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Several recent studies have expressed concern that the Haar prior typically imposed in 
estimating sign-identified VAR models may be unintentionally informative about the 
implied prior for the structural impulse responses. This question is indeed important, but 
we show that the tools that have been used in the literature to illustrate this potential 
problem are invalid. Specifically, we show that it does not make sense from a Bayesian 
point of view to characterize the impulse response prior based on the distribution of the 
impulse responses conditional on the maximum likelihood estimator of the reduced-form 
parameters, since the prior does not, in general, depend on the data. We illustrate that 
this approach tends to produce highly misleading estimates of the impulse response 
priors. We formally derive the correct impulse response prior distribution and show that 
there is no evidence that typical sign-identified VAR models estimated using conventional 
priors tend to imply unintentionally informative priors for the impulse response vector or 
that the corresponding posterior is dominated by the prior. Our evidence suggests that 
concerns about the Haar prior for the rotation matrix have been greatly overstated and 
that alternative estimation methods are not required in typical applications. Finally, we 
demonstrate that the alternative Bayesian approach to estimating sign-identified VAR 
models proposed by Baumeister and Hamilton (2015) suffers from exactly the same 
conceptual shortcoming as the conventional approach. We illustrate that this alternative 
approach may imply highly economically implausible impulse response priors. 
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1 Introduction

The conventional approach to estimating sign-identified VAR models, as discussed in Uhlig (2005),

Rubio-Ramirez, Waggoner and Zha (2010), Arias, Rubio-Ramirez andWaggoner (2018) and Antolin-

Diaz and Rubio-Ramirez (2018), involves specifying a Haar prior for the orthogonal rotation matrix

 and a Gaussian-inverse Wishart prior for the parameters  and Σ of the reduced-form VAR

model, where  denotes the slope parameters and Σ is the error covariance matrix. The prior for

the impulse response vector  = (Σ ) is defined implicitly. A number of recent studies have

questioned the extent to which the impulse response estimates from these models are driven by the

choice of the prior for , given that  does not enter the likelihood and its prior cannot be overruled

by the data (see, e.g., Baumeister and Hamilton 2018, 2019, 2020; Giacomini and Kitagawa 2020;

Plagborg-Møller 2019; Watson 2020). Several of these studies have argued for ignoring empirical

evidence obtained using the conventional approach because they see no reason for the posterior

impulse response estimates and the credible sets reported in applied work to be more plausible

than the other responses in the identified set.

This view is based on analysis in Baumeister and Hamilton (2015) who claimed that the Haar

prior typically imposed for  is unintentionally informative about the implied prior for the struc-

tural impulse responses. The question raised by Baumeister and Hamilton is indeed an important

question for applied work, but we show that the tools they (and several subsequent studies) used to

illustrate this problem are invalid. Specifically, Baumeister and Hamilton (2015) proposed charac-

terizing the impulse response prior based on the distribution of the impulse responses conditional

on the maximum likelihood estimator (MLE) of the reduced-form parameters. We show that this

approach does not make sense from a Bayesian point of view. This point is self-evident because

the prior in Bayesian analysis does not, in general, depend on the data. Since the impulse response

distribution conditional on the MLE depends on the data by construction, it cannot be the prior.
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We formally show that the distribution derived in Baumeister and Hamilton (2015) is not the im-

pulse response prior distribution implied by conventional priors for the model parameters. The

flaw in Baumeister and Hamilton’s analysis is that the prior for a given impulse response induced

by the prior for the rotation matrix and by the sign restrictions also depends on the priors for the

reduced-form parameters, which affects the location and shape of the impulse response prior dis-

tribution. We show by example that their approach tends to produce highly misleading estimates

of the impulse response priors.

This result invalidates the recent evidence against conventional priors for sign-identified VAR

models, but leaves unanswered the original question of how widespread unintentionally informative

impulse response priors are in applied work and, more importantly, to what extent these implicit

impulse response priors affect posterior inference. In this paper, we develop new tools that allow

us to examine these questions. We illustrate the use of these tools using examples drawn from

the empirical literature. Our results provide a striking contrast to views prevailing in some of the

recent literature.

There are four main results. First, we show that there is no evidence that typical sign-identified

VAR models estimated using conventional priors are unintentionally informative for the impulse

response vector . Instead, in models based on static sign restrictions, standard uniform-Gaussian-

inverse Wishart priors tend to imply an uninformative prior for  (in the sense that the impulse

response prior in the absence of sign restrictions is centered near zero and is fairly diffuse). This

result is general in that it depends only on the prior and not on the data.

Second, the corresponding impulse response posterior for  is driven largely by the data. This

result is consistent with new evidence that, unlike in the stylized example in Baumeister and

Hamilton (2015) which implicitly restricted attention to models with a single sign restriction, the

extent of the uncertainty about the impulse responses attributable to  tends to be much smaller
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in models with multiple sign restrictions. Hence, the prior uncertainty about  is dominated by the

uncertainty about the reduced-form parameters, which is updated based on the data. Our evidence

suggests that concerns about the Haar prior for  have been greatly overstated and that alternative

estimation methods are not required in typical applications.

Third, we observe that in models with both static and dynamic sign restrictions the implied

prior for  is necessarily informative. We illustrate by example that even in the latter class models,

however, the prior for  need not be unintentionally informative. Moreover, we show that in this

case as well the posterior is driven largely by the data, not by the prior.

Fourth, we demonstrate that the alternative Bayesian approach to estimating sign-identified

VAR models introduced in Baumeister and Hamilton (2015), which was intended to avoid the

problem of unintentionally informative impulse response priors, suffers from exactly the same con-

ceptual shortcoming as the conventional approach. Based on the oil market model of Baumeister

and Hamilton (2019), we illustrate that this alternative approach, which has been used in several

recent studies, may imply highly economically implausible impulse response priors.

The remainder of the paper is organized as follows. In Section 2, we derive the joint prior

distribution of the structural impulse responses in sign-identified models under the conventional

conjugate prior specification. We show that this distribution depends not only on the prior spec-

ification for the rotation matrix , but also on the prior for the reduced-form parameters. As a

result, the posterior of the structural impulse responses is updated based on the data at all horizons

of the response function, even though the prior distribution of  is not. We formally show that

the distribution of the impulse responses conditional on the MLE, as reported by Baumeister and

Hamilton (2015), is not the impulse response prior. Thus, the approach of plotting the histogram

over the identified set of the impulse responses conditional on the MLE of the reduced-form para-

meters is not informative about the prior distribution for  nor does it tell us to what extent the
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posterior distribution of  depends on the prior. We illustrate this point in the context of a typical

empirical application.

We also refute the prevailing view that the uncertainty about necessarily results in wide identi-

fied sets for the structural responses, even controlling for estimation uncertainty in the reduced-form

parameters. This view has been based on a stylized example discussed in Baumeister and Hamilton

(2015). Their results, however, are driven by the implicit assumption that there is only one sign

restriction in the VAR model. In the presence of multiple sign restrictions, as is typical in applied

work, the extent of the uncertainty about the impulse responses attributable to uncertainty about

 tends to be much smaller, mitigating concerns about the Bayes estimators of  being sensitive to

the assumptions about the prior for  and largely obviating the need for alternative econometric

approaches and explaining why the posterior of  is dominated by the data.

In section 3, we address the question of how to answer the questions raised in Baumeister

and Hamilton (2015). We provide simple diagnostic tools that help make explicit the prior on the

joint distribution of the structural impulse responses implied by the conventional uniform-Gaussian-

inverse Wishart prior (see, e.g., Uhlig 2005; Waggoner, Rubio-Ramirez and Zha 2010; Arias, Rubio-

Ramirez and Waggoner 2018, Antolin-Diaz and Rubio-Ramirez 2018). These tools may be used to

choose between economically plausible and implausible impulse response prior specifications. We

also illustrate how applied users can assess the extent to which the joint posterior distribution of  is

driven by the data as opposed to the prior specification for . Our proposal is to compare the joint

distribution of the structural impulse responses obtained by drawing from the prior distribution of

the model parameters to the joint posterior distribution of the structural impulse responses. We

provide metrics that help quantify the extent to which the prior location and dispersion of the joint

impulse response distribution is updated by the data.

In section 4, we illustrate the use of these tools in a typical sign-identfied VAR model and show
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that, given a prior mean of zero for the slope parameters, a conventional uniform-Gaussian-inverse

Wishart prior for the VAR model parameters implies an uninformative prior for , defined as a prior

for the impulse response vector that in the absence of sign restrictions is centered near zero and is

fairly diffuse. This result is general in that the prior of the impulse response does not depend on

the data. We also show that the posterior of  is largely driven by the data rather than the prior

for , contradicting the unsubstantiated claim in Baumeister and Hamilton (2015) that inference

based on the impulse response posterior is spurious.

Whereas section 4 focuses on structural VAR models based on static sign restrictions, section

5 examines an empirical example that involves both static and dynamic sign restrictions, which

renders the prior of  necessarily informative. We show that even in the latter case, the conven-

tional uniform-Gaussian-inverse Wishart prior need not imply unintentionally informative impulse

response priors, further illustrating the use of the tools developed in section 3. We also confirm

that, as in section 4, the posterior is dominated by the data rather than the prior.

In section 6, we show that the alternative Bayesian approach proposed by Baumeister and

Hamilton (2015) as a solution to the problem of unintentionally informative impulse response

priors suffers from exactly the same conceptual shortcoming as the conventional approach. Their

central idea is that we can define priors for the parameters of the structural VAR representation,

avoiding the use of rotation matrices and of the Haar prior. The structural impulse responses of

interest are then defined as a nonlinear transformation of the parameters of the structural VAR

representation. The joint prior distribution of these impulse responses, however, is never derived.

We observe that, as in the conventional approach, nothing prevents the implied prior for  from

being unintentionally informative. Our approach to deriving the joint prior for  accommodates the

framework of Baumeister and Hamilton (2015) and may be used to evaluate the prior for  implied

by their alternative prior specification. We illustrate this point based on the global oil market
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model of Baumeister and Hamilton (2019). We show that, unlike in the conventional approach,

there is strong evidence that the implied prior for  is economically implausible. The concluding

remarks are in Section 7.

2 The impulse response prior

In line with many other studies, our premise is that the primary object of interest in structural VAR

analysis is the structural impulse response vector  obtained by stacking the structural responses

of interest. Consider the -dimensional structural VAR() model

0 = 1−1 + +− + 

where the intercept has been suppressed for expositional purposes, ,  = 0  , are  × 

coefficient matrices, and the structural errors, , is mean zero mutually uncorrelated Gaussian

white noise. Without loss of generality, we impose the normalization that  has the covariance

matrix . The corresponding reduced-form VAR() representation is

 = 1−1 + +− + 

where  = −10 ,  = 1  , and  = −10 . The variance-covariance matrix of the reduced-

form error, , is Σ = −10 −100 . Identification is typically achieved by imposing restrictions on −10 .

In models identified based on exclusion restrictions, the vector of structural impulse responses can

be written as  = (Σ), where  = [1  ] and (·) denotes a nonlinear function. In the case

of sign-identified models, −10 = , where  is the lower triangular Cholesky decomposition of Σ

with positive elements on the diagonal and  denotes an ×  orthogonal matrix such 0 = .

Hence,  = (Σ), where (·) denotes a nonlinear function. For details of the specification,
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estimation and identification of this class of models the reader is referred to Kilian and Lütkepohl

(2017).

2.1 The conventional uniform-Gaussian inverse Wishart prior

The conventional approach to estimating sign-identified VAR models is to postulate an inverse

Wishart prior for Σ and a Gaussian prior for [1  ] conditional on Σ, combined with an

independent Haar prior for , which may be viewed as a uniform prior in the space of possible

rotation matrices. Many applications of sign-identified models rely on a uniform-diffuse Gaussian-

inverse Wishart prior (see, e.g., Uhlig 2005). Although such diffuse priors imply a uniform-Gaussian-

inverse Wishart posterior, they are not proper priors, making it impossible to compute the summary

statistics proposed in Section 3. For expository purposes, we therefore work with a version of the

popular conjugate reduced-form Gaussian-inverse Wishart prior proposed by Karlsson (2013), as

specified by Antolin-Diaz and Rubio-Ramirez (2018). This so-called Minnesota prior involves a

linear decay of the prior standard deviation at higher lags, sets the relative tightness of other

variables in a given equation to 1, and sets the prior standard deviation of the first own lag in each

equation to 0.2. The prior variance is scaled based on estimates of the innovation variance obtained

from fitting univariate AR(1) models to each variable.

Given the Haar prior for , as originally proposed by Uhlig (2005) and Rubio-Ramirez, Wag-

goner and Zha (2010), these assumptions imply a uniform-Gaussian-inverse Wishart prior for struc-

tural VAR models identified by sign restrictions. It should be noted that our approach could be

adapted to other proper priors, as illustrated in Section 6. While one could entertain other prior

specifications, our objective for now is to follow as closely as possible current practice, as dis-

cussed in Uhlig (2005), Rubio-Ramirez et al. (2010), Arias et al. (2018) and Antolin-Diaz and

Rubio-Ramirez (2018).
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2.2 The implied prior for  in sign-identified models

The conventional approach is for the user to specify a joint prior for the parameters , ,

and Σ, without examining the implied prior for the vector of the structural impulse responses,

 = (Σ). Next, we derive this implied prior distribution by the change-of-variable method,

building on Inoue and Kilian (2019). For expository purposes we abstract from narrative inequality

restrictions, as discussed in Antolin-Diaz and Rubio-Ramirez (2018), and from combinations of sign

and zero restrictions, as discussed in Arias et al. (2018). Given the rotation matrix , define the

×  skew-symmetric matrix  by

 =  − 2( +)−1 (1)

and let  be the
(−1)
2

× 1 vector that consists of the below-diagonal elements of . When  is

uniformly distributed over the space of  ×  real matrices such that 0 =  and || = 1, the

density of  is given by

() =

Ã
Π=2

Γ
¡

2

¢



2

!
2
(−1)(−2)

2

| +|−1  (2)

(see equation 4 in León et al., 2006, p. 415).

Let  denote the 2 × ((+1)
2

duplication matrix of zeros and ones such that vec() =

vech() for any  ×  symmetric matrix  (see Definition 4.1 in Magnus (1988), p. 55). Let

+
 denote the Moore-Penrose inverse of  so that vech() = +

 vec() (see Definition 6.1 in

Magnus (1988), p.94).  is the 2 × 2 commutation matrix such that vec( 0) = vec()

for any  ×  matrix  (see Magnus and Neudecker (1999), pp. 46—47).  is the
(+1)
2

× 2

elimination matrix of zeros and ones such that () = 0() for any lower triangular
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matrix  (see Definition 5.1 of Magnus (1988), p. 76),

Proposition 1 (Joint prior density of ): Let  = (Σ) denote the 2( + 1) × 1 vector of

structural impulse responses, where  is the maximum impulse response horizon. Then the joint

prior density of  is given by

() = 2
(+1)

2 |Σ|− (−1)
2 | + |−(−1)

¯̄̄̄
vec(Φ)0

vec()

vec(Φ)

vec()0

¯̄̄̄ 1
2

1(|Σ)2(Σ)() (3)

where (), 1(|Σ), 2(Σ) are the prior densities of ,  conditional on Σ and Σ, respectively, 

satisfies equation (1), and  denotes the below-diagonal elements of .

The proof of Proposition 1 can be found in the appendix.

2.3 The distribution of  conditional on the MLE

As emphasized in Baumeister and Hamilton (2015) andWatson (2020), in the conventional Bayesian

approach to estimation and inference, abstracting from estimation uncertainty, summary statistics

about the impulse responses in the identified set depend only on the prior for . The following

propositions makes this point more formally.

Proposition 2 (Joint prior density of  conditional on  and Σ): Let  = (Σ ) denote the

2( + 1) × 1 vector of structural impulse responses, where  is the maximum impulse response

horizon. Then the joint prior density of , given  and Σ, is given

(|Σ) =
¯̄
 0 ( ⊗ ( 0 +  0Φ0Φ ))

¯̄ 1
2 () (4)

The proof is in the appendix. Unlike in Proposition 1, the joint prior density for  no longer

depends on the priors for  and Σ.
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Baumeister and Hamilton (2015) propose to assess the implications of the uniform Gaussian-

inverse Wishart prior for the prior of individual elements of  based on the distribution (| e eΣ),
where e and eΣ denote the MLE of  and Σ, respectively. It is immediately clear upon inspection

that (| e eΣ) differs from the prior distribution we derived in (3). Hence, (| e eΣ) is not the prior,
invalidating any conclusions about how informative the uniform-Gaussian inverse Wishart prior is

for the structural impulse responses based on (| e eΣ). Another, simpler, way of making this point
is to observe that (| e eΣ) is a function of MLE and hence depends on the data. Obviously, in the
standard Bayesian framework employed in estimating sign-identfied VAR models, the prior does

not depend on the data. As a result, the stylized example provided in Baumeister and Hamilton

(2015) to illustrate how the conventional Bayesian approach to estimating sign-identified VAR

models implies unintentionally informative prior distributions for the impact responses is missing

the point. Effectively, Baumeister and Hamilton criticize the priors employed in the literature based

on diagnostics that depend on the data, which is at odds with the Bayesian approach to impulse

response inference.

Essentially the same approach as in Baumeister and Hamilton (2015, 2018, 2019, 2020) has

also been used by Watson (2020, p. 189) who refers to the element-wise distribution of  over

(| e eΣ) as the impulse response prior for a given element of  induced by the prior for  and the

sign restrictions. This language is misleading since the actual impulse response priors induced by

the prior distribution for  also depend on priors for the reduced-form parameters, as we showed

earlier. Moreover, the approach employed by Baumeister and Hamilton (2015) and Watson (2020),

among others, is pointless from a Bayesian point view as a characterization of the prior as well as as

a characterization of the posterior, since the estimation uncertainty about  and Σ does not vanish

in finite samples. As the next subsection illustrates, their approach tends to be highly misleading

in practice.
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2.4 Empirical illustration

We illustrate the concerns with the approach of Baumeister and Hamilton (2015) andWatson (2020)

using a simple, but realistic example drawn from the empirical literature. Consider a structural VAR

model identified by sign and exclusion restrictions that examines the determination of household

inflation expectations. The model includes 12 lags and is estimated with an intercept. The variables

include the log real price of U.S. motor gasoline (), CPI headline inflation () and the mean

one-year inflation expectation in the Michigan Survey of Consumers (exp). The model explains

variation in these three variables in terms of three mutually uncorrelated structural shocks: (1) A

nominal gasoline price shocks; (2) a shock to the core CPI (defined as the CPI excluding gasoline);

and an idiosyncratic shock to household inflation expectations that is not reflected in current prices.

We postulate that

⎛⎜⎜⎜⎜⎜⎜⎝







exp



⎞⎟⎟⎟⎟⎟⎟⎠ =

⎡⎢⎢⎢⎢⎢⎢⎣
+ − 0

+ + 0

+ + +

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝

nominal gasoline price


core CPI


idiosyncratic infllation expectation


⎞⎟⎟⎟⎟⎟⎟⎠ (5)

Further discussion of the rationale of these restrictions and of the VAR model specification can be

found in Kilian and Zhou (2020a) whose analysis in turn is motivated by Coibion and Gorodnichenko

(2015). The model is estimated based on a conventional uniform-Gaussian-inverse Wishart prior

with the prior means of all slope parameters set to zero. Since identification is achieved by a

combination of sign and exclusion restrictions on the impact responses, estimation requires the use

of the importance sampler proposed in Arias et al. (2018). Our analysis focuses on individual

elements of  to facilitate comparisons with the discussion in Baumeister and Hamilton (2015).

Baumeister and Hamilton’s first proposal is to evaluate the support of (| e eΣ), where e and

eΣ denote the MLE of  and Σ, respectively. The upper panel of Figure 1 shows estimates of
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this type of identified set for selected responses in the empirical example discussed in the preceding

section. In all cases, the identified sets form a narrow region, indicating a small degree of uncertainty

associated with . What we learn from this exercise is that in samples large enough for the MLE to

be estimated precisely, there remains residual uncertainty about the value of the structural impulse

responses associated with , but that uncertainty in our empirical application is small.

This exercise is intended to illustrate the frequentist properties of the conventional Bayesian

approach, but conditioning on the data in constructing the MLE, while still drawing from the

Haar prior for , renders this exercise meaningless from a Bayesian point of view. In particular,

plotting the identified set conditional on the MLE of the reduced-form parameters does not tell

us anything about the identified set for  under the uniform-Gaussian-inverse Wishart prior for

the model parameters. The lower panel of Figure 1 shows the identified sets for the impulse

responses under this prior, with the boundaries truncated to match the dimensions of the upper

panel, for illustrative purposes. Panel (b) illustrates that this identified set covers nearly the entire

parameter region, whereas the one conditional on the MLE does not. Thus, these two identified

sets are fundamentally different objects.

Moreover, plotting the identified set, as in Figure 1, tells us nothing about the distribution of the

responses over the identified set. This is why Baumeister and Hamilton (2015), in addition, plot the

histogram over the identified set obtained conditional on the MLE for selected individual impulse

responses. This may be viewed as an approximation to the marginal density for each element of 

implied by (| e eΣ). The upper panel of Figure 2 shows such histograms for the impact response
of the real price of gasoline to a positive shock to the nominal retail price of gasoline. This impact

response is restricted to be positive. It also shows the corresponding histograms constructed from

the identified sets under the prior and under the corresponding posterior. The lower panel in Figure

2 shows the corresponding results for the same response function at horizon 2.
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Focusing on the impact response, the histogram conditional on the MLE in panel (a) is tightly

concentrated, whereas the histogram over the identified set under the prior in panel (b) is not. Not

only is the shape of these histograms rather different, but so is the location and the dispersion,

underscoring our point that Baumeister and Hamilton’s and Watson’s approach does not capture

the impulse response prior, which makes it impossible to ascertain whether the impulse response

prior is reasonable or not.

Given that our tools allow us to construct the prior for the impact response, how plausible is

the prior in panel (b)? One may have expected the prior distribution to decay smoothly in the

positive range, as the value of the response increases. However, even though the impulse response

distribution is truncated from below at zero, the mode of the prior distribution is strictly positive.

This result follows from the fact that the distribution of
√
Σ11 has no mass at zero and is strictly

positive with probability 1, and that 12 has strictly positive support after imposing the sign

restrictions, as implied by the histogram in the first column of Figure 2. While the prior in panel

(b) does not look unreasonable in that it embodies the maintained sign restriction and is fairly

diffuse, it is hard to know how economically plausible this prior for the impact response is.

The latter question does not matter much, however, given strong evidence that, whatever feature

of this prior a user may disagree with, is overruled by the data. Panel (c) in Figure 2 shows the

corresponding histogram over the identified set under the posterior. Two facts stand out. First,

the median of this distribution has shifted to the right, compared to the prior in panel (b), and

the dispersion has been greatly reduced, providing compelling evidence that the posterior is driven

by the data rather than the prior. Thus, there is no support for the conjecture in Baumeister and

Hamilton (2015) and Watson (2020) that the impulse response posterior tends to be dominated

by the prior. Second, the median of the posterior value in panel (c) is distinctly larger than the

median conditional on the MLE in panel (a).

13



The lower panel of Figure 2 shows the corresponding results for the response of the real gasoline

price after two months. Unlike in the upper panel, there is no sign restriction on this response.

As a result, the prior distribution is centered on a value close to zero with considerable probability

mass on values to the left and to the right of zero. This prior distribution is consistent with the

view that we do not know a priori whether this response is positive or negative, which makes a

central tendency near zero a reasonable representation of our uncertainty about this response. In

fact, it is more reasonable than a truncated uniform distribution centered on zero would have been,

since very large and very small values of the response are less likely. Much the same reasoning has

been applied to the prior for the slope coefficients in VAR modeling for many years. Moreover,

the support is wide enough to cover any value of this response that would be reasonable a priori.

Thus, not only is this impulse response prior absolutely reasonable, but the posterior distribution

in panel (c) indicates that the posterior is quite different from the prior. The posterior median is

far from the center of the prior distribution and the posterior distribution is highly concentrated

around the posterior median. As in the previous example, the distribution conditional on the MLE

in panel (a) tells us nothing about the prior nor does it match the posterior. We conclude that

there is no substitute for a proper Bayesian analysis of this problem.

The evidence in the upper panels of Figures 1 and 2 is instructive for four reasons. First, it shows

that the identified set conditional on the MLE is very narrow, indicating that whatever assumptions

we make about the prior for  will not have much of an effect on the impulse response posterior.

This finding is in sharp contrast to the illustrative examples discussed in Baumeister and Hamilton

(2015), which imply much wider identified sets, conditional on the reduced-form MLE. It is the

perception that sign-identified imply wide identified sets that has prompted Plagborg-Møller (2019)

and Giacomini and Kitagawa (2020), among others, to develop alternative methods of inference

that avoid specifying a prior for . In fact, these studies explicitly cite Baumeister and Hamilton
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(2015) as the motivation for their alternative approaches. It is fair to say that the literature may

not have evolved in this direction, were it not for the fact that Baumeister and Hamilton (2015)

overstated the importance of the prior for  for the structural impulse responses.

Our evidence suggests that the identified set conditional on the MLE in more realistic settings

tends to be so narrow that few applied users would even bother to think about the role of the prior

for . Why do we reach a different conclusion? The key difference is that Baumeister and Hamilton

(2015) in making their case against the Haar prior for  implicitly assumed that there is only one

sign restriction in the structural VAR model, regardless of . This assumption is not representative

for applied work. Even for  = 2, applied users would typically use four sign restrictions and in

larger models the number of sign restrictions tends to be much larger because, in practice, many

static sign restrictions are required to identify the structural shocks in sign-identified models. Since

each of these sign restrictions tends to truncate the identified set for the impulse responses in the

model, the resulting identified sets tend to be much tighter than suggested by the stylized examples

in Baumeister and Hamilton (2015). This result, of course, relies on the structural VAR model being

fully identified, as in our empirical example. When only one shock is identified in the structural

model, in contrast, there are far fewer sign restrictions and hence the identified set is much larger.

Second, the presence of additional static sign restrictions elsewhere in the model changes the

location and the shape of the prior distribution over the identified set of the responses and invali-

dates the analytical derivations of these prior distributions conditional on the MLE in Baumeister

and Hamilton (2015). For example, for VAR models with  = 3, as in our empirical example,

Baumeister and Hamilton (2015) derive the result that the density of the impact response is a

truncated uniform distribution conditional on eΣ. The histogram in panel (a) of Figure 2, shows

that the distribution of the impact response is far from uniform in general. It shows increasingly

higher probability mass, as values approach the upper bound of the identified set. This result again
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follows from the imposition of additional sign restrictions.

Third, the fact that the uncertainty about the responses attributable to  tends to be small

implies that the impulse response prior will be dominated by the priors for Σ (and possibly ),

which are updated based on the data. This fact helps explain why the posterior is dominated by

the data in models based on static sign restrictions.

Fourth, an immediate implications of this finding is that the choice of the prior over the support

of  in this application is largely inconsequential because any draw in the identified set for  would

imply substantively identical impulse responses. Whether this prior is assumed to be uniform or

not has little effect on the Bayes estimator of the responses.

Finally, it should be noted that our central point about the invalidity of the approach proposed

by Baumeister and Hamilton (2015) and Watson (2020) does not depend on the choice of the

loss function and the construction of the Bayes estimator. In the next section, we develop an

alternative approach to evaluating whether conventional priors for sign-identified VAR models are

unintentionally informative about the impulse response prior and whether they distort posterior

inference about the impulse responses.

3 An alternative approach to assessing impulse response priors

Our objective in this section is to examine the implications of the conventional uniform-Gaussian-

inverse Wishart prior for sign-identified VAR models for the joint prior distribution of the vector .

We also examine the implications of that prior for the joint posterior of , which has received little

or no attention in the literature so far, beyond unsubstantiated claims that this posterior is driven

by the implicit impulse response prior. One key difference from earlier studies is that we focus on

inference about vectors of impulse responses rather than selected responses one at a time. The

latter approach has been shown to be inappropriate for characterizing the shape and comovement
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of vectors of impulse responses as well as the uncertainty surrounding Bayes estimates of .1

For expository purposes, we conduct our analysis under absolute loss. The assumption of

absolute loss was also maintained by Baumeister and Hamilton (2015) and Watson (2020), among

many other studies, making it a natural starting point. Our analysis could be adapted to other

loss functions including quadratic loss and Dirac delta without affecting the points we are making.

3.1 Characterizing the joint prior under absolute loss

As before, let  denote the vector of unknown impulse responses obtained by appropriately stacking

all  impulse responses of interest into a vector. Since there are 
2 impulse response functions for

horizon  = 0 1 2 , in the -dimensional autoregressive model, if all responses are included,

 = 2( + 1). Let  ∈ Θ, where Θ is the set of all structural impulse response functions that

satisfy the identifying restrictions imposed on the structural VAR model. We abstract from the

details of the construction of , which may differ from one structural VAR model to another, because

our analysis in this section does not depend on these details. The space Θ may be approximated

by drawing from the distribution of the model parameters and simulating the distribution of the

structural impulse responses that are consistent with the identifying assumptions.

Given that the joint posterior of  is typically summarized based on the Bayes estimator of the

impulse response vector and the corresponding joint credible set, it is useful to compute similar

summary statistics for the joint prior distribution, building on results in Inoue and Kilian (2020)

who derived the Bayes estimator of  under absolute loss and the corresponding joint posterior

credible set. Let ( ) denote a loss function that maps from Θ×Θ to < and define the impulse
1The importance of joint inference about impulse response vectors has been made both in the frequentist literature

(see Lütkepohl, Staszewska-Bystrova and Winker 2015a,b, 2018; Inoue and Kilian 2016; Kilian and Lütkepohl 2017;

Bruder and Wolf 2018; Montiel Olea and Plagborg-Møller 2019) and in the Bayesian literature (see Sims and Zha

1999; Inoue and Kilian 2013, 2019, 2020).
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response estimator as

b = argmin∈[( )] (6)

where  ∈ Θ denotes an action and the expectation is with respect to the joint prior distribution

of  ∈ Θ, derived in Section 2.2. Under absolute loss,

( ) =

X
=1

| −  | (7)

where  and  are the  elements of  and , respectively. In practice, the impulse response

estimator under absolute loss may be approximated by

b = argmin
∈Θ

1



X
=1

X
=1

|() −  | (8)

where () is the th prior draw and b consists of  prior draws.

Similarly, we define the (1− )100% joint lowest prior risk region as

Θ1− = { ∈ Θ : (( )) ≤ 1−} (9)

where 1− is the smallest number such that the prior probability of Θ1− is 1− and  refers

to the loss function. Under absolute loss, this joint prior credible set is estimated as

bΘ1− =

⎧⎨⎩ ∈ bΘ :
1



X
=1

X
=1

|() −  | ≤ 1−

⎫⎬⎭ (10)

where b denotes the impulse response estimator and 1− is the smallest values such that

bΘ1− has prior probability 1 −  in the limit, as the number of prior draws approaches in-

finity. In practice, these joint credible set may be constructed by sorting 1


P
=1 (

() (1)),

18



1


P
=1 (

() (2)),... 1


P
=1 (

() ()), in ascending order and retaining the first (1−)100%

draws, starting with the draw with the lowest value.

3.2 Summary statistics for the difference between the joint prior and the joint

posterior distribution of the structural responses

It is straightforward to visually assess the joint prior distribution of  based on the Bayes estimate

of the responses and the responses in the joint credible set. Likewise, it is straightforward to

visually compare the posterior of  to the prior distribution or to compare posteriors derived under

alternative priors. It nevertheless can be useful to quantify these differences based on summary

statistics.

By construction, the joint posterior density of  takes the same form as () in Proposition 1

with 1(|Σ) and 2(Σ) denoting the posterior densities of  conditional on Σ and Σ, respectively.

This allows us to apply the same diagnostics to draws from the posterior distribution of , as for

the draws from its prior distribution. Since  depends on Σ at all horizons and, in addition, on 

at all horizons but the impact period, it follows immediately that the posterior distribution of  at

all horizons depends on the data. This means that, in practice, Bayes inference about  conditional

on the data is never completely determined by the prior for .

Building on the notation in Section 3.1, we propose four summary statistics for measuring the

extent to which the joint posterior distribution of the impulse responses differs from the corre-

sponding prior distribution. When these statistics depend on the loss function, we focus on the

example of absolute loss, for expository purposes. Our discussion for now focuses on comparing

the estimates of the responses and the joint credible sets under the prior and under the posterior,

which is a natural starting point, since these are the estimators an applied user presumably would

focus on.
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First, we consider the Hausdorff distance metric

(Θ
Θ) = max

(
sup

∈Θ

inf
∈Θ

( )

sup
∈Θ

inf
∈Θ

( )

)
 (11)

which refers to the greatest of all the distances from a point in one set to the closest point in the

other set. Here Θ denotes the set of draws in the joint prior credible set defined in section 3.1

and Θ the set of draws in the corresponding joint posterior credible set, defined in Inoue and

Kilian (2020). The subscripts have been dropped for notational convenience. If the two credible

sets are identical, this distance measure will be zero, which would indicate that the posterior draws

do not depend on the data at all. Implicit in this approach is the presumption that all impulse

responses are measured in the same unit (say, percent). If not, this measure may be applied to

subsets of responses measured in the same units or an alternative loss function has to be used (see

Inoue and Kilian 2020).2

Second, we can summarize the maximum change and the average change in the central tendency

of the distribution, as measured by the location of the estimate of the responses, in one number

each, as long as all impulse responses are measured in the same units. For example, the average

change in the location of the impulse response estimator based on the posterior distribution relative

to that based on the prior distribution is

 ≡
X
=1

¯̄̄̄b − b

¯̄̄̄,
  (12)

where |·| denotes the absolute value, b is the impulse response estimator defined in section 3.1

and b denotes the corresponding Bayes estimator defined in Inoue and Kilian (2020). To the

2For related applications of the Hausdorff distance metric see, e.g., Chernozhukov, Hong and Tamer (2007).
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extent that impulse responses are measured in different units, the same approach may be applied

to the responses of individual variables.

Third, we investigate by how much the dispersion of the impulse response draws about the

measure of central tendency implied by the loss function is reduced, as the prior and the likelihood

are combined to form the posterior.

Step 1: For all members of the credible set Θ except for the element
b



 , define the

dispersion about b as

 =

(1−)X
=1

X
=1

¯̄̄̄

()
 − b

¯̄̄̄
(1− )



where |·| denotes the absolute value.

Step 2: Compute the analogous dispersion measure based on the impulse responses drawn from

the prior distribution, .

Step 3: Then the percent change in the dispersion of the impulse response estimates, as the

prior is updated based on the likelihood, is given by

 ≡ 100 ∗
¡
 − 

¢
 (13)

This metric is labeled  because it tells us about changes in the concentration of the probability

mass about the impulse response estimate.

Fourth, to capture changes in the signs of the impulse responses, as the prior information is

updated based on the data, we transform the impulse response vector to a binary sequence of

positive and negative signs (excluding responses that are restricted to zero). With some abuse of

notation, define the Jaccard-like metric 1− |Θ ∩Θ||Θ ∪Θ|, where |Θ ∪
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Θ| is the number of uniquely distinct sign patterns of the impulse responses under the prior

distribution and the posterior distribution combined and |Θ∩Θ| is the number of shared

sign patterns of the impulse responses (see Jaccard 1908). Then the number of pairs of prior and

posterior impulse responses that have exactly the same pattern of signs is given by

|Θ ∩Θ| =
|Θ|X
=1

|Θ|X
=1

(
()

 
()

  0 ∀  = 1 2  2( + 1))

where |Θ| and
¯̄
Θ

¯̄
are the cardinalities of Θ and Θ, respectively, and (·)

denotes the indicator function. |Θ ∩Θ| measures the number of uniquely distinct sign

patterns that are shared by the impulse responses under the prior and under the posterior distri-

bution. Furthermore, let |Θ ∪ Θ| denote the cardinality of Θ ∪ Θ. Then

|Θ∪Θ| measures the number of uniquely distinct sign patterns encountered in the prior

and the posterior combined, and

(Θ
Θ) = 1− |Θ

 ∩Θ|
|Θ ∪Θ| ∈ [0 1]

A value of 1 indicates that there is no common sign pattern, whereas a value of 0 indicates that all

sign patterns are the same, corresponding to no updating. This distance metric is most useful when

applied to one response function at a time, since the odds that there is no common sign pattern

approach 1 when considering all elements of .3

Our discussion so far has focused on the impulse response estimator and on the draws contained

in the corresponding credible sets under the prior and under the posterior. It should be noted

3When restricting attention to the estimated joint (1−)100% credible set, the cardinality of |Θ| is1(1−),
where1 is the number of admissible prior draws; the cardinality of |Θ| is2(1−), where2 is the number

of admissible posterior draws; and the cardinality of Θ∪Θ is (1+2)(1−). In practice, the dimension
of the impulse response vector is adjusted to exclude responses that are restricted to zero, since these responses do

not change by construction.
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that it would be equally valid to compare all admissible prior draws and posterior draws. The

distance and dispersion metrics discussed above could be easily adapted for that purpose. Another

natural measure of the distance between the prior and the posterior distribution of  would be their

Kullback-Leibler divergence:

 =

Z
Θ

(|1   ) log
µ
(|1   )

()

¶
 (14)

where (|1   ) and () are the posterior and prior densities of , respectively.

In the next two sections, we illustrate by example the role of the prior for impulse response

inference in the context of several applications drawn from the empirical literature. We first examine

how informative conventional priors on , Σ, and  are for . We then investigate to what extent

these impulse response priors are overruled by the data. It should be noted that lack of evidence

that a prior is being overruled by the data does not necessarily imply that the prior is unduly

informative for the posterior. It is also possible that this prior simply lines up well with the

data. In the latter case, evidence that the posterior is robust to alternative prior specifications

adds credibility to the conclusions. The summary statistics discussed above are useful not only for

characterizing the extent to which impulse response priors are updated by the data. The same type

of summary statistics may also be used to quantify the sensitivity of the joint posterior distribution

to alternative prior specifications. The only difference is that in the latter case we compare the

posteriors under alternative prior specifications to the posterior under an arbitrarily determined

benchmark prior.
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4 Sign-identified VAR models based on static sign restrictions

In examining sign-identified VAR models, it is useful to differentiate between models identified by

static sign restrictions, possibly combined with exclusion restrictions, as discussed in this section,

before turning to models with additional dynamic sign restrictions, as discussed in section 5. For

expository purposes, in this section, we examine the same structural VAR model example already

discussed in section 2.4. The baseline prior sets the prior mean of the slope parameters to zero

(Prior 1), which is a reasonable starting point in models with stationary variables, and, in our

examples, produces posterior distributions that closely match those obtained using a uniform-

diffuse Gaussian-inverse Wishart prior. An alternative prior specification raises the prior mean

of the first own lag in each equation to 0.9, implying high persistence in the responses (Prior 2).

Finally, we experiment with replacing the estimated innovation variances by fixed values of 0.01,

which changes the prior mean of Σ as well as the prior variance of the slope parameters (Priors 3

and 4). These choices are summarized in Table 1.

If we are interested in the implications of the prior for the shapes and comovement of the

structural response functions, as applied users typically are, it is essential to report statistics sum-

marizing the joint prior distribution of  rather than the marginal distributions. Figure 3a examines

the question of whether Prior 1 is informative for the joint impulse response prior. The prior for

impact responses that are restricted to zero are degenerate and may be dropped from consideration.

Except when a sign restriction is imposed on impact, the remaining response estimates are close to

zero, consistent with the impulse response prior being largely uninformative. The estimates of the

responses that are restricted to be positive or negative tend to be at the lower end of the range of

responses in the joint prior credible set. Thus, there is no evidence that the impulse response prior

for this model favors large responses.

In practice, what matters most is not how informative the impulse response prior is, but how
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much this prior affects the impulse response posterior. Because this posterior depends on aspects

of the prior that are revised based on the data and aspects that are not, with these components

being nonlinearly combined, it is not clear a priori how sensitive the impulse response posterior is

to the impulse response prior. Our tools allow us to address this question.

Figure 3b shows that in this model, as in the earlier macroeconomic model based on exclusion

restrictions, the impulse response posterior is dominated by the data rather than by the prior. For

example, the large and persistent response of the real price of gasoline to a nominal gasoline price

shock is driven by the data, as are the responses of inflation expectations to the expectations shock

and the nominal gasoline price shock. Nor does the prior necessarily pin down the magnitude of

the impact response. For example, the impact responses of headline inflation to a nominal gasoline

price shock and to a core CPI shock are much larger in magnitude than under the prior. In addition,

the uncertainty about the impulse responses may be smaller than under the prior in some cases and

may be substantially larger in other cases. In short, there is no evidence to support the conclusion

that impulse response estimates derived from the framework of Waggoner, Rubio-Ramirez and Zha

(2010), Arias, Rubio-Ramirez and Waggoner (2018), and Antolin-Diaz and Rubio-Ramirez (2018)

are necessarily driven by their prior.

The results in Figure 3 are derived under Prior 1, but this conclusion holds more generally. Table

2a provides evidence that all four of the impulse response priors we considered are overturned by

the data to varying degrees. The location shift of the impulse response estimate may be as high as

0.12 percentage points in absolute terms with an average revision of 0.01 percentage points. The

largest revision relates to the headline inflation response. At an annualized rate, this translates

to a shift by 1.44 percentage points of inflation, which is economically significant. The dispersion

of the impulse responses may fall by as much as 98%. Not a single draw for  matches the sign

patterns under the prior. The Hausdorff distance measure also suggests substantial revisions to the
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joint density of the impulse responses.

Table 2b shows that the impulse response posterior is not sensitive to changes in the prior

specification, including some specifications with more informative impulse response priors. The

location of the impulse response estimate never changes by more than 0.02 percentage points in

absolute terms. The average change is 0.00 percentage points. The changes in the Hausdorff

dispersion measure and in the concentration about the impulse response estimate is one or two

orders of magnitude smaller than in Table 2a. There are still changes in the sign patterns of , but

not as much as in Table 2a. Thus, the posterior estimates appear robust to the prior.

Although this is only one example, we obtained similar results for other models that are fully

identified based on static sign restrictions (possibly in combination with zero restrictions). This

is not an accident. Our central result that priors for  tend to be uninformative does not depend

on the data. It depends only on the specification of the uniform-Gaussian-inverse Wishart prior

and the sign restrictions and hence applies more generally to other VAR models. The sensitivity

of the posterior to the prior for , in contrast, depends on how many sign restrictions are imposed

in estimating the VAR model and how binding these restrictions are. The example we considered

is typical for applied work in that it involves a fully identified model. When sign restrictions are

used only sparsely, it is possible for the identified set to be larger and for the posterior to be less

responsive to the data. The tools proposed in section 3 can be used to assses this question.

5 Sign-identified VAR models based on both static and dynamic

sign restrictions

We now turn to an example of a structural VAR model identified not only by static sign restrictions,

as in the preceding example, but also by dynamic sign restrictions and narrative restrictions. This

difference matters because dynamic sign restrictions render the implied impulse response prior
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informative in at least some dimensions. This may be true even for impulse responses that are

not directly restricted. As in section 4, we ask whether these priors are perhaps unintentionally

informative.

Our illustrative example is the widely used global oil market VAR model of Kilian and Murphy

(2014). This model has been reexamined and extended in a range of subsequent studies including

Kilian and Lee (2014), Kilian (2017), Herrera and Rangaraju (2020), Zhou (2020), Cross, Nguyen

and Tran (2020), Rausser and Stürmer (2020), and Kilian and Zhou (2020a,b). The data are

monthly and the model includes 24 lags and an intercept. The model variables are the percent

change in global crude oil production (∆), an appropriate measure of the global business

cycle (), the log real price of oil (), and the change in global crude oil inventories (∆).

The structural shocks include a flow demand shock, a flow supply shock, a storage demand shock

and a residual demand shock (defined as the complement to all other shocks) that captures, for

example, changes in the intensity of oil use, as users substitute toward more or less oil-intensive

technologies. The structural shocks are identified based on static and dynamic sign restrictions,

complemented by elasticity bounds and additional narrative inequality restrictions, which require

the use of importance sampling, as discussed in Antolin-Diaz and Rubio-Ramirez.(2018). The

model heavily relies on static sign restrictions.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


∆








∆


⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− + +

− + −

+ + +

+

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


flow supply


flow demand


storage demand


residual demand

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

The sign restrictions associated with the flow supply shock are applied not only on impact, but for

the first 12 months. The estimation period is 1973.2-2018.6. Further details of the construction of
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the data and of the elasticity bounds and narrative restrictions can be found in Zhou (2020). The

original specification involved a diffuse prior for the reduced-form parameters. Here we employ the

prior specification corresponding to Prior 1 in Table 1. This change has no effect on the posterior

estimates.

The central conclusion from this class of models is that flow demand shocks have large and

persistent effects on global real activity and on the real price of oil. Storage demand shocks also

have large and persistent effects on the real price of oil. By comparison, the effects of flow supply

shocks on global real activity and the real price of oil are more modest. It has been suggested in

the literature, but never demonstrated, that this conclusion is an artifact of the implicit prior for .

The concern is that conventional priors on , Σ, and  may be unintentionally informative about

 because  = (Σ ). We address this concern by first deriving the implied prior for  and

then examining the extent to which the posterior estimates of  are driven by the data rather than

the prior. For expository purposes, we restrict attention to the responses of global real activity and

the real price of oil to flow supply, flow demand and storage demand shocks.

5.1 Empirical results based on the Kilian and Murphy (2014) model

Figure 4a confirms that in the presence of dynamic sign restrictions and narrative sign restrictions,

the prior distribution of  is more informative than in the preceding empirical illustration. Consider

first the estimate of the responses based on the prior for . Figure 4a shows a sharp fall in global

real activity on impact in response to a negative flow supply shock, followed by a slightly negative

response for the next 12 months. The prior favors a comparatively large impact response of the real

price of oil to a negative flow supply shock that only gradually dies out, mirroring the corresponding

response of global real activity. In contrast, the impact response of global real activity to a positive

demand shock is positive by construction, but the remaining responses are effectively zero. The
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same goes for the response of the real price of oil to a positive flow demand shock, making these

priors mutually consistent. Finally, the real price of oil jumps on impact and then declines in

response to a positive storage demand shock, consistent with economic theory (see Alquist and

Kilian 2010). This price increase is associated with a modest decline in real activity.

This joint prior is consistent with the traditional view that (1) unexpected oil supply disruptions

have large negative effects on real activity in the short run and cause substantial oil price increases,

that (2) positive flow demand shocks cause only a short-lived expansion of global real activity

without a sustained effect on the real price of oil, and (3) that positive storage demand shocks

cause the real price of oil to jump on impact, followed by a gradual decline, as predicted by

economic theory, while its effects on real activity are only modestly negative. It is fair to say that

this prior is stacking the deck against the modern view that global real activity is largely driven

by flow demand shocks, but this was explicitly intended when Kilian and Murphy (2014) imposed

their dynamic sign restrictions on the effects of flow supply shocks. The 68% joint credible set for

the prior allows for considerable uncertainty about the responses.

Not only is the prior specification in Kilian and Murphy (2014) economically defensible, but

Figure 4b demonstrates that this prior matters little for the impulse response posterior. The

data overrule the prior to a large extent. For example, the response of the real price of oil to an

unexpected flow supply disruption is more modest than in the prior, although the joint credible set

recognizes the uncertainty about the magnitude of this response. The posterior also shows a much

more modest response of real activity to flow supply shocks than the prior. There is no evidence of

a sharp contraction on impact. At the same time, the responses to a positive flow demand shock

are much larger and more persistent than suggested by the prior. The response of real activity to a

positive flow demand shock is much larger than under the prior and hump-shaped. This economic

expansion is associated with a corresponding large and sustained increase in the real price of oil.
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Finally, the response of the real price to a storage demand shock is more sustained, while preserving

its overall shape, while the response of real activity to the storage demand shock is shrunk toward

zero.

In short, the posterior distribution of  is largely driven by the data rather than the prior. This

conclusion is reinforced by the distance metrics reported in Table 3. Not only do the data increase

the concentration of the distribution about the impulse response estimate, but there are large shifts

in the location of the responses in the credible set. Thus, there is no evidence that the conventional

prior underlying this model is economically unappealing, unintentionally informative, or driving

the posterior inference.

6 The alternative approach of Baumeister and Hamilton (2015)

There is a common perception in the literature that the alternative set of priors for sign-identified

VARmodels introduced by Baumeister and Hamilton (2015, 2018, 2019, 2020) addresses the concep-

tual shortcomings of conventional priors for sign-identified models discussed in this paper. Indeed,

that is the explicit argument made by these authors. In this section, we show that their proposal

for postulating priors on the structural model parameters implies an impulse response prior of

unknown form, necessitating the use of the same tools we discussed in the context of the conven-

tional approach to estimating sign-identified models. The reason is simple. Imposing explicit prior

distributions on the parameters of 0   in the structural VAR representation

0 = 1−1 + +− + 

as proposed by Baumeister and Hamilton (2015), is not equivalent to specifying an explicit prior

on the vector of structural impulse responses, which is defined by the nonlinear transformation
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 = e(0 1  ). Even if a prior on 0   may be defended on economic grounds, after

applying the change-of-variable method, the prior on  may be unintentionally informative. This

conclusion remains true, if one is specifying a prior on one or more elements of −10 . Since users

of this approach have no idea what their implied prior for  is, the proposal of Baumeister and

Hamilton (2015) does nothing to address the concerns that motivated our analysis.

This conclusion should not be surprising since, in general, one cannot control the prior of the

model in two dimensions at the same time. Thus, there is nothing to choose between their approach

and the conventional approach on a priori grounds. Contrary to some assertions in the literature,

the critique that sign-identified models should not be used without analyzing the implied prior for

 applies equally to the approach of Baumeister and Hamilton (2015).4

The tools developed in this paper are designed not only for the conventional Bayesian approach

to estimating sign-identified VAR models, but they also accommodate the alternative approach

proposed by Baumeister and Hamilton, allowing us to evaluate how informative Baumeister and

Hamilton’s impulse response priors are and how sensitive the joint posterior of the structural

responses is to that prior.5

6.1 Empirical results based on the Baumeister and Hamilton (2020) model

We illustrate this point based on the global oil market model proposed in Baumeister and Hamilton

(2019). As in the last section, in the interest of space, we focus on the responses of global real activity

and of the real price of oil. The four structural shocks of interest are an oil supply shock, an oil-

market specific demand shock (referred to as the consumption shock), an oil inventory demand shock

4A different way of interpreting Baumeister and Hamilton’s approach is that they are specifying an implicit

nonuniform prior for  that is invariant to the data. There is nothing wrong necessarily with this approach, but this

interpretation makes it clear why such a prior is conceptually no different from the conventional approach and may

be unintentionally informative for the prior of the impulse response.
5Baumeister and Hamilton in their own work only report prior median response functions, or, as in the empirical

example below, they do not report priors for the impulse response functions at all.
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and a shock to global economic activity. Our analysis is based on Baumeister and Hamilton’s data

and preferred VAR(12) model specification, which includes a number of nonstandard features such

as additive classical measurement error in oil inventories. In general, the data, prior restrictions,

and model specification differs from the global oil market model in the previous section, so estimates

should not be compared directly. For details the reader is referred to the original source.

Figure 5a show the priors for  implied by the baseline model in Baumeister and Hamilton

(2019). The prior distributions are generated using the same type of Metropolis-Hastings algorithm

as used in the original study, except that the proposal density is centered on the prior mode. For

now, we focus on the impulse response estimate, abstracting from the tremendous degree of prior

uncertainty about the impulse responses. It is striking that the only shock in Figure 5a that is a

priori expected to substantially raise the real price of oil is the oil supply shock. In contrast, the

response of the real price of oil to the demand shocks in the model is either quite small, near zero,

or even negative.

It is useful to consider each shock in isolation. First, an unexpected oil supply disruption causes

a persistent increase in the real price of oil by 2.5% on impact and by 6.6% after 12 months.

The corresponding decline in global real activity gradually approaches -1.8% after 12 months and

reaches -3.1% after 18 months. This prior view is economically reasonable, if one is a firm believer

in the importance of oil supply shocks.

Second, an unexpected increase in global real economic activity is associated with a sustained

increase in the level of real activity over time that reaches 3.8% after 18 months. An obvious

question is how to reconcile the persistently positive and increasing response of economic activity

over 18 months with the negligible or even negative response of the real price of oil. This pattern

is clearly at odds with conventional views about the relationship between economic expansions and

the real price of oil. Even if one believed economic activity shocks to be unimportant for the real
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price of oil, one would not postulate a negative price response to a positive shock to economic

activity.

Third, we know a priori that an oil-market specific shock to the demand for oil that raises the

real price of oil, must lower global real activity. The response of the real price of oil to such an

oil-market specific demand shock in Figure 5a is modestly positive on impact and is essentially zero

after a few months. This is not an unreasonable prior view, except that it raises the question of

how such a consumption shock at the same time raises global real activity by 0.7% after 18 months.

Fourth, it is not clear how to reconcile the flat response of the real price of oil to a storage

demand shock with standard economic theory for storable commodities, which implies a jump in

the price on impact followed by a gradual decline.

These observations highlight that the economic plausibility of impulse response priors often

depends on the comovement across several response functions and on the shape of these response

functions, making it essential to evaluate the joint prior of the impulse responses rather than their

marginal prior distribution. Our analysis shows that the joint impulse response prior implied

by Baumeister and Hamilton’s prior on the structural VAR model parameters is economically

implausible in several dimensions. The nature of this prior was neither intended by the authors nor

has it been discussed in the literature.

There are also questions about the extent of the uncertainty embodied in the 68% joint impulse

response credible set. For example, the prior puts considerable probability mass on persistent

declines in the real price of oil in response to an unexpected oil supply disruption. Even on impact

the 68% joint credible set includes oil price responses as high as 97% and as low as -1101%. It is

not clear why anyone would consider a large negative response a priori plausible, not to mention

one as large as -1101%. After all, an oil supply disruption is expected to raise the real price of oil.

One possible remedy would be to impose additional dynamic sign restrictions on the responses of
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the real price of oil. Nor is it clear why anyone would consider a 97% increase in the real price

of oil on impact a likely outcome. In fact, after 18 months, the range of the 68% credible set has

grown to -2.97e+16%to 3.41e+16%. This suggests that there is lots of room to tighten the prior.

Similar problems also apply to the other responses in the joint credible set in Figure 5a. For

example, most observers would agree that a positive shock to global real activity is not likely to

cause a decline of 1.37e+15% in global real activity after 18 months or, for that matter, an increase

of 1.21e+15%. These extreme realizations are likely to be an artifact of expressing the model

variables in growth rate. After imposing relatively diffuse priors on the model coefficients, the

cumulative impulse responses often become explosive, which helps explains the shape of the joint

credible set for the level responses.6 This problem is not restricted to the analysis in Baumeister

and Hamilton (2019), but is particularly visible in this example. One possible remedy would be

the imposition of bounds on the dominant root in the prior.

Overall, this impulse response prior would hardly have been the starting point of a researcher

thinking about the prior specification for the impulse responses in a global oil market model. Does

it matter that Baumeister and Hamilton (2019) rely on an unintentionally informative impulse

response prior? To some extent it does and to some extent it does not. Figure 5b shows substantial

revisions to the Bayes estimate based on the joint posterior of the impulse responses. For example,

the response of global real activity to an unexpected oil supply disruption is revised up from -3.1%

after 18 months to -0.1%, while the corresponding response of the real price of oil shrinks from 6.7%

to 2.9%. There is little evidence of a strong recessionary impact on the global economy and the

price response is modest at best. The data correct the strong views embodied in the prior for the

impulse responses. Likewise, the responses to an economic activity shock now look more reasonable

than in the prior. The response of the real price of oil peaks after 6 months at 5.1% and remains

6 It should be noted that, as a result, for this prior the difference between inference based on marginal impulse

response distributions and based on the joint distribution is even greater than for the posterior.
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persistently high at longer horizons. The response of global real activity after 18 months is 1.8%

rather than 3.8%. However, the responses to the consumption demand shock remain economically

implausible in that a modest, but persistent positive effect on the real price of oil of up to 2.2%

is accompanied by a temporary increase by as much as 0.1% in global real activity. Similarly, the

economically implausible response of oil inventories to the inventory demand shocks remains.

In addition, the data tend to substantially narrow the uncertainty about the impulse responses in

all cases, which is not surprising since the prior did not impose tight restrictions on the dynamics

of the response functions. Table 4 confirms this impression. There is a strong increase in the

concentration of the distribution about the impulse response estimate of . On average, the data

shift the location of the response of the real price of oil much more than the response of real activity.

6.2 Limitations of the proposed methodology

The preceding example illustrates that deriving the implied prior for  can be helpful in detecting

whether priors on the structural model parameters have questionable implications for the prior of .

Unlike in the earlier empirical illustrations, in the Baumeister and Hamilton (2019) example, there

is reason to question the implied prior for . One way of addressing these concerns would be to

impose additional dynamic sign restrictions and to bound the dominant autoregressive root.7 Even

if there were no evidence that the impulse response prior is distorting the posterior distribution

of , however, it would be a mistake to blindly view estimates of the posterior distribution of 

as summaries of what we learn from the data. Since posterior inference is always conditional on

the modeling assumptions and restrictions on the support of the impulse responses distribution,

posterior estimates are only as credible as the underlying economic structure.

7An alternative approach was proposed by Plagborg-Møller (2019) who imposes priors directly on the parameters

of the structural moving average representation. Even in the latter case, however, the diagnostic tools we proposed

remain useful for assessing how informative such priors are and how much the joint posterior of  depends on these

priors.
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In practice, it may not always be possible to detect flawed modeling assumptions simply by

studying the central tendency of the prior of . Nor does the fact that a prior for  may look fairly

agnostic necessarily mean that this prior is innocuous. Seemingly reasonable prior or posterior

draws for the impulse responses may be unrealistic, for example, because they violate elasticity

bounds that are not imposed in estimation or because they fail to satisfy narrative sign restrictions

that are not imposed in estimation. For example, in the Baumeister and Hamilton (2019) model,

the oil price spike of 1990, following Iraq’s invasion of Kuwait, is in substantial part attributed to

an unexpected idiosyncratic increase in consumers’ demand for oil in the second half of 1990, which

does not seem economically plausible. Likewise, restrictions on the dynamics of the VAR process

or the use of inappropriate data transformations may distort the posterior impulse responses. The

more agnostic the prior distribution of  seems, the more likely this problem is to arise. This point

has been forcefully made by Kilian and Murphy (2012) and Kilian (2019). Thus, the credibility of

the posterior estimates of  ultimately rests on how carefully the underlying structural model has

been designed and parameterized.

7 Concluding remarks

Several recent studies have voiced concerns about the priors typically used in estimating sign-

identified VAR models, as described in Uhlig (2005), Rubio-Ramirez et al. (2010), Arias et al.

(2018) and Antolin-Diaz and Rubio-Ramirez (2018). There is a consensus in the literature that,

in the words of Watson’s (2020), only “good” impulse response priors lead to “good” inference

in sign-identified VAR models, where a “good” impulse response prior is generally understood to

mean a prior that is economically plausible or that is uninformative.

Perhaps surprisingly, adequate tools for assessing the impulse response priors implied by con-

ventional prior specifications do not exist. We first showed that approximating the impulse response
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prior based on the distribution of the impulse responses estimates conditional on the MLE of the

reduced-form parameters, as proposed by Baumeister and Hamilton (2015, 2018, 2019, 2020) and

Watson (2020), does not make sense from a Bayesian point of view, because the prior does not de-

pend on the data. The flaw in this approach is that the prior for a given impulse response induced

by the prior for the rotation matrix and by the sign restrictions also depends on the priors for the

reduced-form parameters, which affects the location and shape of the impulse response prior distri-

bution. We showed by example that this approach tends to produce highly misleading estimates of

the impulse response priors. Our analysis invalidates the evidence provided in the recent literature

against the conventional approach to estimating sign-identified VAR models.

We then derived appropriate tools to differentiate good impulse response priors from bad ones

and illustrated their use in a range of representative empirical applications. Our evidence suggests

that unduly informative impulse response priors are the exception rather than the rule. Our

evidence does not support the view that conventional priors for sign-identified VAR models tend to

be unintentionally informative about the vector of structural responses, . Nor does it support the

view that the substantive conclusions of users of conventional prior specifications follow from their

implicit prior on . Thus, there is no basis for the argument that this widely used approach must

be abandoned and replaced by alternative prior specifications. Nor is there a basis for disregarding

the empirical evidence compiled in the literature based on this approach. In fact, our evidence

calls into question the common view that much of the uncertainty about the impulse response can

be attributed to uncertainty about the rotation matrix . We showed that in typical models with

many static sign restrictions the identified set is quite narrow, controlling for estimation uncertainty

in the reduced-form parameters, which helps explain why the posterior of  in practice is largely

determined by the data. Our results contrast sharply with prevailing views in some of the recent

literature on sign-identified VAR models.
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Posterior inference about  is econometrically valid, given any prior for  (see Uhlig 2017). This

does not necessarily mean that constructing the posterior for  will also be economically sensible.

This will only be the case under under any one of three conditions that can be verified in practice.

First, the conventional approach will be sensible when the implied prior for , can be shown to be

uninformative, except for the imposition of sign restrictions. An illustrative example showed that

under conventional prior specifications this condition is met in typical VAR models based on static

sign restrictions. This example is general because the prior for  does not depend on the data. It

depends entirely on the uniform-Gaussian-inverse Wishart prior for the VAR model parameters and

hence applies more generally. Second, the conventional approach will be sensible if the implied prior

for  can be given an economic interpretation. We showed by example that even in models that

combine static and dynamic sign restrictions, which renders the prior for  necessarily informative,

the impulse response prior need not be unintentionally informative. Third, even if the prior for 

turns out to be unintentionally informative, relative to the views of the researcher, the conventional

approach will remain sensible, as long as the data effectively overturn the prior for . The evidence

in our paper suggests that, in all empirical examples we considered, the posterior for  is largely

determined by the data rather than the prior for . We noted that this is more likely to be the case

in models based on many sign restrictions than in sparsely identified models.

We furthermore demonstrated that the alternative Bayesian approach of Baumeister and Hamil-

ton (2015), which was explicitly intended to circumvent the problem of unintentionally informative

priors for , suffers from the same conceptual drawback as the conventional Bayesian approach. We

illustrated this point by characterizing the implicit joint prior for  employed by Baumeister and

Hamilton (2019) in modeling the global oil market. Our analysis shows that some aspects of this

prior are difficult to reconcile with standard economic reasoning. Our analysis calls into question

suggestions in the literature that Baumeister and Hamilton’s approach is inherently superior to the
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conventional approach. Our evidence suggests that the conventional approach is more likely to be

robust to the prior for the model parameters than this alternative approach.

The issues discussed in this paper are distinct from the point that Bayesian inference in sign-

identified VAR models does not asymptotically coincide with frequentist inference when using

the conventional approach in the literature or when using the alternative approach of Baumeister

and Hamilton (2015). Since the frequentist approach and the Bayesian approach ask different

questions, it is not surprising that they may arrive at different answers (see Uhlig 2017). For VAR

users concerned with the frequentist properties of Bayesian methods in large samples, a natural

approach would be to report sets of posterior impulse response means, as proposed by Giacomini and

Kitagawa (2020). As we showed, however, in many applications based on multiple sign restrictions

the identified sets are largely unaffected by the prior uncertainty about , so the choice of method

is likely to be less important than often thought, as long as one accounts for the joint dependence

across the impulse responses.
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Appendix: Proofs

Proof of Proposition 1: Let  denote the × lower-triangular Cholesky decomposition of Σ with

positive elements on the diagonal and let Φ = [Φ01 Φ
0
2 · · · Φ0 ]0 where Φ is the th reduced-form

vector moving average coefficient matrix. Then it follows from Theorem 2 in Arias et al. (2019)

and equation (3) in Inoue and Kilian (2019) that

() =

¯̄̄̄
[vec()0 vec( )0 0]0



[vec()0 vec( )0 0]
0

¯̄̄̄
( vech( ) )

=

¯̄̄̄
[vec()0 vec( )0 0]0



[vec()0 vec( )0 0]
0

¯̄̄̄
(|Σ)(Σ)()

=

¯̄̄̄
[vec(Φ)0 vec( )0 0]0



¯̄̄̄ ¯̄̄̄
vec(Φ)0

vec()

vec(Φ)

vec()0

¯̄̄̄ 1
2

(|Σ)(Σ)() (A.1)

It follows from equations (13) and (17) in Inoue and Kilian (2019) that the first Jacobian is given

by

¯̄̄̄
[vec(Φ)0 vec( )0 0]0



¯̄̄̄
= |( 0⊗)0 (⊗ ) || | = 2−

(−1)
2 |+|−1Π−1=1 

−
  (A.2)

where

 = 2[( − 0−1 ⊗ ( − )−1]̃ (A.3)

Equations (16) and (18) in Inoue and Kilian (2019) imply that

¯̄̄̄
vech(Σ)

vech( )0

¯̄̄̄
=
¯̄
+
 [( ⊗ ) + ( ⊗  )]

0


¯̄
= 2Π=1

−+1
  (A.4)
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where  is the ( )th element of  .

Proof of Proposition 2: It follows from equation 12 in Inoue and Kilian (2019) that



0
=

⎡⎢⎢⎣ ( ⊗  )

( ⊗Φ )

⎤⎥⎥⎦ (A.5)

Thus Proposition 2 follows from Theorem 2 in Arias et al. (2018).
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Figure 1: Identified set under prior versus identified set conditional on MLE 

(a) Estimate of identified set conditional on MLE 

 

 

 

 

 

(b) Estimate of identified set under prior 

 

 

 

 

 

NOTES:  The axes in panel (b) have been adjusted to make the plots comparable with panel (a). 

 



Figure 2: Histograms over identified sets of selected responses to the nominal gasoline price shock 

                            (a) Conditional on MLE                   (b) Prior                                                                 (c) Posterior 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: The horizontal axis has been adjusted to make the plots comparable.



Figure 3: Impulse response inference in inflation expectations model under prior 1 

(a) Impulse response prior 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Impulse response posterior 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: Horizons at which sign restrictions are imposed are shown as shaded areas. Bayes estimates 

under absolute loss are shown in black and 68% joint credible  sets in red.



Figure 4: Impulse response inference in Kilian and Murphy (2014) global oil market model 

(a) Prior 

   

 

 

 

 

 

 

 

 

 

 

 

(b) Posterior 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES: Horizons at which sign restrictions are imposed are shown as shaded areas. Bayes estimates 

under absolute loss are shown in black and 68% joint credible  sets in red.



Figure 5: Impulse response inference in Baumeister and Hamilton (2019) global oil market model 

(a) Prior 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Posterior 

 

 

 

 

 

 

 

 

 

 

 

NOTES: Bayes estimates under absolute loss are shown in black and 68% joint credible  sets in red.



Table 1: Alternative Reduced‐Form Minnesota Prior Specifications 

  Prior mean of first own lag  Prior Innovation variances 

Prior 1  0  AR(1) innovation variance 
Prior 2  0.9  AR(1) innovation variance 
Prior 3  0  0.01 
Prior 4  0.9  0.01 

 
 

Table 2a: The Extent to Which the Impulse Response Priors are Overturned Based on the Data 
Inflation Expectations Model 

 

  Hausdorff 
distance metric 

(Percentage points) 

Absolute location shift in 
estimator of responses 
(Percentage points) 

Percent change in 
dispersion about  

estimator 

Jaccard sign 
distance 
metric 

  Hd    Ld   Cd   Jd  

    Max  Mean     

Prior 1  2.9  0.12  0.01  ‐51.6  1 
Prior 2  172.8  0.11  0.03  ‐98.2  1 
Prior 3  2.9  0.12  0.01  ‐47.1  1 
Prior 4  170.0  0.13  0.02  ‐98.1  1 

 

Table 2b: Sensitivity of the Impulse Response Posterior to Alternative Priors 
Inflation Expectations Model 

 

  All Results Normalized Relative to Impulse Response Posterior  
Based on Prior 1 

  Hausdorff 
distance metric 

(Percentage points) 

Absolute location shift in 
estimator of responses 
(Percentage points) 

Percent change in  
dispersion about 

estimator 

Jaccard sign 
distance  
metric 

  Hd    Ld   Cd   Jd  

    Max  Mean     

Prior 2  0.5  0.02  0.00  0.2  0.97 
Prior 3  0.6  0.02  0.00  5.9  1.00 
Prior 4  0.6  0.01  0.00  8.2  1.00 

 

 
 
 
 
 
 
 



Table 3: The Extent to Which the Impulse Response Priors are Overturned Based on the Data 
Kilian and Murphy (2014) Global Oil Market Model 

 

  Hausdorff 
distance metric 

(Percentage points) 

Absolute location shift in 
estimator of responses 
(Percentage points) 

Percent change in 
dispersion about 

estimator 

Jaccard sign 
distance 
metric 

  Hd    Ld   Cd   Jd  

    Max  Mean     

Real 
activity 

 
248.5 

 
14.94 

 
4.16 

 
‐36.5 

 
1.00 

Real oil 
price 

 
198.3 

 
6.73 

 
3.09 

 
‐18.6 

 
0.98 

 

Table 4: The Extent to Which the Impulse Response Priors are Overturned Based on the Data 
Baumeister and Hamilton (2014) Global Oil Market Model 

 

  Hausdorff 
distance metric 

(Percentage points) 

Absolute location shift in 
estimator of responses 
(Percentage points) 

Percent change in 
dispersion about 

estimator 

Jaccard sign 
distance 
metric 

  Hd    Ld   Cd   Jd  

    Max  Mean     

Real 
activity 

 
244.6 

 
2.95 

 
0.75 

 
‐93.2 

 
1.00 

Real oil 
price 

 
370.0 

 
8.34 

 
2.63 

 
‐74.7 

 
1.00 

 

 




