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ATKINSON, PLANTE , RICHTER & T HROCKMORTON: COMPLEMENTARITY AND UNCERTAINTY

1 INTRODUCTION

Macroeconomic uncertainty—the conditional volatility ofthe unforecastable component of a fu-

ture value of a time series—shows considerable variation inthe data. The literature typically mod-

els changes in uncertainty in business cycle models using shocks to the variance of an exogenous

variable, such as productivity, while holding its conditional mean fixed.1 This approach produces

estimates for the responses of real activity to an exogenousincrease in uncertainty, but it is silent

on the effect first moment shocks have on uncertainty. Equivalently, it cannot tell us anything about

situations where uncertainty endogenously varies over time in response to the state of the economy.

A common assumption in business cycle models is that production is Cobb-Douglas. Under

that assumption, we analytically and numerically show there is typically little, if any, endogenous

variation in output uncertainty because the model is close to log-linear. Importantly, the model’s

ability to generate endogenous fluctuations in uncertaintyis limited because log-linearity implies:

(1) first moment shocks have nearly the same effect on output in all states of the economy and (2)

conditional distributions of future real variables are similar across different states of the economy.

The model can have significant nonlinearity when output is produced using a constant elasticity

of substitution (CES) production function. In that case, first moment shocks have state-dependent

impacts on output, resulting in conditional distributionsthat vary across states and endogenous

fluctuations in uncertainty. When capital and labor are gross complements, we find first-moment

capital and labor productivity shocks generate fluctuations in uncertainty consistent with the data.

Complementarity can endogenously generate fluctuations inuncertainty because it influences

how output responds to first moment shocks in different states of the economy, with the effective

capital intensity ratio playing a key role. For example, consider a positive labor productivity shock.

When the capital intensity ratio is low, the change in labor demand will be relatively small, as

will the change in output, compared to situations where the capital-to-labor ratio is high. The

distributions of future real variables inherit the state-dependent nature of the responses, generating

time-varying endogenous uncertainty. On the other hand, inthe Cobb-Douglas case, the responses

of labor and output to such a shock are essentially the same regardless of the state of the economy.

An important question is whether the mechanism is empirically relevant in a more fully fledged

business cycle model. To that end, we estimate several nonlinear models with real frictions by

matching uncertainty, output, consumption, and investment moments in the data. We consider

1In a small open-economy model, Fernández-Villaverde et al. (2011) examine volatility shocks to a country-specific
interest rate spread. They find a1 standard deviation shock lowers output0.15%-0.2% in Argentina and Ecuador and
0.01%-0.02% in Brazil and Venezuela. Most papers rely on closed-economyNew Keynesian models. Mumtaz and
Zanetti (2013) examine monetary policy volatility shocks in a model without capital. They find doubling the volatility
reduces output growth by only0.03%. Born and Pfeifer (2014) introduce variable capital utilization and investment
adjustment costs. They show a simultaneous2 standard deviation increase in uncertainty about government spending,
monetary policy, and capital and labor taxes reduces outputby only0.065%. In contrast, Fernández-Villaverde et al.
(2015) find a volatility shock to only capital taxes lowers output by0.1% and the effect is larger when the ZLB binds.
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four specifications: the typical model with Cobb-Douglas production and a labor productivity

shock and a model with CES production with a labor productivity shock, a capital productivity

shock, and both shocks. The Cobb-Douglas specification performs poorly because it is not able

to generate nearly enough volatility in uncertainty while simultaneously matching the volatilities

and autocorrelations of real activity in the data. All threeCES specifications provide a significant

improvement in fit and the model with both productivity shocks overwhelmingly passes a test

of over-identifying restrictions. In each of these cases, the estimated CES is well below one,

indicating that the data prefers a large degree of complementarity between capital and labor inputs.

The paper closest to ours is the recent article by Straub and Ulbricht (2019). They show firm-

specific productivity shocks create endogenous fluctuations in the cross-sectional dispersion of

output when deviating from Cobb-Douglas production. We build on their work in three ways.

First, we examine aggregate uncertainty by computing the conditional volatility of future real ac-

tivity, rather than the variance in output across firms. Second, we examine the effects of several

first-moment shocks, including shocks to capital and labor productivity, the markup of price over

marginal cost, government spending, household preferences and monetary policy, in models with

and without sticky prices. Third, we conduct a more thoroughempirical assessment of the merits of

gross complementarity. Specifically, we use a richer model that includes habit persistence in con-

sumption and investment adjustment costs and formally assess its empirical fit using a simulated

method of moments procedure that matches key moments related to uncertainty and real activity.

Several other papers consider alternative mechanisms thatendogenously generate uncertainty

in structural models. One segment emphasizes the role of a financial sector under complete infor-

mation, where the severity and duration of financial crises are stochastic. Most papers focus on

crises that result from financial frictions, collateral constraints, or the zero lower bound constraint

on the short-term nominal interest rate (Brunnermeier and Sannikov, 2014; He and Krishnamurthy,

2019; Mendoza, 2010; Plante et al., 2018), while others in this area incorporate the role of firm

default (Arellano et al., 2019; Gourio, 2014; Navarro, 2014). A separate segment of the literature

examines the implications of incomplete information. Someof the papers feature learning with

aggregate shocks (Fajgelbaum et al., 2017; Saijo, 2017; VanNieuwerburgh and Veldkamp, 2006),

while others focus on firm-specific shocks (Ilut and Saijo, 2020; Straub and Ulbricht, 2015). In

these models, adverse shocks under asymmetric learning reduce economic activity and make it

harder for households and firms to learn about the economy, which amplifies first moment shocks.

The CES literature provides strong motivation for our proposed mechanism. Klump et al.

(2012) surveys empirical estimates of the CES over the last several decades. Across the17 re-

ported studies, the average CES is0.58, well below a unitary elasticity implied by Cobb-Douglas

production. More recently, Gechert et al. (2019) examine over3,000 estimates across121 studies.

They estimate a CES of0.3 after correcting for publication bias and controlling for other aspects
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of quality. Antràs (2004) finds that when the econometric specification is adjusted to account for

biased technological change, the estimate of the CES is muchlower. Consistent with those results,

Cantore et al. (2015) estimates a CES between0.15 and0.18 using a medium-scale New Keyne-

sian model that accounts for biased technological changes.These values are consistent with our

estimates from a real business cycle model that includes both capital and labor productivity shocks.

Another benefit of our mechanism is that it affects uncertainty in all periods and is not unique to a

specific economic downturn. This is important because uncertainty regularly fluctuates in the data.

Overall, our results demonstrate that an empirically plausible degree of complementarity causes

first-moments shocks to generate significant variation in uncertainty. This suggests any study that

fails to account for these effects will lead to an over-statement of the causal effects of uncertainty.

The paper proceeds as follows.Section 2analytically shows why complementarity generates

endogenous uncertainty.Section 3quantifies the amount of time-varying uncertainty in models

with productivity shocks.Section 4estimates several versions of a real business cycle model with

both Cobb-Douglas and CES production functions.Section 5shows numerical results with several

other common shocks.Section 6extends the model to include sticky prices.Section 7concludes.

2 ANALYTICAL RESULTS

This section develops some understanding for how uncertainty behaves in dynamic models using

simplified settings that permit analytical solutions. Following Plante et al. (2018), macroeconomic

uncertainty in our model is defined as the expected volatility of a variable in the model. The same

definition is also used in empirical work on uncertainty (e.g., Jurado et al. 2015). It is possible to

calculate uncertainty over any horizon, but we concentrateon the one-quarter ahead forecast error.

For any variablex, macroeconomic uncertainty is given by

Ux
t,t+1 ≡

√

Et[(xt+1 −Et[xt+1])2]. (1)

whereEt is the mathematical expectation operator conditional on information available at timet.

A key aspect of this definition is that it removes the predictable component,Et[xt+1], from a 1-

period ahead forecast ofx. Whilex can represent any variable in the model, the discussion in this

paper is centered on log output (ŷt) and log output growth (̂ygt = ŷt+1 − ŷt). The first useful result

is that the uncertainty surrounding these two endogenous variables are equal. This result occurs

becausêyt is known at timet and therefore cancels out when removing the predictable component.

Given this result, the following sections will always referto the uncertainty surrounding log output.

2.1 ATHEORETICAL MODEL A common modeling assumption is that output is produced with

a Cobb-Douglas function, so the elasticity of substitutionbetween the factors of production equals

1. In this case, it is possible to derive analytical results without a fully specified theoretical model.
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Suppose log output,̂yt, is produced according to a Cobb-Douglas function given by

ŷt = αx̂1t + (1− α)x̂2t,

where hats denote logs andx̂it, j ∈ {1, 2}, are random variables that evolve according to

x̂jt = (1− ρj) log x̄j + ρjx̂jt−1 + σjεjt, εj ∼ N(0, 1),

and bars denote steady-states. Uncertainty about log output 1-period ahead is constant and given by

U ŷ
t,t+1 =

√

α2σ2
1 + (1− α)2 σ2

2 .

This expression shows the conditional volatility of log output is a weighted average of the variance

of each shock, with weights equal to the squared share of eachvariable in the production func-

tion. It is also straightforward to derive analytical expressions for macroeconomic uncertainty over

horizons beyond1 quarter. For example, uncertainty about log outputk periods ahead is given by

U ŷ
t,t+k =

√

α2(1 + ρ21 + · · ·+ ρk1)σ
2
1 + (1− α)2(1 + ρ22 + · · ·+ ρk2)σ

2
2

and the unconditional volatility, which equals the uncertainty over an infinite horizon, is given by

U ŷ =
√

α2σ2
1/(1− ρ21) + (1− α)2σ2

2/(1− ρ22).

While this example is stylized, it illustrates the important role of the production function and

the assumptions underlying the random variables. There arefour key assumptions behind the

results: (1) Log-linearity of the production function; (2)Constant weights on the variances; (3)

Log-linearity of the stochastic processes; (4) Constant conditional variances of the shocks (εj).

Deviations from these assumptions would create time-varying uncertainty about log output. Re-

laxing the last assumption by making the variance of an exogenous variable stochastic is the most

common way to introduce time-varying uncertainty. Since itdoes not depend on any equilibrium

feature of the model, we refer to it as time-varyingexogenousuncertainty. This paper examines the

effects of relaxing the first two assumptions, which createstime-varyingendogenousuncertainty.

An alternative way to think about the importance of assumptions (1)-(4) is to note that they

imply the response of log output to an unexpected shock isnot state-dependent. Mathematically,

∂ŷt/∂ε1t = ασ1 and ∂ŷt/∂ε2t = (1− α)σ2.

At any point in time and for any state of the world, the impact of an unexpected shock to log output

is the same. Therefore, the conditional distribution of logoutput one period in the future does not

change shape over time. This result could change if a subset of the four assumptions was violated.
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Uncertainty Approximations Taylor expansions are useful for approximating moments of avari-

able, such as log output, when the variable is a nonlinear function of other random variables. For

example, a second-order approximation of the variance of some generic functionf(x) is given by

Var[f(x)] ≈ (f ′(E[x]))2σ2
x, (2)

wheref ′(E[x]) is the first derivative off(x) evaluated at its unconditional mean andσ2
x is the

unconditional variance ofx.2 Extensions to the multivariate case are straightforward aslong as

the random variables are uncorrelated. In that case, the variance is approximated by a weighted

average of the unconditional variances of the component random variables, with the weights equal

to the first partial derivatives of the function, all evaluated at their respective unconditional means.

Approximatingŷ around the conditional mean ofx̂1 andx̂2 in the Cobb-Douglas case implies

Vart[ŷt+1] ≈ α2σ2
1 + (1− α2)σ2

2.

This approximation is exact due to the log-linearity of the production function and its two inputs.

Now consider a CES production function given by

ŷt =
σ

σ−1
ln
(

α exp(σ−1
σ
x̂1t) + (1− α) exp(σ−1

σ
x̂2t)

)

,

whereα is the cost-share of capital andσ is the elasticity of substitution. It is not possible to ana-

lytically solve for log output uncertainty. The approximation for the conditional variance implies

Vart[ŷt+1] ≈ (f1(Etx̂1t+1, Etx̂2t+1))
2σ2

1 + (f2(Etx̂1t+1, Etx̂2t+1))
2σ2

2,

wherefj(·) is the partial derivative of̂y with respect to the conditional mean ofx̂j . As in the

Cobb-Douglas case, the conditional variance for log outputis a weighted average of the conditional

variances of the two random variables. However, the weightsare now state-dependent and vary

over time, reflecting the fact that the impact of the two shocks on log output varies across different

states of the economy. This generates a time-varying conditional variance under CES production.

Isoquants Figure 1plots production function isoquants to help visualize how complementarity

generates state-dependency. The inner solid line traces out the combinations of the inputs that are

consistent with a given level of output. Points A and B are initial conditions for the same level of

output but with a high level of one input relative to the other. Points A′ and B′ are both shifted

to the right, reflecting an increase in̂x1 with no change in̂x2. In the left panel where the inputs

are strong complements (σ = 0.1), the shift results in a large increase in output from point Ato

A′, wherex̂1 was initially low relative tox̂2 and the isoquants are steep. This reflects the effect

2Appendix Cprovides more information about the approximations. See Benaroya et al. (2005) for further details.
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Figure 1: Production function isoquants. Points A′ and B′ are shifted right by0.05 units of output andα is set to0.5.

of complementarity, in that a relatively high level of one input increases the marginal product of

the other. Alternatively, output is largely unchanged frompoint B to B′, asx̂1 is already elevated

relative tox̂2 and the isoquants are flat. The middle panel shows the same exercise for Cobb-

Douglas production. Since the isoquants are linear, increases in an input boost output by the same

amount regardless of the initial condition. In the right panel, where the inputs are substitutes (σ =

2.5), the isoquants are concave rather than convex, meaning an elevated level of an input relative

to the other increases its marginal product—the opposite ofwhat happens under complementarity.

The change in̂y relative tox̂1, 1/(1+ 1−α
α

exp(σ−1
σ
(x̂2− x̂1)), shows the response of output de-

pends on the log difference in the inputs. Ifx1 is capital andx2 is labor, then this difference would

correspond to the capital intensity ratio. Changes in one input relative to the other cause variations

in uncertainty, whereas that does not necessarily happen due to changes in output. Under Cobb-

Douglas production, uncertainty is constant since the responses of output are not state dependent.

2.2 REAL BUSINESSCYCLE MODEL We now go a step further and introduce a simple model

that under some assumptions provides analytical solutionsand results regarding uncertainty. Out-

put is produced with capital and labor according to a normalized CES production function given by

yt =

{

y0
(

α(zkt kt−1/k0)
σ−1

σ + (1− α)(ḡtznt nt/n0)
σ−1

σ

)
σ

σ−1 , σ 6= 1,

y0(ḡ
tzkt kt−1/k0)

α(znt nt/n0)
1−α, σ = 1,

(3)

wherekt−1 is the capital stock,nt is the labor supply, and̄g is the average growth rate of labor-

augmenting productivity.zit, i ∈ {k, n}, is a stationary productivity shock that evolves accordingto

ẑit = ρziẑ
i
t−1 + σziεzi,t, εzi ∼ N(0, 1). (4)
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Following the literature, we include normalizing constants,y0, n0 andk0, to ensureα is the cost-

share of capital with both the Cobb-Douglas (σ = 1) and the CES (σ 6= 1) production functions.3

There is monopolistic competition and an exogenous time-varying price markup given by

µ̂t = (1− ρµ) log µ̄+ ρµµ̂t−1 + σµεµ,t, εµ ∼ N(0, 1). (5)

This shock breaks the assumption of a constant cost share of labor, which could have a large impact

on log output uncertainty. In symmetric equilibrium, the firm’s optimality conditions are given by

µtr
k
t = α(y0z

k
t /k0)

(σ−1)/σ(yt/kt−1)
1/σ, (6)

µtwt = (1− α)(y0ḡ
tznt /n0)

(σ−1)/σ(yt/nt)
1/σ. (7)

A representative household chooses{ct, nt, kt}
∞

t=0 to maximize expected lifetime utility, given

by E0

∑

∞

t=0 β
tat[c

1−γ
t /(1 − γ) − χξtn

1+η
t /(1 + η)], whereβ is the subjective discount factor,

χ determines the steady state labor supply,1/η is the Frisch elasticity of labor supply,γ is the

coefficient of relative risk aversion,c is consumption, anda andξ are preference shocks that follow

ât = ρaât−1 + σaεa,t, εa ∼ N(0, 1), (8)

ξ̂t = ρξ ξ̂t−1 + σξεξ,t, εξ ∼ N(0, 1). (9)

The household’s choices are constrained byct + kt = wtnt + rkt kt−1 + (1 − δ)kt−1 + dt, whereδ

is the depreciation rate of capital anddt are firm dividends. The optimality conditions are given by

wt = χξtn
η
t c

γ
t , (10)

1 = βEt[(at+1/at)(ct/ct+1)
γ
(

rkt+1 + 1− δ
)

]. (11)

In equilibrium, dividends are equal todt = (1− 1/µt)yt, so the resource constraint is given by

ct + kt = (1− sgt )yt + (1− δ)kt−1, (12)

wheresgt is the government spending-to-output ratio. Defineζt = 1/(1− sgt ), which follows

ζ̂t = (1− ρζ) log ζ̄ + ρζ ζ̂t−1 + σζεζ,t, εζ ∼ N(0, 1). (13)

Competitive equilibrium includes sequences of quantities{yt, kt, ct, nt, s
g
t}

∞

t=0, prices{wt, r
k
t }

∞

t=0,

and exogenous variables,{znt , µt, at, ξt, ζt}
∞

t=1, that satisfy (3)-(13), given{k−1, z
n
0 , µ0, a0, ξ0, ζ0}.

Except when estimating the model, the average growth rate,ḡ, is set to1 to simplify the exposition.

3Notably, León-Ledesma et al. (2010) show that a normalizedCES production function improves identification, in
addition to its theoretical benefits. Gechert et al. (2019) find that normalization reduces the average estimate of the
CES by0.3. See the review article by Klump et al. (2012) for further information about the effects of normalization.
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2.3 SOLUTION WITH PRODUCTIVITY SHOCKS In general, the model does not lend itself to

analytical solutions, but it is possible to obtain them whencapital fully depreciates each period

(δ = 1) andγ = 1/σ. We first consider the model with only the labor productivityshock (̂µt =

log µ̄, ζ̂t = ẑkt = ât = ξ̂t = 0). The capital-augmenting productivity shock,ẑkt , is common in the

literature on CES production functions. However, it complicates the analytical derivations without

providing additional insight, so we defer our examination of this shock to the quantitative sections.

To solve the model, first combine (6) with (11) and (7) with (10). Then guessct = θyt to obtain

ct = (1− (αβ/µ̄)σ(y0/k0)
σ−1)yt, (14)

kt = (αβ/µ̄)σ(y0/k0)
σ−1yt, (15)

nt =

[

1−α
χ

(

1
µ̄σ

−(αβ)σ(y0/k0)σ−1

)1/σ (
y0znt
n0

)
σ−1

σ

]

σ
1+ησ

, (16)

which confirms the consumption-to-output ratio is constant. Labor depends on labor productivity.

Cobb-Douglas CaseWhenσ = 1, uncertainty about 1-period ahead log output is given by

U ŷ
t,t+1 = (1− α)

√

Et[(ẑnt+1 − Et[ẑnt+1])
2] = (1− α)σzn.

In contrast with the atheoretical example, only one term appears becauseα multiplies the capital

stock, which is known at timet. It is straightforward to show that if we included both the capital-

and labor-augmenting productivity shock, uncertainty would instead equal
√

ασ2
zk + (1− α)σ2

zn.

This example satisfies the assumptions discussed above. Theproduction function and the shock

process are log-linear, the shock is homoskedastic, and thecost-shares are constant. Furthermore,

∂ŷt/∂εzn,t = (1− α)σzn.

As a result, a model with Cobb-Douglas production, log utility, and full depreciation cannot gen-

erate time-varying log-output uncertainty or state-dependent responses to productivity shocks.

CES Case Whenσ 6= 1, log output and log labor in periodt+ 1 are given by

ŷt+1 = ŷ0 +
σ

σ−1
ln
(

α exp(σ−1
σ
(k̂t − k̂0)) + (1− α) exp(σ−1

σ
(ẑt+1 + n̂t+1 − n̂0))

)

, (17)

n̂t+1 =
σ

1+ησ

(

κ̂n +
σ−1
σ
ẑt+1

)

, (18)

whereκ̂n collects the constant terms in the labor policy function. Combining the policy functions

provides an equation for log output that is solely a functionof labor productivity. In contrast with

the Cobb-Douglas case, output is no longer log-linear. As a result, deriving an exact analytical

expression for log output uncertainty is no longer possibleso we turn to analytical approximations.

8
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To apply the Taylor approximation in (2), first combine (17) and (18) and reorganize to obtain

ŷt+1 = ŷ0 +
σ

σ−1
ln
(

α exp( σ
σ−1

(k̂t − k̂0)) + (1− α) exp(κ̂y +
(σ−1)(1+η)

1+ησ
ẑt+1)

)

,

whereκ̂y collects the constant terms. Then the conditional varianceis approximated by

Vart[ŷt+1] ≈ [fẑ(kt, Etẑt+1)]
2σ2

z .

The second derivative of̂y with respect tôz, fẑẑ, determines how the first derivative of the produc-

tion function changes with different values ofẑ, and the sign offẑẑ depends on the sign ofσ − 1.

The weight,fẑ, increases witĥz whenσ > 1 and decreases whenσ < 1, so uncertainty is time-

varying under CES production and constant in the Cobb-Douglas case (σ = 1). Importantly, if out-

put uncertainty is countercyclical in the data, then the model is capable of matching the data when

σ < 1. Since the variation infẑ depends on the CES, data on uncertainty will help inform the CES.

Another implication of CES production is that the effect of the shock on log output varies across

states of the economy. This is due to the production functionhaving non-zero second derivatives.

2.4 SOLUTIONS WITH OTHER SHOCKS Our results show that log output uncertainty is constant

under Cobb-Douglas production and time-varying under CES production. This section examines

whether any of the other four shocks generate time-varying uncertainty in the Cobb-Douglas case.

Leisure Shock The consumption and capital solutions are unchanged but labor, (16), becomes

nt =

[

1−α
χξt

(

1
µ̄σ

−(αβ)σ(y0/k0)σ−1

)1/σ (
y0znt
n0

)
σ−1

σ

]
σ

1+ησ

. (19)

The shock enters linearly in logs, so log output uncertaintyin the Cobb-Douglas case is given by

U ŷ
t,t+1 = (1− α)

√

Et[φ
2
ẑn,t+1 + 2φẑn,t+1φn̂,t+1 + φ2

n̂,t+1] = (1− α)
√

σ2
zn + σ2

ξ/(1 + η)2, (20)

whereφx̂,t+1 ≡ x̂t+1 − Et[x̂t+1] is defined as the 1-quarter ahead forecast error forx̂. Since the

productivity and leisure shocks are uncorrelated,Et[φẑn,t+1φξ̂,t+1] = 0. Output uncertainty is once

again constant, but it depends on the variance of both shocksand the Frisch labor supply elasticity.

Preference Shock The consumption-to-output ratio is no longer constant, so there is no closed-

form solution with CES production. In the Cobb-Douglas case, we can write the consumption Eu-

ler equation, (11), as a difference equation in the output-to-consumption ratio and iterate to obtain

yt/ct =
∑

∞

j=0(αβ/µ̄)
jEt[exp(ât+j − ât)] ≡ ast ,

9



ATKINSON, PLANTE , RICHTER & T HROCKMORTON: COMPLEMENTARITY AND UNCERTAINTY

whereEt[exp(ât+j)] = exp(ρj ât+
∑j−1

i=0 ρ
2iσ2

a/2). Sinceast is exogenous, the solution is given by

ct = yt/a
s
t , kt = (1− 1/ast)yt, nt = ((1− α)ast/(χµ̄))

1

1+η ,

and uncertainty about 1-period ahead log output is given by

U ŷ
t,t+1 = (1− α)

√

Et[φ
2
ẑn,t+1 + φ2

n̂,t+1] = (1− α)
√

σ2
zn + φ2

âs,t+1/(1 + η)2. (21)

Whenρa = 0, Et[exp(ât+j)] = 1, so âst linearly depends on̂at. Therefore,φ2
âs,t+1 = σ2

a and log

output uncertainty is constant. Whenρa > 0, uncertainty is time-varying. The production function

is log-linear, the weight on the volatilities,1 − α, is constant, and the shocks are homoskedastic.

However, the conditional volatility of̂ast is time-varying, which causes time-varying uncertainty.4

Markup Shock This example is similar to the previous example. Iterate forward to obtain

yt/ct = 1 +
∑

∞

j=1(αβ)
jEt[exp(−

∑j
i=1 µ̂t+i)] ≡ ut.

Sinceut is exogenous, the solution is given by

ct = yt/ut, kt = (1− 1/ut)yt, nt = ((1− α)ut/(χµt))
1

1+η .

We show inAppendix Dthat it is possible to derive an analytical expression forut that is a function

of only the current value of the markup,µt, and parameters associated with its stochastic process.5

When ρµ = 0, ut = 1/(1 − (αβ/µ̄) exp(σ2
µ/2)). Therefore, the labor forecast error only

depends on the markup, which is log-linear. Output uncertainty has the same expression as it does

with an i.i.d preference shock, except it now depends onσ2
µ. Whenρµ > 0, uncertainty is given by

U ŷ
t,t+1 = (1− α)

√

σ2
z + (σ2

µ + Etφ2
û,t+1 − 2Covt(φû,t+1, φµ̂,t+1))/(1 + η)2, (22)

which varies over time, just like in (21), because the conditional volatility ofût is time-varying.

Government Spending Shock This example is similar to the markup shock, exceptµt = µ̄ and

yt/(ζtct) = 1 +
∑

∞

j=1(αβ)
jEt

[

exp(
∑j

i=1 ζ̂t+i)
]

= mt.

Sincemt is exogenous, the solution is given by

ct = yt/(mtζt), kt = (1− 1/mt)yt/ζt, nt = ((1− α)mtζt/(χµ̄))
1

1+η .

4If the preference shock process was written in levels, instead of logs, then uncertainty would not vary over time.
5It is possible to obtain an analytical solution with a CES production function (σ 6= 1) when the markup shock is

i.i.d. (ρµ = 0), since the consumption-to-output ratio becomes constant. That derivation is also shown inAppendix D.

10
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Following the same derivations as the markup shock case, output uncertainty is given by

U ŷ
t,t+1 = (1− α)

√

σ2
z + (σ2

ζ + Etφ
2
m̂,t+1 − 2Covt(φm̂,t+1, φζ̂,t+1)/(1 + η)2, (23)

which varies over time due to the conditional volatility ofm̂t. If the shock was directly to the gov-

ernment spending share,ŝgt , instead of̂ζt, it would introduce another nonlinearity and make it im-

possible to solve for log output uncertainty. However, the time-varying uncertainty would remain.

3 REAL BUSINESSCYCLE MODEL SIMULATIONS

The previous section assumed full depreciation of capital and set the coefficient of relative risk

aversion to the inverse of the elasticity of substitution between capital and labor to facilitate closed-

form solutions. This section relaxes those assumptions by numerically solving the nonlinear model.

Our first goal is to assess the amount of endogenous variationin uncertainty the model gener-

ates under different degrees of complementarity in the production function. To do so, we simulate

the model and report summary statistics assuming differentvalues forσ. We then show general-

ized impulse response functions and conditional distributions of future output to develop intuition

for why the degree of complementarity generates state-dependency and time-varying uncertainty.

Subjective Discount Factor β 0.9959 Average Markup µ̄ 1.11
Average Labor Share of Income w̄n̄/ȳ 0.6031 Frisch Elasticity 1/η 0.5
Capital Depreciation Rate δ 0.0247 Shock Persistence ρ 0.9
Average Government Spending Share s̄g 0.2081 Shock Standard Deviation σ 0.02

Table 1: Parameter values.

Table 1summarizes the parameter values. We specify log utility in consumption (γ = 1). The

Frisch elasticity of labor supply matches the intensive margin estimate in Chetty et al. (2012). The

average markup is consistent with Smets and Wouters (2007) and Farhi and Gourio (2018). Many

of the other parameters are based on data from 1964Q1-2019Q4, which is the sample we will use

to estimate our model in the next section.6 The discount rate is equal to the inverse of the average

real interest rate, which corresponds to the ratio of the average federal funds rate to the average

GDP deflator inflation rate. The depreciation rate matches the average rate for private fixed assets

and consumer durable goods. The labor share is equal to the average for the total economy. The

average government spending share is equal to the fraction of total output that excludes personal

consumption expenditures and fixed private investment. Forthese exercises, the persistence and

standard deviation of the shock are set to round values that are within the ranges used in the

literature. In the next section, we will estimate the parameters governing the stochastic processes.

6SeeAppendix Afor a detailed description of our data sources and how they were transformed for our calculations.

11
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The model is the one introduced inSection 2.2, but we now focus on role of both labor and

capital-augmenting productivity shocks. Other stochastic processes are set to their steady state

values. We use the policy function iteration algorithm described in Richter et al. (2014) to solve

the nonlinear model. To isolate the effects of each shock, only one shock enters at any give time.

The algorithm is based on the theoretical work on monotone operators in Coleman (1991). We

discretize the capital stock and approximate the shock process using theN-state Markov chain in

Rouwenhorst (1995). This method is attractive because it does not require us to interpolate on the

shock dimensions, which makes the solution more accurate and faster than quadrature methods.

To obtain initial conjectures for the nonlinear policy functions, we solve the log-linear analogue

of our nonlinear model with Sims’s (2002) gensys algorithm.The algorithm minimizes the Euler

equation errors on every node in the state space and computesthe maximum distance between the

updated policy functions and the initial conjectures. It then replaces the initial conjectures with the

updated policy functions and iterates until the maximum distance is below the tolerance level. Once

the algorithm converges, we use the nonlinear solution and numerical integration to generate a pol-

icy function for log output uncertainty. SeeAppendix Efor a detailed description of the algorithm.

1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016 2020
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 2: Real uncertainty series from Ludvigson et al. (2020). Shaded regions denote NBER recessions.

3.1 SIMULATED MOMENTS We begin by simulating the model separately with each shock to

assess the amount of endogenous variation in log output uncertainty and the source of the variation

over time. Each simulation is initialized with a draw from the ergodic distribution and spans 224

quarters, the same number of observations as our quarterly data sample. For each shock and each

simulation, we calculate the standard deviation of log output uncertainty, the standard deviation

of output growth, and the correlation between uncertainty and output growth. We execute1,000

simulations per specification and then report the average and (5, 95) percentiles of the moments.

12
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We compare the simulated moments to equivalent moments in the data. To measure uncertainty

in the data, we use the real uncertainty series from Ludvigson et al. (2020), which is shown in

Figure 2. This is a sub-index of the macro uncertainty series from Jurado et al. (2015) that accounts

for 73 real activity variables (e.g., measures of output, income, housing, consumption, orders, and

inventories). For their analysis, most time series are transformed into growth rates and standard

normalized. Repeated simulations of a factor augmented vector autoregression are used to obtain

estimates of uncertainty for each real variable and then averaged to generate the aggregate real

uncertainty series. The benefit of this series is that it usesthe same definition of uncertainty as this

paper, so it distinguishes between uncertainty and conditional volatility. To make the units from

our model comparable to the real uncertainty series, we calculateSD(U ŷ
t,t+1)/SD(ŷgt ), whereŷgt

is the 1-quarter log-difference in output. We will refer to this statistic as the normalized volatility

of output uncertainty. In the data, output growth equals thelog difference in per capita real GDP.

Data CES

0.2 0.5 1.0 1.5 2.5

Labor Productivity Shock (zn)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 5.41 1.52 0.06 0.49 1.01

(4.56, 6.40) (1.26, 1.82) (0.04, 0.07) (0.39, 0.62) (0.76, 1.31)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.44 −0.41 −0.37 0.36 0.34

(−0.47,−0.42) (−0.44,−0.39) (−0.42,−0.31) (0.32, 0.40) (0.29, 0.39)

SD(ŷgt ) 0.80 1.15 1.50 1.68 1.76 1.83
(1.06, 1.24) (1.38, 1.62) (1.55, 1.82) (1.62, 1.90) (1.69, 1.98)

Capital Productivity Shock (zk)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 5.54 2.14 0.03 0.85 1.59

(4.31, 7.11) (1.64, 2.79) (0.02, 0.04) (0.61, 1.17) (1.13, 2.22)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.20 −0.18 −0.37 0.15 0.15

(−0.26,−0.15) (−0.25,−0.13) (−0.42,−0.31) (0.09, 0.21) (0.09, 0.21)

SD(ŷgt ) 0.80 1.10 0.90 0.83 0.81 0.80
(1.00, 1.20) (0.83, 0.97) (0.76, 0.90) (0.75, 0.88) (0.74, 0.87)

Table 2: Data and average model-implied moments. The data isquarterly from 1964-2019. The(5, 95) percentiles are
based on1,000 simulations of the model and shown in parentheses. The standard deviations are all multiplied by100.

Table 2shows the data and model-implied moments for different elasticities of substitution. For

each shock, the first row shows the normalized volatility of uncertainty, the second row shows the

correlation between log output uncertainty and output growth, and the third row shows the standard

deviation of output growth. Below each moment, we report the(5, 95) percentiles across the1,000

simulations of the model. Notably, the model generates almost no variation in uncertainty under

Cobb-Douglas production (σ = 1), as our analytical results indicate. The insignificant variation

that occurs stems from the minor non-linearity that exists when capital does not fully depreciate.

The variation in uncertainty sharply increases with the degree of complementarity. When

σ = 0.2, slightly above the estimated value in Cantore et al. (2015), the normalized volatility of

uncertainty is close to the volatility of the real uncertainty series. Importantly, the model achieves
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this result while closely matching the volatility of outputgrowth in the data. Both shocks also

create a negative correlation between uncertainty and output growth, close to the value in the data.

Substitutability between the capital and labor inputs (σ > 1) also generates meaningful time-

varying uncertainty, but there are two important caveats. First, matching the variation in the data

would require unreasonably high substitutability, even over long horizons. With a labor produc-

tivity shock this would cause the model to significantly over-predict output growth volatility in the

data. Second, both shocks create a positive correlation with output growth, in contrast with the data.
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Figure 3: Generalized impulse responses to a 1 standard deviation shock to labor productivity in different states of the
economy. The low (high) capital state is2% below (above) steady state. The low (high) labor productivity state is4.5%
below (above) steady state. The values correspond to the(16, 84) percentiles of the ergodic distribution whenσ = 0.2.

3.2 STATE-DEPENDENT IMPULSE RESPONSES Meaningful time-varying uncertainty indicates

the economy is reacting differently to shocks depending up on the state of the economy. To illus-

trate the relationship between uncertainty and the degree of state-dependency,Figure 3plots gener-

alized impulse response functions (GIRFs) of a positive1 standard deviation shock to labor produc-

tivity at different initial conditions and CES parameter values. To compute the GIRFs, we follow

the procedure in Koop et al. (1996). We first calculate the mean of 10,000 simulations of a given

specification, conditional on random shocks in every quarter. We then calculate a second mean

from another set of10,000 simulations, but this time the shock in the first quarter is replaced with

the labor productivity shock. Each GIRF represents the difference between the two mean paths
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in each specification. The different lines in the graph reflects different initial conditions, while

the columns reflect different values ofσ. The low (high) initial capital state is2% below (above)

steady state. The low (high) labor initial productivity state is4.5% percent below (above) steady

state. These states correspond to the(16, 84) percentiles of the ergodic distribution whenσ = 0.2.

First, it is important to note that lower CES values dampen the response of output to a labor

productivity shock regardless of the initial state. The response of hours worked declines with lower

values ofσ and is negative whenσ = 0.2. This is driven by the complementarity in the production

function. Since capital cannot immediately adjust in response to the shock, higher complemen-

tarity (lowerσ) reduces the increase in the marginal product of labor from aproductivity shock

and dampens the increase in labor demand. In the extreme caseof perfect complementarity (Leon-

tief production), a labor productivity shock causes a one-for-one decline in hours worked and no

change in output, since the marginal product of labor is zero.7 Complementarity has the opposite

(amplifying) effect for the response of output to a capital productivity shock (zk), because hours

worked is free to increase in the same period as the shock. This mechanism explains why the

volatility of output growth rises withσ in the top panel ofTable 2and declines in the bottom panel.

Second, state-dependency in the impulse responses occurs when there is a high degree of com-

plementarity, as demonstrated in the left panel whereσ = 0.2. Additionally, the response of output

is dependent on the initial effective capital intensity ratio, zkt kt−1/(z
n
t nt), rather than the initial

level of output. There is little difference in the responseswhen the initial capital (k−1) and labor

productivity (zn0 ) states are both high or low. When the initial effective capital intensity ratio is

low, as it is whenk−1 is low andzn0 is high, increases in effective labor increase output relatively

little, as illustrated in the isoquants shown inFigure 1. Complementarity prevents firms from tak-

ing full advantage of the positive shock because capital cannot immediately increase with labor. In

contrast, whenk−1 is high andzn0 is low, labor productivity shocks lead to a larger boost in output.

Complementarity also implies business cycle turning points driven by labor productivity shocks

exhibit the most extreme levels of uncertainty. When capital is high and a large negative labor

productivity shock occurs at the onset of a recession, the response to other shocks is elevated, in-

creasing uncertainty. When capital is low and a large positive productivity shock arrives at the start

of an expansion, the responses are weak, and future outcomesrelatively certain. This is the source

of the negative correlation between uncertainty and outputgrowth in the top panel ofTable 2.

The pattern of state-dependency is altered in response to a capital productivity shock. Initial

periods with lowk−1 andzk0 have the largest responses of output, while periods with high k−1

7Francis and Ramey (2005) show hours decline in response to a technology shock in a model with Leontief produc-
tion. Cantore et al. (2014) find the sign of the response depends on the type of productivity shock and the magnitude of
the elasticity of substitution. Canova et al. (2010) shows the response in the data also depends on the type of produc-
tivity shock—neutral shocks reduce hours, while investment-specific shocks boost hours. Francis and Ramey (2009)
find that labor productivity shocks reduce hours when adjusting the data for the changes in demographics over time.
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and zk0 have the smallest responses. This result is expected given the implied effective capital

intensity ratio. The highest levels of output uncertainty then occur at low levels of output, rather

than business cycle turning points as is the case with labor productivity shocks. This explains why

the correlation of output uncertainty with output growth isweaker in the bottom panel than the

top panel ofTable 2. While not shown in the table, the correlation of uncertainty with the level of

output is much more negative with capital productivity shocks than with labor productivity shocks.

Under Cobb-Douglas production (σ = 1), there is no state dependency in the impulse response

functions, confirming the intuition from the analytical results and isoquant illustration. Similarly,

whenσ > 1 the state dependency is in the opposite direction, but by negligible amounts. Overall,

the amount of state dependency is small even whenσ = 0.2 and in the extreme states ofFigure 3,

and these regions are visited relatively infrequently. This suggests only a modest amount of state-

dependency in the model is required to generate the variation in uncertainty observed in the data.

3.3 CONDITIONAL DISTRIBUTIONS Another intuitive way to visualize how the degree of com-

plementarity affects output uncertainty is to look at the conditional distributions for future log

output. To generate these distributions, we first conduct10,000 1-period simulations of the model

for each of the four states used to generate the GIRFs. We thenuse the simulated values from each

specification to construct a kernel density estimator of thedistribution of next period’s log output.
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Figure 4: Conditional distributions for log output one period in the future (̂yt+1) in different states of the economy.

Figure 4plots the conditional distribution for the model with laborproductivity shocks. Con-

sistent with our previous results, the conditional distributions are essentially invariant to the state

of the economy whenσ is near1. However, whenσ = 0.2, the distributions differ depending upon

the initial state. In cases with a low initial capital ratio,the distributions are tighter around the

conditional mean of the distribution, whereas the distributions are wider in cases where the ratio is

initially high. This reflects that in states of the economy with a depressed level of capital relative to

labor productivity, changes in labor productivity next period will have a smaller impact on output.
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4 REAL BUSINESSCYCLE MODEL ESTIMATES

This section takes the model to the data using a simulated method of moments. We introduce habit

persistence in consumption and investment adjustment costs following Boldrin et al. (2001) and

Christiano et al. (2005) to match the positive autocorrelations of real activity growth in the data.

The production function, (3), as well as the firm’s optimality conditions, (6) and (7), are un-

changed. The representative household now chooses{ct, nt, kt, xt}
∞

t=0 to maximize expected life-

time utility, E0

∑

∞

t=0 β
t[log(ct − hcat−1)− χn1+η

t /(1 + η)], wherex is investment,ca is aggregate

consumption andh is the degree of external habit persistence. Those choices are constrained by

ct + xt = wtnt + rkt kt−1 + dt,

kt = (1− δ)kt−1 + xt(1− ϕx(xgap
t − 1)2/2),

wherexgap
t = xt/(ḡxt−1) is investment growth relative to the average growth rate andϕx scales

the size of the investment adjustment cost. The household’soptimality conditions are given by

λt = ct − hct−1,

wt = χnη
tλt,

1 = qt[1− ϕx(xgap
t − 1)(3xgap

t − 1)/2] + βḡϕxEt[(λt/λt+1)qt+1(x
gap
t+1)

2(xgap
t+1 − 1)],

qt = βEt[(λt/λt+1)(r
k
t+1 + (1− δ)qt+1)].

The aggregate resource constraint is given byct + xt = (1 − s̄g)yt. The model does not have

a steady-state due to growth in labor productivity. Variables with a trend are defined in terms of

labor productivity (i.e.,̃xt ≡ xt/ḡ
t). The detrended equilibrium system is provided inAppendix B.

Competitive equilibrium consists of sequences of quantities,{ỹ, k̃, c̃, n, x̃, λ̃, xgap
t }∞t=0, prices,

{rk, w̃, q}∞t=0, and exogenous variables,{zkt , z
n
t }

∞

t=0, that satisfy the detrended equilibrium system,

given the initial conditions,{c̃−1, k̃−1, x̃−1, z
k
0 , z

n
0 } and the two shock sequences,{εzk,t, εzn,t}

∞

t=1.

We estimate the model using data from 1964Q1-2019Q4. Using the transformed data described

in Appendix A, the target moments,̂ΨD
T , are estimated with a two-step Generalized Method of

Moments (GMM) estimator, whereT = 224 is the sample size. Given the GMM estimates, the

model is estimated with Simulated Method of Moments (SMM). For parameterizationθ and shocks

E , we solve the nonlinear model and simulate itR = 1,000 times forT periods. The model-implied

analogues of the target moments are the median moments across theR simulations,̄ΨM
R,T (θ, E).

The parameter estimates,θ̂, are obtained by minimizing the following loss function:

J(θ, E) = [Ψ̂D
T − Ψ̄M

R,T (θ, E)]
′[Σ̂D

T (1 + 1/R)]−1[Ψ̂D
T − Ψ̄M

R,T (θ, E)],

whereΣ̂D
T is the diagonal of the GMM estimate of the variance-covariance matrix. We use Monte
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Carlo methods to calculate the standard errors on the parameter estimates. For different sequences

of shocks, we re-estimate the structural modelNs = 200 times and report the mean and(5, 95)

percentiles of the parameter estimates.Appendix Fprovides a detailed description of methodology.

The SMM procedure targets nine moments. They include the standard deviations and first-order

autocorrelations of output, consumption, and investment growth, as well as three moments related

to uncertainty: the standard deviation of (normalized) output uncertainty, the first-order autocorre-

lation of output uncertainty, and the cross-correlation ofoutput uncertainty with output growth.

We use a limited information approach to match empirical targets and SMM to account for

short-sample bias. To improve on the current methodology, we solve the fully nonlinear model

and repeat the estimation procedure for different shock sequences. The solutions and estimations

are run in parallel on a supercomputer. The literature typically estimates models once based on a

particular seed and uses the Delta method to compute standard errors. While our approach has a

higher computational burden, our estimates are independent of the seed and have precise numerical

standard errors. The estimates allow us to numerically approximate the sampling distribution of

the parameters and test whether they are significantly different across models.8 We also obtain a

distribution ofJ values, which determine whether a model provides a significant improvement in

fit over another model, and the corresponding p-values from atest of over-identifying restrictions.9

Table 3shows the parameter estimates and model-implied moments under four specifications:

the CES model with only a labor productivity shock (zn), only a capital productivity shock (zk),

and both productivity shocks (zk & zn) and the Cobb-Douglas model with only the labor pro-

ductivity shock. In our model, the Cobb-Douglas specification is unable to distinguish between a

capital, labor, and total factor productivity shock, so allthree versions yield the same overall fit

and parameter estimates. The only difference that would occur is that the shock standard devia-

tion would scale to account for differences in the labor costshare in the production function. We

report the results with the labor productivity shock. For each parameter, we show the average and

(5, 95) percentiles across200 estimations of the model. For each moment, we report the meanand

t-statistic for the null hypothesis that a model-implied moment equals its counterpart in the data.

We begin with the Cobb-Douglas specification.10 There are only four estimated parameters

because the CES is fixed at1. The estimates are consistent with the literature. The dataprefers a

8Ruge-Murcia (2012) applies SMM to several nonlinear business cycle models and finds that asymptotic standard
errors tend to overstate the variability of the estimates. This underscores the importance of using Monte Carlo methods.

9The test statistic is given bŷJs = J(θ̂, Es), whereEs is a matrix of shocks given seeds. J(θ̂, E) converges to a
χ2 distribution withNm−Np degrees of freedom, whereNm is the number of empirical targets andNp is the number
of estimated parameters. The(5, 95) percentiles of the p-values determine whether a model reliably passes the test.

10Table 6in Appendix Gshows the results of adding fourth-order autocorrelationsin real activity growth to our list
of targeted moments. These values are informative because the autocorrelation functions in the data are decreasing.
The qualitative results are unchanged. All three CES specifications perform significantly better than the Cobb-Douglas
specification and the CES model with both productivity shocks passes a test of over-identifying restrictions. The only
difference from our main results is that the CES model with only a capital productivity shock no longer passes the test.
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C-D CES

Parameter ẑn ẑn ẑk ẑn & ẑk

ρzn 0.9571 0.9839 − 0.9626
(0.9529, 0.9609) (0.9822, 0.9859) (0.9555, 0.9724)

σzn 0.0211 0.0166 − 0.0199
(0.0209, 0.0214) (0.0159, 0.0173) (0.0182, 0.0211)

ρzk − − 0.9152 0.9664
(0.9125, 0.9182) (0.9414, 0.9788)

σzk − − 0.0316 0.0071
(0.0311, 0.0321) (0.0066, 0.0076)

ϕx 2.9470 0.9074 2.1571 1.7650
(2.8521, 3.0550) (0.7465, 1.0527) (2.0987, 2.2216) (1.3480, 2.0866)

h 0.8998 0.5075 0.8859 0.7798
(0.8965, 0.9030) (0.4053, 0.5893) (0.8843, 0.8876) (0.7224, 0.8143)

σ − 0.1739 0.3945 0.1325
(0.1713, 0.1767) (0.3848, 0.4040) (0.1178, 0.1430)

J 53.41 12.51 6.75 1.88
(52.94, 53.91) (12.01, 12.95) (6.62, 6.85) (1.72, 2.10)

pval 0.00 0.01 0.15 0.39
(0.00, 0.00) (0.01, 0.02) (0.14, 0.16) (0.35, 0.42)

df 5 4 4 2

(a) Average and(5, 95) percentiles of the parameter estimates.

C-D CES

Moment Data ẑn ẑn ẑk ẑn & ẑk

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 1.98 6.24 5.71 5.71

(−6.15) (0.78) (−0.09) (−0.08)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.33 −0.58 −0.35 −0.46

(0.84) (−1.95) (0.56) (−0.65)

AC(U ŷ
t,t+1) 0.91 0.90 0.91 0.88 0.88

(−0.12) (−0.07) (−0.74) (−0.82)

SD(ŷg) 0.80 0.95 0.80 0.88 0.81
(2.33) (0.04) (1.32) (0.19)

SD(ĉg) 0.51 0.40 0.41 0.49 0.52
(−2.20) (−1.97) (−0.45) (0.20)

SD(x̂g) 2.02 2.11 2.13 1.76 1.95
(0.44) (0.54) (−1.35) (−0.40)

AC(ŷg) 0.29 0.46 0.17 0.35 0.24
(1.89) (−1.38) (0.60) (−0.58)

AC(ĉg) 0.41 0.46 0.31 0.46 0.43
(0.77) (−1.35) (0.75) (0.33)

AC(x̂g) 0.42 0.47 0.41 0.32 0.41
(0.56) (−0.09) (−1.10) (−0.07)

(b) Data and average model-implied moments. t-statistics are in parentheses.

Table 3: Parameter estimates and targeted moments.

highly persistent labor productivity process (ρzn = 0.96), strong habit persistence (h = 0.9), and

significant investment adjustment costs (ϕx = 2.9). The model has a poor fit. TheJ value is53.4

and the p-value is essentially0, meaning the data soundly rejects this specification. The biggest rea-

son is because the model cannot generate the volatility in uncertainty that occurs in the data. Nor-

malized uncertainty is considerably larger than the near zero values reported inSection 3because

the real frictions introduce two additional backward looking components that generate greater non-
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linearities and state-dependency than in the frictionlessmodel. However, the t-statistic is still6.15,

meaning the volatility of uncertainty in the model is significantly different from the data. The

model also has trouble matching the standard deviations of output and consumption growth, as

botht-statistics exceed2. Overall, these three moments account for roughly90% of theJ value.

All three specifications with a CES production function perform significantly better than the

Cobb-Douglas model. While there is some variation in the estimates, the data prefers strong com-

plementarity in the production function (σ < 0.4) under all three shock specifications. In the model

with a productivity shock, the estimated CES is0.17 and theJ value drops to12.5. Despite the sig-

nificant improvement in fit, the p-value is still only0.01, mainly because the model over-predicts

the correlation between output growth and uncertainty and under-predicts the standard deviation of

consumption growth. The model with a capital productivity shock performs better, even though the

estimated CES is higher (σ = 0.39). TheJ value is6.8 and the p-value increases to0.15, passing

the test of over-identifying restrictions at the10% level. The model with both labor and capital

productivity shocks performs the best. Despite only two degrees of freedom, theJ value declines

to 1.9 and the p-value further increases to0.39. None of the t-statistics exceed1, indicating that

none of the model-implied moments are statistically different from their counterparts in the data.

Furthermore, the CES is only0.13, pointing to strong complementarity between capital and labor.

5 MOVING BEYOND PRODUCTIVITY SHOCKS

Table 4repeats the exercise inTable 2for the remaining shocks discussed inSection 2under our

baseline calibration. We begin with a discussion of the results under Cobb-Douglas production

(σ = 1), which confirm that our analytical results carry through for our model without full depre-

ciation. In particular, shocks to the price markup (µ), government spending (ζ), and preferences (a)

generate noticeable time variation in output uncertainty.This stems from the conditional volatility

that is created by the way the exogenous shock enters the equilibrium system, rather than state de-

pendence through the endogenous capital state (kt−1). Whenµ0 or a0 is elevated, further increases

in the shock have a smaller impact on output than when either of those states are low. The oppo-

site holds for the government spending shock—an elevatedζ0 amplifies the response of output to

further increases in government spending. Shocks to leisure preferences (ξ) do not generate mean-

ingful variation in uncertainty with Cobb-Douglas production, similar to the productivity shocks.

Government spending shocks generate the largest variationin uncertainty, nearly20% of what

is in the data and several times larger than what the markup shock generates. This may seem at

odds with our analytical results, since the expressions foruncertainty were nearly identical for the

two shocks. However, both produce nearly the same value for the un-normalized level of uncer-

tainty (SD(U ŷ
t,t+1)). The differences occur because capital and hours worked move in opposite

directions in response to a government spending shock, which dampens the volatility of output
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Data CES

0.2 0.5 1.0 1.5 2.5

Markup Shock (µ)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 0.93 0.22 0.17 0.27 0.38

(0.77, 1.12) (0.15, 0.31) (0.14, 0.21) (0.22, 0.33) (0.30, 0.48)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.48 −0.31 0.35 0.38 0.36

(−0.51,−0.44) (−0.40,−0.22) (0.31, 0.39) (0.35, 0.41) (0.32, 0.40)

SD(ŷgt ) 0.80 0.22 0.29 0.33 0.35 0.37
(0.20, 0.24) (0.27, 0.32) (0.31, 0.36) (0.33, 0.38) (0.34, 0.40)

Government Spending Shock (ζ)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 2.85 0.67 1.02 1.34 1.61

(2.03, 3.93) (0.55, 0.80) (0.72, 1.41) (0.89, 1.95) (1.05, 2.40)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 0.03 −0.13 −0.17 −0.13 −0.08

(−0.03, 0.10) (−0.21,−0.05) (−0.23,−0.10) (−0.20,−0.07) (−0.16,−0.00)

SD(ŷgt ) 0.80 0.25 0.25 0.22 0.19 0.17
(0.23, 0.27) (0.23, 0.27) (0.20, 0.23) (0.18, 0.21) (0.16, 0.18)

Preference Shock (a)

SD(U ŷ
t,t+1

)/SD(ŷgt ) 5.76 3.11 1.39 0.61 0.50 0.74
(2.07, 4.43) (0.87, 2.04) (0.45, 0.82) (0.42, 0.61) (0.55, 1.00)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.25 −0.07 0.22 0.43 0.39

(−0.34,−0.16) (−0.12,−0.03) (0.16, 0.29) (0.41, 0.45) (0.32, 0.46)

SD(ŷgt ) 0.80 0.22 0.34 0.42 0.46 0.51
(0.20, 0.24) (0.31, 0.36) (0.39, 0.45) (0.43, 0.50) (0.47, 0.55)

Leisure Preference Shock (ξ)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 1.84 0.51 0.02 0.16 0.33

(1.55, 2.18) (0.42, 0.61) (0.02, 0.03) (0.13, 0.21) (0.25, 0.44)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.44 −0.41 −0.37 0.36 0.34

(−0.47,−0.43) (−0.44,−0.39) (−0.42,−0.31) (0.32, 0.40) (0.29, 0.39)

SD(ŷgt ) 0.80 0.38 0.50 0.56 0.59 0.61
(0.35, 0.41) (0.46, 0.54) (0.52, 0.61) (0.54, 0.63) (0.56, 0.66)

Table 4: Data and average model-implied moments. The data isquarterly from 1964-2019. The(5, 95) percentiles are
based on1,000 simulations of the model and shown in parentheses. The standard deviations are all multiplied by100.
The persistence of each process is0.9. The shock standard deviations are0.02, except the markup shock which is0.01.

(SD(ŷgt )). While government spending shocks generate sizable volatility in uncertainty relative to

the volatility of output growth, they would require unreasonably large variations in the output share

of government spending to generate meaningful variation inthe un-normalized level of uncertainty.

When deviating from Cobb-Douglas production, the moments in Table 4, with the exception

of those generated from government spending shocks, move ina similar direction as shown with

the labor productivity shock inTable 2. As σ falls, the volatility of output growth declines, the

volatility of uncertainty increases, and the correlation of uncertainty and output growth becomes

more negative. Complementarity introduces state dependency in the impulse responses in a similar

way as the labor productivity shock, through the effective capital ratio. Initial periods with a higher

effective capital ratio have a larger response in hours worked and output. Whenσ = 0.2, these

shocks generate variation in uncertainty between one-third and one-half of what is in the data. The

correlation between uncertainty and the effective capitalratio exceeds0.9 for each shock, confirm-
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ing the mechanism that generates uncertainty. These results demonstrate that complementarity has

meaningful implications for time-varying uncertainty formost shocks, not just productivity shocks.

Government spending shocks are the exception to this pattern. The variation in uncertainty is

relatively stable across the values ofσ, suggesting the conditional volatility that stems from theway

the shock hits the equilibrium system dominates the effect of complementarity. The correlation of

output growth and uncertainty is positive and increases asσ falls, in contrast with the other shocks.

6 NEW KEYNESIAN MODEL SIMULATIONS

This section extends the real business cycle model inSection 2.2to include sticky prices. Following

Rotemberg (1982), firms choose their labor, capital, and price level to maximize the expected

discounted present value of future dividends subject to a quadratic price adjustment cost. Using the

functional form in Ireland (1997), the optimality conditions in symmetric equilibrium are given by

rkt = αmct
(

y0z
k
t /k0

)
σ−1

σ
(

yt/kt−1

)
1

σ ,

wt = (1− α)mct
(

y0ḡ
tznt /n0

)
σ−1

σ (yt/nt)
1

σ ,

ϕp(πt/π̄ − 1)πt/π̄ = (µtmct − 1)/(µt − 1) + βϕpEt[(ct/ct+1)(πt+1/π̄ − 1)(πt+1/π̄)(yt+1/yt)],

whereπ is the gross inflation rate andϕp scales the size of the price adjustment cost. Whenϕp > 0,

the real marginal cost of producing an additional unit of output,mc, is endogenously determined by

the Phillips Curve. Whenϕp = 0, mct = 1/µt and the model collapses the version inSection 2.2.

The household’s budget constraint is given byct + bt/it = wtnt + bt−1/πt + dt, wherei is

the gross nominal interest rate set by the central bank andb is the real value of a privately-issued

1-period nominal bond in zero net supply. The optimality conditions are given by (10), (11), and

1 = βEt[(ct/ct+1)(it/πt+1)].

The monetary policy rule is given by

it = iρit−1(̄ı(πt/π̄)
φπ(yt/(ḡyt−1))

φy)1−ρi exp(εi,t), εi ∼ N(0, 1),

whereπ̄ is the inflation target,φπ andφy are the responses to the inflation and output growth gaps,

andρi is the persistence of the policy rule. Following Eggertssonand Singh (2019), we exclude the

price adjustment costs from the aggregate resource constraint, so it is unchanged fromSection 2.2.

We setφπ = 2.0, φy = 0.2, ρi = 0.8, andσi = 0.0025, which are all common values. The

price adjustment cost parameter is set to51.49. This value corresponds to a Calvo price setting

where prices change once every three quarters, the mean estimate in Smets and Wouters (2007).

The inflation target is set to1.0084, which is the average GDP deflator inflation rate in our sample.
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Data CES

0.2 0.5 1.0 1.5 2.5

Labor Productivity Shock (zn)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 4.37 1.08 0.10 0.53 0.93

(3.65, 5.20) (0.90, 1.30) (0.08, 0.13) (0.42, 0.67) (0.72, 1.20)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.38 −0.39 0.38 0.38 0.37

(−0.41,−0.37) (−0.42,−0.37) (0.33, 0.43) (0.34, 0.42) (0.31, 0.42)

SD(ŷgt ) 0.80 1.43 1.58 1.63 1.64 1.66
(1.31, 1.55) (1.46, 1.71) (1.50, 1.76) (1.52, 1.77) (1.53, 1.79)

Capital Productivity Shock (zk)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 9.27 2.82 0.05 0.89 1.54

(7.28, 11.78) (2.17, 3.68) (0.04, 0.06) (0.68, 1.16) (1.16, 2.05)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.26 −0.22 0.38 0.20 0.18

(−0.34,−0.20) (−0.29,−0.16) (0.33, 0.43) (0.15, 0.26) (0.13, 0.24)

SD(ŷgt ) 0.80 0.82 0.76 0.80 0.84 0.88
(0.74, 0.91) (0.70, 0.82) (0.74, 0.87) (0.77, 0.91) (0.81, 0.96)

Markup Shock (µ)

SD(U ŷ
t,t+1

)/SD(ŷgt ) 5.76 4.66 3.46 2.82 2.54 2.28
(3.73, 5.74) (2.74, 4.30) (2.22, 3.55) (2.00, 3.20) (1.78, 2.89)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.25 −0.24 −0.24 −0.24 −0.24

(−0.29,−0.22) (−0.28,−0.19) (−0.28,−0.19) (−0.29,−0.19) (−0.29,−0.19)

SD(ŷgt ) 0.80 0.36 0.42 0.45 0.46 0.47
(0.32, 0.39) (0.38, 0.46) (0.41, 0.49) (0.42, 0.50) (0.43, 0.51)

Monetary Policy Shock (εi)

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.76 0.17 0.06 0.04 0.05 0.07

(0.12, 0.22) (0.05, 0.08) (0.04, 0.05) (0.05, 0.07) (0.05, 0.09)

Corr(U ŷ
t,t+1, ŷ

g
t ) −0.40 −0.29 −0.56 −0.65 −0.46 −0.32

(−0.36,−0.21) (−0.66,−0.46) (−0.70,−0.60) (−0.54,−0.36) (−0.42,−0.22)

SD(ŷgt ) 0.80 0.83 1.12 1.28 1.34 1.39
(0.75, 0.90) (1.02, 1.22) (1.16, 1.39) (1.22, 1.46) (1.27, 1.52)

Table 5: Data and average model-implied moments. The data isquarterly from 1964-2019. The(5, 95) percentiles are
based on1,000 simulations of the model and shown in parentheses. The standard deviations are all multiplied by100.
The shock standard deviations are set to0.02 (productivity),0.01 (price markup), and0.0025 (monetary policy).

Table 5once again repeats the exercise in table 2 for the model with sticky prices. The results

with the capital and labor productivity shocks are qualitatively unchanged. There is little time-

varying uncertainty under Cobb-Douglas production and meaningful, counter-cyclical variation

when capital and labor are gross complements. Quantitatively, however, there are some important

differences. Strong complementarity causes capital productivity shocks to generate considerably

more time-varying uncertainty and less output growth volatility than our baseline model. These

dynamics are driven almost entirely by the interest rate inertia in the monetary policy rule. When

k0 is low, there is a large response of output. The persistence in the policy rule keeps interest rates

lower for longer, amplifying the response of output. Conversely, whenk0 is high, the response of

output is weak due to complementarity, which mitigates the effects of the interest rate persistence.

Price markup shocks generate meaningful time-varying uncertainty even under Cobb-Douglas

production. This stems from the endogeneity of marginal costs. Positive markup shocks always
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reduce factor prices, but when prices are sticky, the shock also increases current and future infla-

tion. This feeds into marginal costs and further reduces factor prices. Since price adjustment costs

are quadratic, marginal costs and hence factor prices decline more in states that are farther away

from steady state. This generates state-dependent output responses and time-varying uncertainty.

Monetary policy shocks cause almost no variation in uncertainty, regardless of the elasticity of

substitution in production. The small variation in uncertainty occurs even though the volatility of

output growth is larger than it is in the data. Overall, theseresults reinforce that productivity shocks

under complementarity are an important driver of the variation in uncertainty observed in the data.

7 CONCLUSION

Much of the uncertainty literature uses structural models to examine the effects of shocks to the

variance of exogenous variables, while holding their conditional means fixed. In this paper, our fo-

cus is on endogenous movements in uncertainty that are due tochanges in the state of the economy.

This can occur in any model where first moment shocks have state-dependent effects on output.

However, this channel is weak in many business cycle models because many are close to log linear.

One source of the near-linearity in business cycle models stems from the common assumption

of Cobb-Douglas production, which implies a unitary elasticity of substitution between inputs in

production. This paper shows that if capital and labor are gross complements, first moment pro-

ductivity shocks can generate time-varying and counter-cyclical uncertainty consistent with the

data. While there are other mechanisms in the literature, ours is particularly compelling for two

main reasons. First, there is overwhelming evidence in the literature that the elasticity of substitu-

tion between inputs in the production process is well below unity. Second, complementarity can

explain why uncertainty fluctuates at all points of the business cycle, not just during recessions or

isolated events. More broadly, our results demonstrate that failing to account for the effects of first-

moments shocks on uncertainty will lead to an over-statement of the causal effects of uncertainty.

There are several avenues to build on our results. We focus onuncertainty about future real

activity. Developing richer models that include a financialsector or additional frictions would

make it possible to examine whether the model can match alternative sources of uncertainty, such

as those surrounding prices and interest rates. Building exogenous volatility shocks into any model

where there are meaningful state-dependent effects of firstmoment shock would make it possible

to examine the causal effect of various sources of uncertainty, while controlling for feedback from

the state of the economy. Both of these extensions would further advance the uncertainty literature.
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A DATA SOURCES

We use the following quarterly time-series from 1964Q1-2019Q4 provided by Haver Analytics:

1. Civilian Noninstitutional Population: 16 Years and Over,

Not Seasonally Adjusted, Thousands (LN16N@USECON)

2. Gross Domestic Product: Implicit Price Deflator,

Seasonally Adjusted, 2012=100 (DGDP@USNA)

3. Gross Domestic Product, Seasonally Adjusted, Billions of Dollars, (GDP@USECON)

4. Personal Consumption Expenditures: Nondurable Goods,

Seasonally Adjusted, Billions of Dollars (CN@USECON)

5. Personal Consumption Expenditures: Services,

Seasonally Adjusted, Billions of Dollars (CS@USECON)

6. Personal Consumption Expenditures: Durable Goods,

Seasonally Adjusted, Billions of Dollars (CD@USECON)

7. Private Fixed Investment, Seasonally Adjusted, Billions of Dollars (F@USECON)

8. Labor Share, Total Economy, All Employed Persons (LXEBL@USECON)

9. Net Stock: Private Fixed Assets, Billions of Dollars (EPT@CAPSTOCK)

10. Net Stock: Consumer Durable Goods, Billions of Dollars (EDT@CAPSTOCK)

11. Depreciation: Private Fixed Assets, Billions of Dollars (KPT@CAPSTOCK)

12. Depreciation: Consumer Durable Goods, Billions of Dollars (KDT@CAPSTOCK)

13. Effective Federal Funds Rate, Percent per Annum (FFED@USECON)
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We also use the Ludvigson et al. (2020) Real Uncertainty Index, available on the authors’ personal

websites. We use a quarterly average of monthly values forh = 3 (one quarter forecast horizon).

We applied the following transformations to the above data sources:

1. Per Capita Real Output Growth:

∆ŷt = 100
(

log
(

GDPt

DGDPt+LN16Nt

)

− log
(

GDPt−1

DGDPt−1+LN16Nt−1

))

.

2. Per Capita Real Consumption Growth:

∆ĉt = 100
(

log
(

CNt+CSt

DGDPt+LN16Nt

)

− log
(

CNt−1+CSt−1

DGDPt−1+LN16Nt−1

))

.

3. Per Capita Real Investment Growth:

∆x̂t = 100
(

log
(

Ft+CDt

DGDPt+LN16Nt

)

− log
(

Ft−1+CDt−1

DGDPt−1+LN16Nt−1

))

.

4. Subjective Discount Factor:

β = (DGDPt/DGDPt−1)/(1 + FFED/100)1/4.

5. Capital Depreciation Rate:

δ = (KPT +KDT )/(EPT + EDT ).

B DETRENDEDEQUILIBRIUM SYSTEM

The detrended real business cycle model includes the exogenous productivity processes, (4), and

µtr
k
t = α

(

y0z
k
t /k0

)
σ−1

σ
(

ḡỹt/k̃t−1

)
1

σ ,

ỹt = y0

[

α
(

zkt k̃t−1/(ḡk0)
)

σ−1

σ

+ (1− α)
(

znt nt/n0

)
σ−1

σ

]
σ

σ−1

,

µtw̃t = (1− α) (y0z
n
t /n0)

σ−1

σ (ỹt/nt)
1

σ ,

w̃t = χnη
t λ̃t,

λ̃t = c̃t − (h/ḡ)c̃t−1,

c̃t + x̃t = (1− s̄g)ỹt,

k̃t = (1− δ)k̃t−1/ḡ + x̃t(1− ϕx(xgap
t − 1)2/2),

1 = qt[1− ϕx(xgap
t − 1)(3xg

t − 1)/2] + βϕxEt[(λ̃t/λ̃t+1)qt+1(x
gap
t+1)

2(xgap
t+1 − 1)],

qt = (β/ḡ)Et[(λ̃t/λ̃t+1)(r
k
t+1 + (1− δ)qt+1)],

xgap
t = x̃t/x̃t−1.
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The New Keynesian model also includes the following equations:

1 = (β/ḡ)Et[(at+1/at)(c̃t/c̃t+1)(stit/(π̄π
gap
t+1))],

ϕ(πgap
t − 1)πgap

t = (µtmct − 1)/(µt − 1) + βϕEt[(at+1/at)(c̃t/c̃t+1)(π
gap
t+1 − 1)πgap

t+1(ỹt+1/ỹt)],

it = ℓt−1(̄ı(π
gap
t )φπ ỹ

φy

t )1−ρi exp(mpt),

ℓt = iρit ỹ
φy(ρi−1)
t .

C DERIVATION OF APPROXIMATIONS

Supposey = g(x) is function of a random variablex with meanx̄, unconditional varianceσ2
x,u,

and conditional (one-step ahead) varianceσ2
x,c. A second-order Taylor expansion aroundx̄ implies

y(x̄) ≈ g(x̄) + g′(x̄)(x− x̄) + g′′(x̄)(x− x̄)2/2,

so the unconditional expectation is given by

E[y(x̄)] ≈ g(x̄) + g′′(x̄)σ2
x,u/2.

By definitionVar[y] = E[(y − ȳ)2] = E[y2]− (E[y])2. Therefore, using the same approximation

Var[y] ≈ [g(x̄)]2 + ([g′(x̄)]2 + g(x̄)g′′(x̄))σ2
x,u − (g(x̄) + g′′(x̄)σ2

x,u/2)
2.

Expanding the approximation and dropping the oneσ4
x,u term impliesVar[y] ≈ [g′(x̄)]2σ2

x,u.

Now supposex follows a stochastic process. An approximation of the time-t conditional vari-

ance ofyt+1, denoted byVart[yt+1], follows the same deviation, except it is approximated around

the conditional mean ofxt+1, denoted byEt[xt+1]. Therefore,Vart[yt+1] ≈ [g′(Et[xt+1])]
2σ2

x,c.

Real Business Cycle Model with CES ProductionSubstituting (18) into (17) implies

ŷt+1 = ŷ0 +
σ

σ−1
ln
(

α exp(σ−1
σ
(k̂t − k̂0)) + (1− α) exp( σ−1

1+ησ
κ̂n +

(σ−1)(1+η)
1+ησ

ẑt+1 −
σ−1
σ
n̂0)

)

.

Denoteŷz andŷzz as the first and second partial derivatives with respect to productivity and define

exp(f̂1) = exp(σ−1
σ
(k̂t − k̂0)), exp(f̂2) = exp( σ−1

1+ησ
κ̂n +

(σ−1)(1+η)
1+ησ

ẑt+1 −
σ−1
σ
n̂0),

Then the first and second derivatives are given by

ŷẑ =
σ(1+η)
1+ησ

(1−α) exp(f̂2)

α exp(f̂1)+(1−α) exp(f̂2)
, (24)

ŷẑẑ =
σ(σ−1)(1+η)2

(1+ησ)2
α(1−α) exp(f̂1) exp(f̂2)

(α exp(f̂1)+(1−α) exp(f̂2))2
, (25)

whereŷẑ > 0 andŷµ̂ < 0. The sign of the second derivative depends on theσ − 1 term.
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D ANALYTICAL SOLUTIONS

D.1 COBB-DOUGLAS SOLUTION WITH MARKUP SHOCKS Forward iteration implies

ct+kt
ct

= 1 +
∑

∞

j=1(αβ)
jEt

[

exp(−
∑j

i=1 µ̂t+i)
]

≡ ut.

The price markup in periodt+ j, written as a function of the current markup, is given by

µ̂t+1 = µ0 + ρµµ̂t + σµεt+1,

µ̂t+2 = µ0(1 + ρµ) + ρ2µµ̂t + ρµσµεt+1 + σµεt+2,

µ̂t+j = µ0

∑j
i=1 ρ

i−1
µ + ρjµµ̂t +

∑j
i=1 ρ

j−i
µ σµεt+i.

whereµ0 ≡ (1− ρµ) ln µ̄. Therefore, the sum of the markup overj periods is equal to

∑1
i=1 µ̂t+i = µ0 + ρµµ̂t + σµεt+1,

∑2
i=1 µ̂t+i = µ0(2 + ρµ) + ρµ(1 + ρµ)µ̂t + σµ(1 + ρµ)εt+1 + σµεt+2,

∑j
i=1 µ̂t+i = µ0

∑j
i=1(j + 1− i)ρi−1

µ + ρµ
∑j

i=1 ρ
i−1
µ µ̂t +

∑j
h=1(

∑j−h
i=0 ρ

i
µ)σµεt+h.

Sinceµ̂t+1 is normally distributed with meanµ0+ρµµ̂t and varianceσ2
µ, exp(µ̂t+j) is log-normally

distributed with meanexp(µ0+ρµµ̂t+σ2
µ/2). Applying this property toexp(−

∑j
i=1 µ̂t+i) implies

ct+kt
ct

= 1 +
∑

∞

j=1(αβ)
j exp

(

−µ0
∑j

i=1(j + 1− i)ρi−1
µ − ρµ

∑j
i=1 ρ

i−1
µ µ̂t +

∑j
h=1(

∑j−h
i=0 ρiµ)

2σ2
µ/2

)

.

In the special case there markup shocks are i.i.d., this result simplifies to

ct+kt
ct

=
∑

∞

j=0[(αβ/µ̄) exp(σ
2
µ/2)]

j = 1/(1− (αβ/µ̄) exp(σ2
µ/2)),

so the output-to-consumption ratio is constant and does notcause equilibrium hours to vary.

D.2 CES SOLUTION WITH I .I .D. MARKUP SHOCKS The Euler equation is given by

1 = αβ(y0/k0)
(σ−1)/σEt[(ct/ct+1)

γ(yt+1/kt)
1/σ(1/µt+1)].

To solve the model, assumeγ = 1/σ and guessct = θyt. Then

1 = αβ(y0/k0)
(σ−1)/σ(yt/kt)

1/σEt[exp(−µ̂t+1)].

With i.i.d. markup shocks,Et[exp(−µ̂t+1)] = (1/µ̄) exp(σ2
µ/2). Therefore,

ct = (1− ((αβ/µ̄) exp(σ2
µ))

σ(y0/k0)
σ−1yt, kt = ((αβ/µ̄) exp(σ2

µ))
σ(y0/k0)

σ−1yt,

which verifies our initial conjecture that the consumption-to-output ratio is constant.

31



ATKINSON, PLANTE , RICHTER & T HROCKMORTON: COMPLEMENTARITY AND UNCERTAINTY

E NONLINEAR SOLUTION METHOD

We begin by compactly writing the detrended nonlinear equilibrium system as

E[f(st+1, st, εt+1)|zt, ϑ] = 0,

wheref is a vector-valued function,st is a vector of variables,εt are the shocks,zt are the states

(zt ≡ [kt−1, z
n
t ]

′ for the baseline model andzt ≡ [k̃t−1, c̃t−1, x̃t−1, z
n
t , z

k
t ]

′ for the estimated model).

There are many ways to discretize the exogenous states,znt andzkt . We use the Markov chain

in Rouwenhorst (1995), which Kopecky and Suen (2010) show outperforms other methods for ap-

proximating autoregressive processes. The bounds on the endogenous states are set as a percentage

of their deterministic steady state values (kt−1 is set to±15% for the baseline model and̃kt−1, c̃t−1,

andx̃t−1, are respectively set to±10%, ±25%,±10% for the estimated model). These values were

chosen so the grids contain99% of the simulated values for each state. We discretize the states into

9 evenly-spaced points. The product of the points in each dimension,D, represents the total nodes

in the state space (D = 81 for the baseline model andD = 59,049 for the estimated model). The

realization ofzt on noded is denotedzt(d). The Rouwenhorst method provides integration nodes,

[znt+1(m), zkt+1(m)], with weights,φ(m), for m ∈ {1, . . . ,M}. Since the exogenous variables

evolve according to a Markov chain, the number of future realizations is the same as the state (9).

The vector of policy functions is denotedpf t and the realization on noded is denotedpf t(d)

(pf t ≡ [nt(zt)] for the baseline model andpf t ≡ [nt(zt), qt(zt)] for the estimated model). Our

choice of policy functions, while not unique, simplifies solving for the variables in the nonlinear

system of equations givenzt. The following steps outline our policy function iterationalgorithm:

1. Use Sims’s (2002)gensys algorithm to solve the log-linear model. Then map the solution

for the policy functions to the discretized state space. This provides an initial conjecture.

2. On iterationj ∈ {1, 2, . . .} and each noded ∈ {1, . . . , D}, use Chris Sims’scsolve to find

pf t(d) to satisfyE[f(·)|zt(d), ϑ] ≈ 0. Guesspf t(d) = pf j−1(d). Then apply the following:

(a) Solve for all variables dated at timet, givenpf t(d) andzt(d).

(b) Linearly interpolate the policy functions,pf j−1, at the updated state variables,zt+1(m),

to obtainpf t+1(m) on every integration node,m ∈ {1, . . . ,M}.

(c) Given{pf t+1(m)}Mm=1, solve for the other elements ofst+1(m) and compute

E[f(st+1, st(d), εt+1)|zt(d), ϑ] ≈
∑M

m=1 φ(m)f(st+1(m), st(d), εt+1(m)).

Whencsolve converges, setpf j(d) = pf t(d).

3. Repeat step 2 untilmaxdistj < 10−6, wheremaxdistj ≡ max{|pf j − pf j−1|}. When that

criterion is satisfied, the algorithm has converged to an approximate nonlinear solution.
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F ESTIMATION METHOD

The estimation procedure has two stages. The first stage estimates moments in the data using a 2-

step Generalized Method of Moments (GMM) estimator with a Newey and West (1987) weighting

matrix with 5 lags. The second stage is a Simulated Method of Moments (SMM)procedure that

searches for a parameter vector that minimizes the distancebetween the GMM estimates in the

data and short-sample predictions of the model, weighted bythe diagonal of the GMM estimate of

the variance-covariance matrix. The second stage is repeated for many different draws of shocks

to obtain a sampling distribution for each parameter. The following steps outline the algorithm:

1. Use GMM to estimate the moments,Ψ̂D
T , and the diagonal of the covariance matrix,Σ̂D

T .

2. Use SMM to estimate the real business cycle model. Given a random seed,s, draw aB+T -

period sequence for each shock in the model, whereB is a 1,000 period burn-in andT

is the sample size in the data. Denote the shock matrixEs
B+T (e.g., in the 2-shock model

Es
B+T = [εsẑk,t, ε

s
ẑn,t]

B+T
t=1 ). Fors ∈ {1, . . . , Ns}, run the following steps:

(a) Specify a guess,̂θ0, for theNp estimated parameters and the covariance matrix,Σs,0
P .

i. For all i ∈ {1, . . . , Nm}, apply the following steps:

A. Draw θ̂i from a multivariate normal distribution centered at some mean pa-

rameter vector,̄θ, with a diagonal covariance matrix,Σ0.

B. Solve the nonlinear model with the policy function iteration algorithm inAp-

pendix Egivenθ̂i. Repeat 3(a)i.A. if the algorithm does not converge.

C. GivenEs
B+T (r), simulate the quarterly modelR times forB + T periods.

We draw initial states from the ergodic distribution by burning off the firstB

periods. For each repetitionr, calculate the moments based on the remaining

T periods,ΨM
T (θ̂i, E

s
T (r)), the same way they are calculated in the data.

D. Calculate the median moments across theR simulations,

Ψ̄M
R,T (θ̂i, E

s
T ) = median{ΨM

T (θ̂i, E
s
T (r))}

R
r=1, and evaluate the loss function:

Js
i = [Ψ̂D

T − Ψ̄M
R,T (θ̂i, E

s
T )]

′[Σ̂D
T (1 + 1/R)]−1[Ψ̂D

T − Ψ̄M
R,T (θ̂i, E

s
T )].

ii. Find the parameter draŵθ0 that corresponds tomin{Js
i }

Nd

i=1, and calculateΣs,0
P .

A. Find theNbest draws with the lowestJs
i . Stack the remaining draws in aNbest×

Np matrix,Θ̂s, and definẽΘs = Θ̂s − 1Nbest×1

∑Nd

i=Nbest
θ̂si /(Nbest).

B. CalculateΣP,0 = (Θ̃s)′Θ̃s/(Nbest).

(b) Use simulated annealing to minimize the loss function.

i. For i ∈ {0, . . . , Nd}, repeat the following steps:

33



ATKINSON, PLANTE , RICHTER & T HROCKMORTON: COMPLEMENTARITY AND UNCERTAINTY

A. Draw a candidate vector of parameters,θ̂candi , where

θ̂candi ∼







θ̂0 for i = 0,

N(θ̂i−1, c0Σ
s,0
P ) for i > 0.

We setc0 to target an average acceptance rate of50% across seeds.

B. Solve the nonlinear model with policy function iterationgiven θ̂candi .

C. GivenEs
B+T (r), simulate the quarterly modelR times forB + T periods.

We draw initial states from the ergodic distribution by burning off the firstB

periods. For each repetition,r, calculate the moments based on the remaining

T periods,ΨM
T (θ̂candi , Es

T (r)), the same way they are calculated in the data.

D. Calculate the median moments across theR simulations,Ψ̄M
R,T (θ̂

cand
i , Es

T ) =

median{ΨM
T (θ̂candi , Es

T (r))}
R
r=1, and evaluate the loss function:

Js,cand
i = [Ψ̂D

T − Ψ̄M
R,T (θ̂

cand
i , Es

T )]
′[Σ̂D

T (1 + 1/R)]−1[Ψ̂D
T − Ψ̄M

R,T (θ̂
cand
i , Es

T )].

E. Accept or reject the candidate draw according to

(θ̂si , J
s
i ) =



















(θ̂candi , Js,cand
i ) if i = 0,

(θ̂candi , Js,cand
i ) if min(1, exp(Js

i−1 − Js,cand
i )/c1) > û,

(θ̂i−1, J
s
i−1) otherwise,

wherec1 is the temperature and̂u is a draw from a uniform distribution.

ii. Find the parameter draŵθsmin that corresponds tomin{Js
i }

Nd

i=1, and updateΣs
P .

A. Discard the firstNd/2 draws. Stack the remaining draws in aNd/2 × Np

matrix,Θ̂s, and definẽΘs = Θ̂s − 1Nd/2×1

∑Nd

i=Nd/2
θ̂si /(Nd/2).

B. CalculateΣs,up
P = (Θ̃s)′Θ̃s/(Nd/2).

(c) Repeat the previous stepNSMM times, initializing at draŵθ0 = θ̂smin and covariance

matrixΣP = Σs,up
P . Gradually decrease the temperature. Of all the draws, find theNJ

lowestJ values, denoted{Js,j
guess}

NJ

j=1, and the corresponding draws,{θs,jguess}
NJ

j=1.

(d) Forj ∈ {1, . . . , NJ}, minimize the same loss function with MATLAB’sfminsearch

starting atθs,jguess. The resulting minimum iŝθs,jmin with a loss function value ofJs,j
min. Re-

peat, each time updating the guess, untilJs,j
guess−Js,j

min < 0.001. The parameter estimates

reported in the tables in the main paper, denotedθ̂s, correspond tomin{Js,j
min}

NJ

j=1.

3. The set of SMM parameter estimates{θ̂s}Ns

s=1 approximate the joint sampling distribution of

the parameters. We report its mean,θ̄ =
∑Ns

s=1 θ̂
s/Ns, and(5, 95) percentiles.

We setNs = 200,R = 1,000, NSMM = 3, andNJ = 1. Nm, Nd,Np, andc1 are all model-specific.
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G ADDITIONAL RESULTS

C-D CES

Parameter ẑn ẑn ẑk ẑn & ẑk

ρzn 0.9629 0.9582 − 0.9671
(0.9605, 0.9653) (0.9496, 0.9640) (0.9573, 0.9770)

σzn 0.0212 0.0230 − 0.0196
(0.0209, 0.0214) (0.0216, 0.0243) (0.0176, 0.0216)

ρzk − − 0.9325 0.9497
(0.9297, 0.9351) (0.9106, 0.9798)

σzk − − 0.0350 0.0069
(0.0341, 0.0358) (0.0062, 0.0076)

ϕx 3.0369 3.4135 2.5592 2.0112
(2.9041, 3.1527) (2.8463, 4.0188) (2.3614, 2.7270) (1.3984, 2.6369)

h 0.9001 0.8176 0.8912 0.7502
(0.8965, 0.9034) (0.7913, 0.8392) (0.8875, 0.8945) (0.6700, 0.8125)

σ − 0.1692 0.4738 0.1294
(0.1658, 0.1723) (0.4582, 0.4875) (0.1071, 0.1480)

J 55.89 18.19 21.51 8.06
(55.29, 56.52) (16.81, 20.45) (20.94, 22.08) (7.67, 8.58)

pval 0.00 0.01 0.00 0.15
(0.00, 0.00) (0.00, 0.02) (0.00, 0.00) (0.13, 0.18)

df 8 7 7 5

(a) Average and(5, 95) percentiles of the parameter estimates.

C-D CES

Moment Data ẑn ẑn ẑk ẑn & ẑk

SD(U ŷ
t,t+1)/SD(ŷgt ) 5.75 1.96 5.97 5.47 5.70

(−5.99) (0.36) (−0.44) (−0.07)

Corr(U ŷ
t,t+1

, ŷgt ) −0.41 −0.33 −0.64 −0.34 −0.48
(0.84) (−2.63) (0.67) (−0.83)

AC(U ŷ
t,t+1) 0.92 0.90 0.88 0.89 0.88

(−0.45) (−1.15) (−0.67) (−0.99)

SD(ŷg) 0.80 0.95 0.84 0.89 0.80
(2.19) (0.59) (1.35) (0.00)

SD(ĉg) 0.51 0.41 0.47 0.50 0.54
(−2.01) (−0.78) (−0.07) (0.61)

SD(x̂g) 2.04 2.09 1.81 1.74 1.89
(0.26) (−1.12) (−1.48) (−0.74)

AC(ŷg) 0.29 0.47 0.33 0.39 0.24
(1.98) (0.40) (1.12) (−0.58)

AC(ĉg) 0.39 0.47 0.26 0.49 0.38
(1.15) (−1.87) (1.41) (−0.21)

AC(x̂g) 0.42 0.48 0.49 0.36 0.45
(0.64) (0.73) (−0.61) (0.31)

AC4(ŷg) 0.11 0.03 0.01 −0.02 0.02
(−1.27) (−1.54) (−1.97) (−1.35)

AC4(ĉg) 0.06 0.07 0.05 0.11 0.15
(0.09) (−0.24) (0.62) (1.28)

AC4(x̂g) 0.15 0.03 0.09 −0.05 0.07
(−1.70) (−0.89) (−2.92) (−1.12)

(b) Data and average model-implied moments. t-statistics are in parentheses.

Table 6: Parameter estimates and targeted moments.
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