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This paper proposes a novel approach to decompose realized jump measures by type of 
activity (finite/infinite) and by sign. We also provide noise-robust versions of the ABD jump 
test (Andersen et al. 2007) and realized semivariance measures for use at high frequency 
sampling intervals. The volatility forecasting exercise involves the use of different types of 
jumps, forecast horizons, sampling frequencies, calendar and transaction time-based 
sampling schemes, as well as standard and noise-robust volatility measures. We find that 
infinite (finite) jumps improve the forecasts at shorter (longer) horizons; but the contribution 
of signed jumps is limited. Noise-robust estimators, that identify jumps in the presence of 
microstructure noise, deliver substantial forecast improvements at higher sampling 
frequencies. However, standard volatility measures at the 300-second frequency generate 
the smallest MSPEs. Since no single model dominates across sampling frequency and 
forecast horizon, we show that model averaged volatility forecasts - using time-varying 
weights and models from the model confidence set - generally outperform forecasts from 
both the benchmark and single best extended HAR model. 
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1. Introduction 

 Modelling and forecasting asset return volatility is central to asset pricing, portfolio optimization 

and risk management. The introduction and use of high frequency data provides a framework for 

directly measuring and capturing the main stylized facts of volatility. Realized volatility (RV), a non-

parametric measure calculated as the sum of intra-day squared returns, provides a consistent estimator 

of quadratic variation when the price process contains discontinuities or jumps2 

 In relation to volatility forecasting, the seminal work of Andersen et al. (2007) suggests that the 

jump component is both highly important and distinctly less persistent than the continuous component. 

Thus, treating rough jumps separately results in significant improvements in out-of-sample volatility 

forecasts, not least because many significant jumps are associated with specific macroeconomic news 

announcements. However, recent empirical evidence that classifies jumps into finite and infinite activity 

jumps (Aït-Sahalia and Jacod, 2012), presents a new question as to whether such different types of 

jumps are equally important in the prediction of future volatility.3 

 A large literature examines the role of jumps in volatility forecasting. However, much of that 

literature focuses on signed jumps, and does not separate finite jumps from infinite jumps. It also tends 

to use 300-second returns, rather than higher frequency 5- or 60-second returns, in order to mitigate 

the impact of the market microstructure noise. Whether for jumps or signed jumps, the literature 

provides mixed evidence regarding their value added in forecasting. One side of the literature reports 

gains in forecasting from incorporating jumps. Andersen et al. (2007) find that separating jumps from 

the continuous volatility component improves out-of-sample forecasts. Corsi et al. (2010) show that the 

use of a threshold bipower estimator to calculate the jump component improves the out-of-sample 

forecasts. Patton and Sheppard (2015) argue that volatility is strongly related to the volatility of past 

negative returns, and show that models incorporating signed jumps lead to significantly better out-of-

sample forecast performance. Duong and Swanson (2015) identify large and small jumps using higher 

order power variations, and find that small jumps are more important for forecasting volatility than 

large jumps.  

 
2 Early adoption of RV for modelling and forecasting volatility featured in the work of Andersen and Bollerslev 
(1998) and Andersen et al. (2001, 2003 and 2005) inter alios. 
3 Other research considering the role of infinite jumps can be found in Aït-Sahalia (2004), Huang and Tauchen 
(2005), Lee and Mykland (2007), Aït-Sahalia and Jacod (2009), Dumitru and Urga (2012) and the extensive 
references therein. For infinite jumps, see Aït-Sahalia and Jacod (2009, 2014), and Todorov and Tauchen (2010) 
inter alios. 
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 Another side of the literature finds that jumps do not significantly improve volatility forecasts. 

For instance, Forsberg and Ghysels (2007), Giot and Laurent (2007), Martens et al. (2009), Busch et al 

(2011), Sévi (2014) and Prokopczuk et al. (2016) review the use of jumps and signed jumps to forecast 

future volatility. Their results suggest that the inclusion of jumps and signed jumps improves the in-

sample fit of models, but generate no significant out-of-sample forecasting gains.  

 The current paper contributes to the literature in a number of ways. First, we show how jumps 

may be decomposed into signed, finite and infinite activity jumps. We identify the finite and infinite  

jump components using the intersection of the ABD intraday jump test and the SFA finite activity jump 

test (Andersen et al. (2007b), Aït-Sahalia and Jacod (2011)). Duong and Swanson (2015) use higher order 

power variations to decompose jumps into large and small jumps, and examine their role in predicting 

the volatility of returns. By contrast, we use a more robust test based decomposition of days with 

significant jumps into ones with finite or infinite activity jumps. As noted by Aït-Sahalia and Jacod (2014), 

estimated jumps based on higher-order power variation are often poor measures of actual jumps.  

Second, we develop versions of the ABD test and realized semivariances measures that are robust to 

microstructure noise, and perform well at high frequency. The noise robust realized semivariance 

measures are modifications of the two-scale realized volatility measure of Zhang et al. (2005). Third, we 

present new empirical evidence showing the contribution of the various types of signed, finite and 

infinite activity, jumps to improving volatility forecasts at different forecast horizons. We examine the 

choice of sampling frequency and sampling scheme, as well as the use of noise-robust realized 

measures. Volatility forecasts using transaction-time based measures are dominated by those using 

regular clock-time based measures. Fourth, as most jumps are idiosyncratic, no single forecasting model 

dominates, so better forecasts are obtained using simple model averages using 300-second jump 

measures.  

 Our application uses high-frequency data from 2000 to 2016. Using extended HAR models, we 

forecast the volatility of SPY, the SPDR S&P 500 ETF, as well as 20 constituents of the S&P 100 index 

which vary by sector and volume. We show that jumps contribute significantly to the volatility of SPY 

and the 20 stocks we examine. As expected, we find the SPY volatility forecasts to be more accurate, 

since aggregation helps to identifies more informative jumps which improves the out-of-sample mean 

square prediction error (MSPE) performance.  

 To preview our findings, when jumps classified by sign and activity are used as additional 

predictors in HAR models, we find significant improvements in both in- and out-of-sample performance. 

We focus on the MSPE results from pseudo, out-of-sample forecasts using rolling window regressions. In 
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terms of our classification of jumps by activity, infinite jumps are relatively more important at shorter 

horizons, whereas finite jumps dominate at longer horizons. Adding signed finite and infinite jumps to 

the forecasting model often generates significantly better forecasts than the standard HAR-RV model. 

However, no single extended model dominates.  

 The use of noise-robust estimators substantially improves the out-of-sample performance of our 

extended HAR models, especially at higher frequencies. The gains are greater for individual stocks than 

for the SPY index. This is unsurprising since SPY is a very liquid asset with a low level of microstructure 

noise. One might have expected standard volatility measures to deliver forecasts that are more accurate 

at the 300-second frequency, since microstructure noise should be small. However, this only holds true 

for SPY. For individual stocks, the forecasting performance of noise-robust and standard volatility 

measures is similar. In line with Ghysels and Sinko (2011), noise-robust measures only improve 

forecasting performance when the level of market microstructure noise is significant.  

 The greatest gains in real-time forecasting performance are generally found using returns 

sampled at 300-second intervals, rather than at 5- or 60-second intervals, irrespective of whether noise-

robust or standard volatility measures are used.4 Since the forecasting performance of no single model 

dominates across sampling frequency and forecast horizon, we investigate model averaging using the 

model confidence set approach of Hansen et al. (2011) to reduce the set of retained models in the 

averages. Simple model averaging, including averages using time-varying weights, generally results in 

significant out-of-sample forecasting performance (e.g. Aiolfi and Timmermann (2006), Timmermann 

(2006), Aiolfi et al. (2011), Elliott and Timmermann (2016)). These gains arise using both the SPY and 

individual stocks across different horizons. The gains are greatest using the returns sampled every 300-

seconds. We assess the predictive accuracy of model averaging using the pairwise test of Diebold and 

Mariano (1995). The results show that model averaging produces significantly smaller MSPEs, even at 

long horizons of 66 days / 3 months.  

 These results are in line with those of Giacomini and Rossi (2010), where the relative forecasting 

performance of individual models often changes over time. Here we identify the incidence of cojumps in 

our data using the co-exceedance rule of Gilder et al. (2014). The cojumps results indicate that the 

jumps in our data are mainly idiosyncratic, reflecting stock specific differences in the arrival of news and 

 
4 This result is in line with Liu et al. (2015) who find that 300-second / 5-min RV is very difficult to beat. Across a 
range of assets in different classes, they found that 5-minute returns volatilities obtained from the two scales 
realized volatility (TSRV) subsampling approach of Zhang et al. (2005) is the preferred method of estimating daily 
volatility. 
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the reaction to that news.5 The fact that the timing, size and sign of most jumps are stock specific is the 

main reason why no single forecast model dominates.  

 As a robustness check, we consider alternative, transaction-time sampled volatility measures. To 

the best of our knowledge, only Patton and Sheppard (2015) have considered an alternative sampling 

scheme for forecasting and their focus is on signed jumps. They do not examine the role of finite and 

infinite jumps, nor do they compare their results with those using the popular clock-time sampling 

scheme. In the case of SPY, we find that the share of jumps in transaction-time based RV measures is far 

smaller than for clock-based measures, and any jumps are predominantly finite activity jumps. In terms 

of forecasting performance, we conclude that forecasts using volatility and jump measures based on 

transaction sampling are inferior to the forecasts from clock-based sampling.  

 The remainder of the paper is as follows. The theoretical background is set out in Section 2. The 

estimation of signed, finite and infinite activity jumps is described in Section 3. Robust-to-noise volatility 

measures are also discussed. Section 4 sets out the forecasting framework, including the extended HAR 

forecasting models and forecast evaluation criteria. The data used in this study are described in Section 

5, where the incidence of various types of jumps is tabulated. The forecasting gains from adding 

different types of signed, finite and infinite activity jumps to HAR models are documented in Section 6. 

Model averaging results are presented in Section 6. Volatility forecasting results using transaction-time 

sampled volatility measures are discussed in Section 8. Finally, Section 9 summarizes the paper and 

presents our conclusion. 

2. Theoretical Background 

 Let 𝑋𝑋𝑡𝑡 denote the log of the price of an equity or an equity index. We assume 𝑋𝑋 is an Itô-

semimartingale process defined on a filtered probability space (Ω,ℱ, (ℱ𝑡𝑡)𝑡𝑡≥0,ℙ), with the following 

representation 

 𝑋𝑋𝑡𝑡 = 𝑋𝑋0 + ∫𝑡𝑡0 𝑎𝑎𝑠𝑠𝑑𝑑𝑑𝑑 + ∫𝑡𝑡0 𝜎𝜎𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠 + 𝐽𝐽𝑡𝑡 ,    𝑡𝑡 ∈  [0,𝑇𝑇]  

 where 𝑎𝑎𝑡𝑡  is a locally bounded and predictable drift term and 𝜎𝜎𝑡𝑡 is the adapted, càdlàg spot volatility, 𝑊𝑊𝑡𝑡  

is a standard Brownian motion and 𝐽𝐽𝑡𝑡  is a pure jump process with finite and infinite activity components,  

𝐽𝐽𝑡𝑡 = 𝐽𝐽𝑡𝑡𝐹𝐹 + 𝐽𝐽𝑡𝑡𝐼𝐼. The finite activity 𝐽𝐽𝑡𝑡𝐹𝐹 and infinite activity 𝐽𝐽𝑡𝑡𝐼𝐼 jump processes are: 

 
5 Similar qualitative conclusions are obtained using the multijump test of Caporin et al. (2017). The number of 
detected cojumps is also similar to the numbers reported in Caporin et al. (2017) and Mukherjee et al. (2020). 
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 𝐽𝐽𝑡𝑡𝐹𝐹 = ∫𝑡𝑡0 ∫|𝑥𝑥|>𝜖𝜖 𝑥𝑥𝑥𝑥(𝑑𝑑𝑥𝑥, 𝑑𝑑𝑑𝑑),   

 𝐽𝐽𝑡𝑡𝐼𝐼 = ∫𝑡𝑡0 ∫|𝑥𝑥|≤𝜖𝜖 𝑥𝑥(𝑥𝑥(𝑑𝑑𝑥𝑥,𝑑𝑑𝑑𝑑)− 𝜈𝜈(𝑑𝑑𝑥𝑥)𝑑𝑑𝑑𝑑),  

where 𝑥𝑥 is the jump measure of 𝑋𝑋 with compensator 𝜈𝜈, and 𝜖𝜖 > 0 is an arbitrary number. For more 

details on Itô semi-martingale processes, see Aït-Sahalia and Jacod (2014) and the references therein. As 

Aït-Sahalia and Jacod (2012) note, the continuous part of the 𝑋𝑋 process captures the normal risk of an 

asset that can be hedged using standard methods. The large, finite jumps capture default risk or big 

news-related events, while the small jumps capture price moves that impact high frequency prices but 

wash out at the daily level, e.g. the price impact of large transactions.   

 Since volatility is a latent variable, realized measures are widely employed to give consistent 

estimates of the quadratic variation (𝑄𝑄𝑄𝑄) of the process using high-frequency data. The quadratic 

variation of the price process is:  

𝑄𝑄𝑄𝑄𝑡𝑡 = �
𝑡𝑡

0
𝜎𝜎𝑠𝑠2𝑑𝑑𝑑𝑑�����

Integrated 
Variance (IV) 

+ � (Δ𝑠𝑠𝑋𝑋)2
0<𝑠𝑠<𝑡𝑡���������

Jump 
Contribution

 

 where Δ𝑠𝑠𝑋𝑋 = 𝑋𝑋𝑠𝑠 − 𝑋𝑋𝑠𝑠− when 𝑋𝑋 jumps at time 𝑑𝑑. Under suitable conditions, the widely used realized 

volatility (𝑅𝑅𝑄𝑄) measure converges in probability to the quadratic variation as the sampling interval  Δ𝑛𝑛 →

0:  

𝑅𝑅𝑄𝑄𝑡𝑡 = �
𝑀𝑀

𝑖𝑖=1

(Δ𝑖𝑖𝑛𝑛𝑋𝑋)2
𝑝𝑝
→ 𝑄𝑄𝑄𝑄𝑡𝑡 , 

 where the day is split into 𝑛𝑛 = ⌊1/Δ𝑛𝑛⌋ equally spaced intervals of length Δ𝑛𝑛,  Δ𝑖𝑖𝑛𝑛𝑋𝑋 = 𝑋𝑋𝑖𝑖Δ𝑛𝑛 − 𝑋𝑋(𝑖𝑖−1)Δ𝑛𝑛  is 

the log return in interval 𝑖𝑖,  and ⌊𝑥𝑥⌋ denotes the integer part of x. 

 To separate the integrated variation component of 𝑄𝑄𝑄𝑄 from the jump component, we use the 

threshold bipower variation (𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄) measure proposed by Corsi et al. (2010), a modified version of the 

so-called bipower variation measure of Barndorff-Nielsen and Shephard (2004). The 𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄, which is 

robust to jumps in both the stochastic limit and the asymptotic distribution, converges in probability to 

the integrated variance as the sampling interval Δ𝑛𝑛 → 0:  

𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 = 𝑥𝑥1−2
𝑛𝑛

𝑛𝑛 − 1
�
𝑛𝑛

𝑖𝑖=2

|Δ𝑖𝑖𝑛𝑛𝑋𝑋|1{(Δ𝑖𝑖
𝑛𝑛𝑋𝑋)2≤𝜗𝜗𝑖𝑖}|Δ𝑖𝑖−1𝑛𝑛 𝑋𝑋|1{(Δ𝑖𝑖−1

𝑛𝑛 𝑋𝑋)2≤𝜗𝜗𝑖𝑖−1}
𝑝𝑝
→�

𝑡𝑡

0
𝜎𝜎𝑠𝑠2𝑑𝑑𝑑𝑑, 
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where 𝑥𝑥1 = �2/𝜋𝜋 ≈ 0.7979,  𝑛𝑛/(𝑛𝑛 − 1) is a small sample correction and  𝜗𝜗  is the threshold estimator 

in Corsi et al. (2010, Appendix B). We also utilize the positive and negative realized semivariance (𝑅𝑅𝑅𝑅) 

estimators of Barndorff-Nielsen et al. (2010) to capture upside and downside risk:  

𝑅𝑅𝑅𝑅𝑡𝑡+ = �
𝑛𝑛

𝑖𝑖=1

(Δ𝑖𝑖𝑛𝑛𝑋𝑋)21�Δ𝑖𝑖𝑛𝑛𝑋𝑋>0�
𝑝𝑝
→

1
2
�
𝑡𝑡

0
𝜎𝜎𝑠𝑠2𝑑𝑑𝑑𝑑 + �

0<𝑠𝑠≤𝑡𝑡

(Δ𝑋𝑋𝑠𝑠)21{Δ𝑋𝑋𝑠𝑠>0}, 

𝑅𝑅𝑅𝑅𝑡𝑡− = �
𝑛𝑛

𝑖𝑖=1

(Δ𝑖𝑖𝑛𝑛𝑋𝑋)21�Δ𝑖𝑖𝑛𝑛𝑋𝑋<0�
𝑝𝑝
→

1
2
�
𝑡𝑡

0
𝜎𝜎𝑠𝑠2𝑑𝑑𝑑𝑑 + �

0<𝑠𝑠≤𝑡𝑡

(Δ𝑋𝑋𝑠𝑠)21{Δ𝑋𝑋𝑠𝑠<0}. 

  

3.  Identifying and Decomposing Jumps by Sign and Activity  

 To identify days with significant jumps, we employ the intra-day jump test proposed by 

Andersen et al. (ABD, 2007b). If the largest intra-daily value of the test exceeds the critical value, we 

classify the day as a jump day. The 𝒥𝒥𝑡𝑡 indicator for a day with significant jumps is one if max𝑖𝑖|Δ𝑖𝑖𝑛𝑛𝑋𝑋| >

Φ1−𝛽𝛽/2
−1 �Δ𝑛𝑛 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 and 0 otherwise, where Φ(⋅)

−1 is the inverse of the standard normal cumulative 

distribution function, 𝛼𝛼 is the significance level and 𝛽𝛽 = 1 − (1− 𝛼𝛼)Δ𝑛𝑛 is the Šidàk multiple testing 

correction. Hence, the estimated continuous and jump and continuous components of 𝑄𝑄𝑄𝑄 are: 

�̂�𝐶𝑡𝑡 = 𝑅𝑅𝑄𝑄𝑡𝑡 × (1 −𝒥𝒥𝑡𝑡) + 𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 × 𝒥𝒥𝑡𝑡 , 

𝐽𝐽𝑡𝑡  =  max(𝑅𝑅𝑄𝑄𝑡𝑡 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 , 0) × 𝒥𝒥𝑡𝑡 . 

 To identify days with significant finite or infinite activity jumps, we employ the SFA test 

proposed by Aït-Sahalia and Jacod (2011).  The test statistic is the ratio of two truncated realized power 

variation measures designed to eliminate large jumps. The realized power variation  𝑇𝑇(𝑝𝑝, 𝜐𝜐𝑛𝑛,Δ𝑛𝑛) =

∑𝑛𝑛
𝑖𝑖=1 |Δ𝑖𝑖𝑛𝑛𝑋𝑋|𝑝𝑝1{|Δ𝑖𝑖

𝑛𝑛𝑋𝑋|≤𝜐𝜐𝑛𝑛}, with 𝜐𝜐𝑛𝑛 = 𝜚𝜚Δ𝑛𝑛𝜛𝜛, 𝜚𝜚 > 0 and 𝜛𝜛 ∈ (0, 12) , is the sum of truncated absolute returns, 

|Δ𝑖𝑖𝑛𝑛𝑋𝑋| ≤ 𝜐𝜐𝑛𝑛, raised to the power 𝑝𝑝 over different sampling frequencies Δ𝑛𝑛. The SFA test statistics has 

different limits depending on whether the jumps in 𝑋𝑋𝑡𝑡 are finite or infinite activity jumps. 𝑅𝑅𝑆𝑆𝐴𝐴𝑡𝑡 =
𝐵𝐵(𝑝𝑝,𝜐𝜐𝑛𝑛,𝑘𝑘Δ𝑛𝑛)𝑡𝑡
𝐵𝐵(𝑝𝑝,𝜐𝜐𝑛𝑛,Δ𝑛𝑛)𝑡𝑡

𝑝𝑝
→ 𝑘𝑘𝑝𝑝/2−1 in the finite activity case and 1 in the infinite activity case. Under the finite activity 

null, the statistic  �𝑅𝑅𝑆𝑆𝐴𝐴𝑡𝑡 − 𝑘𝑘
𝑝𝑝
2−1� �𝑄𝑄�𝑡𝑡�

𝐿𝐿
→𝒩𝒩(0,1), where  𝑄𝑄�𝑡𝑡 = 𝑁𝑁(𝑝𝑝,𝑘𝑘) 𝐵𝐵(2𝑝𝑝,𝜐𝜐𝑛𝑛,Δ𝑛𝑛)𝑡𝑡

𝐵𝐵(𝑝𝑝,𝜐𝜐𝑛𝑛,Δ𝑛𝑛)𝑡𝑡
2  . For further details 

of 𝑁𝑁(𝑝𝑝,𝑘𝑘), and other settings, see Ait-Sahalia and Jacod (2011). We set 𝑘𝑘 = 2 and  𝑝𝑝 = 4, and use the 

indicator ℱ𝑡𝑡 = 1(𝑅𝑅𝑆𝑆𝐴𝐴𝑡𝑡 < 𝑘𝑘
𝑝𝑝
2−1 − Φ1−𝛼𝛼

−1 �𝑄𝑄�𝑡𝑡)  to identify days with finite activity jumps.  

- Table 1 Here - 
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 Our classification of jumps by sign and activity is set out in Table 1. We classify jumps by activity 

using the jump 𝒥𝒥𝑡𝑡  and finite activity ℱ𝑡𝑡  indicators. The contributions of positive and negative jumps to 

overall QV are based on max (𝑅𝑅𝑅𝑅𝑡𝑡+ − 1
2𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 , 0) × 𝒥𝒥𝑡𝑡 and max�𝑅𝑅𝑅𝑅𝑡𝑡− − 1

2𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 , 0�× 𝒥𝒥𝑡𝑡  respectively. 

When forecasting volatility using our extended HAR models, we use the daily (net) signed jump, 𝑅𝑅𝐽𝐽�𝑡𝑡, the 

difference between the positive and negative measures (Patton and Sheppard, 2015). The 

corresponding positive and negative signed jumps are 𝐽𝐽𝑡𝑡+ =  𝑅𝑅𝐽𝐽�𝑡𝑡 ×𝒫𝒫𝑡𝑡 and 𝐽𝐽𝑡𝑡− =  𝑅𝑅𝐽𝐽�𝑡𝑡 ×  (1−𝒫𝒫𝑡𝑡) 

respectively, where 𝒫𝒫𝑡𝑡 = 1�𝑅𝑅𝐽𝐽�𝑡𝑡 > 0�. Their finite / infinite activity counterparts are identified using the 

finite activity ℱ𝑡𝑡  indicator. 

3.1 Market Microstructure Noise 

 Market microstructure noise can distort realized volatility measures, and hence the 

identification of jumps. We know that the contribution of jumps varies by sampling frequency (Table 3 

below), and that the level of market microstructure noise increases as the sampling interval Δ𝑛𝑛 → 0. As 

a result, standard high frequency realized volatility measures tend to be biased, distorting  jump test 

statistics (e.g. Hansen and Lunde (2006), Huang and Tauchen (2005). This suggests that robust-to-noise 

volatility measures should be used at high frequencies (e.g., 5 and 60 seconds), and possibly lower 

frequencies. Although Aït-Sahalia and Xiu (2019) suggest that improvements in stock market liquidity 

mean that the common practice of treating the 5-minute returns of S&P 100 constituents as noise-free 

is a reasonably safe choice for data sampled after 2009, it is problematic before then. They also suggest 

that the 5-minutes returns of a large portion of S&P 500 index constituents cannot be treated as noise-

free.  

 We assume that the observed log price process, 𝑌𝑌𝑡𝑡, is contaminated by additive, microstructure 

noise6: 

𝑌𝑌𝑡𝑡 = 𝑋𝑋𝑡𝑡 + 𝑢𝑢𝑡𝑡 , 

 where 𝑋𝑋𝑡𝑡 is the underlying log price process described above, and  𝑢𝑢𝑡𝑡 is an i.i.d. noise process with 

mean zero and variance 𝜔𝜔2, stochastically independent of 𝑋𝑋𝑡𝑡. Jacod et al. (2009) and Christensen et al. 

 
6 The mechanics of trading generate a diverse array of market microstructure effects including the bid-ask spread 
and corresponding bounce, the gradual response of prices to a block trade, the strategic component of order flow 
inventory control effects (Aït-Sahalia and Jacod, 2014). Additive noise is the simplest market microstructure model. 
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(2014) propose pre-averaging the returns to remove most of the noise. We estimate the pre-averaging 

returns as a weighted average of returns within a local neighborhood of 𝐿𝐿 log-prices: 

Δ𝑖𝑖𝑛𝑛𝑋𝑋� = �
𝐿𝐿−1

𝑗𝑗=1

𝑔𝑔 �
𝑗𝑗
𝐿𝐿
� Δ𝑖𝑖+𝑗𝑗𝑛𝑛 𝑌𝑌, 

 where  𝑔𝑔(𝑥𝑥) = min(𝑥𝑥, 1 − 𝑥𝑥),  Δ𝑖𝑖𝑁𝑁𝑌𝑌 = 𝑌𝑌𝑖𝑖Δ𝑛𝑛 − 𝑌𝑌(𝑖𝑖−1)Δ𝑛𝑛, 𝐿𝐿 = 𝜃𝜃√𝑀𝑀 , and 𝜃𝜃 = 1
3
 for 5 and 60 second 

returns or 𝜃𝜃 = 1 for 300 second returns. The robust-to-noise estimators for the realized variance and 

the bipower variation are:  

𝑅𝑅𝑄𝑄𝑡𝑡∗ = 𝑛𝑛
𝑛𝑛−𝐿𝐿+2

1
𝐿𝐿𝜓𝜓2

𝐿𝐿 ∑𝑛𝑛−𝐿𝐿+1
𝑖𝑖=0 |Δ𝑖𝑖𝑛𝑛𝑋𝑋�|2 − 1

𝜃𝜃2
𝜓𝜓1
𝐿𝐿

𝜓𝜓2
𝐿𝐿 𝜔𝜔�2, 

𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡∗ = 𝑛𝑛
𝑛𝑛−2𝐿𝐿+2

 
1

𝐿𝐿𝜓𝜓2
𝐿𝐿𝜇𝜇1

2� |Δ𝑖𝑖𝑛𝑛𝑋𝑋�||Δ𝑖𝑖+𝐿𝐿𝑛𝑛 𝑋𝑋�
𝑛𝑛−2𝐿𝐿+1

𝑖𝑖=0
|− 1

𝜃𝜃2
𝜓𝜓1
𝐿𝐿

𝜓𝜓2
𝐿𝐿𝜔𝜔�2     , 

where the leading  terms are small sample corrections, the trailing term 1
𝜃𝜃2

𝜓𝜓1
𝐿𝐿

𝜓𝜓2
𝐿𝐿 𝜔𝜔�2 is a bias-correction to 

remove the residual noise that is not eliminated by pre-averaging, and 𝜓𝜓1𝐿𝐿 = 𝐿𝐿∑𝐿𝐿
𝑗𝑗=1 (𝑔𝑔�𝑗𝑗𝐿𝐿� −

𝑔𝑔�𝑗𝑗−1𝐿𝐿 �)2 and  𝜓𝜓2
𝐿𝐿 = 1

𝐿𝐿
∑𝐿𝐿−1
𝑗𝑗=1 𝑔𝑔2�

𝑗𝑗
𝐿𝐿� are constants (Jacod et al., 2009, Appendix A, and Christensen et al., 

2014). The unknown noise variance 𝜔𝜔2 can be approximated using either the Bandi and Russell (2006) 

estimator 𝜔𝜔�𝑅𝑅𝑅𝑅2 = 1
2
∑𝑀𝑀
𝑖𝑖=1 (Δ𝑖𝑖𝑛𝑛𝑌𝑌)2, or the Oomen (2006a) estimator 𝜔𝜔�𝐴𝐴𝐴𝐴2 = − 1

𝑀𝑀−1
∑𝑀𝑀
𝑖𝑖=2 Δ𝑖𝑖−1𝑛𝑛 𝑌𝑌Δ𝑖𝑖𝑛𝑛𝑌𝑌, the 

negative of the first order autocovariance of log returns. We use the latter estimator.  

 The ABD jump test in Andersen et al. (2007b) can be modified to yield a test that is robust to the 

presence of additive market microstructure noise. This is done by replacing raw returns by pre-averaged 

returns, and using the pre-averaged bipower variation. Days with significant jumps may be identified 

using this version of the ABD test. Thus, our noise robust indicator of significant jumps,  𝒥𝒥t∗ = 1 when  

max𝑖𝑖|𝛥𝛥𝑖𝑖𝑛𝑛𝑋𝑋�| > Φ1−𝛽𝛽/2
−1 �Δ𝑛𝑛 × 𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡∗ and 0 otherwise.  

 Noise-robust versions of the realized semivariances, which capture upside and downside risk, 

are constructed by appropriately modifying the two-time scale realized variance measure of Zhang et al. 

(2005): 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡+ = 1
𝐾𝐾
∑ 𝑅𝑅𝑅𝑅𝑡𝑡

(𝑘𝑘)+
𝑘𝑘 − 𝑛𝑛

𝑛𝑛
𝑅𝑅𝑅𝑅𝑡𝑡+

𝑝𝑝
→ 1

2
∫𝑡𝑡0 𝜎𝜎𝑠𝑠

2𝑑𝑑𝑑𝑑 +∑0<𝑠𝑠≤𝑡𝑡 (Δ𝑋𝑋𝑠𝑠)21{Δ𝑋𝑋𝑠𝑠>0}, 

𝑇𝑇𝑅𝑅𝑅𝑅𝑄𝑄𝑡𝑡− = 1
𝐾𝐾
∑ 𝑅𝑅𝑅𝑅𝑡𝑡

(𝑘𝑘)−
𝑘𝑘 − 𝑛𝑛

𝑛𝑛
𝑅𝑅𝑅𝑅𝑡𝑡−

𝑝𝑝
→ 1

2
∫𝑡𝑡0 𝜎𝜎𝑠𝑠

2𝑑𝑑𝑑𝑑 + ∑0<𝑠𝑠≤𝑡𝑡 (Δ𝑋𝑋𝑠𝑠)21{Δ𝑋𝑋𝑠𝑠<0}, 
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where 𝑅𝑅𝑅𝑅𝑡𝑡
(𝑘𝑘)+ and 𝑅𝑅𝑅𝑅𝑡𝑡

(𝑘𝑘)− are subsample, slower time scale, realized semivariance measures; 𝑅𝑅𝑅𝑅𝑡𝑡+ and 

𝑅𝑅𝑅𝑅𝑡𝑡+ are the full sample, faster time scale, realized semivariance measures;  𝑛𝑛 = 𝑛𝑛−𝐾𝐾+1
𝐾𝐾

 is the average 

number of observations in the K subsamples; 𝐾𝐾 = �𝑐𝑐𝑛𝑛2 3⁄ � and 𝑐𝑐 is the optimal bandwidth in Zhang et al. 

(2005). The two-time scale estimators average the realized semivariances over K subsamples, and apply 

a bias correction from the full sample (the second time scale).7  

3.2 Noise-Robust ABD Test and Two-Time Scale realized Semivariance Measures - Monte Carlo Results 

 We examine the performance of our noise-robust ABD test statistic and two-time scale realized 

semivariance estimators using Monte Carlo simulations. The simulations use a (log-) price process 𝑋𝑋  

based on the Heston (1993) model augmented with finite or infinite activity jumps: 

𝑑𝑑𝑋𝑋𝑡𝑡 = �𝜈𝜈𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 + 𝜃𝜃𝐿𝐿𝑑𝑑𝐿𝐿𝑡𝑡 ,

𝑑𝑑𝜈𝜈𝑡𝑡 = 𝜅𝜅(𝜂𝜂𝜈𝜈 − 𝜈𝜈𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝛾𝛾𝜈𝜈𝜈𝜈𝑡𝑡
1/2𝑑𝑑𝑇𝑇𝑡𝑡 ,

 

where 𝑊𝑊𝑡𝑡  and 𝑇𝑇𝑡𝑡 are Wiener process with covariance 𝔼𝔼[𝑑𝑑𝑊𝑊𝑡𝑡 ,𝑑𝑑𝑇𝑇𝑡𝑡] = 𝜌𝜌𝑑𝑑𝑡𝑡, and 𝐿𝐿𝑡𝑡  is either a finite 

activity compound Poisson process or an infinite activity Cauchy process (a 𝛽𝛽-stable process with 𝛽𝛽 =

1). Following Aït-Sahalia and Jacod (2011), we set  𝜅𝜅 = 5,� 𝜂𝜂𝜈𝜈 = 0.25,γ𝜐𝜐 = 0.5 and  𝜌𝜌 = −0.5. The 

compound Poisson process has intensity 𝜆𝜆, and jumps that are uniformly distributed on 

𝜈𝜈𝑡𝑡
1/2√𝑚𝑚([−2,−1]∪ [1,2]). We set 𝑚𝑚 = 0.7 and 𝜆𝜆 = 0.5 such that, one average, there is one jump 

every two days. In the finite activity case, we set 𝜃𝜃𝐿𝐿 = 0.5, while for infinite jumps we set 𝜃𝜃𝐿𝐿 = 0.5. 

Following Barndorff-Nielsen et al. (2008), we add noise to the 𝑋𝑋𝑡𝑡,𝑖𝑖 process:  

𝑌𝑌𝑡𝑡,𝑖𝑖 = 𝑋𝑋𝑡𝑡,𝑖𝑖 + 𝑢𝑢𝑡𝑡,𝑖𝑖, 

where 𝑌𝑌 is the noisy, observed log price process, 𝜉𝜉 is the noise-to-signal ratio used to simulate market 

micro-structure noise, 𝑢𝑢𝑡𝑡,𝑖𝑖 ∼ 𝒩𝒩(0,𝜔𝜔𝑡𝑡
2) and 𝜔𝜔𝑡𝑡

2 = 𝜉𝜉2 ∫ 𝜈𝜈𝑠𝑠𝑑𝑑𝑑𝑑
𝑡𝑡
0 . With his design, the variance of the noise 

is constant throughout the day, but changing from day to day. We simulate the Y process second-by-

second for 50 days, with 6.5 hours of trading per day. We replicate the simulations 3,000 times 

- Table 2 Here - 

 
7 Aït-Sahalia, Jacod and Xiu (2019) develop a noise-robust, pre-averaging, version of the Aït-Sahalia and Jacod 
(2009) jump test, while Li and Xia (2016) develop general GMM procedures that address measurement error in 
realized volatility measures. 
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 Table 2 shows the results of our Monte Carlo exercise exploring the size and power of the two 

versions of the ABD test under finite and infinite jumps, with a moderate and higher level of noise-to-

signal ratio. The tests are evaluated at the 5% level. The noise-robust ABD test is more powerful at 

higher, 5-second and 60-second, frequencies and when the noise-to-signal ratio is higher. At lower 

frequencies, the size and power of the standard ABD test are better. In the Cauchy (infinite jump) case, 

the power of the standard ABD test is badly affected by the noise-to-signal levels. 

- Table 3 Here – 

  Table 3 compares the finite sample MSEs of the realized semivariance and two time scale 

realized semivariance measures. The results show that the realized semivariance is very sensitive to 

market micro-structure noise, resulting in large MSEs even when the noise-to-signal ratio is moderate 

and the sampling frequency is low. On the other hand, the performance of the two-scale realized 

semivariance is very good overall. 

4. Forecasting Models and Forecast Comparisons 

 The basic HAR-RV in Corsi (2009) models current and future 𝑅𝑅𝑄𝑄 as a linear function of 

lagged daily, weekly and monthly values of 𝑅𝑅𝑄𝑄. Andersen et al. (2007a) originally added jumps 

to the HAR-RV model. Our forecasting models extends the HAR-RV model further by adding  

signed, finite and infinite activity jumps. The baseline HAR-RV model is: 

𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑𝑅𝑅𝑄𝑄𝑡𝑡−1 + 𝛽𝛽𝑤𝑤𝑅𝑅𝑄𝑄𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝑚𝑚𝑅𝑅𝑄𝑄𝑡𝑡−22,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 

where 𝑡𝑡 refers to time in days, ℎ is the forecast horizon, and  𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 1
ℎ
∑ 𝑅𝑅𝑄𝑄𝑡𝑡+1−𝑖𝑖ℎ
𝑖𝑖=1  etc. 

are period averages of daily 𝑅𝑅𝑄𝑄 so the coefficients are on the same scale. We examine nine 

different, extended HAR models (Table 4). The first three forecasting models include daily, 

weekly and monthly jumps in addition to the daily, weekly and monthly continuous 

components of RV. The next three models replace the jump variables in previous models with 

their finite activity counterparts. The final three models only use infinite activity jumps. We 

estimate separate models for unsigned, positive and negative jumps.  

- Table 4 Here - 
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 The realized continuous and jump measures in the models are estimated using the 

formulae in Table 1. We also have an additional nine models where all the right-hand volatility 

measures are the noise-robust measures discussed in Section 3 above. Although additional 

variants of these models could be developed and evaluated, we do not believe that it is 

worthwhile doing so since the model averages should encompass these variants.  

 Our primary interest is in the performance of pseudo out-of-sample forecasts. We 

consider forecast horizons ℎ = 1, 5, 22 and 66, corresponding to one day, one week, one month, 

and one quarter ahead. We use rolling window regressions of size 1000, or approximately four 

years, to estimate the models. The out-of-sample forecast performance is evaluated using the 

mean squared prediction error (MSPE) loss function and, to a lesser extent, the out-of-sample R 

squared (𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2 ). The MSPE, which has been shown to be robust to noise in the proxy for 

volatility in Patton (2011), is: 

𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀ℎ = 1
𝑆𝑆ℎ

 � (𝑅𝑅𝑄𝑄𝑠𝑠ℎ − 𝑅𝑅𝑄𝑄�𝑠𝑠
ℎ)2

𝑆𝑆ℎ

𝑠𝑠=1
 

where 𝑅𝑅𝑄𝑄𝑠𝑠ℎ and 𝑅𝑅𝑄𝑄𝑠𝑠ℎ are the actual and pseudo out-of-sample forecasts of 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1, and 𝑅𝑅ℎ is 

the total number of out-of-sample forecasts from the series of rolling window models. 

Additionally, we carry out pairwise tests of the null of equal predictive ability using Diebold and 

Mariano (1995) tests with a MSPE loss criterion and HAC standard errors.  

 The model confidence set (MCS) procedure of Hansen et al. (2011) is used to identify 

the subset of models with significantly lower MSPEs than the other models. We use the MCS 

procedure with a quadratic loss function. The MCS test statistic is 𝒯𝒯ℳ = 𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖,𝑗𝑗∈ℳ�𝑡𝑡𝑖𝑖.𝑗𝑗ℎ �, where  

ℳ denotes the set of extended HAR models as well as the baseline HAR-RV model, 𝑡𝑡𝑖𝑖,𝑗𝑗ℎ =

�̅�𝑑𝑖𝑖,𝑗𝑗ℎ �𝑣𝑣𝑎𝑎𝑣𝑣� (�̅�𝑑𝑖𝑖,𝑗𝑗ℎ )�  and  �̅�𝑑𝑖𝑖,𝑗𝑗ℎ = 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑖𝑖ℎ − 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑗𝑗ℎ  is the difference in the mean squared prediction 

errors of models 𝑖𝑖 and 𝑗𝑗. The null hypothesis is that all models have the same expected loss, 

while the alternative hypotheses is that there is some model 𝑖𝑖 with a MSPE that is greater than 

the MSPE's of all the other models 𝑗𝑗 ∈ ℳ\𝑖𝑖. When the null is rejected, the worst performing 

model is eliminated, and this process is iterated until no further model can be eliminated. The 

surviving models denoted by ℳ𝑀𝑀𝐴𝐴𝑆𝑆 are retained with a confidence level  𝛼𝛼 = 0.05. We 
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implement the MCS via a block bootstrap using a block length of 10 days and 5,000 bootstrap 

replications.8 

5. Data 

 For our forecasting exercise, we use return data for the SPDR S&P 500 ETF (SPY) and 20 

individual stocks in the S&P 500 index. The data are for the years 2000 to 2016, a total of 4,277 

trading days. The 20 stocks were chosen based on their jump activity, and the relative 

contributions of finite and infinite jumps. The data are sourced from the TickData database.9 

We follow Hansen and Lunde (2006) and use previous tick interpolations to aggregate the ticks 

to the required sampling frequency. 

 Mean daily RV ranges from 1.037 to 8.284, while the average number of shares traded 

per day ranges from 0.875 to 98.972 million. Since we are interested in the role of realized 

measures using different sample frequencies in forecasting realized volatility, we sample 

returns every 5, 60, and 300 seconds. The choice of 300 seconds is standard in high frequency 

finance studies, and is motivated by the trade-off between bias and variance. See Aït-Sahalia et 

al. (2005), Zhang et al. (2005) and Bandi and Russell (2006) inter alios for a more detailed 

discussion.  

- Table 5 Here - 

 The contributions of the different types of jumps to 𝑄𝑄𝑄𝑄 are shown in Table 5. The 

contribution of jumps decreases as the sampling interval increases from 5 to 300 seconds. For 

SPY, the share of jumps decreases from 43.2% (5 seconds) to 14.3% (300 seconds). For the 20 

stocks, the average jump share decreases from 67.6% to 29.8%. In both cases, the decline is 

mainly due to the drop in the share of infinite jumps. The share of infinite jumps in SPY drops 

 
8 Qualitatively similar results were obtained using different block sizes (20 and 50 days), and additional bootstrap 
replications (10,000 and 20,000). 
9 TickData provides pre-cleaned and filtered price series. The algorithmic data filters identify bad prints, decimal 
errors, transposition errors and other data irregularities. The filters take advantage of the fact that, since the 
filtered data are not produced in real time, it is possible to look at the tick following a suspected bad tick before 
deciding whether or not the tick is valid. The filters are proprietary and based upon recent tick volatility, moving 
standard deviation windows and time of day. For a more detailed explanation, see the high frequency data filtering 
white paper on the TickData resources page https://www.tickdata.com/resources/white-papers/. 

https://www.tickdata.com/resources/white-papers/
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from 32.6% using 5-second returns to 0.1% using 300 second returns, and for the 20 stocks, the 

average share of infinite jumps drops from 34.2% to 0.2%. Hence, when returns are sampled 

every 300 seconds, the vast majority of jumps in SPY and the 20 stocks are infinite activity 

jumps. At this frequency, the small variations that characterize infinite jumps are close to 

Brownian increments. We find little evidence of asymmetry in the shares of signed jumps. The 

estimated Blumenthal-Getoor jump activity indices (�̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴), which measure the incidence of 

finite activity jumps, are consistent with the estimated shares of finite and infinite jump 

components. In the case of SPY, the index is 1.45 using 5-second returns and 0.78 using 300 

second returns, which implies that infinite jumps are more prevalent at higher frequencies.  

- Figures 1 and 2 Here - 

 Figure 1 plots the continuous and jump components of RV for SPY and the three stocks -

- AMZN, HD and KO - with the largest, smallest and average RV. The days with jumps are shown 

in red, and other days in blue. It is clear that there is considerable heterogeneity in the level 

and timing of volatility. Although the highest spikes in volatility occur around the Dot-Com and 

Subprime crises (shaded areas), many other spikes in volatility are idiosyncratic. The 5- and 300- 

second autocorrelation functions of the SPY realized measures are displayed in Figure 2. The 

SPY 𝑅𝑅𝑄𝑄𝑡𝑡  and �̂�𝐶𝑡𝑡 measures appear to be long memory processes since their autocorrelations do 

not decline exponentially. The ACF of the 5-second 𝑅𝑅𝑄𝑄𝑡𝑡  and �̂�𝐶𝑡𝑡 measures (left panel) lie below 

their 300-second counterparts (right panel) - a hint that volatility forecasts using 300-second 

realized measures may perform better than ones using 5-second realized measures.  

6. Extended HAR Model Results  

 6.1 SPY Forecasting Results 

Since we use the HAR-RV model as a baseline for assessing the forecasting performance of our 

extended HAR models, Table 6 sets out the in-sample coefficients, as well as the in- and out-of-sample 

𝑅𝑅2s and MSPEs, of the HAR-RV model for four forecast horizons – ℎ = 1 (day), ℎ = 5 (week), ℎ = 22 

(month), ℎ = 66 (three months) - using returns sampled every 300 seconds. The significance of the 

coefficients is evaluated using Newey-West HAC-robust standard errors, allowing for serial correlation of 
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up to order 5 (ℎ = 1), 10 (ℎ = 5), 44 (ℎ = 22), or 132 (ℎ = 66), since the random error terms in the 

models are serially correlated at least up to order ℎ − 1. In following Andersen et al. (1999) and Patton 

and Sheppard (2015), we estimate the out-of-sample R squared, 𝑅𝑅(𝑜𝑜𝑜𝑜𝑠𝑠)
2  , as 1 minus the ratio of the out-

of-sample model-based MSPE to the out-of-sample MSPE from a model including only a constant. The 

MSPE results are based on pseudo out-of-sample, rolling regression forecasts using a 1000 day window 

- Table 6 Here - 

All the coefficients in Table 6 are significant even at the three month horizon, confirming the high 

persistence of volatility. The magnitude of the daily and weekly coefficients decrease as we lengthen the 

forecast horizon. Although, the magnitude of the monthly coefficient changes little with the horizons, it’s 

relative importance increases at longer horizons.10  

- Table 7 Here - 

Summary forecastsing results for extended HAR-CJ (jumps), HAR-CFJ (finite jumps), and the HAR-

CIJ (infinite jumps) models are presented in Table 7, also using 300 second returns. In- and out of sample 

𝑅𝑅2s and 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀s are presented for unsigned jumps, positive signed jumeps and negative signed jumps.  

Full results are available on request. A few points about the coefficient estimates are worth noting. The 

restrictions that the coefficients on finite and infinite jumps are the same, and that the coefficients on 

positive and negative jumps are the same, are decisively rejected. In line with Andersen et al (2007a) and 

Patton and Sheppard (2013), overall jumps tend to reduce future volatility, while negative jumps tend to 

increase it and positive jumps decrease it. Finite (infinite) jumps tend to decrease (increase) future 

volatility.  

Unsurprisingly, the in-sample R-squared statistics (𝑅𝑅𝑖𝑖𝑛𝑛2 ) in Table 7 suggest that incorporating 

jumps as predictors results in a better fit for our models. outperforming the baseline HAR-RV across the 

four horizons under examination. The out-of-sample R-squared statistics (𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2 ) show that extended HAR 

models outperform the baseline model at one day and one week horizons, and about half the time at 

longer horizons. The models with positive jumps have higher 𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2 ‘s at all horizons. Turning to the 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 

results, the forecasting performance of the extended HAR models is significantly better at the one day 

and one week horizons, and better (significantly better) about half (one quarter) of the time at the one 

 
10 These results are been well documented in the literature (see Andersen et al 2007a, Corsi 2029 and Corsi et al. 
2010 among others). 
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month- and three-month horizons. Note that no single extended HAR model outperforms all the others, 

a finding also reported in Patton and Sheppard (2009), which suggests that model averages combining the 

information contained in the different volatility forecasting models may generate forecast gains. See 

Section 7 below. 

6.2 SPY Forecasting Results Using Standard and Robust-to-Noise Realized Measures 

We know that microstructure noise is important at high frequencies, and the resulting 

attentuation bias may generate less accurate volativity forecasts than forecasts using noise-robust 

measures, such as the ones discussed in Section 3 above. We examined this issue in detail. Table 8 

compares the forecasting performance of SPY extended HAR volatility models using standard versus noise-

robust realized measures, identifing models with significantly lower MSPEs than the baseline HAR-RV 

model. The entries in the top panel are based on forecasts using standard realized jump measures as 

explanatory variables; the bottom panel entries are based on robust-to-noise measures. The entries are 

relative MSPEs – the ratio of the MSPE of the proposed model to the MSPE of the corresponding baseline 

HAR-RV model – so ratios below one indicate more accurate roling regression forecasts.11 Models with 

significantly lower MSPE than the baseline HAR-RV model, based on pair-wise Diebold-Mariano (DM, 

1995) tests, are starred. The DM tests show that many of the extended HAR models in Table 8 forecast as 

well as, or better, than the baseline HAR-RV models, although there is considerable variation across 

sampling frequencies and time horizon.  

- Table 8 Here - 

At the 5 and 60 second frequencies, the forecasts from models using noise-robust realized jump 

measures are somewhat more accurate than forecasts based on regular realized jump measures. Many 

models using 5 and 60 second regular volatility measures are excluded from the MCS at longer horizons, 

confirming the importance of taking account of micro-structure noise at higher frequencies. Nevertheless, 

the MSPE numbers for the baseline HAR-RV model in the final row of Table 8 suggest that models using 

300-second volatility measures tend to give better forecasts than models using 5 or 60-second returns, 

irrespective of whether standard or robust-to-noise volatility measures are used.  

 
11 The MSPE results are based on pseudo out-of-sample, rolling regression forecast using a 1,000 day window. 
Most models are retained in the model confidence set (MCS); the small number of entries for models that are not 
retained in the MCS are identified with the suffix x. The MCS results are generated using a 10-day block bootstrap 
and 5,000 replications. 
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6.3 Extended HAR Model Forecasting Results for the 20 S&P Stocks 

 Some results for the 20 S&P stocks are presented in Table 9. The relative MSPE entries (averaged 

across the 20 stocks) are shown in the body of the table, while the average MSPEs for the baseline HAR-

RV models using standard realized measures are shown in the final row of the table. The entries for models 

which are not retained in the MCS at least 15 times (out of 20) are suffixed withthe letter x. The relative 

MSPE entries for the 20 stocks are more clustered around one than the entries for SPY in Table 8.12 In 

addition, with the majority of the models are retained in the MCS at least 15 times, this indicates that the 

improvement in the forecasting performance of extended models with jumps is less clearcut for the 20 

stocks, than it is for SPY.  At the 5 and 60-second frequencies,  the results show that noise-robust 

volatility measures work best.  However, consistent with the results for SPY, forecasts using 300 second 

volatility measures are generally better than forecast using 5 or 60 second measures. In addition, the 

relative MSPEs of the standard volatility measures are often lower than those of the robust-to-noise 

measures.  

-- Table 9 and Figure 3 Here - 

No single extended HAR model with jumps dominates all the other models – the main reason 

being the small number of systematic jumps across the 20 stocks.13 We find that, on average, cojumps 

only contribute to 9% of the total jump component, which means that most jumps are idiosyncratic. For 

instance, the left panel of Figure 3 shows the returns on May 26th 2010,  the day of the so called Flash 

Crash, one of the few days when the stocks jumped together. The movement in returns on that date is 

very different from returns on a typical day such as December 23rd 2003 (right-panel) in which only 

idiosyncratic jumps are present. Since the idiosyncratic jumps are stock specific reactions to news, what 

it is perceived as negative news for one stock might be positive news for another stock, generating jumps 

of different sizes and directions. Aït-Sahalia and Xiu (2016) suggest that co-jumps stem from surprising 

news announcements that occur primarily before the opening of the US market. Amengual and Xiu (2018) 

note that downward volatility jumps in the S&P500 are associated with a resolution of policy uncertainty, 

mostly through statements from FOMC meetings and speeches by the chair of the Federal Reserve. Aït-

Sahalia, Kalnina and Xiu (2020) find that idiosyncratic jumps are related to idiosyncratic events such as 

 
12 The entries are also less dispersed because we are reporting averages. 
13 We identify jumps using the co-exceedance procedure of Gilder et al. (2014), which relies on the intersection of 
the univariate jump tests. 
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earnings disappointments, with earnings disappointments have a larger effect than positive earnings 

surprises.  Given the rich information content of the different jump classifications and since no single 

extended HAR model dominates, the next section focuses on whether model averaged forecasts 

consistently outperform the forecasts from the baseline HAR-RV and the best extended HAR models 

across sampling frequencies and forecasting horizons. 

7. The Gains from Model Averaging 

 Thus far, we have shown that a variety of extended HAR volatility models, that account for the 

nature and sign of jumps generate, significant improvements in forecasting performance. However, no 

single specification consistently outperforms the other models across horizons and frequencies, which 

suggests that model averaging might generate further forecasting gains. Four simple approaches to 

assigning model averaging weights are considered.14 The aim of model averaging is to exploit relevant 

information embedded in the different forecasts, and produce an ensemble model that outperforms the 

benchmark HAR-RV model and, more importantly, the best single, extended HAR-RV jump model. Our 

approaches follow the literature closely (see, for instance, Bates and Granger 1969, Aiolfi and 

Timmermann  2006, Aiolfi et al. 2011, Elliott and Timmermann 2016, and the references therein).  

- Table 10 Here - 

 We present model averaging results for the four sets of weights tabulated below - weights 

minimizing the estimated variance of the prediction errors, inverse MSPE weights, inverse MSPE rank 

weights and equal weights (Table 10). In the first three cases, the weights are recalculated every time a 

new set of rolling window forecasts are generated, and we prune the set of models under consideration 

by only averaging models that are retained in the model confidence set. 

- Table 11 Here - 

 

 The model averaging results for SPY and four stocks, chosen by the level of their jump activity, 

are set out in Table 1. The table shows the relative MSPEs for the best extended HAR-RV model and the 

four model averaging approaches. The MSPEs for each index or stock and forecast horizon are measured 

relative to the MSPE of the corresponding HAR-RV model.  All the stocks have estimated Blumenthal-

 
14 We experimented with more complicated model averaging procedures, but the results were similar to those 
presented here. To conserve space, we do not report these experiments, but the details are available on request. 
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Getoor indices in the range 0 to 1, so their returns include finite and infinite activity jumps, with finite 

jumps dominating. BA and KO with jump activity of 0.58 and 0.91 respectively are the extreme cases. 

 The bold entries in Table 11 are model averages with lower MSPEs than the MSPEs of both the 

HAR-RV and best extended HAR models. The starred entries denote models averages with significantly 

lower MSPEs than the MSPEs of both the HAR-RV and best extended HAR models. The daggered entries 

denote models with significant lower MSPEs than the HAR-RV model, but not the best extended HAR 

model. The four model averages generate forecasts that typically outperform the benchmark model for 

the four forecast horizons examined: ℎ = 1 (one day), ℎ = 5 (one week), ℎ = 22 (one month) and ℎ = 66 

(three months). For example, in the case of SPY with 300-second returns, the one-week relative MSPE of 

the best extended HAR model is 0.753 versus a range of 0.693 to 0.715 for the four model averages. The 

largest MSPE reductions are generally observed at the one-week horizon, followed by the one-month 

horizon. 

 We also compared the model averaging results for SPY using 60 and 300 second returns. The 

300-second model average forecasts dominate the forecasts using 60-second returns, generating 

significantly lower MSPEs. The 300-second forecasts also dominate the unreported model average 

forecasts using 5-second returns. These results also hold for the four stocks reported here, and for the 

other 16 stocks. The 300-second model average MSPEs are generally lower than the MSPEs of both the 

benchmark HAR-RV and best extended HAR models. In about a quarter of the cases, the MSPEs from the 

300-second model average are significantly lower than the MSPEs of the best extended HAR model.   

 In conclusion, model averaging the forecasts from extended HAR-RV models generally result in 

lower MSPEs. Forecasts using 300-second returns dominate forecasts using higher frequency returns. 

The MCS procedure for pruning dominated models and the use of time varying weights for the model 

averages are helpful. Simple weighting schemes, e.g. the use of inverse MSPEs or inverse MSPE ranks, 

work as well as schemes that are more complicated (see Patton and Sheppard, 2009). 

8. Results Using Transaction-Time Sampled Volatility Measures 

 In this section, we examine the volatility forecasting performance of alternative jump measures 

based on a transaction-based sampling scheme. Relatively few studies consider alternative sampling 

schemes. For instance, Griffin and Oomen (2008) and Oomen (2006b) study the properties of alternative 

RV measures using clock/calendar, transaction and business time sampling, but they do not consider 

jumps. To the best of our knowledge, only Patton and Sheppard (2015) examine the forecasting 

performance of jump measures using transaction time sampling, but they do not compare the clock and 
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transaction time-based volatility components and the forecasting performance thereof. We contribute 

to this literature in two ways. Firstly, we decompose clock and transaction-based RV measures into their 

continuous and jump components, including their signed and finite/infinite activity jump components. 

Secondly, we compare the volatility forecasting performance of the clock and transaction time-based 

measures, using our extended HAR model and model averaging frameworks.  

For brevity, we only report results for SPY. The transaction-based volatility measures are 

calculated using a 78 intraday return sampling scheme as in Patton and Sheppard (2015). This is the 

transaction-based equivalent of the 300 second / 5 minute return sampling scheme, which is widely used 

in the literature. Intra-trading day returns are calculated by fixing opening and closing prices, and 

recording sprices at business time ⌊𝑖𝑖𝑘𝑘⌋, where 𝑖𝑖 = 1, … ,79, 𝑘𝑘 = 𝑆𝑆−1
79

, 𝑅𝑅 is the number of unique date 

stamps per day, and ⌊. ⌋ denotes rounding down to the nearest integer.15  

- Table 12 Here - 

 Table 12 shows that the transaction-based RV measure is primarily driven by its continuous part: 

the contribution of jumps to total QV is about 4.6% versus 12.3% for the clock-based measures. Almost 

all of the jumps are finite jumps, the same as for clock time, and there is little difference in the 

contribution of positive and negative jumps. Although most jumps are finite activity jumps, the smaller 

contribution of transaction time based jumps to total QV implies a somewhat smaller jump activity index 

�̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴 (0.708 versus 0.778).  

- Table 13 Here - 

 The relative MSPEs in Table 13 suggest that the forecasting performance of extended HAR 

models using transaction-based measures is comparable to that of the baseline HAR-RV model, in sharp 

contrast to forecasting performance of extended HAR models using clock-based measures. Similar to the 

clock-time results, the MSPEs of most of the extended models are lower than the MSPE of the baseline 

HAR-RV model at the one-day horizon, although only three forecasts have significantly lower MSPEs. By 

contrast, as the horizon increases, we only obtain a handful of statistically significant reductions in 

MSPEs. Consequently, the model confidence set now includes all the models; since the forecasting 

performance of all of the models is broadly similar, we cannot identify a set of superior models.  

 
15 Note that the clock- and transaction-based RV descriptive statistics for SPY very similar. 
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- Table 14 Here - 

 A comparison of clock- and transaction-time based SPY model averaging results is presented 

Table 14. Results are presented for daily, weekly, monthly, and quarterly horizons. With transaction-

based sampling, simple model averaging procedures (using MSPE, rank or equal weights) generate 

statistically significant improvements in the MSPEs. However, the MSPE improvements are far smaller 

than the improvements with clock-based sampling, so the transaction-time based MSPEs are always 

higher than their clock-based counterparts. Based on these SPY results, as well as results for the 20 

stocks that are not reported, we conclude that forecasts using volatility measures from transaction-

based sampling of returns are inferior to forecasts from clock-based sampling.  

9. Summary and Conclusion 

 We examine the gains in forecasting the volatility of equity prices by decomposing jumps by 

activity (finite/infinite) and by sign using high-frequency data for SPY and 20 individual stocks. Our key 

findings are as follows. Quadratic variation contains a significant jump component, even at the 300-

second frequency. The contribution of infinite jumps is greater than that of finite jumps at higher 

frequencies. However, at the 300-second frequency, jumps are mainly of finite activity.  

 Extended HAR models, incorporating a variety of jump activity and sign measures, generate 

statistically significant in- and out-of-sample improvements for both SPY and the 20 individual stocks we 

examined. The use of noise-robust realized measures improve the forecasts of future volatility at higher 

frequencies. However, since market microstructure noise declines as the sampling frequency decreases, 

the forecasting advantage of the noise-robust jump volatility measures also diminishes.  

 The rolling window, out-of-sample forecast results suggest that the lowest MSPE forecasts are 

obtained using returns sampled every 300 seconds, rather than every 5 or 60 seconds. This result holds 

for all of the horizons we examined -- a day, a week, a month and a quarter -- irrespective of whether 

noise-robust volatility measures are, or are not, used. In terms of MSPEs, there is little to choose 

between standard or robust-to-noise measures at this frequency.  

 We also examine the volatility forecasting performance of alternative jump measures based on 

a transaction time-based sampling scheme. The transaction-based RV measures are mainly driven by 

their continuous component, and finite jumps dominate infinite jumps. Using transaction-based 

volatility measures, the overall forecasting performance of extended HAR models is similar to that of the 

baseline HAR-RV model. Our conclusion is that forecasts using realized volatility and jump measures 
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based on transaction sampling are inferior to forecasts using clock-based sampling measures. As our 

findings relate to the role of jumps using transaction time versus calendar time based sampling, this 

underscores the importance of the appropriate choice of sampling scheme. 

 In the absence of a single dominant forecasting model, we investigate whether various model 

averaging procedures generate significant forecasting gains. In many cases, we prune the set of models 

using the MCS procedure of Hansen et al. (2011) to eliminate dominated models. We find that simple 

model averaging procedures generally result in significant gains in forecasting performance vis-á-vis the 

single best extended HAR model, which in turn outperforms the baseline HAR-RV model. For example, 

model averaged results using equal weights, or the normalized inverse MSPE weights in Bates and 

Granger (1969) perform as well as model averaged results where the weights minimize the variance of 

the prediction error.  
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Table 1: Realized Jump Measures 

Use Measure Formula 

𝑄𝑄𝑄𝑄 Contributions 

Finite Activity Jumps 𝑆𝑆𝐽𝐽�𝑡𝑡 =  𝐽𝐽𝑡𝑡 × ℱ𝑡𝑡   

Infinite Activity Jump 𝐼𝐼𝐽𝐽�𝑡𝑡 =  𝐽𝐽𝑡𝑡 × (1 −ℱ𝑡𝑡) 

Positive Jumps 𝑇𝑇𝐽𝐽�𝑡𝑡 = max (𝑅𝑅𝑅𝑅𝑡𝑡+ −
1
2
𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 , 0) × 𝒥𝒥𝑡𝑡 

Negative Jumps 𝑁𝑁𝐽𝐽�𝑡𝑡 = max (𝑅𝑅𝑅𝑅𝑡𝑡− −
1
2
𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄𝑡𝑡 , 0) × 𝒥𝒥𝑡𝑡 

Forecasting 
Models 

Signed Jumps 𝑅𝑅𝐽𝐽�𝑡𝑡 =  𝑇𝑇𝐽𝐽�𝑡𝑡 −𝑁𝑁𝐽𝐽�𝑡𝑡  

Positive Signed Jumps 𝐽𝐽𝑡𝑡+ =  𝑅𝑅𝐽𝐽�𝑡𝑡 ×𝒫𝒫𝑡𝑡 

Negative Signed Jumps 𝐽𝐽𝑡𝑡− =  𝑅𝑅𝐽𝐽�𝑡𝑡 × (1 −𝒫𝒫𝑡𝑡) 

Positive Signed Finite Activity Jumps 𝑆𝑆𝐽𝐽�𝑡𝑡
+ = 𝐽𝐽𝑡𝑡+ ×ℱ𝑡𝑡   

Negative Signed Finite Activity Jumps 𝑆𝑆𝐽𝐽�𝑡𝑡
− =  𝐽𝐽𝑡𝑡− × ℱ𝑡𝑡 

Positive Signed Infinite Activity Jumps 𝐼𝐼𝐽𝐽�𝑡𝑡+ = 𝐽𝐽𝑡𝑡+ × (1 −ℱ𝑡𝑡)  

Negative Signed Infinite Activity Jumps 𝐼𝐼𝐽𝐽�𝑡𝑡− = 𝐽𝐽𝑡𝑡− × (1 −ℱ𝑡𝑡)  

Notes: 𝑇𝑇𝑇𝑇𝑇𝑇𝑄𝑄,𝑅𝑅𝑅𝑅𝑡𝑡+ and 𝑅𝑅𝑅𝑅𝑡𝑡1  are the threshold bipower variation measure of Corsi et al. (2010) and the realized 
semivariance measures of Barndorff-Nielsen et al. (2010) respectively.  𝒥𝒥 is a 0/1 indicator for days with significant 
jumps based on the Andersen et al. (ABD, 2007b) test.  ℱ is an indicator for days with finite activity jumps based on 
the SFA test of Aït-Sahalia and Jacod (2011). 𝒫𝒫 = 1(𝑅𝑅𝐽𝐽� > 0) is an indicator for days with net positive signed jumps. 
Noise-robust versions of the realized jump measures are described in the text. 
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Table 2: Noise-Robust ABD Test - Size and Power Simulations 
 

Noise-to-Signal Ratio 𝜉𝜉 = 0.01 𝜉𝜉 = 0.1 

Sampling Frequency 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 

 Size 

ABD 0.030 0.055 0.128 0.029 0.045 0.082 

ABD Noise-Robust 0.070 0.041 0.015 0.049 0.011 0.006 

 Power – Compound Poisson (Finite Activity) 

ABD 0.985 0.989 0.986 0.337 0.484 0.586 

ABD Noise-Robust 1.000 0.991 0.703 0.963 0.905 0.458 

 Power – Cauchy Process (Infinite Activity) 

ABD 0.732 0.774 0.764 0.361 0.415 0.463 

ABD Noise-Robust 0.948 0.784 0.410 0.670 0.572 0.342 

 
Notes: The table report the empirical size and power of the ABD test of Andersen et al. (2007b), and our modified, 
noise-robust version. 𝜉𝜉 is the noise-to-signal ratio used to simulate market microstructure noise. The theoretical 
size of the tests is 5% (𝛼𝛼 = 0.05). The models and Monte Carlo settings are described Section 3.3 of the paper. 
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Table 3: Realized and Noise-Robust Two-Scale Realized Semivariances – Finite Sample MSE 
Performance in a Heston (1993) Model with Compound Poisson Jumps 
 

Noise-to-Signal Ratio 𝜉𝜉 = 0.01 𝜉𝜉 = 0.1 

Sampling Frequency 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 

𝑅𝑅𝑅𝑅+ 9.680 0.067 0.003 963.848 6.718 0.277 

𝑅𝑅𝑅𝑅− 9.704 0.069 0.004 964.483 6.779 0.290 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅+ 0.001 0.001 0.002 0.113 0.014 0.008 

𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅− 0.001 0.001 0.002 0.112 0.015 0.009 

 
Notes: The table entries are the MSEs of the realized and two-scale realized semivariances in the simulation 
exercise described in Section X of the paper. The data generation process is a Heston (1993) model augmented 
with finite activity, compound Poisson jumps. 𝜉𝜉 represents the noise-to-signal ratio used to simulate market micro-
structure noise. Second-by-second prices were simulated 3,000 times for 50 days with 6½ trading hours per day.    
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Table 4: Extended HAR Models 
 

Jumps: 
Total, Positive 
& Negative 

HAR-CJ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1+𝛽𝛽𝐼𝐼,𝑑𝑑𝐽𝐽𝑡𝑡−1 + 𝛽𝛽𝐼𝐼,𝑤𝑤𝐽𝐽𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐼𝐼,𝑚𝑚𝐽𝐽𝑡𝑡−22,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 

HAR-CJ+ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1+𝛽𝛽𝐼𝐼,𝑑𝑑𝐽𝐽𝑡𝑡−1+ + 𝛽𝛽𝐼𝐼,𝑤𝑤𝐽𝐽𝑡𝑡−5,𝑡𝑡−1
+ + 𝛽𝛽𝐼𝐼,𝑚𝑚𝐽𝐽𝑡𝑡−5,𝑡𝑡−1

+ + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1  

HAR-CJ- 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1+𝛽𝛽𝐼𝐼,𝑑𝑑𝐽𝐽𝑡𝑡−1− + 𝛽𝛽𝐼𝐼,𝑤𝑤𝐽𝐽𝑡𝑡−5,𝑡𝑡−1
− + 𝛽𝛽𝐼𝐼,𝑚𝑚𝐽𝐽𝑡𝑡−5,𝑡𝑡−1

− + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1  

Finite Jumps: 
Total, Positive 
& Negative  

HAR-CFJ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1+𝛽𝛽𝐹𝐹𝐼𝐼,𝑑𝑑𝑆𝑆𝐽𝐽�𝑡𝑡−1 + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑤𝑤𝑆𝑆𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑚𝑚𝑆𝑆𝐽𝐽�𝑡𝑡−22,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 

HAR-CFJ+ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1 + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑑𝑑
+ 𝑆𝑆𝐽𝐽�𝑡𝑡−1

+ + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑤𝑤
+ 𝑆𝑆𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1

+ + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑚𝑚
+ 𝑆𝑆𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1

+ + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 

HAR-CFJ- 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1 + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑑𝑑
− 𝑆𝑆𝐽𝐽�𝑡𝑡−1

− + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑤𝑤
− 𝑆𝑆𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1

− + 𝛽𝛽𝐹𝐹𝐼𝐼,𝑚𝑚
− 𝑆𝑆𝐽𝐽�𝑡𝑡−22,𝑡𝑡−1

− + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1  

Infinite Jumps: 
Total, Positive 
& Negative  

HAR-CIJ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1+𝛽𝛽𝐼𝐼𝐼𝐼,𝑑𝑑𝐼𝐼𝐽𝐽�𝑡𝑡−1 + 𝛽𝛽𝐼𝐼𝐼𝐼,𝑤𝑤𝐼𝐼𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐼𝐼𝐼𝐼,𝑚𝑚𝐼𝐼𝐽𝐽�𝑡𝑡−22,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 

HAR-CIJ+ 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1 + 𝛽𝛽𝐼𝐼𝐼𝐼 ,𝑑𝑑
+ 𝐼𝐼𝐽𝐽�𝑡𝑡−1+ + 𝛽𝛽𝐼𝐼𝐼𝐼 ,𝑤𝑤

+ 𝐼𝐼𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1
+ + 𝛽𝛽𝐼𝐼𝐼𝐼,𝑚𝑚

+ 𝐼𝐼𝐽𝐽�𝑡𝑡−22,𝑡𝑡−1
+ + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1  

HAR-CIJ- 𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝐴𝐴,𝑑𝑑�̂�𝐶𝑡𝑡−1 + 𝛽𝛽𝐴𝐴 ,𝑤𝑤�̂�𝐶𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝐴𝐴,𝑚𝑚�̂�𝐶𝑡𝑡−22,𝑡𝑡−1 + 𝛽𝛽𝐼𝐼𝐼𝐼 ,𝑑𝑑
− 𝐼𝐼𝐽𝐽�𝑡𝑡−1− + 𝛽𝛽𝐼𝐼𝐼𝐼 ,𝑤𝑤

− 𝐼𝐼𝐽𝐽�𝑡𝑡−5,𝑡𝑡−1
− + 𝛽𝛽𝐼𝐼𝐼𝐼,𝑚𝑚

− 𝐼𝐼𝐽𝐽�𝑡𝑡−22,𝑡𝑡−1
− + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1  

Note: The table lists the extended HAR models used in this paper. 
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Table 5: Estimated Contributions of Signed, Finite and Infinite Activity Jumps to QV (%) 

Shares of 𝑄𝑄𝑄𝑄 SPY Avg. 20 Stocks AMZN BA BFB CAT CHL COST CVX 
5s 60s 300s 5s 60s 300s 300s 300s 300s 300s 300s 300s 300s 

 % % % % % % % % % % % % % 
Continuous 56.80 88.47 85.72 32.40 65.61 70.20 73.43 72.59 55.14 74.90 62.18 69.53 80.28 
Jumps 43.20 11.53 14.28 67.60 34.39 29.80 26.57 27.41 44.86 25.10 37.82 30.48 19.72 
              
Pos. Jumps 21.85 6.45 8.26 33.95 16.54 14.99 15.21 14.36 22.47 12.57 17.98 15.96 9.85 
Neg. Jumps 21.36 5.08 6.02 33.65 17.85 14.81 11.37 13.05 22.38 12.53 19.84 14.51 9.87 
              
Finite Jumps 10.60 10.42 14.16 33.39 32.42 29.60 26.41 27.23 44.65 24.85 37.31 30.36 19.58 
Infinite Jumps 32.60 1.11 0.12 34.21 1.97 0.21 0.17 0.19 0.21 0.25 0.50 0.12 0.15 
              
Pos. Finite Jumps 5.58 5.94 8.22 17.03 15.54 14.88 15.13 14.25 22.38 12.47 17.68 15.89 9.77 
Neg. Finite Jumps 5.02 4.48 5.94 16.37 16.88 14.71 11.28 12.98 22.27 12.39 19.63 14.47 9.81 
Pos. Infinite Jumps 16.26 0.51 0.04 16.92 1.00 0.11 0.08 0.11 0.09 0.11 0.30 0.07 0.08 
Neg. Infinite Jumps 16.34 0.60 0.08 17.29 0.98 0.10 0.08 0.07 0.12 0.14 0.21 0.05 0.06 
              
Memo: Jump Activity, �̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴 1.454 1.056 0.778 1.455 1.040 0.723 0.461 0.576 0.802 0.621 0.763 0.697 0.748 

Notes: The table reports the estimated percentage contribution of the different realized jump measures to 𝑄𝑄𝑄𝑄. Results using 5- second, 60-second and 300-
second returns are shown for SPY and the average of the 20 stocks. The results for the individual stocks were estimated using 300-second returns. �̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴  is the 
estimated Blumenthal-Getoor index of jump activity.  
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Table 5 (Continued): Estimated Contributions of Signed, Finite and Infinite Activity Jumps to QV (%) 

𝑄𝑄𝑄𝑄 Shares DOW EXC GILD GS HD JNJ JPM KO OKE PG SO UPS WMT 
300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 300s 

 % % % % % % % % % % % % % 
Continuous 68.88 69.49 63.20 75.98 73.94 70.61 76.12 74.21 59.17 71.15 70.79 68.29 74.10 
Jumps 31.12 30.51 36.80 24.02 26.07 29.39 23.88 25.79 40.83 28.85 29.21 31.71 25.90 
              
Pos. Jumps 30.85 30.40 36.46 23.94 25.94 29.28 23.82 25.52 40.60 28.78 28.64 31.53 25.80 
Neg. Jumps 0.27 0.11 0.34 0.08 0.13 0.11 0.06 0.27 0.23 0.08 0.57 0.18 0.10 
              
Finite Jumps 15.03 15.51 18.91 12.31 13.88 12.92 12.93 12.50 19.06 15.42 14.49 15.48 13.01 
Infinite Jumps 16.09 15.01 17.89 11.71 12.19 16.47 10.95 13.29 21.77 13.44 14.72 16.23 12.89 
              
Pos. Finite Jumps 14.83 15.43 18.67 12.30 13.84 12.83 12.90 12.34 18.98 15.37 14.27 15.37 12.97 
Neg. Finite Jumps 16.02 14.97 17.79 11.64 12.10 16.45 10.92 13.18 21.62 13.41 14.37 16.15 12.83 
Pos. Infinite Jumps 0.20 0.07 0.24 0.01 0.03 0.09 0.03 0.16 0.08 0.05 0.21 0.10 0.05 
Neg. Infinite Jumps 0.07 0.04 0.10 0.07 0.09 0.02 0.03 0.12 0.15 0.03 0.36 0.08 0.05 
              
Memo: Jump Activity, �̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴 0.58 0.73 0.52 0.61 0.67 0.97 0.61 0.91 0.65 0.96 0.88 0.90 0.82 

Notes: The table reports the estimated percentage contribution of the different realized jump measures to 𝑄𝑄𝑄𝑄. Results using 5- second, 60-second and 300-
second returns are shown for SPY and the average of the 20 stocks. The results for the individual stocks were estimated using 300-second returns. �̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴  is the 
estimated Blumenthal-Getoor index of jump activity.  
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Table 6: HAR-RV Benchmark - SPY, 300 Second Returns  

𝑅𝑅𝑄𝑄𝑡𝑡,𝑡𝑡+ℎ−1 = 𝛽𝛽0 + 𝛽𝛽𝑑𝑑𝑅𝑅𝑄𝑄𝑡𝑡−1 + 𝛽𝛽𝑤𝑤𝑅𝑅𝑄𝑄𝑡𝑡−5,𝑡𝑡−1 + 𝛽𝛽𝑚𝑚𝑅𝑅𝑄𝑄𝑡𝑡−22,𝑡𝑡−1 + 𝜀𝜀𝑡𝑡,𝑡𝑡+ℎ−1 
 

 Forecast Horizon (h) 
 1 Day 5 Days 22 Days 66 Days 
     
𝛽𝛽0  0.095* 0.148** 0.288*** 0.527*** 
𝛽𝛽𝑑𝑑  0.246**  0.184*** 0.103*** 0.061*** 
𝛽𝛽𝑤𝑤   0.422***  0.347*** 0.322*** 0.200*** 
𝛽𝛽𝑚𝑚  0.238**  0.323*** 0.290*** 0.215*** 
     
𝑅𝑅𝑖𝑖𝑛𝑛2   0.512 0.629 0.562 0.337 
𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2   0.443 0.673 0.707 0.470 
𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀  3.102 1.322 0.944 1.262 

 
Notes: The table reports the OLS coefficient estimates of the HAR-RV forecasting equation, and the in- and out-of-
sample 𝑅𝑅2s for the SPY 𝑅𝑅𝑄𝑄 at daily (ℎ =1), weekly (ℎ = 5), monthly (ℎ = 22) and quarterly (ℎ = 66) horizons. The 𝑅𝑅𝑄𝑄 
measures are calculated using 300-second returns. The significance of the coefficients is based on Newey-West 
HAC standard errors, allowing for serial correlation up to order 5, 10, 44 or 132 for horizons ℎ = 1, 5, 22 and 66 
trading days. The superscripts *, ** and *** denote statistical significance at the 10%, 5% and 1% levels. The out-of-
sample R-squared, 𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2  , is calculated as one minus the ratio of the 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 from the HAR-RV model to the 𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 
from a model that only has an intercept. 
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Table 7: SPY Extended HAR Volatility Forecasting Regressions – Summary Performance Measures  
 

Models / Horizons  ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 

Signed Jumps HAR-CJ HAR-CJ+ HAR-CJ- 

𝑅𝑅𝑖𝑖𝑛𝑛2  0.555 0.666 0.572 0.338 0.541 0.668 0.578 0.341 0.523 0.664 0.612 0.362 

𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2  0.493 0.747 0.728 0.465 0.450 0.754 0.739 0.489 0.511 0.724 0.690 0.445 

𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 2.821* 1.017* 0.872* 1.274 3.059 0.995* 0.840* 1.218* 2.720* 1.110* 0.994 1.318 

Signed Finite Jumps HAR-CFJ HAR-CFJ+ HAR-CFJ- 

𝑅𝑅𝑖𝑖𝑛𝑛2  0.555 0.666 0.572 0.338 0.541 0.668 0.577 0.341 0.523 0.665 0.614 0.363 

𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2  0.493 0.747 0.728 0.464 0.449 0.753 0.734 0.478 0.511 0.724 0.684 0.446 

𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 2.822* 1.018* 0.874* 1.276 3.066 0.998* 0.850* 1.243 2.721* 1.112* 0.994 1.317 

Signed Infinite Jumps HAR-CIJ HAR-CIJ+ HAR-CIJ- 

𝑅𝑅𝑖𝑖𝑛𝑛2  0.512 0.630 0.563 0.340 0.512 0.630 0.576 0.381 0.512 0.629 0.563 0.339 

𝑅𝑅𝑜𝑜𝑜𝑜𝑠𝑠2  0.493 0.747 0.728 0.464 0.449 0.753 0.734 0.478 0.511 0.724 0.684 0.446 

𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀 2.722* 1.173* 1.151 1.316 2.731* 1.168* 1.125 1.264 2.714* 1.162* 1.121 1.299 

 
Notes: See notes to Table 4. The bold in-sample and out-of-sample R-squared entries indicate that the fit of the proposed models is better that of the baseline 
HAR-RV model in Table 4. Bold MSPE entries are lower than the MSPEs of the benchmark models. Significantly lower MSPE entries at the 5% level are starred. 
The complete table of coefficient estimates is available on request. 
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Table 8: SPY Relative MSPEs by Frequency – Standard vs. Noise-Robust Measures 

Forecast Horizon ℎ = 1 (day) ℎ = 5 (week) ℎ = 22 (month) ℎ = 66 (quarter) 

Sampling Frequency 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 

              

Standard 
Raw Jump 
Measures 

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000x 1.000x 1.000 1.000 1.000x 1.000 1.000 
HAR-CJ 1.253  0.755*  0.909* 1.029 0.990 0.770* 0.980* 1.172  0.924* 0.968 1.167x 1.010 
HAR-CJ+  0.871*  0.752*  0.910* 1.181 0.992 0.770* 1.051 1.178  0.926* 1.010x 1.171x 1.011 
HAR-CJ- 1.124 1.060  0.878* 1.022 1.034 0.888* 0.969* 1.001 1.220  0.940* 0.993 1.043 
HAR-CFJ  0.903* 0.993 0.986 1.165 0.969 0.753* 1.147x  0.894*  0.891* 1.074x 0.977  0.965* 
HAR-CFJ+  0.848* 0.969  0.877* 1.124 1.017 0.840* 0.841*  0.936* 1.053  0.917* 1.020 1.045 
HAR-CFJ-  0.925* 0.993  0.988* 1.175 0.971 0.755* 1.198x  0.877*  0.908* 1.096x 0.959 0.985 
HAR-CIJ  0.915* 0.969  0.877* 1.215 1.035 0.841* 0.982  0.959* 1.054 1.035x  1.020* 1.044 
HAR-CIJ+  0.910* 1.055  0.881* 1.151 1.020 0.884* 1.086x  0.964* 1.192 1.136x  0.940* 1.002 
HAR-CIJ-  0.729* 1.059  0.875* 0.996 1.030 0.879* 1.054x  0.921* 1.189  0.939*  0.977* 1.029 

              

Noise-
Robust 
Jump 
Measures 

HAR-RV  0.843*  0.907* 1.009  0.882* 0.976 0.962  0.821* 1.031 1.154  0.893* 1.013 1.014 
HAR-CJ  0.768* 0.966 1.015  0.865* 1.010 0.962 0.977 1.044 1.145 0.988 0.996  0.906* 
HAR-CJ+  0.775*  0.960* 1.015  0.867* 1.060  0.958* 0.987 1.031 1.143  0.921*  0.925* 1.032 
HAR-CJ-  0.791* 0.980 1.018  0.890* 1.025 0.965  0.803* 1.073 1.179  0.875* 1.016 0.998 
HAR-CFJ  0.851*  0.684* 1.015  0.884* 0.930 0.960  0.838*  0.907* 1.145  0.926* 1.037 0.991 
HAR-CFJ+  0.870*  0.852* 1.013  0.828* 0.889  0.953* 0.772 0.912 1.135  0.899* 0.968 0.997 
HAR-CFJ-  0.866*  0.677* 1.015  0.895* 0.889 0.960  0.861*  0.938* 1.145  0.919* 1.037 0.990 
HAR-CIJ 1.111  0.852* 1.013  0.882* 0.894  0.953*  0.786*  0.902* 1.135  0.931* 0.953  0.753* 
HAR-CIJ+  0.794* 0.972 1.026  0.875* 1.005 0.977  0.841*  1.166* 1.164  0.930* 1.038 0.994 
HAR-CIJ- 1.009 0.958 1.016  0.793* 1.015 0.961  0.794*  0.947* 1.137  0.852*  0.941* 1.000 

                          
Memo: HAR-RV MSPE 3.364 4.550 3.102 1.553 1.350 1.322 1.443 1.025 0.944 1.778 1.344 1.262 

Notes: The relative MSPE ratios are the ratios of the MSPEs of the extended HAR models using standard volatility measures (top panel) or robust-to-noise 
measures (bottom panel) to the MSPEs of HAR-RV models employing standard measures. The starred MSPE entries indicate statistically significant reductions 
in the MSPEs at the 5% level. Entries with an “x” suffix denote models not in the MCS. The MSPE and MCS results are based on rolling regression using 1,000 
observations and a 10-day block bootstrap with 5,000 replications respectively.     
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Table 9: Twenty Stock Relative MSPE Averages – Standard vs. Noise-Robust Measures 

Forecast Horizon h = 1 (day) h = 5 (week) h = 22 (month) h = 66 (quarter) 

Sampling Frequency 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 5 Sec. 60 Sec. 300 Sec. 

              

Standard 
Jump 
Measures 

HAR-RV 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000x 1.000 1.000 
HAR-CJ 0.999 0.991 0.972 0.950 0.916 0.933 0.929 0.942 0.970 0.928 0.958 0.995 
HAR-CJ+ 1.057 0.984 0.973  1.048x 0.916 0.934  1.064x 0.943 0.974 1.043 0.952 0.997 
HAR-CJ- 1.010 0.973 0.940 0.986 0.955 0.942 1.035 1.010 1.063 1.007x 1.014x 1.037 
HAR-CFJ 1.044 1.000 0.968  1.098x 0.939 0.945 1.203x 0.994 1.038 1.127x 1.004x 1.033 
HAR-CFJ+ 1.063 1.018 0.932 1.038 0.943 0.934 1.144x 0.970 1.026 1.078x 0.997x 1.018 
HAR-CFJ- 1.055x 0.999 0.969  1.153x 0.940 0.945 1.267x 0.994 1.038 1.173x 1.004 1.031 
HAR-CIJ 1.103x 0.984 0.932  1.115x 0.938 0.937 1.228x 0.970 1.030 1.144x 0.997x 1.016 
HAR-CIJ+ 1.044 0.979 0.939  1.090x 0.966 0.946 1.189x 1.010 1.080 1.129x 1.004x 1.042 
HAR-CIJ- 1.011 0.982 0.947  1.071x 0.960 0.945 1.213x 1.005 1.091 1.137x 1.006x 1.062 

              

Noise-
Robust 
Jump 
Measures 

HAR-RV 0.966 0.916 0.969 0.975 1.017 0.998 0.975 1.081 1.138 0.956x 1.050 1.032x 
HAR-CJ 0.958 0.935 0.975 0.934 0.975 0.990 0.958 1.077 1.135 0.949 1.040 0.962 
HAR-CJ+ 0.980 0.939 0.976 0.962 1.003 0.996 0.966 1.082 1.075 0.882 0.963 0.994 
HAR-CJ- 0.969 0.926 0.970 0.956 1.022 0.985 0.943 1.064 1.122 0.905 1.042 1.021 
HAR-CFJ 0.955 0.986 0.978 0.962 1.008 0.991 0.981 1.082 1.092 0.956 1.042 1.017x 
HAR-CFJ+ 0.973 0.943 0.961 0.950 0.984 0.994 0.938 1.043 1.126 0.936x 1.030 1.019 
HAR-CFJ- 0.947 0.987 0.980 0.952 1.010 0.993 0.967 1.086 1.091 0.924x 1.044 1.014 
HAR-CIJ 0.963 0.938 0.962 0.962 0.984 0.994 0.948 1.047 1.107 0.945x 1.031 1.024 
HAR-CIJ+ 0.972 0.926 0.950 0.957 1.022 0.994 0.966 1.073 1.091 0.952x 1.045 1.008 
HAR-CIJ- 0.964 0.935 0.948 0.948 1.025 0.986 0.969 1.061 1.116 0.943x 1.037 1.033 

              
Memo: HAR-RV MSPE 373.14 54.886 22.744 85.581 16.968 9.926 27.084 8.812 6.393 17.267 7.901 6.292 

Notes: The relative MSPE ratios are the 20 stock average ratios of the MSPEs of the extended HAR models using standard volatility measures (top panel) or 
robust-to-noise measures (bottom panel) to the MSPEs of HAR-RV models employing standard measures. The entries with an “x” suffix denote models that are  
retained in the MCS for fewer than 15 stocks. The MSPE and MCS results are based on rolling regression using 1,000 observations and a 10-day block bootstrap 
with 5,000 replications respectively.       
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Table 10: Model Averaging Weights 

Weights Formula Models 

Min. Prediction Error Variance 𝑤𝑤𝑡𝑡
ℎ = 𝑎𝑎𝑣𝑣𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛𝑤𝑤 𝑤𝑤′Σ�𝑡𝑡ℎ𝑤𝑤 s.t. 𝜄𝜄′𝑤𝑤 = 1 MCS 

Inverse MSPE 𝑤𝑤𝑡𝑡,𝑖𝑖
ℎ =

(𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑡𝑡,𝑖𝑖
ℎ )−1

∑𝑖𝑖∈ℳ𝑡𝑡
ℎ (𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑡𝑡,𝑖𝑖

ℎ )−1
 MCS 

Inverse Rank 𝑤𝑤𝑡𝑡,𝑖𝑖
ℎ =

(𝑅𝑅𝑎𝑎𝑛𝑛𝑘𝑘𝑡𝑡,𝑖𝑖
ℎ )−1

∑𝑖𝑖∈ℳ𝑡𝑡
ℎ (𝑅𝑅𝑎𝑎𝑛𝑛𝑘𝑘𝑡𝑡,𝑖𝑖

ℎ )−1
 MCS 

Equal Weights 𝑤𝑤𝑖𝑖,𝑡𝑡
ℎ = 𝑁𝑁−1 All 

Note: Σ�𝑡𝑡ℎ is the estimated, rolling window variance-covariance matrix of the set of MCS retained forecasting 
models (ℳ𝑡𝑡

ℎ) for horizon ℎ at time 𝑡𝑡. 𝜄𝜄 is a vector of ones with dimension equal to number of retained models. 
𝑀𝑀𝑅𝑅𝑇𝑇𝑀𝑀𝑡𝑡 ,𝑖𝑖

ℎ  and 𝑅𝑅𝑎𝑎𝑛𝑛𝑘𝑘𝑡𝑡,𝑖𝑖
ℎ  are the rolling window MSPEs and MCS ranks of the retained models. Nine extended HAR 

models are used in this study so 𝑁𝑁 = 9.    
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Table  11: Model Averaging Results - Relative MSPEs at Different Horizons for SPY, BA, BFB, COST and 
KO  

 

 SPY – 300 seconds SPY – 60 seconds 
 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 

         
Best Extended HAR 0.875† 0.753† 0.891† 0.965† 0.752† 0.969 0.877 0.940† 
Avg. – Min. Var. Weights 0.987 0.693* 0.895† 0.966† 0.812† 0.977 0.940† 0.971† 
Avg. – Inverse MSPE Weights 0.879 0.706* 0.862* 0.919* 0.875† 0.914* 0.850† 0.965† 
Avg. – Inverse Rank Weights 0.910† 0.715† 0.845* 0.873* 0.880† 0.923† 0.846† 0.986 

Avg. – Equal Weights 0.873† 0.712† 0.876† 0.928† 0.877† 0.914* 0.852† 0.964† 

Memo: HAR-RV MSPE 3.102 1.322 0.944 1.262 4.550 1.350 1.025 1.344 

 BA – 300 seconds BFB – 300 seconds 
 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 

         
Best Extended HAR 0.981 0.937 0.993  0.864†  0.924†  0.836†  0.822†  0.876† 
Avg. – Min. Var. Weights 0.992  0.905* 1.083 1.001  0.969†  0.845†  0.751*  0.812* 
Avg. – Inverse MSPE Weights  0.972†  0.906†  0.915*  0.959†  0.926†  0.823†  0.814†  0.856* 
Avg. – Inverse Rank Weights  0.976†  0.923†  0.928* 0.980  0.936†  0.820†  0.810*  0.847* 
Avg. – Equal Weights  0.972†  0.906†  0.919*  0.961†  0.926†  0.823†  0.816†  0.878† 

 COST – 300 seconds KO – 300 seconds 
 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 

         
Best Extended HAR 0.958† 0.879† 0.925† 0.957† 0.814† 0.709† 0.882† 0.939† 
Avg. – Min. Var. Weights 1.016 0.985 0.881* 0.950† 0.923† 0.695* 0.837* 0.916† 
Avg. – Inverse MSPE Weights 0.962† 0.871† 0.920† 0.958† 0.817† 0.713† 0.888† 0.975† 
Avg. – Inverse Rank Weights 0.969† 0.856† 0.907* 0.945* 0.811† 0.686† 0.829* 0.950† 
Avg. – Equal Weights 0.962† 0.873† 0.922† 0.960† 0.817† 0.723† 0.914† 0.983† 

Notes: The table reports the relative MSPE, the ratio of MSPE of the model indicated in the first column to the 
MSPE of the baseline HAR-RV, in both cases using standard volatility measures as opposed to robust-to-noise 
measures. The best extended HAR models refers to the min. MSPE model from the set of extended HAR models set 
out in Section 4. The bold entries are model averages with lower MSPEs than the MSPEs of both the HAR-RV and 
best extended HAR models. The starred entries denote models averages with significantly lower MSPEs than the 
MSPEs of both the HAR-RV and best extended HAR models. Models with significant lower MSPEs than the HAR-RV 
model, but not the best extended HAR model, are labelled with a dagger (†).   
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Table  12: The Contribution of Jumps to SPY QV – Comparison of Clock and Transaction Based 
Sampling Results 

  
  

Clock-Based 
Sampling 

Transaction- 
Based Sampling 

 % % 
Continuous 85.725 95.413 
Jumps 14.275 4.587 
   
Pos. Jumps 8.257 2.279 
Neg. Jumps 6.018 2.308 
   
Finite Jumps 14.156 4.503 
Infinite Jumps 0.118 0.084 
   
Pos. Finite Jumps 8.219 2.232 
Neg. Finite Jumps 5.937 2.271 
Pos. Infinite Jumps 0.038 0.047 
Neg. Infinite Jumps 0.080 0.038 
    
 �̂�𝛽𝐼𝐼𝐼𝐼𝐴𝐴  0.778 0.708 
 
Notes: The table reports the contribution of the different realized jumps to SPY’s QV using clock (300 second) and 
transaction-based (78 ticks per interval) sampling.       
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Table 13: SPY Extended HAR Volatility Forecast Results Using Transaction-Based Realized Measures  

Model 
Relative MSPEs 

ℎ = 1 (day) ℎ = 5 (week) ℎ = 22 (month) ℎ = 66 (quarter) 

     
HAR-RV 1.000 1.000 1.000 1.000 
HAR-CJ   0.973* 1.114 1.030 1.023 
HAR-CJ + 1.037 1.119  0.956*  0.971* 
HAR-CJ − 0.990  1.003 1.036 1.012 
HAR-CFJ   0.973* 1.114 1.030 1.022 
HAR-CFJ + 1.037 1.119  0.956*  0.971* 
HAR-CFJ − 0.990 1.003 1.036 1.012 
HAR-CIJ 0.981 0.999 1.061 1.017 
HAR-CIJ +   0.981* 0.996 1.052 1.011 
HAR-CIJ −   0.980* 0.997 1.064 1.016 

     
Memo: HAR-RV MSPE 3.724 1.500 1.071 1.349 

 

Notes: The table reports the relative MSPEs of the extended HAR SPY volatility forecasting models at different 
horizons. The relative MSPEs are the ratio of the MSPEs of the extended HAR models relative to the benchmark 
HAR-RV model. The starred entries indicate statistically significant reductions in MSPE identified by the Diebold 
and Mariano (1995) test using a 5% significance level and robust standard errors.  
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Table 14: SPY Model Averaging – Comparison of Clock and Transaction-Based Sampling Results 

 Model / Model Average 

Relative MSPEs 

Clock-Based Sampling (300 Sec.) Transaction-Based Sampling 

ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 ℎ = 1 ℎ = 5 ℎ = 22 ℎ = 66 

         
Best Extended HAR    0.875† 0.753† 0.891† 0.965†  0.973† 0.996 0.956†  0.971† 

Avg.: Min. Var. Weights  0.987 0.693* 0.895† 0.966† 1.009 0.995 0.921* 1.001 

Avg.: Inverse MSPE Weights    0.879† 0.706* 0.862* 0.919*  0.926*  0.950* 0.889*  0.961† 

Avg.: Inverse MSPE Rank Weights  0.910 0.715† 0.845* 0.873*  0.969†  0.957* 0.855*  0.943* 

Avg.: Equal Weights    0.873† 0.712† 0.876† 0.928*  0.937*  0.954* 0.914*  0.963† 

         
Memo: HAR-RV MSPE  3.102 1.322 0.944 1.262 3.724 1.500 1.071 1.349 

Notes: The table compares reports the forecasting performance of the extended HAR SPY volatility forecasting 
models at different horizons h using clock and transaction based realized measures. The clock-based results use 
300 second returns. The relative MSPEs are the ratio of the MSPEs of the extended HAR models relative to the 
benchmark HAR-RV model. The bold entries are model averages with lower MSPEs than the MSPEs of both the 
HAR-RV and best extended HAR models. The starred entries denote models averages with significantly lower 
MSPEs than the MSPEs of both the HAR-RV and best extended HAR models. Models with significant lower MSPEs 
than the HAR-RV model, but not the best extended HAR model, are labelled with a dagger (†).  
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Figure 1: Time Series of SPY, AMZN, HD and KO Realized Volatility – Jump and Continuous 
Components 

 

 

 

Note: This figure shows the continuous and jump components of RV for SPY, AMZN, HD and KO, using 300 second 
realized measures. The three stocks have the largest, smallest and average RV. NBER dated U.S. recession are 
shaded grey.   

 

  

  



44 
 

Figure 2: Autocorrelation Function of SPY Realized Measures - 5 and 300 Second Returns 

 

 

 

Note: The figure graphs the autocorrelation function of SPY’s 𝑅𝑅𝑄𝑄 and its continous, finite and infinite activity jump 
components. The autocorrelations at the 5 and 300 second frequencies were estimated using noise-robust and 
raw estimators, respectively.   
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Figure 3: Systematic Versus Idiosyncratic Jumps in Returns - May 6, 2010 (Flash Crash) and December 
23, 2003 (Normal Day) 

 

 

Note: The two panels plot the 5-minute returns for SPY and the 20 stocks used in this paper on two different days. 
The left panel shows the co-jump in returns on May 6, 2010 when U.S. stocks experienced a flash crash at 2.32 
p.m. ET lasting approximately 36 minutes. The right panel shows returns on December 23, 2003, a typical day with 
no identified co-jumps.   

 




