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1 Introduction

This paper uses novel data and theory to study the rise in work from home (WFH) during

the COVID-19 pandemic. Our data source is the Real-Time Population Survey (RPS), an

online nationwide survey we designed to track labor market developments in the pandemic and

capture some of its unique aspects. From May 2020 onward, the RPS included questions on

the commuting habits of workers both before and during the pandemic. Based on a sample of

more than 46,000 observations, we document a rich set of facts on how commuting behavior

has evolved over the course of 2020. One of these facts is the large amount of heterogeneity in

WFH transitions across different worker categories. To help understand the mechanisms behind

this heterogeneity, we develop a stylized model of WFH employment in which commuting can

decline because workers substitute on-site for home-based work within existing work arrange-

ments with a WFH option, or because the pandemic accelerates the adoption of more flexible

work arrangements and new WFH technology. We argue that the observed heterogeneity in

WFH transitions is best explained by differences in WFH adoption during the pandemic, and

we corroborate this claim with additional survey information on how many and which workers

gained access to the option to WFH during the pandemic. The evidence for WFH adoption

suggest the potential for longer-term welfare gains from increased WFH for certain workers.

When asked directly about expected commuting behavior after the pandemic, many more re-

spondents – especially women, older workers, and workers with high income/education – expect

to WFH in the future relative before the pandemic.

One of the key objectives of this paper is to provide an accurate quantitative assessment

of the surge in WFH during the pandemic. To do so, our methodology addresses two main

challenges: (1) obtaining nationally representative results from an online survey at reasonable

cost; and (2) avoiding ambiguity in the interpretation of ‘WFH’ due to phrasing and context.

Because the RPS adopts the same core questions as the Current Population Survey (CPS), we

are able to benchmark our survey results to the CPS along a large number of dimensions, as

well as follow its precise definition of ‘employment’. Our WFH measures are based on questions

regarding the frequency of commuting to the job in the reference week, which leads to a clear

interpretation, and allows an important distinction between WFH on a full- and part-time ba-

sis. Our survey also asks about commuting behavior before the pandemic, which allows us to

analyze changes in commuting at the individual level. We further validate our measures with

mobility data on commuting, as well as information available in the CPS since May 2020 on

‘pandemic-related’ telework.

Using the results from the RPS, we quantify the unprecedented decline in commuting fol-

lowing the initial outbreak. Commuting recovered substantially after the first U.S. wave of the
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pandemic, but many workers continued to WFH at the end of 2020. This evidence complements

that of other online surveys, such as by Brynjolfsson et al. (2020) and Barrero et al. (2021).

Using the specific information available in the RPS, we find that the surge in WFH is driven

almost entirely by increases in the share of ‘WFH-Only’ workers – defined as those workers

that worked from home every workday in the reference week. The WFH-Only share of total

employment quadrupled from 7.6 percent in February 2020 to 31.4 percent in May, fell to 24.3

percent in June, and declined more gradually afterwards. At the end of 2020, 20.4 percent of all

employed still worked entirely from home. The share of workers that WFH on some workdays,

on the other hand, dropped slightly in May relative to February, and returned fairly quickly to

pre-pandemic levels in the rest of 2020.

The bulk of the transitions to WFH-Only are by workers that used to commute every work-

day. Moreover, the large increase in the WFH-Only rate is driven by workers that remained in

their pre-pandemic jobs, not by reallocation towards new WFH-Only jobs: workers that started

new jobs since February are considerably less likely to be WFH-Only than job stayers. There

is also very little role for selection: workers that were already WFH-Only in February were

almost as likely to lose their jobs during the pandemic as full-time commuters.

One of the most striking features of the data is the amount of heterogeneity in the ad-

justment in commuting across worker groups. In February, WFH-Only was relatively more

common among older workers (ages 50 to 64), workers without children in the household, and

workers with higher income and education. The pre-pandemic differences, however, are minor

compared to those that emerged in the pandemic. For example, the share of highly educated

WFH-Only workers (bachelor’s degree or more) rose from 8.5 percent in February to nearly 50

percent in May, and remains at 33.2 percent at the end of 2020. In comparison, the share of

low-education WFH-Only workers (high school or less) rose from 6.4 percent in February to

14.2 percent in May, and dropped back to 8.6 percent by the end of 2020. The WFH-Only

shares of female, white, high-income and older workers also all rose substantially more than

those of male, minority, low-income and younger workers.

To better understand the sources of the heterogeneity in WFH transitions and the rela-

tionship with job loss, we develop a stylized model of WFH employment that leads to a clear

distinction between two main channels through which a pandemic can cause large numbers of

commuters to start WFH. The first is an intuitive WFH substitution channel. Because of the

increased health risks of working away from home, workers substitute on-site work for working

at home within working arrangements that already included the option to WFH before the pan-

demic. A key aspect of this channel is that, for those that switched to WFH in the pandemic,

by revealed preference home-based work is less efficient than on-site work in a normal health
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situation; if it were not, those workers would have already worked from home before the pan-

demic. The second channel is a WFH adoption channel. In this channel, the increased health

risks of on-site work in the pandemic force changes to work arrangements through the adoption

of a WFH option and/or of new technologies that enable WFH. A key aspect of this channel

is that many of those that switched to WFH in the pandemic could in principle already have

worked more productively from home before the start of the pandemic, for instance because of

advances in information and communication technology. However, because of adoption lags, so-

cial norms or general inertia, employers did not provide the option to WFH until the pandemic.

The distributional and longer run implications of the surge in WFH depend importantly on

the extent of WFH adoption in the pandemic. One possibility is that before the pandemic the

option to WFH was widely available, but WFH was relatively uncommon because most workers

are less productive at home. In this case, the rise in WFH would be mostly driven by tempo-

rary substitution, and would reverse in the longer run. The other possibility is that WFH was

relatively uncommon because of low adoption. Once adopted in the pandemic, remote work can

save time and costs also after the health crisis is over, such that some workers may continue to

work remotely in the future. In this case, the pandemic potentially unlocked important welfare

gains in the form of lower commuting costs, higher productivity, greater geographical mobility,

etc.

While there is likely a role for both channels in explaining the aggregate rise in WFH, we

argue that it is hard to rationalize the observed cross-sectional heterogeneity in WFH tran-

sitions without substantial WFH adoption in certain labor markets. Consistent with Bartik

et al. (2020a) and Dingel and Neiman (2020), we find that WFH rates in the pandemic are

strongly correlated with measures of the ability to WFH in different occupations. However,

cross-sectional differences in WFH before the pandemic were comparatively much smaller, and

not as elastic with respect to WFH ability. Relying on the substitution channel alone to ex-

plain why so many more high WFH-ability workers began to WFH in the pandemic – and were

not doing so before – requires that these high WFH-ability workers experienced much larger

increases in the cost of working on-site. If that were the case, sectors/demographic groups with

more high WFH-ability workers should have also experienced larger job loss rates. In the data,

however, job loss rates are strongly negatively correlated with WFH transitions. The alterna-

tive explanation for the heterogeneity in WFH transitions is that many more high WFH-ability

workers started to WFH in the pandemic because WFH adoption was greater in sectors with

the most unused capacity for WFH. The negative correlation between WFH transitions and

job loss rates likely reflects that in some occupations WFH adoption helped maintain demand

by enhancing consumer safety, for instance in the case of doctors switching to telemedicine or

educators to remote learning. It could also simply reflect that the potential for WFH adoption
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was greater in jobs were demand stayed relatively strong, e.g. in service sectors with low in-

person contact with customers such as information or finance.

Additional survey information on the main reasons for commuting provides some direct ev-

idence of WFH adoption in the pandemic. For instance, we find that a majority (63.6 percent)

of workers that started WFH in the pandemic cite employer requirements as the main reason

for commuting daily before the pandemic. We calculate that the total fraction of workers in

work arrangements with a viable option to WFH at least some workdays – i.e. with both the

nature of the job and the employer allowing WFH – increased from 33.3 percent in February

to 43.8 percent in December 2020. The expansion in WFH access, however, is very unevenly

distributed across worker groups, with high-income/high-education and older workers experi-

encing the largest increases in access.

Finally, we document that many workers expect to continue to WFH in the future. While

during the pandemic workers mostly switched to WFH-Only, in the longer run more workers

expect to WFH on a part-time basis instead. Overall, 12.5 percent of those employed in Decem-

ber expect to be WFH-Only in the future, while 24.5 percent expect to WFH on a part-time

basis. There are large differences in expected changes in commuting behavior across worker

groups: The share of highly educated workers who expect to WFH at least partially in the

future increased by 19.5 percentage points compared to actual WFH behavior just before the

pandemic. In contrast, the increase for low-education workers was only 3.3 percentage points.

Workers that are female, over age 50, and high income also expect to WFH more in the long

run than before the pandemic.

This paper is one of several recent studies using online household surveys to shed light on

the impact of the COVID-19 pandemic on the labor market, see for example Adams-Prassl

et al. (2020), Brynjolfsson et al. (2020), Barrero et al. (2021), or Foote et al. (2020). Barrero

et al. (2021), in particular, share our focus on WFH. Despite several differences in methodology,

they reach very similar conclusions about the evolution of WFH in the pandemic. They also

provide complementary survey evidence for WFH adoption, and for expectations of more WFH

in the future. Our work also relates to a number of studies linking measures of WFH ability

to job loss. While we focus primarily on the relationship between actual WFH behavior and

job loss/WFH ability, in our dataset higher WFH ability is also associated with lower job loss.

This confirms predictions by Alon et al. (2020), and is consistent with other evidence for this

relationship in Adams-Prassl et al. (2020), Mongey et al. (2020), and Papanikolaou and Schmidt

(2020). Finally, this paper fits into a broader literature on longer-run trends in remote work,

such as Gaspar and Glaeser (1998), Oettinger (2011), Mateyka et al. (2012), Mas and Pallais

(2017, 2020), Pabilonia and Vernon (2020), among others.
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2 Work from Home During the COVID-19 Pandemic

2.1 Data Source and Measurement

Our data source is the Real-Time Population Survey (RPS), a national labor market survey of

adults aged 18-64 designed by the authors and fielded online by Qualtrics, a large commercial

survey provider. The RPS mirrors the Current Population Survey (CPS) along key dimensions.

In particular, the survey follows questions on demographics and labor market outcomes in the

basic CPS and CPS Outgoing Rotation Group as outlined in the CPS Interviewing Manual (US

Census Bureau, 2015), using the same word-for-word phrasing when practical, and replicates

the intricate sequence of questions necessary to assign labor market status. However, the survey

also collects information that is more specifically relevant for analysis of the pandemic.

In this paper, we use information from the RPS on commuting behavior to track workers’

WFH status in the health crisis. As in the CPS, the RPS asks respondents to report their labor

market status in the week prior to the interview. Unlike the CPS, the RPS also consistently

asks respondents to report on labor market status and commuting behavior during February

of 2020, the month prior to the declaration of a global pandemic by the World Health Orga-

nization.1 This unique retrospective feature of the RPS allows us to measure individual-level

changes in outcomes with respect to a pre-pandemic baseline.

In what follows, we provide a summary of the sampling procedures as well as a detailed

description of the measurement of WFH status in the RPS. For additional discussion of the

survey methodology as well as comparisons with official sources of labor market statistics, we

refer to Bick and Blandin (2020).

2.1.1 Sample

Online panels such as Qualtrics are commonly used by academics for survey research as well

as by federal agencies for survey pre-testing and evaluation.2 In these online panels, respon-

dents are not recruited by traditional probability-based sampling methods such as in the CPS

panel. Instead panel members are recruited to the panel online and, in our case, can partic-

1The retrospective questions do not ask about a specific week in February 2020. Instead, they are phrased as
in the following: For this question, we would like you to think back to February of this year (2020). In February,
which of the following best describes your work experience? Appendix A shows that the results based on the
retrospective questions remain overall consistent across the months in our sample.

2See Yu et al. (2019) for an overview of online survey methods and their use for testing at U.S. Census
Bureau and Bureau of Labor Statistics. The Qualtrics platform has been widely used in economic research
in experimental settings, see e.g. Bursztyn et al. (2014), Kuziemko et al. (2015), Bhargava et al. (2017), and
Zimmermann (2020), and more recently in the context of the COVID-19 pandemic, see e.g. Adams-Prassl et al.
(2020), and Knotek II et al. (2020).
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ipate in exchange for 30 to 50 percent of the $5 paid per completed survey.3 The Qualtrics

panel is not a random sample of the US population, even if one would condition on the 94

percent of individuals aged 18-64 living in households with internet access according to the

2019 American Community Survey. However, researchers can direct Qualtrics to target survey

invitations to desired demographic groups. In the case of the RPS, the sample was targeted

to be nationally representative for the U.S. along several broad demographic characteristics:

gender, age, race and ethnicity, education, marital status, number of children in the household,

Census region, and household income in 2019.4 Panel members are not allowed to take the

survey twice in a row, but we are unable to verify whether respondents participate more than

once in non-adjacent survey waves. According to Qualtrics staff, very few panel members did so.

From April through September 2020, the RPS typically collected 1,500 to 2,000 responses

on the Qualtrics platform in interview waves fielded twice per month. In the first waves of

June, July and September, the number of respondents was roughly twice as large. In October

2020, the RPS switched to a monthly frequency with approximately 2,200 respondents. As in

the CPS, the RPS also asks respondents to answer the same questions on behalf of spouses

or any unmarried partners in the same household. This additional information expands the

number of individual-level observations by about 60 percent.

Even with the sampling targets, there remain some potential concerns about the represen-

tativeness of the sample for the population of US adults aged 18 to 64. First, the targets are

not always met exactly. Second, the characteristics of live-in spouses and partners are not

taken into account by the Qualtrics sampling procedure. Third, budget constraints limit our

sample size, preventing even greater granularity in the sampling targets. To alleviate these

concerns, we construct sample weights using the iterative proportional fitting (raking) algo-

rithm of Deming and Stephan (1940). Our application of the raking algorithm ensures that the

weighted sample proportions across key demographic characteristics match those in the CPS

for the same month, using more disaggregated categories for education and marital status than

those included in the Qualtrics sampling targets. In addition, we interact all those categories

with gender. Moreover, our sampling weights also replicate the employment rate in February

2020 in the CPS, as well as the employed-at-work rates, the employment rates and the labor

3Qualtrics acts as a panel aggregator and distributes the survey to their partners’ actively managed market
research panels. All panel members opt-in to receive survey invitations after which they can choose to partic-
ipate, see Qualtrics (2014). The panels used for the RPS include about 15 million people in the U.S. Surveys
that are completed too quickly are dropped to eliminate respondents that did not answer questions carefully.

4More specifically, the targets were based on the following categories: Age: 18-24, 25-34, 35-44, 45-54, 55-64;
Race and ethnicity: non-Hispanic White, non-Hispanic Black, Hispanic, other; Education: high school or less,
some college or associate degree, bachelor’s degree or more; Marital status: married or not; Number of children
in the household: 0, 1, 2, 3 or more; Census region: Midwest, Northeast, South and West; Annual household
income in 2019: <$50k, $50k-100k, >$100k.
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force participation rates in each of the subsequent months. We match these key labor market

statistics not only in the aggregate, but also conditional on demographic characteristics. Ap-

pendix A details all targeted categories.

We use RPS data since May 2020, which was the first month in which the questionnaire

included the core questions on commuting behavior. We discard about 4.5 percent of all obser-

vations because of incomplete information.5 The resulting sample consist of 46,450 individual-

level observations from online surveys completed between May and December 2020. This is our

total sample size for all information on employment and commuting in February 2020. For em-

ployment and WFH status over the course of the pandemic, we pool all results by month. This

results in an average monthly sample size of 5,806 observations. Table A.1 in the Appendix

provides the monthly sample sizes as well as more detail on sample construction.

2.1.2 Measurement of Commuting Behavior

Our main information on commuting behavior comes from the following survey questions re-

garding the individual’s main job:

1. Last week, how many days per week did you [your spouse/partner] work for this job?

2. Last week, how many days per week did you [your spouse/partner] commute to this job?

For each of these questions, respondents are presented with a slider that provides a choice

between integers from 0 to 7. Based on the answers, we classify all employed individuals with

nonzero workdays into one of three mutually exclusive categories:

1. Commute-Only: Full-time commuters, or all employed respondents reporting an equal

number of workdays and commuting days for the previous week.

2. WFH Some Days: Partial WFH workers, or all employed respondents reporting at least

one commuting day but strictly fewer commuting days than workdays for the previous

week.

3. WFH-Only: Full-time WFH workers, or all employed respondents with nonzero work-

days but zero commuting days for the previous week.

We also ask respondents to think back to February of 2020, and present them with the same

questions for the main job in that month. These questions lead to the same classification into

5Among the excluded observations are all individuals who are employed but absent from work in the reference
week; these individuals – which account of 2.5 percent of all observations–were not asked about their current
WFH behavior.
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three commuting categories just prior to the pandemic.

As discussed in Mokhtarian et al. (2005) and Mas and Pallais (2020), variation in definitions

and context can result in meaningful differences in survey-based measures of the prevalence of

work from home, or of the related but separate concept of ‘remote work’. We therefore empha-

size a number of distinctive features of our WFH indicators.

First, our measures are conditioned on being ‘employed’ during the reference period accord-

ing the CPS definition, either as a paid employee or in a self-owned business, profession, trade,

or farm. Since our questions about days worked and days commuted specifically refer to a job,

our WFH indicators explicitly exclude any non-market home production that respondents may

otherwise factor in when asked about ‘work’ in more general terms.

Second, our WFH indicators measure a broader concept than ‘remote work’ or ‘telecom-

muting’. Self-employed individuals with a home-based business, for instance, may be working

from home without working remotely. Since we observe in the RPS whether individuals have

the same job before and during the pandemic, we will, however, occasionally refer to transitions

to remote work, for instance when describing workers that changed from ‘Commute-Only’ to

‘WFH-Only’ on the same job.

Third, we intentionally ask about commuting ‘to the job’ rather than ‘to the workplace’,

since some individuals – e.g. sales representatives visiting only customers on a given day – are

not commuting to their workplace but still commute for their job.

Fourth, our definition of WFH includes everyone not commuting to the job on a workday.

We believe the focus on commuting is important because it avoids possibly ambiguous inter-

pretations of questions asking more directly whether respondents worked from home. Such

questions may easily lead to an overestimation of the importance of home-based work, as it is

likely that many workers often commute but also do some work from home on the same day,

such as checking email or finishing work that could not be completed at the office. At the same

time, ‘not commuting’ does not automatically equate to ‘working at the primary residence’.

Our WFH definition almost surely captures a range of other possible work locations, such as

coffee shops, hotels, etc. and in that sense is closer to the working from anywhere (WFA)

concept. With this clarification, we will continue to use the terminology ‘work from home’ or

‘WFH’ throughout this paper.

Finally, the fact that our WFH measures are derived from the reported fraction of weekly

workdays with a commute allows a useful distinction between full- and part-time home-based
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work. An additional advantage of the commuting focus is that it allows a validation of our

survey results with non-survey-based evidence on commuting volume during the pandemic.

2.2 Aggregate Evolution of WFH Before and During the Pandemic

Before we describe the change in commuting patterns during the pandemic, we first provide

some broader context regarding the prevalence of WFH before the pandemic. As documented

by a number of studies, WFH was already gradually becoming more common prior to 2020,

see for instance Oettinger (2011), Mateyka et al. (2012), Pabilonia and Vernon (2020) or Mas

and Pallais (2020). The upward trend in WFH in recent decades, which is usually attributed

to advances in information and communication technologies, is illustrated in Figure 1a. The

figure plots measures of WFH rates since the early 2000s derived from the time use diary in the

American Time Use Survey (ATUS) and from the American Community Survey (ACS). For

comparison, Figure 1a also plots the closest RPS equivalents of the ACS and ATUS measures

for February 2020.6

The ATUS time use diary asks about commuting only on the previous day, rather than for

a full week, which means it is not possible to construct the same three WFH categories as for

the RPS. Figure 1a therefore simply reports the share of all employed respondents without a

daily commute in ATUS. This share has gradually increased from 11.7 percent in 2003 to 16.4

percent in 2019. In the RPS, the total fraction of workdays without commutes was 14.4 percent

in February 2020, a slightly lower but nonetheless similar number. The other measure shown in

Figure 1a is from the ACS, and is based on a question asking employed respondents how they

usually got to work last week, with ‘worked at home’ as an answering option. Figure 1a shows

that the fraction of people that reports usually working at home in the ACS increased from 3.1

percent in 2000 to 5.4 percent in 2019. The ACS number for 2019 is somewhat lower than the

closest equivalent number in the RPS for February 2020 – the WFH-only fraction – which is

7.6 percent. However, as we explained above, differences in phrasing lead to implicit changes

in the precise meaning of WFH, which in the RPS is broader than work in one’s primary res-

idence. Taking into account the difficulties of comparing WFH measures across surveys, we

are confident that the RPS paints a reliable picture of the prevalence of WFH just before the

pandemic.7 The other main takeaway from the pre-pandemic ATUS and ACS measures is that,

6We work with the IPUMS version of the ACS, ATUS and CPS, see Ruggles et al. (2020), Hofferth et al.
(2020), and Flood et al. (2020), respectively.

7There are several other sources of WFH estimates before the pandemic. The lowest estimate of the fraction
of workers that ‘usually’ only WFH is 2.8 percent in the ATUS Leave and Job Flexibilities Module. In the
Atlanta Fed’s Survey of Business Uncertainty, US firms report that 3.4 percent of full-time employees worked 5
full days per week at home in 2019 (Barrero et al., 2020). In the Survey of Income and Program Participation,
Mateyka et al. (2012) calculate that 6.6 percent of all workers usually only WFH in 2010, and in the 2017
National Household Travel Survey 11.9 percent report doing so. Based on a Google Consumer Surveys question
posted in April and May of 2020, Brynjolfsson et al. (2020) find that 15.0 percent of workers were already
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Figure 1: WFH Before and During the COVID-19 Pandemic

(a) WFH Trends Before the Pandemic
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while WFH was rising at a slow and steady pace prior to 2020, it was still relatively uncommon

at the start of the pandemic.

Figure 1b shows the extent of the change in commuting behavior during the pandemic in

the RPS data. The figure plots the shares of all employed individuals in each of the three

WFH categories defined above. Whereas 75.3 percent of all workers commuted every work-

day in February 2020, this share was only 55.2 percent by May, the first month our survey

was conducted. In June 2020, the Commute-Only share recovered by 4.5 percentage points to

59.7 percent, and by another 2.4 percentage points in the rest of 2020, reaching 62.1 percent

in December. The decline in the share of full-time commuters relative to February primarily

reflects a rise in the share of WFH-Only workers. This share quadrupled from 7.6 percent in

February to 31.4 percent in May. The WFH-Only share fell considerably, by 7.1 percentage

points, in June. By the end of the year, the WFH-Only share declined by another 3.6 per-

centage points to 20.7 percent, which is still 13.1 percentage points larger than in February.

The share of workers that WFH on some workdays dropped from 17.1 percent in February to

13.4 percent in May, but rose fairly quickly to levels that are comparable to before the pandemic.

The initial shift towards WFH in response to the virus outbreak was very pronounced.

working from home prior to the pandemic. The range of estimates is therefore considerable, which in our view
mostly reflects differences in context, phrasing and definitions, as also discussed in Mokhtarian et al. (2005).
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Figure 2: WFH, COVID-19 Hospitalizations, and Containment Policies
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(b) Containment Policies
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Source: Real-Time Population Survey (left panel), COVID Tracking Project (left panel), Oxford COVID-19
Government Response Tracker (OxCGRT) (right panel). Left panel: Share of workdays from home is the
ratio of (weighted) total days WFH to total workdays in the RPS. See Appendix A for sample sizes by month.
COVID-19 Hospitalization Rate is the number of individuals currently hospitalized with COVID-19 per 100,000.
Right panel : Population-weighted weekly averages of U.S. state-level OxCGRT stringency scores between 0 and
3. School Closures; [1], recommended; [2], required at some levels (e.g., high school or public schools); [3],
required at all levels. Workplace Closures: [1], recommended; [2], required for some sectors; [3], required for all
non-essential workplaces. Stay-Home Orders: [1], recommendation to stay at home; [2], requirement with some
exceptions (daily exercise, essential trips); [3], requirement with minimal exceptions.

However, WFH did not co-move nearly as strongly with the pandemic during the second half

of 2020. Figure 2a displays the weekly hospitalization rate for the U.S., together with the share

of all workdays in which workers worked from home in each of the RPS waves. After rising

from 14.4 percent in February to 39.3 percent in May, the WFH share of workdays dropped to

31.2 percent during the May-June decline in hospitalizations after the first wave. During the

second wave of the pandemic over the summer, the WFH share of workdays rose only modestly

to 32.9 percent, falling back to 28.3 percent in mid-September. During the more severe third

wave in the fourth quarter of 2020, the WFH share of workdays increased only moderately, to

29.4 percent in December.

One possible reason for the larger initial rise in WFH is the greater stringency of virus

containment policies in the first wave of the pandemic in the U.S. Figure 2b plots stringency

indicators for the policies most directly relevant for WFH: stay-at-home-orders, workplace

closures, and school closures. The series shown are population-weighted averages of state-

level scores between 0 and 3 in the Oxford Government Response Tracker (Hale et al., 2020):

0 means no policies are in place; ‘1’ means there is a recommendation to stay at home or close

schools/workplaces; ‘2’ means government restrictions are in place but with broad exceptions;

and ‘3’ means restrictions with only minimal exceptions. Figure 2b shows that containment

policies were stricter and broader-based between late March and April than afterwards. After
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Figure 3: Comparisons with Mobility Data and WFH in the CPS
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(b) Pandemic-Related WFH
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Sources: Real-Time Population Survey (left and right panels), Google COVID-19 Community Mobility Reports
(left panel), Current Population Survey (right panel). Left Panel : Google data is expressed in log changes
relative to a baseline period (Jan 3 to Feb 6, 2020). RPS commuting volume is the log change relative to
February in the weighted average of the number of commuting trips reported by all RPS respondents, with
a value of zero for those not working. Right Panel : CPS series shows the fraction of employed adults aged
18-64 answering yes to the WFH question in the CPS (see main text). RPS series is the (weighted) fraction of
workers reporting more workdays without a commute last week compared with February. Those not working
in February are included with zero commutes, but omitting them does not change the series meaningfully.

reopening the economy in May and June, local governments relied mainly on recommendations

to stay at home, while workplace closures were more limited and more targeted. Schools in

the U.S. remained closed throughout the summer vacation, with many reopening only virtually

in the fall. The third wave saw the return of stricter containment measures in some parts of

the U.S., but there was no broad-based return to the stricter policies of the first months of

the pandemic. The share of WFH workdays in Figure 2b closely tracks the stay-at-home and

workplaces closure indicators, but we caution that the causality is not clear.8

2.3 Comparison with Other WFH Measures in the Pandemic

Before delving deeper into the RPS data to learn more about WFH during the pandemic, we

pause to compare our WFH estimates to other available measures.

One valuable alternative source of high frequency information on commuting behavior is

cellphone location data. Figure 3a plots the Google mobility metric for visits to the workplace

in all the RPS reference weeks. This series is a measure of commuting volume based on prod-

ucts such as Google Maps, and in the figure is expressed as the log change relative to a baseline

8We found only weak correlations between WFH and the policy indices across geographies. Studies of the
behavioral responses in the pandemic in the U.S. typically find relatively small effects of policy, e.g. Kong and
Prinz (2020), Baek et al. (2021) or Goolsbee and Syverson (2021). One exception is Coibion et al. (2020).
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period from January 3 to February 6, 2020. We compare this measure to the log change in the

number of commuting trips in the RPS relative to February in each of the reference weeks. The

number of commuting trips in this case is the (weighted) average of the answers to the question

how many days per week respondents commuted to their jobs, see Section 2.1.2, where we use

zero as the answer for all individuals with zero workdays.

Even though the sources of information are very different, Figure 3a shows that our survey-

based measure of commuting volume aligns well with the geolocation-based series. This gives

us confidence in our measures. We emphasize, however, that mobility data from Google and

similar sources do not reveal to what extent commuting declined because workers switched

to WFH, or because they were not working. A decomposition of the RPS data shows that a

substantial fraction (around a third) of the drop between May and February and the subse-

quent recovery in commuting can be explained by fluctuations in labor supply along both the

intensive and extensive margins.9 Mobility data is also not generally available at the individual

level, and it is usually difficult for researchers to assess its precise origins and representativeness.

There are also several other survey-based sources of information on WFH during the pan-

demic. Starting in May 2020, the CPS added the following question to the survey questionnaire:

“At any time in the last 4 weeks, did (you/name) telework or work at home for pay because

of the coronavirus pandemic?”, followed by a yes/no answering option. This question differs

from the RPS survey in a number of ways. It is explicitly conditioned on the pandemic being

the reason for telework/WFH, it does not elicit any information about respondents’ commuting

behavior before the pandemic, it does not specify any particular quantity of tele- or home-based

work, and it has a longer reference period (four weeks). At the same time, the CPS has a much

larger sample than the RPS and uses more conventional survey methods. For these reasons, it

provides another useful point of comparison for our measures.

Since the CPS specifically conditions on the pandemic and the RPS does not, we compare

the fraction of workers answering ‘yes’ to the WFH question in the CPS with the fraction of

workers in the RPS that report more workdays without a commute last week compared to

February. To the extent the pandemic is the reason for the larger number of workdays without

commutes, both fractions should be similar in magnitude. Figure 3b shows that both series

indeed line up fairly closely. This concordance between the RPS and CPS provides some further

validation of our measures, and also suggests that the pandemic remains the dominant reason

9Reductions in the length of the workweek account for 5.3 percent of the Feb-May decline in commuting
volume in the RPS, whereas the drop in employment accounts for 29.9 percent. In December, commuting
volume remained 27.7 log points below February levels, of which 11.2 percent of the shortfall is accounted for
by a shorter average workweek, 19.5 percent by lower employment, and 69.3 percent by increased WFH. See
Appendix B for full details.
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for the reduction in commuting over the sample period. Going forward, however, our WFH

measures should be better suited to measure any more permanent effects on commuting habits

as the pandemic subsides.

Another useful source of information on WFH in the pandemic is Barrero et al. (2021),

who present results from multiple waves of WFH surveys starting in May 2020 that were also

administered by commercial online survey providers. Their survey results for May show that

41.9 percent of respondents reported working from home, 25.6 percent were working on business

premises, and 32.6 percent were not working. For December, the proportions are 36.2 percent,

36.7 percent and 27.2 percent, respectively. As shares of current employment, these estimates

imply WFH rates of 62.2 percent in May and 49.7 percent in December. These rates are

substantially larger than those measured in the RPS or CPS in Figures 1b and 3b, which likely

reflects differences in sample composition and survey methodology.10 At the same time, they

suggest a similar trajectory of WFH as the mobility data or the CPS and RPS measures since

May. All available evidence therefore agrees that, despite a partial recovery in commuting,

many workers have continued to WFH well beyond the initial months of the pandemic.11

2.4 Who Transitioned to WFH During the Pandemic?

2.4.1 Individual-Level Transitions in WFH

As shown earlier in Figure 1b, the Commute-Only share of the workforce declined in the pan-

demic, while the WFH-Only share rose markedly. This suggests that the rise in WFH happened

primarily because many workers that used to commute every workday stopped doing so entirely.

To verify whether this is the case, Figure 4 depicts the transition rates across the WFH cate-

gories and non-employment between February and May in the left panel, and between February

and December in the right panel (the other months are shown in Appendix C).

10The survey question to elicit respondents’ combined WFH/employment status is: Currently (this week)
what is your working status?, with answering options: (a) working on my business premises; (b) working from
home; (c) still employed and paid, but not working; (d) unemployed; (e) not working and not looking for work.
The higher estimates by Barrero et al. (2021) are somewhat at odds with available estimates of the maximum
scope for home-based work. Dingel and Neiman (2020), for example, use ONET data to classify the feasibility
of WFH for all major occupations. Based on this classification, they conclude that at most 37 percent of all
jobs in the U.S. could be performed entirely at home. Using a similar strategy, Su (2020) calculates that 39
percent of pre-pandemic jobs could potentially be exclusively done from home, at least in the short term.

11Several other studies report survey estimates of WFH rates. Based on a Google Consumer Surveys question
in early April and May, Brynjolfsson et al. (2020) find that about half of employed respondents in May worked
from home. Based on data from the COVID Impact Survey conducted by NORC at the University of Chicago
in April and May, Lyttelton et al. (2020) find that 55 percent of currently employed parents were telecommuting
in April and May. In a survey of small business leaders, Bartik et al. (2020a) find that 45 percent of firms report
having any workers switch to working remotely. In a Dallas-Fed survey of Texas-based employers, businesses
report that on average 35 percent of employees were working remotely in August (Kerr, 2020).
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Figure 4: WFH Transition Rates Relative to February 2020
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(b) December 2020
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Source: Real-Time Population Survey. The figure displays the composition of the population by WFH and
employment status in the current month separately by workers’ employment and WFH status in February 2020.
Each bar corresponds to a February WFH/employment state: Commute-Only, WFH Some Days, WFH-Only,
and Not Employed. Each color within a bar corresponds to a current WFH/employment state. The current
month is May 2020 for the left panel and December 2020 for the right panel. The corresponding figures for all
other sample months are in Appendix C. Standard errors in parentheses, calculated as as described in Appendix
A; that section also contains sample sizes by month.

Figure 4a confirms that the February-May rise in WFH-Only is indeed primarily driven by

a drastic change in the commuting habits of many daily commuters. As Figure 1b showed,

over three quarters of all workers were full-time commuters in February 2020. Figure 4a shows

that only 55.8 percent of those full-time commuters were still commuting every workday in

May. More than a fifth (21.0 percent) switched to WFH-Only, and another 7.6 percent started

working from home on a part-time basis. Only about a quarter of the February partial WFH

workers switched to WFH-Only. Most continued to WFH partially, and about a fifth switched

to Commute-Only. The vast majority of pre-pandemic WFH-Only workers remained WFH-

Only in May. Together, the estimated transition rates imply that, among all those that were

WFH-Only in May, about 60 percent were Commute-Only just before the pandemic, while most

others were already WFH-Only in February (see Appendix C). The clear implication is that

the overall decline in commuting happened because many workers switched from commuting

‘all the time’ to ‘not at all’, and less because of switches from full-time commuting to ‘some

WFH’, or from ‘some WFH’ to ‘only WFH’.

Figure 4b displays the same breakdown in WFH transitions between February and Decem-

ber. While there are increases in full-time commuting across all categories relative to May, we
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still observe that only two thirds of February Commute-Only workers were commuting daily

in December. The increase in Commute-Only relative to May reflects in part a decrease in the

fraction that were not employed. However, a substantial share (13.1 percent) of February daily

commuters remain WFH-Only at the end of 2020. The February-December transition rates

imply that, among all those who WFH-Only in December, about half were Commute-Only in

February (see Appendix C). At the same time, a slightly higher fraction of February Commute-

Only workers was WFH on some workdays compared with May (9.9 percent vs 7.6 percent).

The other noteworthy feature in Figure 4 is that the rates at which workers transitioned out

of employment are not markedly different by February WFH status. Specifically, individuals

working from home daily before the pandemic lost employment at almost the same rates in

May as daily commuters: 14.7 percent vs 15.7 percent, respectively. This means that there is

little role for selection in driving the rise in the aggregate WFH share. It also indicates that

being in a fully home-based job before the pandemic by itself was not sufficient to insulate

workers from job loss during the pandemic, and suggests that reductions in demand affected

some WFH-Only workers regardless.

Finally, Figure 4 shows that the vast majority of those not employed in February 2020

remained non-employed throughout the year.

2.4.2 The (Small) Role of Reallocation to New WFH Jobs

To what extent was the increase in WFH during the pandemic driven by workers who com-

muted in February but started new jobs at which they WFH? To assess the role of reallocation

of workers towards WFH jobs in the pandemic, we rely on a question in the RPS that allows a

distinction between workers that changed jobs since February, and workers that are still in the

same job. Specifically, we ask:

When did you [your spouse/partner] start working for this employer? (or for yourself [themself ]

if you [they] are self-employed)? If you [your spouse/partner] had any brief interruptions, like

a temporary layoff or unpaid leave, please report when you [your spouse/partner] first started

working for this employer.

The answering options are (a) February 2020 or earlier, (b) March 2020, (c) April 2020,

and so on, until the month of the interview. We label all currently employed individuals that

answer ‘February 2020 or earlier ’ as ‘job stayers’, and all others as ‘job starters’.

Figure 5 plots the WFH rates for job stayers and job starters since February. The left panel
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Figure 5: WFH Among Job Stayers and Job Starters
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(b) WFH Some Days
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Source: Real-Time Population Survey. The sample is individuals (ages 18-64) employed in each month. The
figure shows the share of WFH-Only workers (left panel) and partial-WFH workers (right panel). Job stayers
are individuals who worked for the same employer in February and in the interview month. Job starters are
individuals who did not work for the same employer in February and in the interview month; this includes both
workers who switched employers and workers not employed in February. The shaded region corresponds to
two-standard-error bands. Appendix A describes the calculation of standard errors and contains sample sizes
by month.

shows the WFH-Only shares, while the right panel shows the shares of workers that WFH on

some workdays. In both panels, the February WFH rates for the job starters are for those

employed in their old February jobs. Job starters in subsequent months also include those that

were not employed in February. Therefore, the changes relative to February reflect WFH dif-

ferences between the old jobs of job starters that were employed in February, and the new jobs

of all job starters. Appendix D shows that leaving out job starters not employed in February

leads only to minor quantitative differences.

On the left, Figure 5a shows that there are substantial differences in WFH-Only rates be-

tween job stayers and job starters. Before the pandemic, a larger fraction of job stayers were

WFH-Only compared with job starters in their old pre-pandemic jobs (8.2 percent vs 4.0 per-

cent). In May, WFH-Only rates are higher for both types of workers, but the rates rose far

more for job stayers (to 33.6 percent vs 7.9 percent for job starters). Between June and De-

cember, WFH-Only rates average 25.9 percent for job stayers, whereas those for job starters

were substantially lower (7.2 percent on average).

On the right, Figure 5b shows that job starters had substantially higher partial WFH rates

than job stayers in February (31.2 percent vs 13.3 percent). These higher overall partial WFH

rates reflect that job starters are more likely to be younger and have children in the household,

both of which are associated with a greater propensity for working from home on a part-time
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basis. While inevitably more variable because of the smaller number of observations, the partial

WFH rates for job starters are relatively steady between May and December at a level that is

similar to February (32.2 percent on average). The May-December partial WFH rate for job

stayers is also relatively stable (averaging 13.4 percent). Combined with an increasing share of

job starters in total employment (10.8 percent in May, growing to 31.8 percent in December),

this leads to the modest increase in the total partial WFH share between June and December

from 16 percent to 17.2 percent shown in Figure 1b.

The key implication of Figure 5 is that the change in commuting patterns during the pan-

demic was driven almost entirely by workers who switched to WFH-Only within the jobs they

held at the start of the pandemic. Reallocation of workers towards new WFH jobs played a

comparatively small part in the rise in the share of WFH-Only workers during the pandemic.

2.4.3 WFH by Demographic Group

It has been widely documented that the economic impact of the COVID-19 pandemic during

the course of 2020 was highly unequally distributed across various demographic groups, see for

instance, Adams-Prassl et al. (2020), Alon et al. (2020), Bartik et al. (2020b), Cajner et al.

(2020), Couch et al. (2020), and Lee et al. (2021) among others. The same is also true for the

changes in commuting, as is shown in Figure 6.

For brevity, Figure 6 focuses on the WFH-Only category (Appendix F provides results for

partial WFH). Figure 6a shows the WFH-Only shares in February 2020 by age, race/ethnicity,

education, 2019 household income levels, gender and the presence of children. Before the pan-

demic, WFH on a full-time basis was relatively more common among older workers (ages 50

to 64), workers without children present in the household, workers with higher levels of income

or education, and among female and white workers. Younger and minority workers, as well

as workers with children in the household were less likely to work exclusively at home. These

cross-sectional differences in WFH before the pandemic are largely consistent with existing

pre-pandemic evidence from ATUS and other sources (Mas and Pallais, 2020; Pabilonia and

Vernon, 2020).

The pre-pandemic heterogeneity in the WFH-Only shares, however, is relatively small com-

pared with the much larger differences arising during the pandemic. Figure 6b shows the

percentage point changes in the WFH-Only shares of current employment in May relative to

February among the various worker groups.12 Whereas all worker categories saw substantial

increases in WFH-Only shares, these increases were far larger for some groups than for others.

12In Appendix G, we show that the fraction of workers with increases in WFH in the RPS closely lines up
with the shares of workers doing ‘pandemic-related WFH’ in the CPS for each worker category.
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Figure 6: WFH-Only Shares by Demographic Group
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Source: Real-Time Population Survey. The sample is individuals (ages 18-64) employed in each month. Panel
(a) displays the share of WFH-Only workers in February 2020. Panel (b): displays the percentage point change
in the share of WFH-Only workers in May relative to February 2020. Panel (c): displays the percentage point
change in the WFH-Only share in December relative to February 2020. Definitions of demographic groups are
provided in Appendix A.4. Standard errors in parentheses, calculated as as described in Appendix A; that
section also contains sample sizes by month.

The share of highly educated workers (bachelor’s degree or more), in particular, increased by

40.5 percentage points relative to February, up to the point where nearly half (49.0 percent) of

all highly educated workers were WFH-Only. In contrast, the share of low-education workers

(high school or less) increased by only 7.8 percent, and in total only 14.2 percent were WFH-

Only in May. Large differences exist also for other worker categories. The increases in the

WFH-Only shares of white, high-income and older workers, for example, were all significantly

19



larger than those for minority, low-income and younger workers respectively. The same hetero-

geneity patterns remain present after conditioning for other worker characteristics and industry

of employment, see Appendix F.

The pronounced differences in WFH largely persist throughout 2020. Figure 6c shows

the changes in WFH-Only shares in December relative to February 2020. Consistent with

the partial recovery in aggregate commuting, the December WFH-Only shares are lower for

all groups compared with earlier in May. High-income, high-education and older workers,

in particular, continued to be fully home-based at much higher rates than low-income, low-

education and younger workers. However, one group for which the increase in WFH was much

less persistent are workers with children in the household. Whereas WFH increased similarly

for workers with and without children early on in the pandemic, the share of working parents

that were WFH-Only declined more rapidly in June and afterwards (see Appendix F for the full

time series). In December, the WFH-Only share of workers with children was only 4.4 percent

larger than before the pandemic, whereas it was 25.1 percent higher in May. In contrast, the

WFH-Only share for workers without children was 23.5 percent higher in May than in February,

but in December it was still 17.8 percent higher than before the pandemic. This suggests that

the presence of children in the household is an important factor impeding on workers’ ability

to WFH for extended periods of time.

3 WFH Transitions: Substitution or Adoption?

In this section, we take a closer look at the nature of the WFH transitions during the pan-

demic, focusing specifically on explanations for the large differences in WFH across workers

that emerged during the pandemic. We first lay out a theoretical model that describes more

precisely the WFH substitution and WFH adoption channels discussed in the introduction. We

then document cross-sectional empirical relationships between WFH transitions, job loss, and

WFH ability, and we argue that the evidence points to WFH adoption playing an important

role in explaining the observed heterogeneity in WFH transitions.

3.1 A Model of WFH Employment

3.1.1 Environment

We consider an environment with a continuum of geographically perfectly segmented labor

markets, each populated by a continuum of workers with size normalized to one. Workers have

linear preferences given by u(w, l, h) = w–h−(1+χ)l, where w is wages, h is time spent working

at home, l is time spent working away from home, and χ is a cost of working on-site. This cost

captures time spent commuting to work, but also any other costs (or benefits) associated with
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an equal amount of time worked away from the home rather than at home. These may include

the pandemic-related health risks of on-site work that can be avoided by working remotely, or

any costs of non compliance with government restrictions on working on-site.

Each worker has at most one job. A job requires supplying one efficiency unit of labor

regardless of the place of work. Workers all have the same productivity in the workplace, which

is normalized to one. However, they differ in WFH productivity z, where 1/z is the time re-

quired to complete the job at home. In each labor market, z has a Pareto distribution with cdf

Φ(z) = 1−γz−λ over the interval [γ−1/λ,∞), where γ ≥ 0, λ > 0 and γ−1/λ is the level of WFH

productivity for the least productive worker. The value of γ captures workers’ overall ability to

WFH. The workplace is always distinct from a workers’ home location, such that ‘WFH’ and

‘remote work’ are equivalent in the context of the model.

Each local labor market features a monopolistic/monopsonistic firm that chooses the level

of employment, E. Output equals employment, and the firm faces an inverse demand curve

p(E) = (δ/E)1/β/(1− 1/β), where δ > 0 determines the overall level of demand, and β > 1 is

the elasticity of demand. The assumption of a single employer in a perfectly segmented labor

market means that workers never change employer. This simplifying assumption allows us to

abstract entirely from job reallocation, which is not very important in driving the rise in WFH

in our sample period, see Section 2.4.2.

In a fraction 1 − θ of labor markets, firms do not allow WFH. In the other labor markets

the firms provide workers with the option to WFH. We assume that firms that allow WFH can

set separate wages for commuters and home workers, denoted by wl and wh respectively. For

firms, WFH employment only matters because of the effect on the wage bill.13

3.1.2 Equilibrium

A utility-maximizing worker with home productivity z is willing to complete the job on-site,

i.e. commute, (h = 0, l = 1) as long as the pay-off is at least as great as not working,

wl−(1+χ) ≥ 0, and at least as great as completing the job from home, wl−(1+χ) ≥ wh−1/z.

If wh − 1/z > wl − (1 + χ) and wh ≥ 1/z, the worker instead prefers to complete the job at

home (h = 1/z, l = 0). Else, the worker prefers not to work. Note that any work done by

a given worker is either entirely on-site or entirely from home. We therefore abstract from

partial WFH, which is motivated by the evidence in Section 2.4.1 showing the dominating role

of switches from full-time commuting to full-time WFH in the pandemic.

13For employment outcomes, allowing for additional (linear) costs of on-site work for firms is equivalent to
changing the value of χ, while introducing an additional WFH cost for firms is equivalent to changing the value
of WFH productivity γ.
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In equilibrium, the commuting wage wl never exceeds 1 + χ, because the firm can always

hire the same number of workers by paying wl = 1 + χ and increase profits. For a commuting

wage wl ≤ 1 + χ, our assumptions about the distribution of WFH productivity imply that the

supply of WFH labor is e(wh) = 1 − Φ(1/wh) = γwλh. Hence, λ determines the elasticity of

WFH labor supply, and γ determines its overall level. The supply of commuters is zero for

wl < 1 + χ and between 0 and 1− e(wh) when wl = 1 + χ.

Next, we introduce the following assumptions on the parameters of the model:

δ(1 + χ)−β < 1(1)

γ

(
λ

1 + λ
(1 + χ)

)λ
< 1(2)

As will be clear momentarily, (1)-(2) guarantee that firms never employ all workers in their la-

bor market, allowing us to focus on interior solutions to the firms’ profit maximization problems.

Because the supply of commuters is infinitely elastic at wl = 1 + χ, firms that do not allow

WFH choose E to maximize profits p(E)E − (1 + χ)E. This results in firms choosing

E = δ(1 + χ)−β,

where assumption (1) ensures that E < 1. The profits of firms without WFH are given by

(β − 1)−1δ(1 + χ)1−β.

The firms that provide a WFH option choose on-site employment El, WFH employment Eh

and the WFH wage wh to maximize the profits given by p(E)E − (1 + χ)El − whe(wh), where

E = El + e(wh). Depending on parameter values, these firms may choose to employ a mix of

commuters and home workers, or they may choose to employ only home workers. We discuss

each case in turn.

Case 1: WFH firms employ both commuters and home workers. When the following

condition holds

γ

(
λ

1 + λ
(1 + χ)

)λ
< δ(1 + χ)−β(3)
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the optimal decisions of the firm are given by

wh =
λ

1 + λ
(1 + χ) ,(4)

Eh = e (wh) = γ

(
λ

1 + λ
(1 + χ)

)λ
,(5)

El = δ(1 + χ)−β − Eh.(6)

Condition (3) ensures that WFH labor supply at the equilibrium wage is below the overall de-

mand for labor, such that El > 0, Eh > 0, and the firm optimally employs a mix of commuters

and WFH workers.

The optimal wage (4) paid to the home worker is the firm’s marginal revenue after a monop-

sonistic mark-down λ/(1 + λ). The firm hires commuters to the point where marginal revenue

equals the commuter’s wage 1+χ. The home worker’s wage is therefore the marked down com-

muter’s wage, and WFH employment in (5) is the WFH supply at that wage. An important

feature of the firm’s optimal decisions in (4)-(6) is that the ability to WFH is irrelevant for the

total level of employment Eh + El = δ(1 + χ)−β. The reason is that condition (3) guarantees

that the commuter’s wage 1+χ is always the marginal wage that determines the overall level of

employment. The commuter wage, however, is independent of the workers’ WFH productivity.

The level of WFH employment in (5) depends on the ability to WFH, but it is independent of

the demand for the firm’s output.

While WFH productivity does not affect the marginal wage, it affects the average wage

because firms discriminate wages based on WFH status. As a result, firms pay lower wages to

the inframarginal WFH employees. Providing the WFH option to the workers increases firm

profits by

(1 + χ)/(1 + λ)Eh ≥ 0(7)

which is strictly positive unless γ = Eh = 0 and there are no home workers. The additional

profits from providing the WFH option are increasing in the cost of on-site work χ and in the

overall WFH productivity γ. Despite the lower wage, WFH workers are also better off with the

WFH option as they enjoy more leisure time. Therefore, providing a WFH option is preferable

to firms and workers with sufficiently high WFH productivity, while workers who always choose

to commute are indifferent about having the WFH option.14

14If wage discrimination is not possible, the firm pays all workers w = 1 +χ and sets Eh = e(1 +χ). Without
wage discrimination, the entire WFH surplus goes to the WFH workers and firm profits are the same with or
without WFH option.
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Case 2: Firms employ only home workers. If the parameters are such that

δ(1 + χ)−β < γ

(
λ

1 + λ
(1 + χ)

)λ
,(8)

the supply of WFH labor exceeds the firms’ overall labor demand at the marked-down commuter

wage. In this case it is optimal for the firm to pay a wage that is below (1 + χ)λ/(1 + λ) and

hire only WFH workers. This arises when the overall WFH productivity γ is relatively high,

or when the cost of working on-site χ – and therefore the commuters’ wage – is relatively high.

When (8) holds, the optimal decisions of the firm are given by

wh =
λ

1 + λ
δ1/βe(wh)

−1/β =

(
λ

1 + λ

) β
β+λ

(δ/γ)
1

β+λ ,(9)

Eh = e(wh) = δ
λ

β+λγ
β

β+λ

(
λ

1 + λ

) βλ
β+λ

,(10)

El = 0.(11)

Because the firm sets a wage that is lower than (1 + χ)λ/(1 + λ), it is the case that

Eh < γ
(

λ
1+λ

(1 + χ)
)λ

. Assumption (2) therefore guarantees that Eh < 1.

The optimal wage (9) still equals the firm’s marginal revenue after the monopsonistic mark-

down. However, under condition (8) it is optimal to set the marginal revenue strictly lower than

1+χ and employ only home workers. In this case, the overall level of employment is independent

of the cost of on-site work χ, but depends on the overall WFH productivity. Unlike the case

where firms also hire commuters, WFH employment now also depends on the level of demand δ.

By allowing WFH, the firm increases profits by

(
1

β − 1
+

1

1 + λ

)
δ

((
δ

γ

) 1
β+λ
(

λ

1 + λ

)− λ
β+λ

)1−β

− δ (1 + χ)1−β

β − 1
> 0(12)

where the inequality is guaranteed by (8). The firm unambiguously prefers to provide the WFH

option. As in Case 1, the additional profits from providing the WFH option are increasing in

the cost of on-site work χ and in the workers’ WFH productivity γ.

3.1.3 WFH Substitution and Adoption in a Pandemic

In the model, there are several reasons why a pandemic can cause commuters to switch to work-

ing from home. First, increased health risks are likely to increase the cost of working on-site,

χ. We think of increases in χ as potentially arising both directly from the higher health risks
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as well as indirectly from any government restrictions imposed. Strictly enforced government-

mandated workplace closures can be thought of as large increases in χ that make any on-site

work prohibitive, as in Case 2 above. Note that a rise in χ amounts to an adverse shock to

the supply of on-site labor. Second, any pandemic-related changes in χ increase firms’ profit

incentives for providing the WFH option, and may therefore lead to increases in the fraction

θ of firms that allow WFH. Such an increase in θ amounts to an increase in the demand for

WFH labor. Finally, the pandemic may lead to the use of new WFH technologies that change

the overall WFH productivity, γ. Any such increase in γ amounts to an increase in the supply

of WFH labor.

Let εθ = ∆ ln θ, εγ = ∆ ln γ, εχ = ∆ ln(1 + χ), and εδ = ∆ ln δ denote the changes in the

model parameters during the pandemic. How these changes impact WFH employment depends

on whether WFH firms employ commuters before the pandemic, and if so whether they decide

to switch all workers to WFH or not.

First, suppose that all firms employing home workers also employ commuters both before

and during the pandemic. In other words, condition (3) holds at all times, and firms’ decisions

are always as in Case 1 above. The log change in average WFH employment Ea
h across all firms

is then given by

∆ lnEa
h = εθ + εγ + λεχ(13)

WFH employment in (13) rises after increases in WFH labor demand (εθ > 0) and supply

(εγ > 0), or after an increase in the cost of on-site labor εχ > 0. However, WFH employment

does not depend on changes in overall demand, εδ, as the firms’ marginal cost of labor depends

on the commuters’ wage only.

Next, suppose that all WFH firms only employ home workers both before and during the

pandemic. This means condition (8) holds at all times, and firms’ decisions are always as in

Case 2 above. The log change in average WFH employment in this case is given by

∆ lnEa
h = εθ +

β

β + λ
εγ +

λ

β + λ
εδ(14)

As above, WFH employment increases after increases in WFH labor demand and supply, εθ > 0

and εγ > 0. However, the change in WFH employment in (14) no longer depends on changes

in the cost of working on-site εχ, as all workers are always home workers. In contrast to (13),

WFH employment is increasing in the change in demand, εδ.
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The last case we consider is when all firms with a WFH option employed a mix of home

workers and commuters before the pandemic, but in the pandemic all workers are home workers.

In other words, condition (3) holds before the pandemic, but the increase in the cost of on-site

work εχ > 0 or the drop in demand εδ < 0 are large enough such that condition (8) starts to

hold in the pandemic. In that case, the log change in average WFH employment is

∆ lnEa
h = εθ +

β

β + λ
εγ +

λ

β + λ
εδ −

λ

β + λ
lnσ ,(15)

where σ ≡ (γ/δ)(1 + χ)λ+β (λ/(1 + λ))λ < 1 .

In (15), σ is the pre-pandemic share of WFH employment in total employment at firms that

have the WFH option. The first three terms in (15) are the same as in (14). However, the

change in WFH employment in (15) additionally depends negatively on the pre-pandemic share

of WFH employment, σ. The reason is that a high-γ firm with one percent more WFH em-

ployees than a low-γ firm in (5) will have only β/(β + λ) < 1 percent more WFH employees in

(10). Ceteris paribus, a higher ability to WFH implies that a smaller fraction of workers are

laid off in the pandemic. However, if the firm allowed WFH before the pandemic, it also means

that a smaller fraction of workers need to switch from commuting to WFH. In other words,

WFH employment growth is decreasing in the pre-pandemic WFH share because high-γ firms

already employ a larger share of the optimal number of WFH employees in the pandemic as

home workers before the pandemic.

A key feature of the model is that reductions in the demand for firms’ goods or services,

εδ < 0, never create any reason for commuting workers to switch to WFH. In (13), the change

in WFH employment is independent of εδ, while in (14) and (15) lower demand leads to job

loss for WFH workers. This is important, because it means the model can explain why WFH

transitions are not a feature of more typical recessions.15 At the same time, the model can

also explain why demand-driven recessions can lead to job loss for home workers. This will be

the case when negative demand shocks hit occupations that are mostly home-based, see (14),

or in labor markets that experience large enough drops in demand (15). In Section 2.4.1, we

documented significant rates of job loss for workers that worked from home before the pan-

demic. In the model, this can only be explained by adverse shocks to demand. When any of

the other shocks raise WFH employment, pre-pandemic WFH employees are always retained

by the firms, as they were already more productive at home before the pandemic.

In the model, all transitions from commuting to WFH must be driven by higher costs of

supplying labor on-site, εχ > 0, by more employers allowing WFH, εθ > 0, or by improvements

15There is for example no evidence of any meaningful rise in WFH in the 2008-09 recession, see Figure 1a.
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in WFH productivity, εγ > 0. We refer to WFH transitions that are the result of either of the

last two drivers, i.e. εθ > 0 or εγ > 0, as the WFH adoption channel. The WFH substitution

channel instead refers to all WFH transitions caused by cost increases εχ > 0 conditional on

εθ = 0 and εγ = 0. The key distinction between channels is that, all else equal, WFH adoption

reduces costs and raises worker productivity. Many of the WFH transitions driven by adoption

may therefore persist in the longer-run. In contrast, the WFH substitution channel can only

occur at firms that already provided the WFH option before the pandemic. For this reason,

they are necessarily associated with lower worker productivity and lower profits relative to

before the pandemic, such that we would expect these WFH transitions to reverse once the

health crisis ends.

Possible Reasons for Low WFH Adoption before the Pandemic In the model, provid-

ing the WFH option to workers is always profitable because firms are able to pay lower wages

to home-based workers. Several empirical studies support the real-world potential for firms to

lower wage costs by allowing WFH. Based on a discrete choice experiment conducted within

the application process of a national call center, Mas and Pallais (2017) find that job applicants

are willing to take on average 8 percent lower wages in exchange for the WFH option. Based

on the American Working Conditions Survey, Maestas et al. (2018) find a stated preference for

WFH implying a willingness-to-pay of 4.1 percent of wages on average. Using French admin-

istrative data, Le Barbanchon et al. (2020) find that gender differences in commute valuation

can account for a .5 log point hourly wage deficit for women.

The WFH adoption channel requires that adoption was relatively low before the pandemic

despite the potential benefits for firms and workers. Of course, one is that in many occupations

WFH is infeasible, see e.g. Dingel and Neiman (2020) or Su (2020). But even when WFH is

a viable option, many firms may not have sufficient profit incentives to allow WFH in normal

circumstances. One reason could be that wage discrimination based on WFH status is difficult

because of fairness concerns. There may be various fixed costs of WFH adoption, for example

in terms of new equipment and communication technologies, that do not justify the increase

in variable profits. There could also be problems of adverse selection if remote work attracts

unobservably less productive workers. Using data from a call center, Harrington and Emanuel

(2020) document that, while the productivity of previously on-site workers rose by 7 percent

after switching to remote work in 2018-2019, the opportunities to go remote also attracted less

productive applicants. Another possibility is that WFH was still relatively uncommon prior to

pandemic because of inertia and slow adjustment to sociotechnical innovations. Employers and

employees may underestimate the viability of WFH without any actual experience. Bloom et al.

(2014) document, for example, how a temporary experiment showing meaningful productivity

gains lead to the permanent adoption of WFH by a Chinese call center.
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Figure 7: Job Loss vs. Changes in WFH-Only Employment

(a) By Demographic Group
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Source: Real-Time Population Survey. Scatters show May data. The inset plot shows the regression slope for
each month with two-standard-error bands. In both panels, the sample is individuals (ages 18-64) employed in
February 2020. The x-axis is the log change from February to May in WFH-Only employment among February
workers. The y-axis is the percent decline in employment among February workers from February to May.
Definitions of demographic and industry groups are provided in Appendix A.4. Industry classification is by
industry of employment in February.

3.2 Cross-Sectional Facts About WFH Transitions, Job Loss and WFH Ability

With the theory in hand, we next present two cross-sectional empirical facts about WFH

transitions in the pandemic that will be informative for the role of the WFH adoption channel

in explaining the large heterogeneity in WFH transitions. For brevity, here we report these

facts only for the WFH-Only category. Appendix H shows the same qualitative facts hold if

we also include workers that transitioned to partial WFH in the pandemic.

Fact 1: WFH transitions and job loss are negatively correlated across demographic

groups and industries. Figure 7 plots the log change in WFH-Only employment among

February workers against the fraction of February workers that was no longer employed that

month. The left panel conditions on a range of worker characteristics, including gender, age,

ethnicity, the presence of children, education and 2019 income. The right panel conditions on

the industry of employment in February. Both panels show that groups with higher growth

in WFH-Only employment among those with a job in February also experienced lower rates

of job loss in May. This negative relationship between WFH transitions and rates of job loss

persists also in the later months. This is shown in the inset plots in Figure 7, which report

the regression slopes of the relationship for each month. Across both demographic groups and

industries, the two-standard-error bands around the slope estimates exclude zero in all months.
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Figure 8: Changes in WFH-Only Share of Employment vs. Share in WFH Occupations

(a) By Demographic Group
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(b) By Industry
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Source: Real-Time Population Survey and Dingel and Neiman (2020). Scatters show May data. The inset plot
shows the regression slope for each available month with two-standard-error bands. The x-axis is the log share
of February workers in potential WFH occupations based on the measures of Dingel and Neiman (2020). The
y-axis is the log change from February to May in the share of employed workers that are WFH-Only. Industry
classification is by industry of employment in February. Definitions of demographic and industry groups are
provided in Appendix A.4.

Fact 2: Changes in the share of WFH-Only workers are positively correlated with

differences in WFH ability across occupations. Figure 8 plots the log change in WFH

employment shares against the log share of workers that were in potential WFH jobs in Febru-

ary. To measure the fraction of workers in potential WFH occupations, we rely on Dingel and

Neiman (2020), who use O∗NET data to classify the feasibility of working entirely at home

for all major occupations. The RPS does not collect information on occupation. Instead, we

calculate the share of workers in potential WFH jobs based on the occupational composition

of the worker’s industry of employment in February. For each demographic group, we take the

average of the industry shares in WFH occupations weighted by the group’s employment share

in each industry. Figure 8 shows that the relationship between these occupation-based mea-

sures of WFH potential and actual changes in WFH-Only employment shares from February

to May is strongly positive. The relationship is also very persistent. The inset plots in Figure

8 provide the regression slopes in each month. The estimates are positive and highly statis-

tically significant in all months, both across demographic groups and industries. Averaging

the R-squared statistics across months, the share of workers in WFH occupations in February

accounts for 82.8 percent of the variation in WFH transitions across demographic groups, and

for 33.5 percent of the variation across industries. This means that whether workers in different

groups/industries experienced more or fewer WFH transitions is closely related to what frac-
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tion of those workers were in potential WFH occupations before the pandemic. Bartik et al.

(2020a) document a similar fact based on U.S. business surveys, and Dingel and Neiman (2020)

document a close relationship between levels of WFH rates and the share of potential WFH

workers in a cross-section of countries in the pandemic.16 Fact 1 and 2 together also suggest

that larger pre-pandemic shares in WFH occupations are associated with lower job loss rates

during the pandemic. Appendix H documents that this is indeed the case.17

3.3 Why WFH Substitution Alone Cannot Explain the Facts

Explanations for the large heterogeneity in WFH transitions in the pandemic must be consis-

tent with each of the two facts above. At first glance, the negative relationship between WFH

transitions and job loss (Fact 1) seems most consistent with the WFH substitution channel. In

the context of the model, whenever the cost of on-site work increases (εχ > 0), pre-pandemic

commuters are the first in line to lose employment, while workers with relatively higher WFH

productivity z are more likely to remain employed as they substitute on-site work with WFH.

However, differences in WFH productivity within labor markets are not the relevant dimension

for explaining the relationship between WFH transitions and job loss. Fact 2 shows that the

variation in WFH transitions across worker groups is first and foremost related to differences

in occupational composition.18 For that reason, the observed heterogeneity in WFH transitions

needs to be explained in terms of differences in WFH ability across different labor markets

rather than within labor markets. Given this requirement, we argue next that the theoretical

model implies that the WFH substitution channel is either directly at odds with Fact 1, or

consistent with Fact 1 but not with Fact 2.

To focus on heterogeneity across different labor markets, we henceforth let ∆ lnEa,j
h denote

the change in WFH employment in labor market j, and think of the model equations as deter-

mining nationwide aggregates of segmented labor markets for separate occupations. We allow

all parameters in the model to potentially differ across labor markets both before and during

the pandemic. The only exceptions are the elasticity of demand, β, and the elasticity of WFH

labor supply, λ, which we assume are both constant and identical across labor markets. In

principle, large differences in the elasticity of WFH labor supply across labor markets could

explain why many more workers transitioned to WFH in some labor markets than in others.

We rule this out ex ante, since large differences in λ would have resulted in much more varia-

tion in WFH rates before the pandemic as a result of decades of advances in information and

16Gottlieb et al. (2020) also find a strong relationship between WFH ability and actual WFH in the pandemic
in Costa Rica and Brazil.

17This is in line with the predictions by Alon et al. (2020), and also consistent with the evidence for this
relationship in Adams-Prassl et al. (2020), Mongey et al. (2020), and Papanikolaou and Schmidt (2020).

18One possible exception is the presence of children in the household, which may have become more important
in terms of the ability to WFH for extended periods of time, see Section 2.4.3.
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communication technologies. The heterogeneity in WFH ability across labor markets is instead

captured by differences in the level of overall WFH productivity, γj. To make our argument as

sharply as possible, we impose in this section that none of the WFH transitions in the pandemic

are driven by WFH adoption, i.e. εjθ = εjγ = 0 in each labor market j. This leaves us with only

two possible scenarios in which job losses and WFH transitions occur simultaneously.19

The first scenario is one in which all firms always employ both commuters and home workers.

With an increase in the costs of on-site work, εjχ > 0 average employment growth ∆ lnEa,j in

occupation j is given by

∆ lnEa,j = εjδ − βε
j
χ ,

which apart from εjχ also depends on the demand εjδ for the goods and services produced by

workers in that occupation. Using (13), the log change in WFH employment when εjθ = εjγ = 0

is ∆ lnEa,j
h = λεjχ. This means that all heterogeneity in WFH transitions ∆ lnEa,j

h caused

by the pandemic must be due to differential increases in the cost of on-site work across labor

markets. However, the problem with this scenario is that labor markets with larger εjχ > 0

should also experience greater job loss rates, which makes it difficult to explain Fact 1.

To see this more formally, the covariance between log WFH employment growth and job

loss rates in this scenario is

Cov(∆ lnEa,j
h ,−∆ lnEa,j) = βλV ar(εjχ)− λCov(εjδ, ε

j
χ) .(16)

The first term on the right hand side of (16) is always positive, as larger increases in the cost

of working on-site always generate larger job losses and more WFH transitions. A negative

covariance as in Fact 1 then requires that Cov(εjδ, ε
j
χ) > βV ar(εjχ) ≥ 0, or in other words,

that labor markets with larger increases in the cost of working on-site also experience relatively

higher levels of demand. This seems improbable. Any correlation between εjδ and εjχ is almost

surely negative, for instance because in jobs with more person-to-person contact health risks

tend to be higher for both workers and consumers. This scenario therefore does not allow a

plausible explanation for Fact 1. The key model restriction that leads to this conclusion is the

fact that WFH transitions are independent of the changes in demand εjδ as long as there are

also workers that continue to commute.

The second possible scenario in which job losses and WFH transitions occur simultaneously

is when the increases in costs of on-site work εjχ > 0 are large enough such that only WFH

19The case where all WFH firms employ only home workers prior to the pandemic is immediately ruled out.
All job losses lead to declines in WFH employment, and with εjθ = εjγ = 0 no worker transitions to WFH.
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workers are employed in the pandemic, and all workers that were previously commuting either

switch to home-based work or are laid off. In this case, average employment growth is, up to

a first-order log-linear approximation,

∆ lnEa,j = θj
(

λ

β + λ
εjδ +

β

β + λ
lnσj

)
+ (1− θj)(εjδ − βε

j
χ) ,(17)

where 0 ≤ σj < 1 is the pre-pandemic share of WFH employment in labor market j at em-

ployers that allow WFH. Since σj is proportional to WFH ability γj, see (15), job loss rates

in this scenario are naturally larger in labor markets with lower WFH ability, as is the case in

the data (see Appendix H). Using (15), the change in WFH employment when εjθ = εjγ = 0 is

∆ lnEa,j
h = λ

β+λ
(εjδ − lnσj). The key difference with the first scenario is that WFH transitions

now depend on changes in demand εjδ. Since both WFH and total employment depend on the

level of demand in the pandemic, heterogeneity in the extent of the decline in demand across

labor markets generates a negative relationship between WFH transitions and job loss rates,

as in Fact 1.20

The problem with this second scenario is that it is particularly hard to reconcile with the

observed WFH patterns before the pandemic, and therefore with Fact 2. To see this, consider

that the average share of WFH employment before the pandemic in labor market j is given by

θjσj. If all WFH firms employ only home-based workers in the pandemic, the WFH employ-

ment share in the pandemic is approximately θj, i.e. the fraction of employers that allow WFH.

Therefore, without changes in θj in the pandemic, the log ratio of the pandemic to pre-pandemic

WFH employment share is, approximately, − lnσj. The change in WFH employment shares

relative to February should therefore be negatively related to WFH ability γj. The reason is

simply that in firms with a workforce that is relatively more productive at home, a smaller

share of the workforce needs to switch to WFH after work on-site becomes prohibitively costly.

However, this is inconsistent with Fact 2, which shows that in practice a larger share of the

workforce started to WFH in groups with a larger share of workers in high-WFH-ability occu-

pations.21 In this case, the key discrepancy with the theory is that, without additional WFH

20Note that WFH employment can still increase even when demand and total employment are both lower
than before the pandemic. This will be the case as long as 0 < ∆ lnEa,jh < − lnσj , or equivalently lnσj < εjδ <

−βλ lnσj . The first inequality states that the drop in demand cannot be so large that all commuters are laid off
and none switch to working remotely. The second inequality ensures that the level of demand in the pandemic
is low enough to cause job loss.

21An exact expression for the log change in the WFH share is ∆ ln(Ea,jh /Ea,j) = − lnσj + (1 −
θj)(−β/λ∆ lnEa,jh +βεjχ) where the last term arises because pandemic employment levels generally differ across
WFH and non-WFH firms. The exact expression in principle does allow for two ways of explaining the positive
relationship in Figure 8, but neither is realistic. One way is a large negative covariance between (1−θj)∆ lnEa,jh
and WFH ability γj , the other is a large positive covariance between εjχ and γj . The first is very unlikely given

that there is also a strong positive relationship between ∆ lnEa,jh and γj in the data, while the second would
require implausibly that εjχ > 0 at non-WFH firms is systematically much larger in labor markets with higher
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adoption, WFH employment shares should already have been far greater in high-WFH-ability

labor markets before the pandemic than they are in the data.

In sum, it is hard for the substitution channel to rationalize why so many more workers in

high-WFH-ability labor markets transitioned to WFH in the pandemic if they already had the

option to WFH before. Large numbers of WFH transitions are not a feature of non-pandemic

recessions. If in most labor markets WFH employment remained relatively insulated from

demand conditions also in the pandemic recession, it is difficult to explain why WFH transitions

correlated so strongly with job loss across labor markets. If WFH employment instead became

much more dependent on demand conditions because the pandemic forced most work off-site

at many firms, it is hard to explain why the larger WFH capacity in the higher WFH-ability

occupations was not already used before the pandemic.

3.4 WFH Adoption in the Pandemic

Since the empirical facts are hard to explain with the substitution channel alone, the more

likely explanation involves WFH adoption. The most straightforward explanation for the two

facts in Section 3.2 is that WFH adoption in the pandemic was concentrated in (a) occupations

with relatively stronger demand during the pandemic, and in (b) occupations with high WFH

ability before the pandemic.

As documented earlier, WFH employment was relatively uncommon before the pandemic

despite advances in information technology over recent decades. It seems reasonable that the

pandemic lead to a sudden acceleration in the adoption of flexible work arrangements and WFH

technology precisely in those occupations where the unused capacity for WFH was the greatest.

In the model, a pandemic-related rise in the cost of on-site work εχ > 0 always makes the WFH

option relatively more attractive to workers and employers, and the profit impact of providing

the WFH option in (7) is greater in a pandemic when workers’ WFH productivity γ is larger.

Greater WFH adoption in high-WFH-ability occupations naturally explain why the changes in

WFH shares are increasing in WFH ability, as in Fact 2.

To explain Fact 1, i.e. the negative relationship between job loss and WFH transitions

in Figure 7, WFH adoption in the pandemic must be greater in occupations where demand

during the pandemic was relatively stronger. One likely reason is that switching to remote

work in contact-intensive occupations by itself improves consumer safety – online education

or telemedicine are examples – and therefore helps sustain demand. Also, many of the white

collar service occupations that already did not require much physical contact with customers

WFH ability.
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before the pandemic – such as in the information or financial sectors – are also the occupations

with the greatest WFH potential, and therefore likely also experienced greater jumps in WFH

adoption in the pandemic. Regardless of the precise reasons, a positive cross-sectional correla-

tion between WFH adoption and demand conditions easily explains the negative relationship

between job loss and WFH transitions in Fact 1.

One possible test of the role of changes in employers’ WFH policies is to look at differences

in the WFH transitions of employees and self-employed workers. Whereas WFH decisions by

payroll workers are potentially constrained by whether employers allow WFH or not, this should

be less relevant for workers that are self-employed. In the RPS data, we find that self-employed

workers were about three times as likely to be WFH-Only before the pandemic as employees.

The WFH-Only rate for the self-employed was higher in May compared to February, but de-

clined to pre-pandemic levels fairly quickly. In sharp contrast to payroll workers, self-employed

workers were just as likely to work entirely from home throughout the second half of 2020

as in February, see Appendix E. The large ‘difference-in-difference’ in WFH between payroll

workers and self-employed is consistent with employers removing commuting requirements for

employees in the pandemic.

Additional survey information available in the RPS allows us to measure more directly how

many workers gained the option to WFH in the pandemic. In a survey question included in

the December wave, we asked respondents about the main reasons for commuting to work:

Which of the following best explains why you [your spouse/partner] commuted to work every

workday last week?

a) My [spouse/partner’s] job cannot be done from home

b) Some or all of my [spouse/partner’s] job could have been done from home, but my [spouse/-

partner’s] employer required me to commute each day

c) Some or all of my [spouse/partner’s] job could have been done from home, but I [my

spouse/partner’s] preferred to commute each day

We also asked respondents to think back to February of 2020, and presented them with the

same questions for the main job in that month. The answers allow us to asses directly what

fraction of the WFH transitions in the pandemic are by workers that were required to commute

by their employers before the pandemic.

In the December survey, 1,904 respondents said they commuted every workday in February,

just before the pandemic. Among these, referencing outcomes in February, 60.2 percent stated
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their jobs could not be done from home, 30.4 percent stated their employers required daily

commuting, and 9.4 percent said they preferred to commute every day. Figure 4 shows that

23.0 percent of those February daily commuters WFH at least one workday in December, which

is far more than the 9.4 percent who commuted daily in February due to personal preference.

This suggests that many that switched to WFH did so after their employers no longer required

them to commute every workday. Indeed, among the 418 respondents that switched to WFH

at least one workday per week, 63.6 percent cite employer requirements as the main reason

for commuting on a daily basis in February. Another 23.5 percent say their jobs could not be

done from home in February, while only 12.9 percent cite preferences as the main reason. Most

of those that transitioned to WFH (79.0 percent) report working in the same job as prior to

the pandemic. Therefore, a large majority of the transitions from daily commuting to WFH

between February and December involved employers lifting the commuting requirement.

The role of WFH adoption is also evident in the reasons given by workers for commuting

during the pandemic. In the substitution channel, there would be a shift in the composition

of reasons given for commuting. A greater proportion of workers in a pandemic would com-

mute because they need to, either because their jobs cannot be done at home or because their

employers do not allow remote work, while a smaller fraction would commute because of per-

sonal preference. In the sample of 1374 workers commuting daily to their December jobs (i.e.

during the pandemic), 68.4 percent stated their current jobs could not be done from home,

22.2 percent of respondents stated their employers required daily commuting, while 9.4 percent

stated they preferred to commute every day. Compared to before the pandemic, a smaller

fraction of workers cites employer requirements, while a similar fraction of daily commuters

states personal preference as the main reason for commuting in December. This suggests that

many more workers gained access to the WFH option.

In addition, we can compare estimates of the total number of workers with access to a viable

WFH option before and during the pandemic. To obtain such estimates, we add the number of

daily commuters that cite personal preference as the main reason for commuting to the number

of workers that WFH at least one workday. To be clear, by ‘access to a viable WFH option’

here we mean workers that could in principle WFH at least one workday per week. That is, we

exclude all workers that are in jobs that cannot be done from home (not viable), or that are

working for employers that do not allow WFH (no access). Based on this calculation, we find

that 43.8 percent of the workforce had access to a viable WFH option in December, compared

to 33.3 percent in February. The February-to-December increase from 24.9 to 37.9 percent in

the fraction that worked from home at least one workday is mostly (80.8 percent) accounted for

by workers gaining access to WFH. Very little of the increase in WFH (19.2 percent) originates

with decreases in the fraction of workers commuting because of personal preference, as would
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Figure 9: Change in Share with WFH Option vs. Feb Share in WFH Occupations

(a) By Demographic Group
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Source: Real-Time Population Survey and Dingel and Neiman (2020). Scatters show December data. The
x-axis is the log share of February workers in potential WFH occupations based on the measures of Dingel and
Neiman (2020). The y-axis is the log change from February to December in the share of employed workers with
a WFH option. A worker has a WFH option if they WFH at least one day, or if they commuted only but cited
personal preference as the main reason why they did not WFH (see main text for details). Information on why
individuals commuted to work was not collected prior to December 2020. Industry classification is by industry
of employment in February. Definitions of demographic and industry groups are provided in Appendix A.4.

be the case under the substitution channel.

The increases in WFH access are unevenly distributed across workers. Figure 9 depicts

the growth in WFH access among workers that were employed in both February and December

across different demographic groups and industries. Specifically, the figure plots the log changes

in the number of workers with access to a viable WFH option relative to February against the

estimated share of workers in WFH occupations in February. The left panel of Figure 9 shows

that the fraction of workers with a WFH option increased for all demographic groups, while

the right panel shows increases for all industries except accommodation and food, construction

and wholesale trade. Moreover, the expansions in WFH access were systematically larger in

the categories with more workers in high WFH occupations. In particular, high-income, high-

education and older workers experienced the largest log point increases, as did workers in the

education, public and professional business services sectors. The positive relationship between

the expansion in WFH access and the share of workers in WFH occupations is fully consistent

with heterogeneity in WFH adoption being the key reason for the negative relationship between

WFH and job loss, and it is also consistent with the empirical facts documented in Section 3.2.

Our definition of WFH adoption includes not only expanded access to WFH (higher θ), but
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Figure 10: Google Searches for WFH Equipment and Software
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Source: Google Trends, accessed 1/11/2021. Series are log changes in the weekly search interest score relative
to 52 weeks ago.

also improvements in WFH productivity (higher γ). It is more difficult to directly measure

increases in WFH productivity. However, there are signs of an acceleration in investments

aimed at improving WFH productivity. According to the Bureau of Economic Analysis, for

example, investment spending by private businesses on computers and peripheral equipment in

the second and third quarter of 2020 increased by 9.3 and 23.6 percent relative to the previous

year, compared to an average increase of 1.9 percent in 2019. Workers almost certainly also

made similar investments. Figure 10 shows weekly internet search scores from Google trends for

a variety of WFH-related terms. The left panel shows searches related to office and computer

hardware. The right panel shows search results for various WFH-related software. Both panels

show sharp increases in searches for WFH equipment and software in late March and early April

relative to one year prior, exactly at the time of the pandemic-related wave of WFH transitions.

The Google search results are also consistent with recent survey evidence in Barrero et al. (2021),

finding that workers on average invested over 14.2 hours and about $604 dollars in equipment

and infrastructure to facilitate WFH. There are also some signs of an increase in the pace

of innovation in WFH-related technologies. Bloom et al. (2020), for example, document that

patent applications since the pandemic have meaningfully shifted in the direction of information

and communication technologies that can support WFH. Based on a survey on technology

adoption by UK businesses, Riom and Valero (2020) find a positive relationship between the

share of the potential WFH workforce before the crisis and the adoption of digital technologies.

If a similar relationship exists for US firms, it would further reinforce the positive relationship

between WFH ability and WFH adoption.
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Figure 11: Expectations for WFH in the Future
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4 Expectations for WFH in the Future

Section 2.2 showed that commuting recovered substantially in the second half of 2020 after

the sharp decline in the first wave of the pandemic. This suggests that at least part of the

WFH surge in the pandemic is the result of more temporary substitution. At the same time,

the evidence for WFH adoption in the previous section suggests that the pandemic may have

unlocked important longer-term welfare gains in the form of lower commuting costs, higher

productivity, and greater geographical mobility. Given that many more high-education/income

workers switched to WFH in the pandemic, any such gains are likely to be highly unequally

distributed. If the non-wage benefits of WFH are indeed significant, employers in high WFH

sectors are likely to save on labor costs, which could lead to further reallocation towards high-

skill sectors. More remote work may also reduce spending in large cities, which would likely

impact many lower-skill service workers, see also Althoff et al. (2020) and Barrero et al. (2021).

On the other hand, it is possible that the experimentation with WFH necessitated by the

health crisis in many cases proves relatively unsuccessful in the longer run. The benefits of

WFH may not outweigh the costs under more normal health conditions, and many employers

may therefore not continue to allow the same extent of WFH after the pandemic ends. More-

over, certain disadvantages of WFH may become more apparent in the longer run, and some

existing evidence suggests that information and communication technologies are ultimately not

38



a substitute for face-to-face interactions, see Gaspar and Glaeser (1998).

It is too early to know precisely how much more pervasive WFH will be in the future as

a result of the COVID-19 pandemic. To have some indication nonetheless, we present survey

results on households’ expectations for WFH in the future. In the December wave of the RPS,

we asked all respondents with a job the following question:

In 2022 and later, how many days do you expect [your spouse/partner] to commute to work?

a) I expect [my spouse/partner] to commute to work every workday

b) I expect [my spouse/partner] to commute to work at least once per week

c) I do not expect [my spouse/partner] to commute to work at all

d) I do not expect [my spouse/partner] to be working in 2022

We classify all respondents answering a, b or c to the question above as workers that in the

future will be ‘Commute-Only’, ‘WFH Some Days’ and ‘WFH-Only’ respectively, and compute

the shares in the total number of workers that expect to work (i.e. all workers not answering

d). Figure 11a displays the resulting estimates, which are based on a sample of 2,163 observa-

tions. For comparison, the figure also repeats the actual shares in each commuting category in

February, May and December.

Overall, 37.4 percent of workers expect to WFH on a part- or full-time basis in 2022 and

beyond, which is almost as many as were actually doing so in December (37.9 percent). If re-

alized, this would be a substantial increase compared with February, when 24.7 percent WFH

at least one day per week. At the same time, there is a meaningful difference in how frequently

workers expect to WFH in the future relative to December. Whereas in December 20.7 percent

are WFH-Only, only 12.7 percent expect to WFH-Only in 2022 and beyond. Almost a quarter

of all workers (24.7 percent) expect to WFH on part-time basis, compared with 17.2 percent in

December. The expected shift towards more part-time WFH relative to December 2020 would

mean a further recovery in commuting as the pandemic wanes, although not to pre-pandemic

levels on a per capita basis.

Our finding that WFH is expected to persist after the pandemic is consistent with other

survey evidence. Based on a similar question in their online household survey, Barrero et al.

(2021) find that 22 percent of all full workdays will be supplied from home, compared with 5

percent before the pandemic. Several surveys of businesses indicate that workers’ expectations

are consistent with those of employers, many of which project permanent increases in their

39



home-based workforce as a result of the pandemic.22

The expectations for more WFH in the future suggest that the adoption of WFH spurred by

the pandemic has proven beneficial to at least some workers and employers, and that these ben-

efits are expected to persist after the health crisis ends. Our survey data, however, also clearly

shows that any longer-lasting benefits from WFH are unlikely to be shared equally. Figure 11b

documents the differences in WFH expectations across demographic groups. For each category,

the figure plots the expected increase in the fraction of WFH workers relative to February.

Whereas in all categories more workers expect to WFH, the extent of the anticipated increase

varies greatly in ways that reflect the large differences in WFH adjustment during the pandemic.

Highly educated workers (bachelor’s degree or more), in particular, see the largest expected

change in commuting behavior. Figure 11b shows an expected increase of 19.5 percent in the

share of highly educated workers that expect to WFH on a part- or full-time basis. If realized,

this would mean that almost half of all workers with a bachelor’s degree or more would WFH

at least partially, and almost 15 percent would not commute to their jobs at all. Many more

women anticipate a persistent change in commuting behavior than men. The expected increase

in the share of women doing at least some WFH is 18.7 percentage points, compared with 8.9

percentage points for men. Mid-age (30 to 49) and older workers (50 to 64) expect to WFH

more than younger workers, and workers with higher incomes in 2019 expect to do more WFH

than lower income workers. In Section 2.4.3, we documented that workers with children in the

household returned to commuting in greater numbers in the second half of 2020 than workers

without children. Figure 11b suggest that the presence of children will remain an important

factor in WFH decisions going forward. Finally, Hispanic workers expectations of long run

WFH among Hispanics increased less than for other ethnicities and races.

5 Concluding Remarks

This paper uses data from a novel national survey to document the evolution of WFH in the

US over the course of the COVID-19 pandemic. WFH increased sharply in the pandemic,

primarily driven by a large number of pre-pandemic daily commuters who stopped commuting

entirely while remaining in the same jobs. There were very large differences in the extent of

the increases in WFH across demographic groups and industries. Using theory and evidence,

we argued that the observed heterogeneity in WFH transitions is consistent with potentially

22In a survey of 1,800 small business leaders, Bartik et al. (2020a) find that one-third of firms with WFH
employees in the pandemic believe that remote work will remain more common. A Dallas Fed survey of 390
Texas-based employers shows that businesses expect 20.6 percent of employees to work remotely on average,
compared to 8.3 percent before the pandemic, see Kerr (2020). An Atlanta Fed survey of 280 employers shows
that business expect that 10.3 percent (27.1 percent) of employees will WFH-Only (WFH at least one day) after
the pandemic, compared to 3.4 percent (9.7 percent) in 2019, see Barrero et al. (2020).
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more permanent changes to the work arrangements for certain groups of workers, in particular

those with high levels of education. The survey data on WFH presented in this paper is useful

for studying a wide range of other questions related to the COVID-19 pandemic, such as the

trade-offs between health and economic opportunity (Kaplan et al., 2020), the extent of supply

chain disruptions across sectors (Bonadio et al., 2020), the impact on educational outcomes

(Agostinelli et al., 2020), gender imbalances (Alon et al., 2020), or the location decisions of

firms and workers (Althoff et al., 2020; Liu and Su, 2020).
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APPENDIX FOR ONLINE PUBLICATION ONLY

A Work From Home in the RPS

A.1 Details on Sample Construction

The full RPS dataset from May - December include 48,645 individuals. We have two observa-

tions per individual: one corresponding to February 2020, and one corresponding to the survey

month. From this, we delete (i) observations without the necessary demographic information

to create sample weights, (ii) observations with missing employment data, and (iii) observa-

tions who are employed but who have missing WFH data. We then drop any individual who

had one of their observations (either February or the current month) deleted in either of the

steps above. These selection criteria mean that 4.5 percent of individuals in the original sample

are dropped, yielding a final sample of 46,450 individuals. Among the observations that were

dropped, the most common category was individuals who were employed but absent from work

in the current month according to the CPS definition: 1,174 individuals fell into this group

across all survey waves. These individuals were not asked the questions on days worked and

commuting. Table A.1 displays the breakdown of the sample sizes across survey months.

Table A.1: Sample Sizes by Month in the RPS

Month Number of Observations Number of Employed

Feb 46450 34867
May 4775 2567
Jun 9042 5212
Jul 7943 4917
Aug 6464 4107
Sep 8116 5272
Oct 3180 2136
Nov 3472 2321
Dec 3458 2241

Source: Real-Time Population Survey, ages 18-64. Sample sizes are unweighted.

A.2 Weighting

As described in the body of the paper, we asked Qualtrics to administer the survey to a sample

of respondents who match the US population along a few broad demographic characteristics:

gender, five age bins (18-24, 25-34, 35-44, 45-54, 55-64), race and ethnicity (non-Hispanic White,

non-Hispanic Black, Hispanic, other), education (high school or less, some college or associate

degree, bachelor degree or more), married or not, number of children in the household (0, 1, 2, 3
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or more), three 2019 annual household income bins (<$50k, $50k-100k, >$100k) and four cen-

sus regions. Using the iterative proportional fitting (raking) algorithm of Deming and Stephan

(1940) we construct sampling weights to ensure the RPS matches the CPS sample proportions

for the same set of demographic characteristics as those included in the Qualtrics sampling

targets. We do however use more disaggregated categories for education and marital status,

and interact all categories with gender. In particular, for education we distinguish between less

than high school, high school graduate or equivalent, some college but no degree, associate’s

degree in college, bachelor’s degree, and graduate degree. For marital status we distinguish

between married + spouse present, divorced, never married, and ‘other’. We also condition on

relationship status (spouse living in the same household, partner living in the same household,

other). In addition, our sampling weights also replicate the employment rate in February 2020

in the CPS, as well as the employed-at-work rates, the employment rates and the labor force

participation rates in each of the subsequent months.23 We match these key labor market

statistics not only in the aggregate, but also conditional on demographic characteristics. More

specifically, we match the employed at work rate, the employment rate and the labor force

participation rate in the current month rates by gender, age (18-24, 25-34, 35-44, 45-54, 55-64),

race and ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, all other racial and

ethnic groups), education (high school or less, some college or associate degree, bachelor degree

or more), marital status (married + spouse present, never married, other), relationship status

(spouse living in the same household, partner living in the same household, other), presence of

children in the household (yes or no), and region (Midwest, Northeast, South and West using

the Census definition).

A.3 Sample Statistics

Before pooling survey data from different interviews waves within the same month, we adjust

the weights from the raking algorithm described above as suggested in Potthoff et al. (1992):

Nadj =
(∑

w
)2
/
∑

w2

wadj = Nadj × w/
∑

w

23Another use of the RPS, discussed in Bick and Blandin (2020), is to produce real-time labor market statistics
in advance of the monthly CPS release. For this purpose, the current month CPS statistics are not yet available
for targeting in the raking algorithm. The real-time forecasts of employment and other labor market statistics
are therefore based on alternative weights that use information from the CPS for the preceding month. Our
goal in this paper is to provide the most accurate ex-post measurement of commuting behavior in the pandemic,
which is why we prefer to target CPS labor market statistics for the same month.
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Sample proportions and their standard deviations are then calculated as

p̂ =
(∑

wadjx
)
/
∑

wadj

Std(p̂) =

(∑
x

(
(x− p̂)2wadj/

∑
wadj

)
/
∑

wadj

) 1
2

;

A.4 Definition of Demographic Groups and Industries

Several figures in the paper report results separately for different demographic groups and

industries. Demographic groups are defined as follows:

• Age

– Younger: Ages 18-29

– Mid Age: Ages 30-49

– Older: Ages 50-64

• Race and Ethnicity

– Black: Identify as Black and not Hispanic

– Hispanic: Identify as Hispanic

– White: Identify as White and not Hispanic

– NonBlackHispWhite or Non B/H/W: All other racial and ethnic groups

• Education

– Low Educ: High School degree or less

– Mid Educ: Some college or associates degree, but no Bachelor’s degree

– High Educ: Bachelor’s degree or more

• 2019 Household Income

– Low Inc: $0 – $49,999

– Mid Inc: $50,000 – $100,000

– High Inc: $100,000 or more

• Children

– Children: Child under age 18 lives in household

– No Children: No child under age 18 lives in household
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Industries correspond to the 18 major industries in the NAICS, except that we combine Agri-

culture (NAICS=11) and Mining (NAICS=21) due to small sample sizes. The resulting 17

industries are defined as follows:

• AgriMin: NAICS = 11-21. Agriculture, Forestry, Fishing and Hunting and Mining,

Quarrying, and Oil and Gas Extraction

• Util: NAICS = 22. Utilities

• Cons: NAICS = 23. Construction

• Manu: NAICS = 31-33. Manufacturing

• Whol: NAICS = 42. Wholesale Trade

• Reta: NAICS = 44-45. Retail Trade

• Tran: NAICS = 48-49. Transportation and Warehousing

• Info: NAICS = 51. Information

• Fina: NAICS = 52. Finance and Insurance

• Real: NAICS = 53. Real Estate and Rental and Leasing

• Prof : NAICS = 54-56. Professional, Scientific, and Technical Services and Management

of Companies and Enterprises and Administrative and Support and Waste Management

and Remediation Services

• Educ: NAICS = 61. Educational Services

• Heal: NAICS = 62. Health Care and Social Assistance

• Arts: NAICS = 71. Arts, Entertainment, and Recreation

• Acco: NAICS = 72. Accommodation and Food Services

• Othe: NAICS = 81. Other Services (except Public Administration)

• Govt: NAICS = 99. Federal, State, and Local Government, excluding state and local

schools and hospitals and the U.S. Postal Service (OES Designation)

Finally, for about 11% of those employed in February 2020 in the early May wave information

is missing. In that wave we did not collect industry for those employed in February 2020 but

who had a new job in the reference week or were not employed in the reference week. The

exception are those who were on layoff in the reference week from their February job. Starting

with the late May wave, industry in for February 2020 is available for everyone employed in

February 2020.

48



A.5 February WFH Across Survey Months

Figure A.1: February WFH Rates By Month the Survey Was Conducted
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Source: Real-Time Population Survey, ages 18-64, February observations. The shaded region corresponds to
two-standard-error bands. Appendix A describes the calculation of standard errors and contains sample sizes
by month.

The RPS asks individuals about employment and WFH outcomes in February 2020, just

prior to the COVID-19 pandemic. A potential concern is whether respondents are able to ac-

curately answer such retrospective questions, particularly for later months in the survey. One

indication of recall difficulties would be if February statistics varied widely or systematically

across months that the survey was conducted.

To examine whether this is the case, Figure A.1 displays rates of WFH in February separately

for various months that the survey was conducted. Reassuringly, we find that reported WFH

outcomes in February are fairly stable across survey months. For example, 7.9% of individuals

surveyed in May reported to be WFH-Only in February, compared with 6.9% of individuals

surveyed in December. These differences are not statistically significant at the 5% level; neither

are differences between any two other months in the survey. The share of partial WFH workers

are also fairly stable across months, though there is a bit more variation with this variable.

For example, 22.9% of individuals surveyed in May reported to be partial WFH in February,

compared with 26.3% of individuals surveyed in December. This difference is significant at

the 5% level. Overall, the share of workers that are partial WFH is lower in May than other

months; no two months from June-onward are statistically different from one another at the

5% level.
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B Change in Commuting Volume in the RPS

Figure B.1: Decomposition of Aggregate Change in Commuting
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Source: Real-Time Population Survey, ages 18-64. All series are expressed as log changes relative to February
2020. The sample for the Employment Rate series is all individuals age 18-64. The sample for the Days Worked
per Week and the Share of Work Days Commuted series are employed individuals age 18-64. The numbers
corresponding to the graph are also given in Table B.1.

Figure 3a in the main text displays the log change in aggregate weekly commuting trips

relative to February 2020 in the RPS. Aggregate weekly commuting trips are the product of

the number of workers, the average days worked per week per worker, and the average share

of workdays commuted. Table B.1 displays the log changes in each of these components of

aggregate commuting trips, which are also shown in Figure B.1.

In May 2020, aggregate commuting fell by 50.9 log points relative to February. Of this,

15.2 log points (29.9%) was due to lower employment, while 2.7 log points (5.3%) was due to

fewer days worked per worker per week. The remaining 33.0 log points (64.8%) was due to a

reduction in the share of work days commuted relative to February, i.e. an increase in WFH.

By December, aggregate commuting had recovered relative to May, but was still 27.7 log points

lower than in February. Of this, 5.4 log points (19.5%) was due to lower employment, and 3.1

log points (11.2%) was due to fewer days worked per worker per week. The remaining 19.2 log

points (69.3%) was due to a reduction in the share of work days commuted relative to February.
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Table B.1: Change in Log of Aggregate Commuting Trips

Weekly Commuting Trips Employment Rate Days Worked / Week Share of Work Days Commuted

May -50.9 -15.2 -2.7 -33.0
(4.3) (0.9) (2.9) (6.1)

Jun -38.4 -11.6 -3.0 -23.8
(3.3) (0.7) (2.4) (4.5)

Jul -38.1 -10.8 -3.1 -24.2
(3.6) (0.7) (2.8) (4.9)

Aug -33.3 -8.2 -2.5 -22.6
(4.0) (0.8) (3.2) (5.5)

Sep -29.7 -7.0 -2.2 -20.5
(3.5) (0.7) (2.6) (4.7)

Oct -24.0 -4.9 -0.3 -18.8
(5.7) (1.1) (4.5) (7.6)

Nov -25.8 -4.9 -2.0 -18.9
(5.7) (1.1) (4.4) (7.6)

Dec -27.7 -5.4 -3.1 -19.2
(5.2) (1.0) (4.2) (7.1)

Source: Real-Time Population Survey, ages 18-64. All series are expressed as log changes relative to February
2020. The sample for the Employment Rate series is all individuals age 18-64. The sample for the Days
Worked per Week and the Share of Work Days Commuted series are employed individuals age 18-64.
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C WFH Transitions Relative to February

Figure C.1: WFH Transition Rates, By Current Month WFH Status - Part I

(a) May 2020
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(b) June 2020

Commute only WFH some days WFH only Not employed
Feb. Commuting Status

0

20

40

60

80

100

Sh
ar

e 
of

 F
eb

. C
om

m
ut

in
g 

Gr
ou

p 
(%

)

62.9
(0.9)

20.1
(1.5)

8.8
(0.5)

40.2
(1.8)

15.2
(0.6)

20.6
(1.5)

78.0
(2.3)

13.1
(0.6)

19.2
(1.5)

13.8
(1.9)

90.7
(0.7)

June Commuting Status:
Commute only
WFH some days

WFH only
Not Employed

(c) July 2020
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(d) August 2020
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Source: Real-Time Population Survey, ages 18-64. The figure displays the composition of the population by
WFH and employment status in the current month separately by workers’ employment and WFH status in
February 2020. Each bar corresponds to a February WFH/employment state: Commute-Only, WFH Some
Days, WFH-Only, and Not Employed. Each color within a bar corresponds to a current WFH/employment
state. Standard errors in parentheses, calculated as as described in Appendix A; that section also provides the
sample sizes by month.
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Figure C.2: WFH Transition Rates, By Current Month WFH Status - Part II

(a) September 2020
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(b) October 2020
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(c) November 2020
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(d) December 2020
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Source: Real-Time Population Survey, ages 18-64. The figure displays the composition of the population by
WFH and employment status in the current month separately by workers’ employment and WFH status in
February 2020. Each bar corresponds to a February WFH/employment state: Commute-Only, WFH Some
Days, WFH-Only, and Not Employed. Each color within a bar corresponds to a current WFH/employment
state. Standard errors in parentheses, calculated as as described in Appendix A; that section also provides
sample sizes by month.
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Figure C.3: WFH Transition Rates, By Current WFH Status - Part I

(a) May 2020
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(b) June 2020
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(c) July 2020
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(d) August 2020
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Source: Real-Time Population Survey, ages 18-64. The figure displays the composition of the population by
WFH and employment status in February 2020 separately by workers’ employment and WFH status in the
current month. Each bar corresponds to a current WFH/employment state: Commute-Only, WFH Some Days,
WFH-Only, and Not Employed. Each color within a bar corresponds to a February 2020 WFH/employment
state. Standard errors in parentheses, calculated as as described in Appendix A; that section also provides
sample sizes by month.
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Figure C.4: WFH Transition Rates, By Current WFH Status - Part II

(a) September 2020
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(b) October 2020
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(c) November 2020
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(d) December 2020
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Source: Real-Time Population Survey, ages 18-64. The figure displays the composition of the population by
WFH and employment status in February 2020 separately by workers’ employment and WFH status in the
current month. Each bar corresponds to a current WFH/employment state: Commute-Only, WFH Some Days,
WFH-Only, and Not Employed. Each color within a bar corresponds to a February 2020 WFH/employment
state. Standard errors in parentheses, calculated as as described in Appendix A; that section also provides
sample sizes by month.
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Figure 4 in the main text displays the transition rates in WFH and employment status

between February 2020 and the first RPS survey month (May 2020) and between February

2020 and December 2020. Figures C.1 and C.2 displays the corresponding transition rates

for all months in between. The results indicate that many workers who commuted only or

WFH partially in February transitioned to WFH-Only during the COVID-19 pandemic. The

reverse was not true: conditional on remaining employed, the vast majority of workers who

were WFH-Only in February continued to do so during the pandemic. The results also indicate

that employment losses during the pandemic did not differ strongly by February WFH status.

Figures C.3 and C.4 display figures analogous to Figures C.1 and C.2, except that now

transitions are conditioned on current WFH/employment status rather than on the status from

February. The results indicate that the vast majority of workers who commuted only during

the COVID-19 pandemic already commuted early in February. Conversely, roughly half of

individuals who WFH partially or were WFH-Only during the pandemic reported that they

commuted only in February.
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D WFH by Job Tenure: Alternative Sample

Figure D.1: WFH Among Job Stayers and Job Starters, Employed in February and Last
Week
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(a) WFH-Only
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(b) WFH Some Days

Source: Real-Time Population Survey, ages 18-64. The sample is individuals employed both in February and
last week. The figure shows the share of WFH-Only workers (left panel) and the share of partial-WFH workers
(right panel) each month. Job stayers are individuals who worked for the same employer in February and in
the interview month; by construction these individuals were all employed in February. Job starters refer to
individuals who were employed in February, but who did not work for the current employer in February. The
shaded region corresponds to two-standard-error bands. Appendix A describes the calculation of standard errors
and contains sample sizes by month.

Figure 5 in the main text plots WFH rates for job stayers and job starters since February

2020. In that figure, job stayers refer to individuals employed in the current month who report

working for the same employer as in February, while job starters refer to all individuals who

were not working for their current employer in February. This includes individuals who had

switched employer since February, as well as individuals who were not employed in February.

Here, Figure D.1 considers a more narrow definition of job starters, by excluding individuals

who were not employed in February. Similar to Figure 5, the present plots show that the

increase in WFH-Only that occurred during the COVID-19 pandemic was concentrated among

job stayers, rather than job starters. The plot also shows that there was little change in partial

WFH rates, either among job stayers or job starters. The similar results in Figures 5 and

D.1 confirm that the results are not sensitive to including or excluding workers who were not

employed in February.
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E WFH Among Employees vs. the Self-Employed

Figure E.1: WFH Among Employees vs. the Self-Employed
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(a) WFH-Only
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(b) WFH Some Days

Source: Real-Time Population Survey, ages 18-64. The sample is individuals employed both in February and
last week. The figure shows the share of WFH-Only workers (left panel) and the share of partial-WFH workers
(right panel) each month. The shaded region corresponds to two-standard-error bands. Appendix A describes
the calculation of standard errors and contains sample sizes by month.

Figure E.1 plots WFH rates since February 2020 separately for workers who were employees

in February and for workers who were self-employed in February. In February, the self-employed

were over three times more likely to WFH-Only compared with employees. Since May, however,

the two groups of workers have nearly identical rates of WFH-Only. In February, the self-

employed also had rates of WFH Some Days that were slightly higher than for employees, and

these differences may also have narrowed somewhat since May. Overall, since July WFH rates

for the self-employed have returned to pre-pandemic levels, while WFH rates for employees

remain elevated well above their pre-pandemic levels. Although not shown, we also find very

similar patterns if we condition on current class of worker (self-employed or not) as opposed to

February class of worker.
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F Heterogeneity in Work from Home

F.1 Time Series of Commuting Status by Worker Characteristic

Figure 6a in the main text compares WFH before and during the COVID-19 pandemic across

demographic groups. In the interest of space, that figure only showed results for WFH-Only

and for three months: February, May, and December 2020. Here, Figures F.1 and F.2 display

results for all months in the RPS sample, and for all three WFH statuses: WFH-Only, WFH

Some Days, and Commute-Only.

We highlight a few takeaways from the figures showing WFH-Only rates (first column).

First, for every demographic group, WFH-Only increased from February to May. Second, ev-

ery demographic group saw a decline in WFH-Only from May to December. Third, although

there were some differences in WFH-Only rates before the pandemic, the differences are much

larger in the pandemic.

Next, we highlight the main takeaways from the figures showing the partial WFH rates

(middle column). First, for every demographic group, partial WFH was more common than

WFH-Only prior to the pandemic. Second, for essentially all demographic groups, changes in

the partial WFH rates during the pandemic were modest relative to changes in the WFH-Only

rates.

Finally, we emphasize the key takeaways from figures showing the Commute-Only rates

(last column). First, for every demographic group a large majority of workers commuted every

workday prior to the pandemic. There was little heterogeneity in Commute-Only rates across

demographic groups; the largest exception to this was that younger workers (aged 18-29) had

a Commute-Only rate that was about 10 percentage points (13%) lower than workers aged

30 and over. Second, for every demographic group the share of workers who commuted only

fell from February to May, although there was sizable heterogeneity in this change across

demographic groups. Third, by December Commute-Only rates had recovered completely to

February levels for some groups – low education (high school degree or less), low or medium

income (2019 household income less than $100k) – but had only recovered slightly for others

– high education (bachelor’s degree or more), high income (2019 household income exceeding

$100k), and individuals with no children under age 18 in the household.
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Figure F.1: Commuting Status by Selected Worker Characteristics - Part I

By Age
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(b) WFH Some Days
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(c) Commute-Only
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(d) WFH-Only
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(e) WFH Some Days
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(f) Commute-Only
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(g) WFH-Only
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(h) WFH Some Days
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(i) Commute-Only
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(j) WFH-Only
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(k) WFH Some Days
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(l) Commute-Only
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Source: Real-Time Population Survey, ages 18-64. The sample is individuals employed in the relevant month.
The figure shows the share of WFH-Only workers (left panels), partial-WFH workers (middle panels) and
Commute-Only workers (right panels) each month. The shaded region corresponds to two-standard-error bands.
Appendix A describes the calculation of standard errors and contains sample sizes by month.
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Figure F.2: Commuting Status by Selected Worker Characteristics - Part II

By Gender
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(b) WFH Some Days
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(c) Commute-Only
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(d) WFH-Only
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(e) WFH Some Days
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(f) Commute-Only
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Source: Real-Time Population Survey, ages 18-64. The sample is individuals employed in the relevant month.
The figure shows the share of WFH-Only workers (left panels), partial-WFH workers (middle panel) and
Commute-Only workers (right panels) each month. The shaded region corresponds to two-standard-error bands.
Appendix A describes the calculation of standard errors and contains sample sizes by month.
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F.2 Conditional WFH Probabilities

Table F.1: Conditional WFH-Only Probabilities

February May December

(1) (2) (3) (4) (5) (6)

Constant 0.077∗∗∗ 0.025∗∗∗ 0.243∗∗∗ 0.236∗∗∗ 0.156∗∗∗ 0.125∗∗∗

(0.004) (0.008) (0.026) (0.046) (0.025) (0.043)
Female 0.022∗∗∗ 0.023∗∗∗ 0.034∗ 0.014 0.029∗ 0.028

(0.003) (0.003) (0.017) (0.017) (0.017) (0.017)
Age 18-29 -0.011∗∗∗ -0.013∗∗∗ -0.049∗∗ -0.054∗∗ -0.052∗∗ -0.047∗∗

(0.004) (0.004) (0.024) (0.023) (0.022) (0.022)
Age 50-64 0.019∗∗∗ 0.022∗∗∗ 0.048∗∗ 0.046∗∗ 0.046∗∗ 0.050∗∗

(0.004) (0.004) (0.021) (0.021) (0.021) (0.021)
Black -0.021∗∗∗ -0.019∗∗∗ -0.065∗∗ -0.075∗∗∗ 0.001 0.002

(0.005) (0.005) (0.029) (0.028) (0.028) (0.028)
Hispanic -0.010∗∗ -0.008∗∗ -0.056∗∗ -0.049∗∗ -0.034 -0.024

(0.004) (0.004) (0.024) (0.023) (0.024) (0.024)
Non-Black/Hispanic/White -0.007 -0.007 -0.006 -0.000 -0.031 -0.037

(0.005) (0.005) (0.032) (0.031) (0.031) (0.031)
High school or less -0.009∗∗ -0.006∗ -0.076∗∗∗ -0.037∗ -0.032 -0.027

(0.004) (0.004) (0.023) (0.022) (0.023) (0.023)
Bachelors or more 0.002 -0.001 0.236∗∗∗ 0.186∗∗∗ 0.132∗∗∗ 0.120∗∗∗

(0.004) (0.004) (0.022) (0.022) (0.021) (0.021)
2019 HH income: $0-$50k 0.005 0.004 -0.042∗ -0.037 -0.020 -0.013

(0.004) (0.004) (0.023) (0.023) (0.023) (0.023)
2019 HH income: $100k + 0.006 0.003 0.055∗∗∗ 0.044∗∗ 0.079∗∗∗ 0.072∗∗∗

(0.004) (0.004) (0.021) (0.020) (0.022) (0.021)
Children -0.031∗∗∗ -0.029∗∗∗ -0.057∗∗∗ -0.053∗∗∗ -0.096∗∗∗ -0.096∗∗∗

(0.003) (0.003) (0.020) (0.019) (0.020) (0.019)
Industry X X X

Observations 34,556 34,556 2,521 2,521 2,124 2,124
R2 0.011 0.028 0.138 0.216 0.125 0.159

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Source: Real-Time Population Survey, ages 18-64. Estimates from a linear probability model. The sample

is all individuals employed in February 2020. Definitions of demographic and industry groups are provided

in Appendix A. The regressions are weighted based on sample weights, see Appendix A.
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Section 2.4.3 in the main text documents substantial differences in WFH-only rates be-

tween demographic groups and industries. Table F.1 presents results from linear probability

model for WFH-Only that conditions on all worker characteristics. Overall, the results from

the regression analysis are qualitatively consistent with to the unconditional group comparisons

discussed in the main text.

Column (1) predicts WFH-Only status in February 2020 using information on gender, age,

race and ethnicity, education, household income, and the presence of children. Column (2)

displays results of a regression with all the same right-hand variables plus controls for industry.

By construction, the sample for column (2) is restricted to individuals who were employed in

February; to maintain comparability, column (1) is also restricted to those employed in Febru-

ary. Workers who were female, older, white, and had no children in the home were more likely

to be WFH-Only in February; this remains true whether or not one controls for industry. How-

ever, the size of the coefficients is small, and the R2 is very low, below 0.03 in both columns

(1) and (2), indicating that demographics and industry are poor predictors of WFH prior to

the pandemic.

Columns (3)-(4) predict WFH-Only status in May 2020, near the onset of the pandemic.

There is no change in the signs on the coefficients related to gender, age, race and ethnicity,

and children, but in all cases the magnitudes increase markedly. Further, education and house-

hold income become quite strong predictors of WFH-Only in May, while these variables were

insignificant for February. The R2 is higher for May as well, at 0.138 without industry controls

and 0.217 with industry controls.

Columns (5)-(6) predict WFH-Only status for December 2020. Between May and December,

the intercept term declines in magnitude. In several cases the estimated coefficients remain

stable from May to December, including for females and younger and older workers. Several

coefficients decline in magnitude and become insignificant from May to December, including

for Black and Hispanic, low education, and low income. Interestingly, from May to December

the magnitude of the coefficient for high education declines somewhat, while the magnitudes

of the coefficients for high income and children increase.
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G Work from Home Comparisons in the RPS and CPS

Section 2.4.3 in the main text documents that, in the RPS, differences in WFH between de-

mographic groups increased substantially during the pandemic. Here, we assess the extent to

which heterogeneity in WFH in the RPS is consistent with heterogeneity in WFH in the CPS.

Starting in May 2020, the CPS added the following question to the survey questionnaire: “At

any time in the last 4 weeks, did (you/name) telework or work at home for pay because of the

coronavirus pandemic?”, followed by a yes/no answering option. Data based on this question

is not directly comparable to WFH data in the RPS for several reasons (see Section 2.3 for a

discussion of the WFH question asked by the CPS and how it compares to WFH information

in the RPS). However, the RPS does provide information on whether individuals worked a

higher fraction of days from home last week compared to a typical week in February 2020, just

prior to the pandemic. Figures G.1 and G.2 compare these measures in the RPS and CPS by

demographic group and industry.

We emphasize three primary takeaways from these figures. First, the best-fit lines through

the scatterplots feature a high R2 value (it is above 0.6 in every month but one, and is above

0.7 in a majority of months). This implies that both surveys feature a similar ranking of WFH

rates across worker groups. Second, the scattered data lie fairly close to the 45 degree line,

indicating that both survey measures yield fairly similar levels, despite representing somewhat

different WFH concepts. Third, the slope of the best-fit lines is slightly below one, indicating

that the variation in pandemic-related WFH in the CPS is somewhat larger than variation in

additional WFH in the RPS.
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Figure G.1: Work from Home by Individual Characteristics: RPS vs. CPS
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(e) September
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(f) October
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(g) November
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Sources: Real-Time Population Survey and Current Population Survey, ages 18-64. The graphs compare WFH
rates in the RPS and CPS by demographic group. Both the RPS and CPS samples are individuals employed
in a given month. The CPS values show the sample share answering yes to the WFH question in the CPS (see
main text). The RPS values show the sample share reporting more workdays without a commute last week
compared to February. Those not employed in February are included with zero commutes before the pandemic.
Definitions of demographic groups are provided in Appendix A.4. We do not include the income categories
because the CPS does not contain information on 2019 household income for the months of interest.
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Figure G.2: Work from Home by Industry: RPS vs. CPS
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(e) September
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(f) October
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(g) October
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Sources: Real-Time Population Survey and Current Population Survey, ages 18-64. The graphs compare WFH
rates in the RPS and CPS by demographic group. Both the RPS and CPS samples are individuals employed
in a given month. The CPS values show the sample share answering yes to the WFH question in the CPS (see
main text). The RPS values show the sample share reporting more workdays without a commute last week
compared to February. Those not employed in February are included with zero commutes before the pandemic.
Industry classification is by industry of employment in the current month. Definitions of industry groups are
provided in Appendix A.4.
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H Additional Facts On WFH, Job Loss and WFH ability

H.1 Job Loss and WFH Ability

(a) By Demographic Group
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Figure H.1: Job Loss in the Pandemic vs. Share in WFH Occupations

Source: Real-Time Population Survey, ages 18-64. Scatters show data from May. The inset plot shows the re-
gression slope for each available month with two-standard-error bands. In both panels, the sample is individuals
who were employed in February 2020. The x-axis is the sample share of potential WFH workers based on the
measures of Dingel and Neiman (2020). The y-axis is the percent decline in employment from February to May.
Left panel: Outcomes by demographic group. Right panel: Industry classification is by industry of employment
in February. Definitions of demographic and industry groups are provided in Appendix A.4.

Larger pre-pandemic shares in WFH occupations are associated with lower job loss rates

during the pandemic. Figure H.1 plots the log change in the number of February workers that

were WFH-Only in May against the log share of workers that were in WFH jobs in February,

based on the measures of Dingel and Neiman (2020). The regression slopes are negative in

all months of our sample and across both demographic groups and industries. Across both

demographic groups and industries, the relationship is statistically significant in all months.

Job loss rates in different groups/industries were therefore clearly negatively related to WFH

ability across occupations.
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H.2 Partial WFH, Job Loss, and WFH Ability

Figure 7 in the main text showed larger job losses during the pandemic are associated with

smaller growth in WFH-Only employment during the pandemic. Here, Figure H.2 documents

the relationship for a broader definition of WFH: WFH at least one day. With this broader

definition of WFH, we continue to find a negative relationship between job losses and growth

in WFH employment across demographic groups and industries.

Figure 8 in the main text showed that larger shares of WFH occupations were associated

with stronger growth in the WFH-only share of employment. Here, Figure H.3 documents this

relationship for WFH at least one day. With this broader definition of WFH, we continue

to find a positive relationship between WFH occupation share and the size and WFH growth

during the pandemic. The relationship remains statistically significant for all months when

comparing demographic groups and industries.
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Figure H.2: Job Loss vs. Changes in WFH Employment

(a) By Demographic Group
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Source: Real-Time Population Survey, ages 18-64. Scatters show data from May. The inset plot shows the re-
gression slope for each available month with two-standard-error bands. In both panels, the sample is individuals
who were employed in February 2020. The x-axis is the log change from February to May in the sample share
who was employed and WFH at least one day. The y-axis is the percent decline in employment from February
to May. Left panel: Outcomes by demographic group. Right panel: Industry classification is by industry of
employment in February. Definitions of demographic and industry groups are provided in Appendix A.4.
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Figure H.3: Changes in Full- and Part-Time WFH Share of Employment vs. Share in WFH
Occupations

(a) By Demographic Group
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Source: Real-Time Population Survey (ages 18-64) and Dingel and Neiman (2020). Scatters show data from
May. The inset plot shows the regression slope for each available month with two-standard-error bands. The
x-axis is the February sample share of potential WFH workers based on the measures of Dingel and Neiman
(2020). The y-axis is the log change from February to May in the share of employed workers who WFH at least
one day. Left panel: Outcomes by demographic group. Right panel: Industry classification is by industry of
employment in February. Definitions of demographic and industry groups are provided in Appendix A.4.
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