row, the GIRFs are initialized at the true stochagtady state and in the bottom row they
are initialized in a ZLB state. The ZLB state is the averagéesin quarters when the notional rate
is between-0.6% and—0.4% in a long simulation of the true model. In the ZLB state, therage
notional rate is-0.5%, which equals the 2008Q4 estimate for the U.S. from Plana €2018).

In steady state (top panel), while not significant, the media-KF-0% response on impact is
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bigger than the truth since the estimates must compensategd@bsence of the ZLB in the so-
lution. However, the median NL-P5% response closely follows the truth. If researchers instead
computed GIRFs with the nonlinear solution using estiméites Lin-KF-0%, they would signifi-
cantly overpredict the effect of the shock on impact and besevoff than using the linear solution.
The effect of the shock is independent of the state of the@ogrin a linear model, so Lin-
KF-0% predicts the sam#) decline in real GDP growth in the ZLB state (bottom panel} dees
in steady state. However, the true response of real GDP frewhuch larger{1.4%) because
the ZLB amplifies the effect of the shock in the data. When thminal interest rate is far from
the ZLB, the drop in real GDP growth is damped by the monetatigpresponse. When the ZLB
binds, the central bank cannot respond by lowering its poéite, which leads to the larger decline
in real GDP growth. Therefore, the true response is far detsie Lin-KF0% credible set. In con-
trast, the median NL-PEY% response coincides with the true response of real GDP griovitie
ZL B state. If estimates are obtained with Lin-K¥% and the GIRFs are computed with the nonlin-
ear solution, the median impact {.8%) is significantly different from the truth. Researchers are
equally worse off using the linear and nonlinear solutiothmiie Lin-KF0% parameter estimates.
The key takeaway from these simulations is that the erroesiimating the parameters and
latent states, as shown in previous tables, will genergtefgiant errors in the model’s predictions.

5 CONCLUSION

This paper examines the accuracy of linear and nonlineanasbn methods for DSGE models
using artificial datasets generated from a nonlinear Newnksian model with an occasionally
binding ZLB constraint. We find the accuracy of each methodiatly depends on the size of the
ME variances in the observation equation and the number afteps the ZLB binds in the data.
As long as the ME variances are not too large (e.g., lessi¥taaf the variance in the data) and
there is a sufficient presence of the ZLB in the data (more th&hof quarters in the sample), the
nonlinear model estimated with a particle filter is statesy more accurate than the linear model
estimated with a Kalman filter. These findings are partidylanportant in light of the recent ZLB
experience in the U.S., Japan, and the Euro Area and theseuldikelihood of future ZLB events.
Over the last decade, researchers have used a variety efiposamplers, solution methods,
and filters for policy analysis. Our framework provides afieci way to assess the relative perfor-
mance of different methods applied to our datasets. For pbgm@mpromising alternative to the ran-
dom walk Metropolis-Hastings (RWMH) algorithm is the senti@ Monte Carlo (SMC) method
first applied to a DSGE model by Creal (2007). Herbst and Shkate (2014) find SMC is better
suited for multimodal and irregular posterior distributsothan RWMH, and parallelization helps
reduce the numerical cost of SMC even though it performsifsigntly more evaluations of the
likelihood function than a typical RWMH algorithm. A populalternative to our global solution
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method is to use the Smolyak method to discretize the statesfpw-order Chebyshev polynomi-
als to approximate the policy functions, and fixed-pointat®n (e.g., Fernandez-Villaverde et al.
(2015); Gust et al. (2017); Judd et al. (2014)). Our resu@tsaiso serve as a benchmark for contin-
ued improvements to the particle filter, such as the tempeaetitle filter proposed by Herbst and
Schorfheide (2017). Finally, while the UKF is a significamfgrovement over the Kalman filter, the
central difference Kalman filter has the potential to furtingprove accuracy (Andreasen (2013)).
Aside from studying our model with an occasionally bindiig&constraint, researchers could
compare estimation methods applied to artificial dataseteigted by models with other poten-
tially important nonlinearities, such as asymmetric apipent costs, firm default, borrowing con-
straints, search frictions, and stochastic volatility.oftrer line of research could examine the role
of model misspecification. For example, one could generatasets with a global solution to a
medium-scale model and then ask how well a small-scale nuadsetecover key parameters. We
believe this line of work will uncover key nonlinear featar@nd deliver methodological advances.
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A ADDITIONAL RESULTS

Table 8shows the accuracy of several unconditional moments indkee &e obtairi,000 simu-
lations of 100 quarters for each estimation method, posterior draw, atakda We then take the
median of each moment across th@00 simulations and compute the\/ S E across the posterior
draws. Finally, we normalize thRM S E for a given moment by the error with Lin-KB8% and re-
port the median ant%, 95%) credible sets across the datasets. Similar to previoustadhum-
ber less than one indicates an alternative method prediots@ent closer to the truth than the one
predicted by Lin-KF8%. Credible sets that include one imply statistically ingfigant differences.

Unconditional (640 datasets)

ZLB quartersl5 (53 datasets)

ZLB quarters25 (8 datasets)

Moment Lin-KF5% NL-PF-5% Lin-KF-5% NL-PF-5% Lin-KF-5% NL-PF-5%

meang?) 0.942* 0.749 0.940* 0.740 0.943 0.831
(0.90,0.99) (0.57,1.38) (0.90,0.98) (0.56, 1.48) (0.90,1.01) (0.53,1.93)

meanfr) 0.998 0.504* 0.999 0.504* 0.997 0.506*
(0.99,1.01) (0.42,0.68) (0.99,1.01) (0.42,0.79) (0.99, 1.00) (0.46,0.89)

meang) 0.998 0.382* 0.998 0.383* 0.995 0.392*
(0.99,1.01) (0.31,0.57) (0.99,1.01) (0.32,0.56) (0.99,1.01) (0.35,0.57)

std(¢9) 1.197 1.169 0.984 1.059 1.004 1.062
(0.71,1.49) (0.69, 1.50) (0.68,1.52) (0.62, 1.60) (0.65, 1.44) (0.46, 1.45)

std(r) 1.048 1.066 0.787 0.690 0.752* 0.686*
(0.71,1.38) (0.56, 1.50) (0.65,1.18) (0.44, 1.49) (0.65,0.80) (0.39,0.79)

std() 1.008 0.883 0.763 0.394* 0.702* 0.330*
(0.66,1.41) (0.30, 1.42) (0.56,1.11) (0.23,0.82) (0.56,0.79) (0.19,0.42)

corr(éf,éf_l) 1.040 0.992 1.044 0.953 1.013 0.968
(0.96,1.13) (0.83,1.20) (0.96,1.14) (0.71,1.22) (0.94, 1.20) (0.65, 1.39)

corr(my,mi—1) 1.003 0.846 1.127* 0.833 1.131* 0.749
(0.77,1.22) (0.68,1.03) (1.01,1.28) (0.59, 1.04) (1.05,1.19) (0.60,1.01)

corr(iy,iz—1) 1.094 0.834 1.231* 0.714 1.154* 0.603*
(0.76,1.41) (0.64,1.12) (1.07,1.54) (0.49,1.11) (1.04,1.35) (0.45,0.75)

corr(@,i) 1.123 1.133 1.169 1.166 1.122* 1.241
(0.88,1.40) (0.87,1.46) (0.98,1.37) (0.89, 1.57) (1.02,1.35) (0.87,1.66)

corr(@?,m) 1.079 1.086 1.110 1.164 1.111 1.176
(0.89,1.29) (0.90, 1.37) (0.88,1.32) (0.99, 1.54) (0.89,1.27) (0.88,1.66)

corr(i,m) 1.028 0.952 1.035 0.825 1.013 0.694
(0.92,1.17) (0.65, 1.30) (0.92,1.20) (0.52,1.10) (0.93,1.15) (0.55,1.01)

Table 8: Medians anfb%, 95%) credible sets of the root-mean square-error of the unconditmoments relative to
Lin-KF-0%. An asterisk indicates the differences in the errors (\@tliferent from 1) are significant atl®% level.

Unconditionally, NL-PF5% predicts means that are closer to the truth than the estmatie
the linear models, since the nonlinear solution accountslifterences between the determinis-
tic and stochastic steady states. In datasets with many ZlaBteys, NL-PF>% is also closer
to the truth for other moments, such as some of the standardtibas, serial-correlations, and
cross-correlations. For example, when conditioning oaskts with at leasts ZLB quarters, NL-
PF5% is significantly closer to the truth than Lin-K&% for mean(w), mean(i), std(r), std(i),
andcorr (i, 1,1 ) because it accounts for changes in volatility and persistérduced by the ZLB.

Table 9shows how the number of particles in NL-BF affects the posterior estimates. We
report the medians arid%, 95%) credible sets of the marginal data densities and estimateap
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Unconditional (128 datasets)

ZLB quarterdl5 (13 datasets)

Ptr NL-PF5%-20k NL-PF5%-40k NL-PF5%-80k NL-PF5%-20k NL-PF5%-40k NL-PF5%-80k
%) 106.3 106.1 106.2 113.2 113.1 113.5
(71.8,144.3) (71.9,144.4) (71.9,144.3) (78.3,151.2) (78.6,150.6) (79.5,151.5)
On 2.037 2.037 2.037 2.056 2.052 2.053
(1.655, 2.432) (1.655, 2.430) (1.658, 2.429) (1.668, 2.444) (1.663, 2.448) (1.674,2.452)
Dy 0.513 0.511 0.512 0.511 0.510 0.514
(0.239, 0.823) (0.239, 0.822) (0.238,0.824) (0.251,0.812) (0.250, 0.811) (0.254,0.811)
h 0.487 0.487 0.487 0.484 0.485 0.484
(0.334, 0.622) (0.334,0.621) (0.334, 0.622) (0.352,0.614) (0.351, 0.614) (0.354, 0.616)
Pa 0.814 0.813 0.814 0.850 0.849 0.849
(0.679, 0.885) (0.677,0.885) (0.678, 0.885) (0.761, 0.898) (0.762, 0.898) (0.764, 0.898)
Di 0.815 0.815 0.815 0.812 0.811 0.813
(0.749, 0.866) (0.749, 0.866) (0.749, 0.866) (0.752, 0.866) (0.750, 0.866) (0.751, 0.867)
Oy 0.0136 0.0136 0.0136 0.0137 0.0137 0.0137
(0.0104,0.0178)  (0.0104,0.0178)  (0.0104,0.0178)  (0.0110,0.0183)  (0.0109,0.0183)  (0.0109, 0.0184)
Oa 0.0143 0.0143 0.0143 0.0147 0.0147 0.0147
(0.0109,0.0185)  (0.0109,0.0185)  (0.0109,0.0185)  (0.0111,0.0193)  (0.0111,0.0192)  (0.0111,0.0192)
o 0.0022 0.0022 0.0022 0.0023 0.0023 0.0023
(0.0018,0.0028)  (0.0018,0.0028)  (0.0018,0.0028)  (0.0017,0.0029)  (0.0017,0.0029)  (0.0017, 0.0029)
Y4 1283.2 1283.2 1283.1 1292.3 1292.3 1292.3

(1266.6, 1303.0)

(1266.7,1302.9)

(1266.7,1303.0)

(1269.7, 1307.0)

(1269.7, 1307.0)

(1269.7,1307.1)

Table 9: Posterior medians a(lo, 95%) credible sets of the estimated parameters and marginatidasities.

eters with20,000, 40,000 (baseline specification), a®d,000 particles. We find almost no variation
in the medians or credible sets, even when conditioning taséés that spend at ledstquarters

at the ZLB. Although these results clearly depend on the repéeification and the number of ob-
servables, they indicate that it is safe to use a smaller euwitparticles than what is traditionally
used in the literature. Adapting the particle filter to therent observation and performing multiple
runs of the filter for each draw most likely improved accuranyg played a major role in our results.

B NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear éguim system fronsection 2.1as

E[f(St+1, St, €t+1)|zt7 19] = 07

wheref is a vector-valued functios, = [¢;, 77, 9, A, Wy, iy, iy, 7, ag, g¢)' S @ vector of variables,
€1 = (g4, €at, €it) 1S @ vector of shocks, = [g:, ar, €4, 07 1, ¢i—1]" IS @ vector of state variables,
andy = [8,1,€,1,5,G, T, 9, Or, Oy, b, pa, pi, 04,04, 0;]" IS @ vector of all the model parameters.
There are many ways to discretize the exogenous state lewjgh a,, ands; ;. We use the
Markov chain in Rouwenhorst (1995), which Kopecky and Su1.0) show outperforms other
methods for approximating autoregressive processes. dineds on?’ ; andc,_; are respectively
set to+2.5% and+4% of the deterministic steady state to contain the filteretbstariables based
on posterior draws. We discretize the state variables(iito2, 8, 7, 7) evenly-spaced points. In
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total, there areD = 37,632 nodes in the state space, and the realizatia) oh noded is denoted
z;(d). The Rouwenhorst method provides integration no@gs; (m), at+1(m), o; 141 (m)], with
weights,p(m), form € {1,..., M }. Since the exogenous variables evolve according to a Markov
chain, the number of future realizations is the same as #te gariables(8, 12, 8), or M = 768.

For the policy functions, we approximatgz;) andr{*(z;) = m(z.)/7. Our choice of policy
functions, while not unique, simplifies solving for the atlvariables in the nonlinear system of
equations given;. The following steps outline our global policy functionriégion algorithm:

1. Using Sims’s (2002yensys algorithm to solve the log-linear model without the ZLB im-
posed. Then map that solution onto the discretized statedpanitializec, and=x{™.

2. On iterationj € {1,..., Ny} and for eachd € {1,..., D}, use Chris Sims'ssol ve
to find ¢, and{*? to satisfyE[f(-)|z:(d), V] ~ 0, where N, is the number of iterations.
Guessing;, = ¢;_1(d) and7{"” = & (d), approximateE[f(-)|z(d), V] as follows:
(@) Solve for{g,, il iz, A, W, } givené,, 79, andz,(d).
(b) Linearly interpolate the policy functions; ; and={“], at the updated state variables,
z,+1(m), to obtainc,,; (m) andx/} (m) on every integration node; € {1,..., M}.

(c) Given{c,11(m), 7% (m)}2_,, solve for the other elements sf ; (m) and compute:

m=1"

E[f (81, 80(d), £041)|24(d), 0] = Yoy 9(m) f (8141(m), 80(d), 01 (m)).

Whencsol ve converges, sdt;(d) = ¢, andnw]*(d) = 7/*.

3. Repeat step 2 untihaxdist; < 107°, wheremaxdist; = max{|¢; — &, 1, [w]” — w|}.

When that occurs, the algorithm has converged to an appaiginonlinear solution.

C ESTIMATION ALGORITHM

We use a random walk Metropolis-Hastings algorithm to estémour model with artificial data
of 100 quarters. To measure how well the model fits the data, we @&sadhpted particle filter
described in Algorithm 12 in Herbst and Schorfheide (2018)ich modifies the basic filter in
Stewart and McCarty (1992) and Gordon et al. (1993) to batteount for the outliers in the data.

C.1 METROPOLISHASTINGS ALGORITHM The following steps outline the algorithm:

1. Specify the prior distributions, means, variances, anthds of each element of the vector
of N, estimated paramete= [y, ¢, ¢y, h, pa, pi, 04,04, 0i]-
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2. The artificial data consists of real GDP growth, the inflatiate, and the nominal interest
rate,x; = [g7, m, i)', whereN, = 3 is the number of observable variables.

3. Find the posterior mode to initialize the preliminary kgtolis-Hastings step.

(@) Foralli € {1,..., N,,}, whereN,, = 5,000, apply the following steps:

i. Draw 6; from the joint prior distribution and calculate its densislue:
rior Ne )
log (77" = ijl log p(; ;|15 0']2')7

wherep is the prior density function of parametgwith meany; and variancerf..

ii. Given 6;, solve the model according #ppendix B If the algorithm converges,
then compute the stochastic steady state, otherwise reteged(a)i and redraty.

iii. If the stochastic steady state exists, then use thegbaftlter in section C.20 ob-
tain the log-likelihood value for the modedg ¢(7*°%, otherwise repeat step 3(a)i.

iv. The posterior log-likelihood i&og (7" = log (""" + log ¢!

(b) Calculatemax(log /4, .. ., log (%*") and find the corresponding parameter vedar,

4. Approximate the covariance matrix for the joint postedstribution of the parametery,,
which is used to obtain candidate draws during the prelingiMetropolis-Hastings step.

(a) Locate the draws with a likelihood in the top decile. 8tdwe N,, .., = (1 — p)N,,
draws in aN,,, .., X N, matrix,©, and defing® = & — SN §, . /N, ..

(b) Calculate: = ©'6/N,, .., and verify it is positive definite, otherwise repeat step 3.
5. Perform an initial run of the random walk Metropolis-Hags algorithm.

(@) Foralli € {0,..., Ny}, whereN, = 25,000, perform the following steps:

i. Draw a candidate vector of parametei$??, where

N(éo,COZ) fori = 0,

N(Qi_l, CZ) fori > 0.

‘91' cand ~

We setc, = 0 and tune: to target an overall acceptance rate of roughily..
ii. Calculate the prior density valuig (7"*", of the candidate draw:"* as in 3(a)i.

iii. Given ég‘md, solve the model according Appendix B If the algorithm converges,
compute the stochastic steady state, otherwise repeat&(hjiraw a nev@f“"d.
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iv. If the stochastic steady state exists, then use thegmfilter in section C.2to0
obtain the log-likelihood value for the modébg /%!, otherwise repeat 5(a)i.

v. Accept or reject the candidate draw according to

(Bzamd log (eand) if § = 0,
(6:,1og ;) = { (Beamd log ¢5and) if min(L, 65974 /0, ) > 4,
(éi_l,log&-_l) otherwise
wherew is a draw from a uniform distributionlJ[0, 1], and the posterior log-
likelihood associated with the candidate draiois(¢*? = log (7" + log ¢!,

(b) Burn the firstlV, = 5000 draws and use the remaining sample to calculate the mean

Y Npre N H H
draw, grreMit = 570 6;, and the covariance matrix M. We follow step 4 to

calculatex?"M# put use allN; — N, draws instead of just the uppgth percentile.

6. Following the procedure in step 5, perform a final run oftetropolis-Hastings algorithm,
whered, = GrreMH andy. = SrreMH \We setN, = 100,000 and keep every00th draw.

The remainingd,000 draws form a representative sample from the joint posteienisity.

C.2 ADAPTED PARTICLE FILTER Henceforth, our definition of; from Appendix Bis referred
to as the state vector, which should not be confused withtétte gariables for the nonlinear model.

1. Initialize the filter by drawinde; ,}°_ ,, forall p € {0,..., N,} and simulating the model,
whereN,, is the number of particles. We initialize the filter with thedi state vectos, ,,,
which is approximately a draw from the model’s ergodic dbsttion. We setV,, = 40,000.

2. Fort € {1,...,T}, sequentially filter the data with the linear or nonlineardeleas follows:

(a) Forp € {1,...,N,}, draw shocks from an adapted distributien, ~ N(&;, I'), where

&, maximizesp(&;|sy)p(s|s;—1) ands,_; = Eﬁ’;’l si—1,/ N, is the mean state vector.

i. Use the model solution to update the state veesiogivens;_; and a guess faf;.
Defines! = Hs,;, whereH selects the observable variables from the state vector.

ii. Calculate the measurement errgr= s}’ —x;, which is assumed to be multivariate

normally distributedp(&|s;) = (27)~%/2|R|~/2 exp(—&R71¢,/2), whereR =

diag (07, 5o Ome x> Oone) IS the measurement error covariance matrix.

iii. The probability of observing the current stasg, givens;_1, is given by

p(se|8i—1) = (2m) 3% exp(—2],/2).
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iv. Maximizep(&|s;)p(si|si_1) o< exp(—&R™&,/2) exp(—£,2;/2) by solving for the
optimals;. We converted MATLAB’sf m nsear ch routine to Fortran.

(b) Use the model solution to predict the state veetgy, givens,_; , ande, .

(c) Calculatet, ), = sﬁp — x;. The unnormalized weight on partiglas given by

. P(&elsep) (st plSi-1,) eXp(_gé,pR_1€t7P/2) eXp(_gi,pgt,p/m
tp — X —; — .
9(StplSt—1,p,Xt) exp(—(etp — &)/ (Erp — €1)/2)

Without adaptations; = 0 andw;, = p(&]s:,), @s in a basic bootstrap particle filter.
The time¢ contribution to the log-likelihood i/ = S w;,/N,,.

(d) Normalize the weightd}; , = w;,/ Z;V:Pl wip. Then use systematic resampling with
replacement from the swarm of particles as described ingitea (1996) to get a set
of particles that represents the filter distribution andhudite {st,p}j,vil accordingly.

3. The log-likelihood idog ¢t = ST log £t

C.3 UNSCENTEDKALMAN FILTER A well-known alternative to the Unscented Kalman Filter
(UKF) is the Extended Kalman Filter (EKF). We focus on UKFteed of EKF because EKF does
not perform well when the state equation is poorly approxédavith linearization, which occurs
in our model when the notional rate is negative. EKF relieadinear approximation of the state
equation to predict the covariance of the state vector, @dseUKF nonlinearly propagates a deter-
ministic set of points, more accurately approximating treamand covariance of the state vector.

1. Initialize the state vectog,, at the stochastic steady state. Initialize the state cvee
matrix, P,, so that it solves the Lyapunov equatiéy — 7" P,T = MM’, whereT is the
state transition matrix andl/ is the shock impact matrix of the solution to the linear model

2. Fort € {1,...,T}, sequentially filter the data with the nonlinear model akfos:

(a) Augment the estimated state vector and covariancexnatri

i. Augment the state vector to include the expected valube$hocks and measure-
ment errorsy_, = [s}_,, E(e}), E(&;)]" = [s;_1, 0, 0]', which hasN;. elements.

ii. Similarly, augment the state covariance mat#x,with the shocks covariance ma-
trix, I (the identity matrix), and the measurement error covaganatrix, i,

P
0

a
Pt—l

O N~ O

0
0
R
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iii. Create a distribution of augmented state vectors &ith. + 1 sigma points,

Si_1 fori =0,
Si_1; = { st — V3L fori=1,..., Nga,
s +V3Li_y, fori=Ng+1,... 2N,

whereL; is ith column column of the lower triangular Cholesky facfoof Py ,,
such thatP? ; = LL'. The respective weights are

].—Nsa/3 fOI’i:O,
1/6 fori=1,...,2N.

W; =

(b) Fori = 0,...,2N., first use the nonlinear solution to update the state vestor, ;
givensg_, ;, and then compute the predicted state vector and covaraage,

2Nga 2Nga

/

Stjt—1 = E WiSt|t—1,i5 Pt\t—l = E wi(St\t—l,z’ - St|t—1)(St\t—1,z’ - St\t—l) .
=0 i=0

This prediction step mirrors the basic Kalman filter, exébptpredictions are weighted
averages across the sigma points based on the augmentedesitr and covariance
matrix. Given the predictions, calculate the Kalman géain= Pt‘t_lH’St‘l, where

2Nga
_ h h h h /
S = Z Wz’(st\t—l,z’ - St|t—1)(st\t—17i - St\t—l) )
=0
h _ h _ _ h
Sii—1; = Hsyji—1,, Sij—1 = Hsy;—1, and the measurement errgr= x, — Stji—1-

(c) Update the state vector and covariance matrix estimates

S; = sy—1 + K&,
P, = Py — K, S K.

This update step is the same as the basic Kalman filter. Thestteantribution to the
log-likelihood islog (7% = —(log |S;| + £,.9; *¢; + N, log 27) /2.

3. The log-likelihood is theing (7odet = ST 1og godel,
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D GENERALIZED IMPULSE RESPONSEFUNCTIONS

The general procedure for calculating GIRFs is describd¢oiop et al. (1996). The GIRFs are
based on the average path from repeated model simulatidrgeserated with the following steps:

1. Initialize each simulation with the desired state veaipfe.g., the stochastic steady state).
To calculate the stochastic steady state, we simulate tldelmothout shocks. The stochas-
tic steady state is defined as the state vector wiseres, ;| converges to zero, which differs
from the deterministic steady state since the policy fumgiembed higher order moments.

2. Draw random growth rate, preference, and monetary pshiogks {s;}¥,, for each simu-
lation, whereN is the simulation length. From the initial state vectyt, simulateNg;rr
equilibrium paths{x](so)}~,, wherej € {1,2,..., Ngirr} andNgrr = 10,000.

3. Using the same draws of shocks from step 2, replace therprefe shock in period one
with a2 standard deviation shock (i.e., sgt; = 20,). Then simulate the model with these
alternate sequences of shocks to obf¥i z» equilibrium paths{x’(s¢, 41)} .

4. Average across th&¥;;zr Simulations from steps 2 and 3 to obtain average paths giyen b

Xi(s0) = Natnr Soni™ x1(s0),  %i(S0,€a1) = Najpr Sont ™ %1 (S0, 2a1).

5. The difference between the two average paths is a GIRF.
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