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1 Introduction
Mertens and Ravn (2013) develop a methodology for estimating dynamic causal ef-

fects using proxies for shocks in structural vector autoregressive models (SVARs) and
apply it to estimate the impact of personal and corporate income tax changes using narra-
tively identified changes in taxes as proxies. To construct confidence intervals, we adopt
a (multivariate) version of the recursive wild bootstrap, see Gonçalves and Kilian (2004),
applied earlier in the literature for inference in SVARs, e.g. Kilian (2009). The main con-
clusion drawn by Mertens and Ravn (2013) is that tax shocks have statistically significant
effects on output and, depending on the type of tax, also on other key macro aggregates
such as employment, spending on consumer durables, and investment.

In a recent contribution, Brüggemann, Jentsch, and Trenkler (2016) show that wild
bootstraps are in general not asymptotically valid for inference about estimators that in-
volve the covariance matrix of VAR innovations. While wild bootstraps correctly recover
the asymptotic distribution of reduced-form impulse responses as the sample size in-
creases, Brüggemann et al. (2016) show this is not generally the case for structural impulse
responses. They present Monte Carlo evidence suggesting that wild bootstrap intervals for
recursively-identified impulse responses may understate the true estimation uncertainty in
finite samples. Jentsch and Lunsford (2018) point out that the results in Brüggemann et
al. (2016) also apply to the wild bootstrap adopted in Mertens and Ravn (2013). They
propose a variant of the moving block bootstrap described in Brüggemann et al. (2016) as
an alternative inference approach in proxy-identified SVARs. Based on the resulting 68%
confidence intervals, Jentsch and Lunsford (2018) no longer find statistically significant
effects of the identified tax shocks on the main outcome variables and conclude that “...
cuts to personal and corporate tax rates have no inferable effect on output, investment,
employment, hours worked per worker, or the unemployment rate.”

Based on the results in Brüggemann et al. (2016), we acknowledge that the wild boot-
strap as applied in Mertens and Ravn (2013) is not generally asymptotically valid for
SVARs, including proxy SVARs. We also view the moving block bootstrap as a poten-
tially useful tool for inference in proxy SVARs. We do not agree, however, with the
conclusion that there is no ‘inferable’ effect of tax cuts on economic activity once one
adopts an asymptotically valid inference method. We first explain why many of the inter-
vals shown in Jentsch and Lunsford (2018) are not the relevant ones isolating the effects
of changes in personal versus corporate income taxes. Next, we reconsider the empirical
evidence on the impact of tax changes applying a number of alternative procedures for
inference that, unlike the wild bootstrap, are equally asymptotically valid. We show that
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this leads to the conclusion that tax shocks do have a significant impact on the economy
as found by Mertens and Ravn (2013). More specifically, significance remains when we
compute intervals using the Delta method or a parametric bootstrap described in Montiel
Olea, Stock and Watson (2017), when we use the Jentsch and Lunsford (2018) intervals
but a slightly different version of the proxies, or when we construct the percentile intervals
exactly as in Brüggemann et al. (2016).

In finite samples there is no a priori reason to prefer the Jentsch and Lunsford (2018)
intervals over any of the available asymptotically valid alternatives. Any such preference
should at the very least be supported by either theory (in the form of asymptotic refine-
ments) or numerical evidence (such as Monte Carlo simulations using a data generating
process that reasonably resembles that actual data used in a given application). We do not
believe that Jentsch and Lunsford (2018) provide such evidence, nor do they compare the
performance of their bootstrap with the other available approaches to inference in proxy
SVARs. Moreover, the results in Mertens and Ravn (2013) are part of a much larger body
of evidence for significant output effects of tax policy changes that does not rely on the
use of wild bootstraps, or even proxy SVARs.1

A number of other applications of proxy SVARs have emerged in the literature, includ-
ing to monetary policy shocks (Gertler and Karadi, 2015), uncertainty shocks (Carriero et
al., 2015), oil shocks (Montiel Olea et al., 2017; ?), and credit supply shocks (Mian, Sufi
and Verner, 2017). We present a brief comparison of the different inference approaches
in some of these other applications, and we find that differences between confidence in-
tervals tend to become more meaningful when the value of the Montiel Olea et al. (2017)
test statistic for instrument relevance is relatively small. This suggests to us that instru-
ment strength, rather than the issues raised by Jentsch and Lunsford (2018), may be the
dominant concern for inference in most applications.

2 Inference in Proxy SVARs
We start by revisiting the proxy SVAR approach and provide a brief overview of exist-

ing methods for inference besides the Jentsch and Lunsford (2018) block bootstrap.2

1See Mertens (2018) for a recent overview of US and international time series evidence.
2Because of its joint use of SVARs and instrumental variables techniques, Stock and Watson (2012) refer

to the proxies as ‘external instruments’, while Stock and Watson (2018) label the approach ‘SVAR-IV’.
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Let Yt be a n×1 vector of observables with a finite order VAR representation:

(1) Yt =
p

∑
j=1

δ jYt− j +ut ,

where δ j, j = 1, ..., p are n×n coefficient matrices and ut is an n×1 vector of reduced-form
innovations with covariance matrix Σuu′ . The key SVAR assumption is that the one-step-
ahead forecast errors ut (the innovations) are linear combinations of a vector of mutually
orthogonal structural shocks εt :

(2) ut = Bεt ,

where εt is n× 1, E[εt ] = 0, E[εtε
′
t ] = In, E[εtε

′
s] = 0 for s 6= t, and the n× n matrix B

contains the contemporaneous causal effects of the structural shocks on the observables.

The coefficients in δ = [δ1, ..,δp] and the innovations ut are easily obtained by least-
squares, but more assumptions are needed to obtain any of the columns in B and obtain
causal effects. Proxy SVARs arrive at identification by making use of available prox-
ies/external instruments for the structural shocks of interest to (partially) identify the
columns in B. Suppose one is interested in identifying the first k columns of B, corre-
sponding to ε1t , the first k shocks in εt . In addition, suppose k external instruments mt are
available that satisfy the following conditions:

E[mtε
′
1t ] = Φ ,(Relevance)

E[mtε
′
2t ] = 0 ,(Exogeneity)

where Φ is an unknown k×k non-singular matrix, and ε′2t contains the n−k other structural
shocks in εt . The first condition requires that the instruments mt are relevant, i.e. that they
are contemporaneously correlated with the true structural shocks ε1t . However, it does not
impose perfect correlation with the structural shocks of interest and therefore addresses the
potential measurement errors related to instruments such as narratively identified shocks.
The second condition requires that the instruments are exogenous. i.e. they are not con-
temporaneously correlated with the other structural shocks in ε2t . Note, however, that the
instruments mt may still be correlated with lagged values of any of the structural shocks.
Moreover, the instruments may be correlated with each of the shocks in εt , i.e. Φ need not
be diagonal.

Mertens and Ravn (2013) show that the relevance and exogeneity conditions identify
η, ζ and S1S′1 in

u1t = ηu2t +S1ε1t ,(3)
u2t = ζu1t +S2ε2t ,(4)
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where u1t contains the first k forecast errors in ut , and u2t contains the remaining n− k
errors. At this point, the only remaining object required to recover the first k columns
of B is the k× k matrix S1. Because S1S′1 is identified by the proxies, this requires only
(k− 1)k/2 further restrictions. Most applications in the literature to date use external in-
struments that are assumed to be correlated with only a single structural shock, i.e. k = 1,
in which case no further restrictions are necessary. The tax shock application in Mertens
and Ravn (2013) is instead an example of k = 2 and the paper imposes the additional as-
sumption that S1 is either upper or lower triangular.

For inference, Mertens and Ravn (2013) suggest to use a wild bootstrap to construct
confidence bands for impulse response functions associated with personal and corporate
tax shocks. The procedure involves (i) multiplying the reduced-form innovations and the
proxies with random draws from the Rademacher distribution (−1 or 1 with equal prob-
ability), (ii) recursively constructing artificial samples of the observables using the esti-
mated autoregressive parameters, (iii) obtaining the structural impulse responses using the
bootstrapped proxies. Gonçalves and Kilian (2004) provide simulation evidence that wild
bootstraps perform well in the presence of conditional heteroscedasticity in autoregressive
models. The procedure seems a natural choice in the application to tax shocks because of
the many zero observations in the proxies.

Montiel Olea, Stock and Watson (2017) is the first paper to develop theory for inference
in SVAR models identified with external instruments, including the Delta method and a
parametric bootstrap both of which are valid under strong-instrument asymptotics. Montiel
Olea et al. (2017) also propose an inference approach that is asymptotically valid under
weak-instrument asymptotics. The inference procedures in Montiel Olea et al. (2017),
however, deal only with the case of a single external instrument, i.e. k = 1. Mertens
and Montiel Olea (2018) apply the methods in Montiel Olea et al. (2017) to construct
confidence intervals for impulse responses to marginal tax rate shocks, and also develop
extensions of the Delta method and the parametric bootstrap in Montiel Olea et al. (2017)
for the k = 2 case and a Newey and West (1987) residual covariance matrix. Unfortunately,
weak-instrument robust intervals for the k = 2 case are currently not yet available.3

3While beyond our scope, a number of recent studies develop Bayesian inference methods for proxy
SVARs. Examples include Drautzburg (2016), Caldara and Herbst (2018), Miranda-Agrippino and Rey
(2018), and Arias, Rubio-Ramirez and Waggoner (2018).

5



3 Confidence Intervals for Mertens and Ravn (2013)
In the application to personal and corporate tax shocks, equation (3) can be written as:

(5)
[

uAPIT R
t

uACIT R
t

]
= ηu2t +S1

[
εAPIT R

t
εACIT R

t

]
,

where APITR (ACITR) stands for the average personal (corporate) tax rate. As mentioned,
identification of the impulse responses here requires an additional restriction on top of the
relevance and exogeneity assumptions.

Mertens and Ravn (2013) impose that S1 is either upper or lower triangular. The in-
terpretation of the resulting impulse responses are different depending on the ordering.
To clarify the difference, we follow the discussion in Mertens and Montiel Olea (2018),
and multiply both sides of (5) by the inverse of S1. Defining C≡ S−1

1 and γ≡ S−1
1 η, this

yields:

(6) C
[

uAPIT R
t

uACIT R
t

]
= γu2t +

[
εAPIT R

t
εACIT R

t

]
.

Consider first an upper triangular restriction on C (or equivalently on S1), C2,1 = 0. Im-
posing this restriction yields the response to an unanticipated counterfactual tax reform
that, after controlling for current and lagged values of all endogenous variables with inno-
vations u2t as well as for lags of the tax rate variables, affects the APITR but has no impact
effect on the ACITR. This same restriction also identifies the response of the observables
to an unanticipated ACITR change but allowing the APITR to change simultaneously.
Assuming alternatively C1,2 = 0 instead delivers the response to a surprise change in the
APITR allowing for a simultaneous change in the ACITR, and an unanticipated change in
the ACITR restricting the APITR not to change simultaneously. Hence, the nature of the
policy experiments clearly depend on the restrictions imposed on C.

In order to study the impact of either tax rate in isolation, Mertens and Ravn (2013)
therefore adopt the C2,1 = 0 restriction for the APITR and C1,2 = 0 for the ACITR since the
reverse assumptions imply that the tax reforms involve simultaneous changes in two differ-
ent tax instruments. Note that these are precisely the restrictions generating the narrower
bands in Figures 1 and 2 of Jentsch and Lunsford (2018). The left columns in Figures 3, 4
and 5 of Jentsch and Lunsford (2018), in contrast, all show responses to an APITR change
imposing that C1,2 = 0, which effectively are responses to some combination of changes
in both tax rates.
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Notes: Bootstrapped intervals are based on 5000 replications.

Figure 1: Output response to APITR shock (Left) and ACITR shock (Right) with 68%
standard percentile intervals.

Henceforth, we focus exclusively on the responses for the same orderings as in Fig-
ures 9 and 10 Mertens and Ravn (2013) which implement the restrictions on C as discussed
above. Figure 1 shows the output responses to tax shocks for the benchmark specification
in Mertens and Ravn (2013). We scale the tax shocks so that the average personal and cor-
porate income tax rate, respectively, decline by one percentage point. The figure replicates
the 68% Jentsch and Lunsford (2018) intervals and those generated by the wild bootstrap
in Mertens and Ravn (2013). In addition, Figure 1 also shows new intervals based on the
Delta method and the parametric bootstrap in Montiel Olea et al. (2017), each extended to
the k = 2 case and a Newey and West (1987) HAC-robust residual covariance matrix as in
Mertens and Montiel Olea (2018). The parametric bootstrap is based on draws from a joint
normal distribution for all the model parameters using the estimated values and covariance
matrix, see Montiel Olea et al. (2017).

Consistent with Jentsch and Lunsford (2018), the wild bootstrap yields intervals that
are clearly narrower than any of the alternative methods. Nonetheless, whereas the Jentsch
and Lunsford (2018) intervals include zero at all horizons, this is not the case when we use
the Delta method or the Montiel Olea et al. (2017) bootstrap. Either of these alternative
procedures are asymptotically valid and they all support the conclusion that tax shocks
have significant impact on the economy. We next highlight two other aspects of the anal-
ysis that illustrate of the sensitivity of the claims made by Jentsch and Lunsford (2018).
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Figure 2: Output response to APITR shock (Left) and ACITR shock (Right) with 68%
standard percentile intervals and using the (uncentered) narrative shocks as proxies.

Mertens and Ravn (2013) construct the proxies for the tax shocks by subtracting the
mean from the nonzero observations of the narrative measures. The Jentsch and Lunsford
(2018) bootstrap algorithm includes an additional centering of the non-censored proxies
(see step 4 of their procedure) to ensure the bootstrap distribution has the same mean as
the original proxies. The double centerings may however distort some of the informational
content of the original data given the relatively small number of nonzero observations. Fig-
ure 2 repeats the analysis of Figure 1, but now using the original narrative measures as the
proxies, i.e. without removing the mean from the nonzero observations (which is not a
requirement for the analysis). The resulting impulse responses remain very similar, with a
slightly smaller (larger) output effect of an APITR (ACITR) decrease. Most of the confi-
dence intervals also remain similar to those in Figure 1. The Jentsch and Lunsford (2018)
intervals, however, change qualitatively, and now in both cases exclude zero at short hori-
zons.

A final experiment suggesting caution about the conclusions by Jentsch and Lunsford
(2018) involves a difference in the inference procedure relative to Brüggemann et al.
(2016). All the bootstrap intervals reported so far are standard Efron (1979) percentile
intervals. The simulation evidence in Brüggemann et al. (2016) supporting the superior
performance of the moving block bootstrap in finite samples is based on the percentile in-
tervals proposed by Hall (1992). Figure 3 repeats the analysis of Figure 1, but now reports
the Hall (1992) rather than the Efron (1979) intervals. Asymptotically, both methods for

8



0 4 8 12 16 20

horizon (quarters)

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
p
e
r
c
e
n
t

Output

Delta Method

Wild Bootstrap

Par. Bootstrap

Block Bootstrap

0 4 8 12 16 20

horizon (quarters)

-0.5

0

0.5

1

1.5

2

2.5

p
e
r
c
e
n
t

Output

Delta Method

Wild Bootstrap

Par. Bootstrap

Block Bootstrap

Notes: Bootstrapped intervals are based on 5000 replications.

Figure 3: Output response to APITR shock (Left) and ACITR shock (Right) with 68%
Hall (1992) percentile intervals.

constructing the intervals are equivalent under standard assumptions, yet Figure 3 shows
that the Hall (1992) intervals from the moving block bootstrap are very different from the
standard percentile intervals in Figure 1 and, in sharp contrast, are far away from zero.4

The other bootstrap intervals instead remain more similar to those in Figure 1.

We take away from this that the 68% bands for the relevant output responses obtained
from available alternative procedures are indeed generally wider than those obtained from
the wild bootstrap. At the same time, Figures 1, 2 and 3 provide a range of asymptotically
valid alternatives producing 68% intervals that do not include zero. We also obtained anal-
ogous results for the effects on the other macroeconomic aggregates reported in Mertens
and Ravn (2013). On this basis we therefore do not agree with Jentsch and Lunsford
(2018)’s claim that the effects of tax shocks on output are not ‘inferable’. Finally, we note
that the Jentsch and Lunsford (2018) intervals at the 90% or 95% levels become extremely
wide, much more so than any of the other intervals. We conjecture that this is more likely
a symptom of artificially low instrument relevance in large areas of the bootstrap distribu-
tion, in part because of the many zero observations in the tax proxies, than it is because
the moving block bootstrap provides a better approximation of the true small sample dis-
tribution than the other inference approaches.

4See Kilian and Lütkepohl (2017) for a discussion of different bootstrap intervals.
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4 Confidence Intervals in Other Applications
In this final section, we explore the implications of adopting alternative inference ap-

proaches in other recent applications of the proxy SVAR methodology. Each of these in-
volve a single instrument and a single structural shock, such that k = 1 rather than k = 2 as
in Mertens and Ravn (2013). This has the advantage that in these applications we can use
available ‘first-stage’ statistics testing the relevance condition required for identification.
Montiel Olea et al. (2017) derive the F-statistic for the null hypothesis that E[mtε1t ] 6= 0
and show that its ‘center’ is analogous to the ‘concentration’ parameter in the linear IV
model. This F-statistic provides an indication of possible weak-instrument concerns for
inference, with the 5% critical value of 3.84, and the Stock and Yogo (2005) threshold
value of 10 as useful reference points.

The first row in Figure 4 shows responses of GDP (left panel) and income reported
to tax authorities (right panel) to a decrease in the average marginal tax rate, estimated by
Mertens and Montiel Olea (2018). We consider the benchmark VAR estimated by Mertens
and Montiel Olea (2018) which consists of 9 variables (real income per tax unit, log of one
minus the average marginal tax rate, real output, unemployment, government spending, the
change in federal debt, the inflation rate, real stock prices and the federal funds rate). The
data are annual, the sample period is 1948-2012 and the VAR has two lags.

As before, the figures show 68% standard percentile intervals from the wild bootstrap
in Mertens and Ravn (2013), the moving block bootstrap of Jentsch and Lunsford (2018),
the Delta method and the parametric bootstrap in Montiel Olea et al. (2017). The proxy
used for identification is a (weighted) average impact on statutory tax of a selection of
historical US tax reforms. The F-statistic of 11.09 indicates a strong instrument. Com-
paring the intervals, the main observation is that the differences between the various 68%
intervals are relatively minor, and certainly much less pronounced as in Figure 1 above.5

Mertens and Montiel Olea (2018) show that at the 95% level the Jentsch and Lunsford
(2018) become outliers and are much wider than the alternatives. Figure 5 shows the
block bootstrap distribution of the relevant first-stage F-statistic. More than 56% of the
moving block bootstrap replications have an F-statistic smaller than 10, and 8% have a
value smaller than 3.84. We suspect that weak instrument problems are potentially dis-
torting the Jentsch and Lunsford (2018) intervals at higher significance levels, and that a

5Mertens and Montiel Olea (2018) perform a similar evaluation of different confidence intervals in the
appendix. The moving block bootstrap bands reported in Mertens and Montiel Olea (2018) uses the same al-
gorithm as Jentsch and Lunsford (2018), but without the centering of the proxies in step 4 of their procedure.
This yields 68% bands that are even closer to all the other bands.
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similar phenomenon occurs in the Mertens and Ravn (2013) application above.

The next row in Figure 4 shows the response of the 1 year Treasury rate (left panel) and
industrial production (right panel) to a monetary policy shock, estimated by Gertler and
Karadi (2015). The proxy in this case consists of changes in interest rate futures shortly
after FOMC announcements. As Gertler and Karadi (2015), we estimate a 12-lag monthly
VAR model with 5 monthly macroeconomic and financial variables for the 1979:M7 to
2012:M6 sample.

The F-statistic is 9.15, which is marginally below the Stock and Yogo (2005) thresh-
old. The 68% intervals around the interest rate response are very close to each other. The
wild bootstrap intervals for the output response are more clearly narrower then the block
bootstrap intervals. The latter in turn have somewhat smaller width than the Delta or the
parametric bootstrap bands. Roughly 60% of the block bootstrap replications have an F-
statistic smaller than 10, and 10% have a value smaller than 3.84.

The third row in Figure 4 shows the response of the VXO volatility index (left panel)
and industrial production (right panel) to an uncertainty shock, as estimated by Carriero,
Mumtaz, Theodoris and Theophilopoulou (2015). The proxy used is an indicator of geopo-
litical and other events constructed by Bloom (2009). Carriero, Mumtaz, Theodoris and
Theophilopoulou (2015) estimate the 12-lag VAR model in Bloom (2009), which con-
tains 7 monthly macroeconomic and financial variables for 1962:M7 to 2008:M6. The
F-statistic is 22.30, which indicates a very strong instrument. The figure shows that there
are no meaningful differences between the wild and block bootstrap intervals, and both are
also very similar to the Delta and parametric bootstrap bands. Only a very small fraction
of the block bootstrap replications has an F-statistic below 10.

The final row in Figure 4 shows the response of oil prices (left panel) and the Kil-
ian (2009) index of global economic activity (right panel) to a negative oil supply shock.
The proxy is a monthly version of the Kilian (2008) measure of oil supply shocks, as con-
structed by ?. The variables in the 12-lag VAR are the growth rate of oil production, global
real activity, and the real oil price over the 1973:M2 to 2007:12 sample. The F-statistic
is 4.31, which exceeds the 5% critical value for rejecting instrument irrelevance, but is
also considerably below the Stock and Yogo (2005) threshold. This value signals possible
weak instrument problems for this application, see also Montiel Olea et al. (2017). There
are considerable differences between the various confidence intervals. The wild bootstrap
produces bands that are narrower than any of the others. The other bands are more similar
in width, but meaningful differences remain across them. Virtually all of the block boot-
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strap replications have an F-statistic below 10.

We conclude from Figure 4 that the differences between the alternative 68% intervals
are not necessarily large, and in some applications they are negligible. Moreover, the
differences between intervals become more pronounced when the F-statistic for instrument
relevance is lower. This statistic is not available for the k = 2 case in the Mertens and
Ravn (2013) application, but the pattern across the applications in Figure 4 suggests that
the differences between the intervals are related to the relevance of the tax proxies. While
more research is needed on the performance of the various inference approaches, these
findings suggest that instrument strength is in practice the important concern for inference.

5 Conclusion
We have considered the estimation of dynamic causal effects using proxy SVARs,

and specifically the extent to which confidence intervals are sensitive to the choice of
inference method. Our results show that the conclusions about the economic and statistical
significance of the macroeconomic effects of tax changes in Mertens and Ravn (2013)
remain broadly valid. We stress that proxy SVARs are a useful new tool for dynamic
causal analysis by allowing researchers to combine the appealing nature of VAR analysis
with new sources of identification. Research on inference in proxy SVARs is ongoing, and
undoubtedly much progress will be made over the coming years in this important area of
macroeconometrics.
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Figure 4: Impulses and 68% Standard Percentile Intervals in Selected Applications of
Proxy SVARs.
Notes: Bootstrapped intervals are based on 5000 replications. The block length in the block bootstrap is the
largest integer smaller than 5.03×T 1/4, as suggested in Jentsch and Lunsford (2016).



Figure 5: Mertens and Montiel Olea (2018): Block Bootstrap Distribution of the F-statistic
Notes: Red line shows value of 11.09 in the data.
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