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1 Introduction

Scientific findings often come from experiments performed only a few times or even just once,

in which multiple hypotheses are simultaneously tested. Many statistical procedures have

been developed to account for the multiple hypothesis testing problem. The most widely used

methods aim to control the false discovery rate (FDR). Control of the FDR guarantees that

the expected value of the false discovery proportion (FDP) in each trial is below a certain

threshold. While procedures that control the FDR are generally easier to implement, they

expose researchers to tail events. In particular, focussing one’s efforts in maintaining FDR

control can be problematic when the variability in the FDP is high in sparse or weak signal

settings. For example, even perfectly controlling the FDR at 10% allows for fifty out of a

hundred repeated experiments to produce FDPs of 20% as long as the other fifty have FDPs

of 0%. Thus if the particular trial in question falls into the first group, it might lead to non

easily reproducible findings.

In practice, popular FDR procedures such as the Benjamini–Hochberg procedure (BH)

(Benjamini and Hochberg, 1995), display high variability and skewness in the FDP across

implementations (Korn et al., 2004; Delattre and Roquain, 2015). Therefore, direct control of

the tail probability of the FDP, also known as false discovery exceedance (FDX), is desirable.

In general, FDX keeps a low probability, α, if the FDP exceeds an acceptable proportion, γ.

For example, a 5% FDX procedure for an FDP of 10% guarantees that the probability of having

10% or more false discoveries is less than 5%. FDX is most similar to the k–FWER, itself

an extension of the Family-Wise Error Rate (FWER), except that it controls the probability

of an undesirable event defined not by several false rejections k but by a proportion of false

rejections γ. This allows FDX methods to scale up with the number of correct rejections as

FDR methods do. The merits of controlling the FDX have been discussed in Genovese and

Wasserman (2004, 2006); Guo and Romano (2007); Chi and Tan (2008); Gordon and Salzman

(2008); Delattre and Roquain (2015). Different FDX methods have been proposed in Lehmann

and Romano (2005), Chi and Tan (2008), Roquain and Villers (2011), and Döhler and Roquain

(2020). These procedures differ in choosing their respective cut-offs for rejected tests but are

all similar in using p-values to rank hypotheses.

Differently, we propose an empirical Bayes procedure for FDX control that relies on ranking

local false discovery rates (lfdr) and using the Poisson binomial distribution to compute the

cumulative failure proportion (i.e., the quantity that is controlled in the FDX definition). We

prove that the ranking is optimal (see also, Fu, 2018) and the procedure controls the FDX at

the pre-specified level (see also, Basu, 2016). Our work is most similar to Döhler and Roquain

(2020) who use the Poisson Binomial distribution to threshold p-values under the frequentist

setting. From a theoretical standpoint, the derivation of our procedure is also similar to the

theoretical work of Heller and Rosset (2021) who study FDR control in an empirical Bayes

framework. We demonstrate the power gain over other FDX procedures in simulations and
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provide a real-life application to the problem of isolating interesting financial trading strategies.

Procedure: First, compute the local false discovery rate test statistic (lfdr), adjusting for an

empirical null if needed. Next, sort all the hypotheses by increasing order of lfdr. A posteriori,

the unknown states of the hypotheses are Bernoulli with the lfdr as failure probabilities,

where failure indicates that the null hypothesis is true. Compute the probability of the

cumulative failure proportion greater than γ as the probability of a Poisson binomial random

variable. Reject the maximum number of hypotheses K, allowing for the cumulative failure

proportion greater than γ to be lower than or equal to α. Define hypothesis HK+1 as

the first hypothesis that is not rejected (i.e., the one with lfdr greater than the threshold

lfdr). To achieve the exact level α, randomize the decision to accept or reject HK+1 by an

independent coin toss with appropriate success probability. In practical terms, the last step

might be avoided (i.e., the size of the procedure could be smaller than α).

An illustration of the implementation of our FDX controlling procedure is provided in

Figure 1. By keeping a low probability on undesirably high levels of FDP each time the

testing procedure is carried out rather than keeping an average FDP level low over many

hypothetical experiments on which the same testing procedure is applied, FDX procedures

reduce the variability of the FDP’s distribution and increase the reproducibility of scientific

discoveries.

1.1 Contribution

We view an FDX procedure in a two-group model as maximizing the power subject to a

constraint on the tail probability of the FDP. We adopt an empirical Bayes viewpoint and

suggest a procedure that we use to test millions of hypotheses. We rely on computational

efficiency, practical uses, and theoretical understandings. Our work differs from other works

on FDP control (see, Farcomeni (2008) for a detailed review). Genovese and Wasserman (2006)

first defined the notion of the exceedance control of the FDP where the authors suggested tests

of uniformity for all subsets of tests. This class of tests is defined as inversion for determining

the thresholds and typically uses p-values to rank the hypotheses. Their approach was extended

to random fields in Perone Pacifico et al. (2004). The other approach to the FDX question

is develop an augmentation-based approach from FWER, developed in van der Laan et al.

(2004), and later extended in Farcomeni (2009). A more powerful bootstrap-based Monte

Carlo approach was developed in van der Laan et al. (2005). Their procedure uses Monte Carlo

simulations to generate the states of hypotheses conditional on observing the data. However,

the hypotheses are still ranked using (adjusted) p-values. Another line of work by Delattre

and Roquain (2015) formally justifies the bootstrap-based heuristics developed in Romano and

Wolf (2007). A more recent line of work involves providing the confidence bounds for FDP
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Figure 1: Contrasting FDR and FDX methods
Realized FDPs of 5000 replications for 5000 tests from the following Gaussian mixture model: 0.8N (0, 1)+
0.2N (−2, 1). This illustration contrasts our proposed FDX procedure with the lfdr-based FDR procedure
proposed by Sun and Cai (2007). Both procedures use the oracle version of the lfdr test statistic for
demonstration purposes. The Sun and Cai (2007) procedure aims at controlling FDR at 0.10, while the
FDX procedure aims to keep the probability that FDP is larger than 0.10 at below 0.05.
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for a user-specified (aka post hoc) rejection sets, see, for example, Hemerik et al. (2019) and

follow up works such as Blanchard et al. (2020), Katsevich and Ramdas (2020), and Goeman

et al. (2021). The ranking of the hypotheses is not discussed, and the tightness of the FDP

bounds is not well established in these works.

Relative to this large body of work, and keeping in mind that our goal is to develop an

efficient FDP controlling procedure that can be applied for millions of tests, we make several

contributions:

• We propose a new empirical Bayes approach to FDX control and illustrate the efficiency

gain over existing frequentists methods such as Lehmann and Romano (2005) and Guo

and Romano (2007).

• We establish the optimality theory for FDX control by showing that the lfdr ranking is

optimal because the thresholding rule based on lfdr has the largest power subject to the

constraint on the FDX.

• We develop an efficient computational algorithm for determining a data-driven cutoff

along the lfdr ranking. We provide supporting results justifying the algorithm for FDX

control.

• We demonstrate the strong empirical performance of the proposed method via both

simulated and real data sets.

We note that a procedure proposal, where the ranking of the hypotheses is thoroughly

justified and valid thresholding is offered, has been incomplete in the literature until the

current work. A particular merit of our work is that we have paid attention to simplicity and

efficiency in order to enable broad applicability.

1.2 Motivating Example

Our primary motivating example is from a recent work by Chordia et al. (2020) published

at Review of Financial Studies. We analyze two million trading strategies based on publicly

available signals to isolate some with potentially attractive returns. Strategies are first bench-

marked against factors that reflect aggregate market conditions to determine an abnormal

return measure (i.e., an alpha). We apply several FDX controlling procedures to determine a

cut-off for rejection of the null of zero alpha. We find that our approach identifies more trad-

ing strategies than existing state-of-the-art FDX methods. At the same time, it identifies far

less compared to FDR controlling methods, alarming applied research to conduct data mining

exercises way more cautiously than existing practices.
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1.3 Organization

The rest of the paper is organized as follows. Sections 2 and 3 provide more details on the setup

and our proposed solutions. Section 4 discusses some concerns and ideas that help enhance our

understanding of the question. Section 5 provides numerical simulations, with particular stock

returns experiments matching closely to our motivating data question. Section 6 analyzes our

motivating example in depth. Section 7 concludes with some future propositions. All codes

for the procedure and the experiments can be requested from the authors.

2 Problem Formulation

2.1 Model and Notation

The premise of our analysis is motivated by the two-group model of Efron et al. (2001). Let π

denote the probability that the alternative hypothesis is true and 1−π denote the probability

that the null hypothesis is true. Let [m] denote the index set {1, . . . ,m} of hypotheses.

Given observations Z = (Zi)i∈[m] we want to test the hypotheses H = (H0
i , H

1
i )i∈[m], where

H0
i : θi = 0 and H1

i : θi = 1, where θi denotes the true state of nature with θi = 0 representing

the null hypothesis and θi = 1 the alternative. In a hierarchical two group model:

θi
iid∼ Bernoulli(π)

Zi|θi ∼ (1− θi)F0 + θiF1,
(1)

where F0 is the distribution of Zi under the null hypothesis; and F1 is the distribution of Zi

under the alternative hypothesis. We must make a decision, δi ∈ {0, 1} indicating our belief

about θi. A decision of δi = 1 indicates the rejection of the null (aka ‘a statistical discovery’),

where δi = 0 indicates failure to reject the null hypothesis. The key ranking test statistic for

our methodology is the (marginal) local false discovery rate, lfdr, defined as

lfdr(Zi) = (1− π)f0(Zi)/f(Zi), (2)

where f0(·) and f(·) denote the null and the mixture probability density functions respectively

corresponding to the null distribution function F0(·) and the mixture distribution function

F (·) respectively.

2.2 False Discovery eXceedance (FDX) and Power

We are interested in developing a decision rule δ = (δ1, . . . , δm) such that the expected number

of true positives (ETP) is efficiently maximized subject to FDX control. Formally we formulate
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power as

ETP := E
∑
i

θi · δi, (3)

the expected number of correctly rejected hypotheses. The error-rate that we aim to control:

FDX := P (FDP > γ) ≤ α, (4)

defines FDX-control for a given (γ, α) ∈ (0, 1), where γ represents a tolerance level on the FDP

and α a low probability event, where the false discovery proportion is

FDP :=

∑
i(1− θi) · δi∑

i δi ∨ 1
, (5)

where
∑

i δi ∨ 1 denotes the maximum of
∑

i δi and 1. Hence, our methodological approach

follows a decision-theoretic approach to multiple-hypothesis testing problems. We aim to

develop a z-value based decision rule that is provably valid for FDX control. Such an approach

has been taken by Sun and Cai (2007) and more recently by Heller and Rosset (2021). Further,

we want to ensure that the methodology is computationally efficient and can be seamlessly

used for millions of tests analogous to Benjamini and Hochberg (1995) and Sun and Cai (2007)

for FDR-control to enable wide-applicability and eventually uncomplicated adoption.

3 Oracle Procedure for FDX Control

This section proposes an oracle solution to control the (γ, α)–level FDX. We provide the

properties of the oracle procedure and some indicative computational shortcuts. Further, we

provide a data-driven approximation.

3.1 Oracle Procedure

For a decision rule rejecting k hypotheses,
∑k

i=1(1− θi) is the number of false rejections. For

FDX control, we are interested in calculating the conditional control of the tail probability

Pθ|Z(FDP > γ) = Pθ|Z(
∑k

i=1(1− θi) > kγ). This probability can be found using the Poisson

binomial distribution, which generalizes the binomial distribution to the case when each trial

has a different probability of success, pi.

Denote the Poisson binomial distribution by PBD(k,p), with k being the total number of

trials and p = (pi : i = 1, . . . , k) the vector of success probabilities. We define TORi as the local

false discovery rate (lfdr) statistic:

TORi := P (θi = 0|Zi = zi) =
(1− π)f0(zi)

f(zi)
, (6)
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where π is the proportion of non-nulls, f0 is the null density for Z, and f(·) is the mixture

distribution for Z. An oracle FDX procedure at level (γ, α) is given below.

Procedure 1. 1. Consider the lfdr test statistics (TORi )i∈[m] as in (6), and denote the

ranked statistics (TOR(i) )i∈[m], in the increasing order.

2. Let K := max{k : P
(
PBD(k,p(k)) > γk

)
≤ α} where p(k) = (TOR(1) , . . . , T

OR
(k) ). Reject

the top K hypotheses along the lfdr ranking.

Note that, similar to Benjamini and Hochberg (1995), Procedure 1 is a step-up procedure,

in the sense that it starts from the least significant hypothesis (i.e., the one with the largest

lfdr) and moves up at each step to a more significant one. The procedure stops when it finds

the first hypothesis, HK , for which the tail probability is less than α. It then rejects all

hypotheses in {H1, . . . , HK}.
Define HK+1 as the first hypothesis that the procedure does not reject. To achieve control

at the exact level α, we propose to randomize the decision to accept or reject HK+1 by an

independent coin toss with appropriate success probability. This randomization is in the spirit

of the weighted FDR procedure proposed by Basu et al. (2018) and Gu and Koenker (2020).

3.2 Properties of the Oracle Procedure

We view the design of a multiple testing methodology as a procedure that uses a statistic to

rank and threshold tests. We first show that our proposed oracle procedure controls the FDX.

Proposition 1. (Exact Validity) Procedure 1 controls the FDX at level (γ, α).

Proof. Procedure 1 ensures Pθ|Z(
∑k

i=1(1− θi) > γk) ≤ α. Furthermore arbitrary randomiza-

tion at the ultimate decision ensures

E(θ,U)|Z

[
I∑

i(1−θi)δ∗i>γ
∑

i δ
∗
i

]
= α,

where δ∗i is the decision rule determined by the data Z and the independent arbiter U . Taking a

further expectation with respect toZ completes the proof. The independent arbiter is chosen to

favor one more rejection with probability {α−Pθ|Z(
∑K

i=1(1−θi) > γK)}/{Pθ|Z(
∑K+1

i=1 (1−θi) >
γ{K + 1})} − Pθ|Z(

∑K
i=1(1− θi) > γK)}.

Proposition 2. (Optimal Ranking) In the i.i.d. two-group model, Procedure 1 has the best

ranking for almost all sample points: For any decision rule with FDX-level (γ, α) we can find

an lfdr-based thresholding rule at the same level that has a higher or equal ETP.
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Proof. Suppose Proposition 2 is not true. Then for any claimed “optimal” decision rule there

must exist a subset in the sample space Z, which depends on the decision rule, such that

µ{w : Z(w) ∈ Z} > 0, where the decisions obtained by ranking lfdr are not preserved.

Let us refer to this claimed decision rule as δδδ∗ where lfdrj < lfdr`, but δj = 0 and δ` =

1, where j, ` are random indices determined by Z. Denote δδδnew as an alternative decision

rule where δnewj = 1 and δnew` = 0, and every other decision is as in δδδ∗. We show that

EZ [
∑

i(1− lfdri)δ∗i ] < EZ [
∑

i(1− lfdri)δnewi ] when Z ∈ Z. Whenever Z /∈ Z, we have

EZ [
∑

i(1− lfdri)δ∗i ] = EZ [
∑

i(1− lfdri)δnewi ]. Let ε > 0 be our uniform measurement

precision, that is, (1− lfdrj) ≥ ε+ (1− lfdr`). Then we note,

E

[∑
i

(1− θi)δ∗i

]
=EZ

[
Eθ|Z

[∑
i

(1− θi)δ∗i

]]

=EZ

[∑
i

(1− lfdri)δ∗i {IZ∈Z + IZ∈Zc}

]

≤EZ

[∑
i

(1− lfdri)δnewi {IZ∈Z + IZ∈Zc}

]
− ε · µ{w : Z(w) ∈ Z}

<E

[∑
i

(1− θi)δnewi

]
,

where the strict inequality is due to µ{w : Z(w) ∈ Z} > 0.

Next we verify that δδδnew is a valid decision rule. Note that the number of rejections, k0, is

the same in δδδ∗ and δδδnew. Suppose we show that

Pθ|Z

(
k∑
i=1

{(1− θi)δnewi } > γk0

)
≤ Pθ|Z

(
k∑
i=1

{(1− θi)δ∗i } > γk0

)
(7)

then if δδδ∗ is valid so is δδδnew. We now show that (7) holds. Define KKK as the set of rejected

strategies common to both decision rules. Conditional on ZZZ, we have that
∑k

i=1{(1− θi)δ∗i } ∼
PBD({lfdri∈KKK , lfdr`}, k0), where PBD is a random variable with Poisson binomial distribu-

tion.1 Similarly, we have that
∑k

i=1{(1 − θi)δnewi } ∼ PBD({lfdri∈KKK , lfdrj}, k0). Recall that

we have lfdrj < lfdr`. We consider random variables Y ∗ ∼ PBD({p1 · · · p∗` · · · pk0}, k0) and

Y new ∼ PBD({p1 · · · pnewj · · · pk0}, k0) with pnewj < p∗` . Then to show that P (Y new > γk0) ≤
P (Y ∗ > γk0).

Because the states of the hypotheses are independent, we can express P (Y ∗ > γk0) =

1Poisson’s binomial distribution or PBD refers to the sum of independent Bernoulli random variables, with not
necessarily equal expectations. In the special case that the expectations are all equal, a PBD simplifies to a binomial
distribution. PBDs have found their use in multiple applications; see, for example, Chen and Liu (1997) for a survey
on applications.
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p∗`P (Ȳ ∗ > γk0 − 1) + (1− p∗` )P (Ȳ ∗ > γk0) where Ȳ ∗ ∼ PBD({pi∈KKK}, k0 − 1). Then,

P (Y ∗ > γk0) =P (Ȳ ∗ > γk0) + p∗`{P (Ȳ ∗ > γk0 − 1)− P (Ȳ ∗ > γk0)}

=P (Ȳ ∗ > γk0) + p∗`P (Ȳ ∗ = dγk0 − 1e)

≥P (Ȳ ∗ > γk0) + pnewj P (Ȳ ∗ = dγk0 − 1e)

=P (Y new > γk0),

where dxe refers to the nearest integer strictly larger than x.

3.3 Poisson Binomial Distribution and Connection to lfdr

Poisson’s Binomial Distributions or PBDs have been used in the FDR literature, more recently

by Döhler and Roquain (2020) in the context of controlling the FDX for heterogeneous tests.

In the two-group model, each hypothesis is true either under the null or the alternative with

probability 1 − π and π. However, conditional on the observations Z = (Zi)i∈[m], the states

of the hypotheses marginally follows a Bernoulli distribution with heterogeneous expectations,

namely, P (θi = 0|Z). In the case that the joint density of the vector Z conditional on the hy-

potheses states can be factorized into marginal densities, P (θi = 0|Z) reduces to P (θi = 0|Zi),
which is equal to the local false discovery rate evaluated at Zi (i.e., lfdr(Zi)). Furthermore, if

the conditional states of hypotheses are independent, the partial sum of their state indicators

(i.e., θi) is a random variable that follows a PBDs.

Next, we discuss the connection of the PBD to the lfdr procedure. In the procedure that

we introduce in the previous sections, we rank hypotheses by the lfdr, which is determined by

the data. We show here that a ranking of hypotheses determined by the data does not alter

the conditional posterior distribution of their states.

Lemma 1. (No Selection Bias) Ranking by the lfdr does not alter the conditional distribution

of the partial sums
∑
θiIi∈SZ

, where SZ denotes any index set under consideration after

viewing the data Z.

Proof. Define random variables Ri := θiIi∈SZ
and SZ as determined by the observations

Z = (Zi)i∈[m]. Consider any nonempty partial set of indices denoted by SP . Suppose if

SP * SZ , then there exists an index i0 ∈ SP ∩ ScZ . Then E[
∏
i∈SP Ri|Z] = 0 = E[Ri0 |Z] ·

E[
∏
i∈SP\i0 Ri|Z]. Alternately, if SP ⊆ SZ , then we have E[

∏
i∈SP Ri|Z] = E[

∏
i∈SP θi|Z] =∏

i∈SP E[θi|Z] =
∏
i∈SP E[Ri|Z]. Therefore conditional on Z, the Ri’s are identically zero if

i /∈ SZ and independently distributed as Bernoulli random variables with an expectation of

lfdr(Zi) if i ∈ SZ .

Note that in our procedure, the index set SZ is, more specifically, determined by the

thresholding of the lfdr test statistic. However, we have proved that this does not distort the

hypothesis’s Poisson binomial distribution of conditional states.
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3.4 Computational Shortcuts

Because Procedure 1 is a step-up procedure, it starts by computing the tail probability of

the Poisson binomial distribution for all tests under consideration. At each progressive step,

the set of tests under consideration decreases. If there is a massive number of tests under

consideration, the procedure can be computationally intensive. To increase computational

efficiency, we modify Procedure 1 as follows. We justify the modifications after we present the

updated procedure.

Procedure 2. 1. Consider the lfdr test statistics (TORi )i∈[m] as in (6), and denote the

ranked statistics (TOR(i) )i∈[m], in the increasing order.

2. First reject up to K1 := max{k ∈ [m] : Eθ|Z

(∑k
i=1(1− θi)

)
≤ k · [α+ γ(1− α)]},

3. Next reject up to K2 := max{k ∈ [K1] : P (Y > γk) ≤ α}, where Y ∼ B(k, (
∏k

1 T(i))
1/k),

4. Finally reject only up to K := max{k ∈ [K2] : P
(
PBD(k,p(k)) > γk

)
≤ α}, and

p(k) = (TOR(1) , . . . , T
OR
(k) ).

Relative to Procedure 1, there are two additional steps (i.e., Step 2 and Step 3). We

progressively reduce the number of hypotheses under consideration so that the computationally

intensive Step 4 can be operated on a small set of hypotheses. The idea is that both Step 2

and Step 3 are step-up procedures in themselves: failure to meet their criteria guarantees that

the tail probability criteria in Step 4 also fail.

Step 2 is equivalent to the FDR control in Sun and Cai (2007) at the level α + γ(1 − α).

In fact, note that

Pθ|Z

(
k∑
i=1

(1− θi) > γk

)
≤ α,

implies

Eθ|Z

(
k∑
i=1

(1− θi)

)
≤ k · {α+ γ(1− α)}.

To see this, rewrite the expectation by separating the event where the argument (i.e., the

sum of false positives) is greater than γk and the complement event (i.e., sum is less or equal

to γk):

Eθ|Z

(
I∑

i(1−θi)>γk

k∑
i=1

(1− θi)

)
+ Eθ|Z

(
I∑

i(1−θi)≤γk

k∑
i=1

(1− θi)

)
.

The sum in the first expectation is bounded by k, and its probability is bounded by α, so the

expectation is bounded by kα. In the second expectation, the number of false positives is no

greater than γk, and the associated probability is 1 − α, which gives a bound of γk(1 − α).

Adding the two pieces together, the expected number of false positives is bounded above by
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k · {α + γ(1 − α)}. Thus if the condition in Step 4 holds, the condition in Step 2 will also

hold. From this follows that if the condition in Step 2 fails, the condition in Step 4 also fails,

and hence the reduction of the set of hypotheses produced by Step 2 is legitimate, as it only

eliminates cases in which the condition in Step 4 would fail.

This is a fast step because it only involves computing cumulative average lfdr over pro-

gressively smaller sets of hypotheses. Step 2 ends when we find the largest index for which the

condition does not fail, and we pass {H1, . . . , HK1} to the next step in the procedure.

In Step 3, we apply a useful result from Shaked and Shanthikumar (2007), that when

considering n independent binomial random variables Xi ∼ B(1, pi), with i ∈ {1, . . . , n}, then

the random variable Y ∼ B(n, (Πn
i=1pi)

1/n) is stochastically smaller than
∑
Xi. This implies

that if the condition of Step 3 fails (i.e., P
(
B(k, (

∏k
i T(i))

1/k) > γk
)
> α) then the condition

in Step 4 will also fail (i.e., P (PBD(k,T ) > γk) > α). Step 3 is also a step-up search, which

will end at the first index for which the condition does not fail, denoted by K2.

Finally, Step 4 of Procedure 2 is equivalent to Step 2 of Procedure 1, but it is applied to a

set with K2 tests instead of the initial set of m hypotheses.

3.5 Illustration of Procedures 1 and 2

We implement Procedure 2 on three independent random samples of 10,000 independent test

statistics from the mixture model where 90% come from a N (0, 1) and 10% arise from a

N (−2, 1). Table 1 reports the realized time for each of the runs, as well as the progressive

upper limits of rejections, when α = 0.05 and γ = 0.10.

While the two procedures reject the same number of hypotheses (as is expected) and thus

produce the same realized FDP, they take very different times to do so: Procedure 1 run-times

are around 3.8 minutes; Procedure 1 accomplishes the task in a fraction of a second. The

difference in execution time also decreases with the proportion of true nulls, π: when π is very

small, Procedure 1 execution time grows a lot more than Procedure 2’s. As for the mechanics

of how Procedure 2 operates, we see in Panel B that it quickly first reduces the number of

tests from ten thousand to about 300 trials, denoted by column K1. Then there are further

reductions in the number of tests represented by columns K2 and K. The realized FDPs are

close to the desired 0.10, with one in the three reported runs exceeding 0.10.

4 Implementation and Related Issues

4.1 Estimation of the lfdr

When it comes to computing the lfdr there are many alternatives that differs based on how the

null density and the null proportion are computed. We mainly use the model-based clustering

approach of Fraley and Raftery (2002) to estimate lfdr in our experiments and data application.
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Table 1: Computational advantages of Procedure 2
The table report illustrative results of the computational advantage of Procedure 2 (Panel B) relative to
Procedure 1 (Panel A). The underlying data generating process is a mixture model where 90% come from
a N (0, 1) and 10% arise from a N (−2, 1). We report the number of rejected nulls at each step of the
oracle procedure and the total execution time for a sample number of runs (3 reported). FDX control is
implemented at γ = 0.05 and with a confidence level 1− α = 0.95. We report the execution times for the
experimental runs for a CPU using a 3GHz processor with 8GB RAM.

K1 K2 K Realized FDP CPU Time

Panel A: Procedure 1

Run 1 - - 150 0.10 3.83 mins
Run 2 - - 142 0.06 3.68 mins
Run 3 - - 130 0.07 3.84 mins

Panel B: Procedure 2

Run 1 337 200 150 0.10 0.16 secs
Run 2 340 193 142 0.06 0.17 secs
Run 3 294 182 130 0.07 0.22 secs

The approach is available in an R package mclust (version of November 20, 2020). The packages

cluster the data into G groups, compute the probability that the data belongs to each group,

and estimate relative density. We define the group with the highest probability, π0, and that

is clustered around zero as the null, and compute the lfdr as

lfdr =
π0f0∑
g∈G πgfg

,

alternatively, the denominator can also be computed as the mixture density f(·) using a non-

parametric kernel density estimator.

Other possibilities of computing the lfdr statistic are the R package locfdr based on Efron

(2004, 2008, 2009), the approach followed in Sun and Cai (2007), for which code is available at

the paper’s website, and the robust error-specific correction of Roquain and Verzelen (2021).

4.2 Dependencies and Exchangeability

The proof of Proposition 2 requires that the states of the hypotheses considered are indepen-

dent. However, we can show that ranking by lfdr is still optimal when hypotheses are jointly

Gaussian and exchangeable (i.e., equal-variances and equal-covariances): Z|θθθ ∼ N (µ θθθ,Σ),

where µ is the common mean, and the correlation matrix corresponding to Σ is equi-correlated.

Contrary, if hypotheses are non-exchangeable in Table 4, we provide a counterexample to the

optimality by the lfdr ranking for multivariate Gaussian.
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Proposition 3. (Optimal Ranking for Exchangeable Gaussian Observations) When Z|θθθ ∼
N (µ θθθ,Σ), Procedure 1 has the best ranking for almost all sample points: For any decision rule

with FDX-level (γ, α) we can find an lfdr-based thresholding rule at the same level that has a

higher or equal ETP.

Proof. Note that in the exchangeable case, µ takes a specific sign (and value), either positive

or negative, for all tests. Suppose without loss of generality that µ < 0. We show that, in such

a case, ranking by lfdr is equivalent to the ranking by increasing values of z-scores, which is

the same as ranking by increasing values of marginal lfdr. Rewrite:

P (Z|θθθ) ∝ exp

{
−1

2
ZΣ−1Z

}
· exp

{
−1

2
µ2θθθΣ−1θθθ

}
· exp

{
µθθθΣ−1Z

}
.

If z1 > z2, and not altering other z-scores, then P (Z|θ1 = 0, θ2 = 1, θθθ{−1,−2}) > P (Z|θ1 =

1, θ2 = 0, θθθ{−1,−2}), where θθθ{−1,−2} represents the vector of all θ that are not θ1 and θ2. Note,

in fact, that

ln{P (Z|θ1 = 0, θ2 = 1, θθθ{−1,−2})/P (Z|θ1 = 1, θ2 = 0, θθθ{−1,−2})} ∝ µ(z1−z2)(Σ−1ij −Σ−1ii ), (8)

where i 6= j represent all the off-diagonal entries and Σ−1ij −Σ−1ii = 1/(σ2 ·(ρ−1)) < 0 and µ < 0.

σ2 > 0 and ρ < 1 denotes the common variance and correlation respectively for the Gaussian

multivariate density. Now to show that ranking by lfdr is equivalent to ranking by increasing

values of z-scores: P (θ1 = 0|Z) > P (θ2 = 0|Z). The result follows since P (θ1 = 0|Z)−P (θ2 =

0|Z) =
∑

θθθ{−1,−2}∈{0,1}m−2 P (θ1 = 0, θ2 = 1, θθθ{−1,−2}|Z) − P (θ1 = 1, θ2 = 0, θθθ{−1,−2}|Z) and

θi ∼ Ber(π) independently.

Showing that ranking by increasing values of z-scores is the same as ranking by increasing

values of marginal lfdr is simpler: if µ < 0, a higher positive value of a z-score indicates a

higher marginal lfdr value. Similarly, the converse holds when µ > 0.

It remains to be shown that ranking by the lfdr maximizes the power among all decisions

that control the FDX(γ, α) in the exchangeable and Gaussian framework. To do so, if the

hypotheses are not already ranked by the marginal lfdr, consider switching decisions. As we

show in the proof to Proposition 2, swapping decisions leads to an increase in power. Thus, the

ranking by marginal lfdr, will lead to maximize power. Moreover, note that when µ < 0 and

z1 > z2 we have P (θ1 = 0, θ2 = 1, θθθ{−1,−2}|Z) > P (θ1 = 1, θ2 = 0, θθθ{−1,−2}|Z) (as is shown in

the previous paragraph). Hence, if the original procedure had valid FDX control, so does the

modified procedure.

Remark 1. For generalized non-Gaussian distributions, (8) highlights the sufficient condition

to guarantee both the optimality of ranking and that ranking by the marginal lfdr is adequate.

This condition is naturally satisfied for exchangeable elliptical distributions such as the mul-

tivariate normal, t, or Laplace distributions. Similarly, for a general test statistic, such as
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the absolute values of the z-score or of the t-statistic, it is sufficient that the left side term of

(8) is negative (or positive in T (·)). That is, the sufficient condition is that if Tj(z) := |zj | <
|zi| =: Ti(z), then P (T (Z)|θi = 0, θj = 1, θθθ{−i,−j}) < P (T (Z)|θi = 1, θj = 0, θθθ{−i,−j}) holds for

the joint density. When iid, this condition factorizes to the monotone likelihood ratio (MLR)

criterion. Thus this condition may be viewed as a generalized MLR condition for multivariate

densities.

Once ranked, hypotheses need to be thresholded. Procedure 2 requires hypotheses to

be independent, and hence if applied to a case study where there are dependencies, it is

not delivering the optimal threshold. If the source of dependency is unknown, one could

still compute the proper posterior probability by evaluating the probabilities of all possible

combinations of θθθ conditional on data, a highly burdensome computational problem. However,

suppose individual z-scores are independent conditionally on the unknown location and scale

of the data generating process. In that case, one could first estimate these hyper-parameters,

thus obtaining an estimated “null” distribution, and continue pretending independence. We

return to this in Section 5.2.

5 Numerical Experiments

We present here a few numerical examples designed to highlight the properties of Procedure

2 and how it compares to other existing procedures. We start with a similar model to that

presented in Table 1 of Heller and Rosset (2021),we then introduce conditional dependencies

and conclude with a setup that mirrors the real-life application presented in Section 6.

5.1 Independent Hypotheses

We consider a base setup with a non-null proportion of π ∈ {0.1, 0.2, 0.3}, the null model

being generated from a standard normal, and the non-null distribution being N (µ, 1) with

µ ∈ {−1.5,−2,−2.5}. The base case with π = 0.2, µ = −2, corresponds to the example in

Table 1 of Heller and Rosset (2021). Each of 10,000 simulations considers 5,000 tests. We

evaluate Procedure 2 at γ = 0.05 and α = 0.05, and compare it to a set of representative

procedures: Sun and Cai (2007) (SC), Benjamini and Hochberg (1995) (BH), Guo and Ro-

mano (2007) (GR), and Lehmann and Romano (2005) (LR). For Procedure 2 we consider

three alternatives: the oracle, which knows the non-null distribution and the non-null propor-

tion (Oracle), the situation when the distributional parameters are unknown and need to be

estimated (lfdr), and the situation when the distributional parameters are unknown but a

strong prior of 1 is imposed in the proportion of nulls (lfdr(π̂ = 0)). Results are reported in

Table 2.

Three themes are true in general across the various scenarios: first, procedures that are
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designed to control FDR, SC and BH, get very close to doing so with SC being close to the

desired level α, and the BH being close to (1−π)α while both procedures have highly inflated

FDX especially for weak and sparse scenarios; second, procedures that are designed to control

FDX do so, but with varying degrees of success. Our Procedure is generally close to a 5%

control in every situation; however, GR and LR become less accurate as sparsity decreases

(i.e., π increases) and as the average non-null effect becomes more sizable (i.e., µ becomes

more negative). Third, there is an inverse relationship between the ability of a procedure

to control the number of false discoveries and its power: methods that control FDX are less

powerful, although, at least in this setting, Procedure 2 is more powerful than GR and LR,

and relatively closer to BH in power.

Table 2: Comparison of different procedures
The table compares the performance of Procedure 2 relative to some popular methods: Sun and Cai (2007)
(SC), Benjamini and Hochberg (1995) (BH), Guo and Romano (2007) (GR), and Lehmann and Romano
(2005) (LR). Three version of Procedure 2 are implemented: the oracle version (Oracle), a version where
the parameters of the data generating process are estimated from the data (lfdr), and a version where we
impose the assumption that π = 0, lfdr(π̂ = 0). The data generating process is a mixture model where
with probability 1 − π the test is drawn from a N (0, 1) (null), and with probability π the test is drawn
from N (µ, 1) (alternative), where π ∈ {0.1, 0.2, 0.3} and µ ∈ {−1.5,−2,−2.5}. Each simulation considers
5,000 tests. We repeat the exercise for 10,000 simulations. FDX control is implemented at γ = 0.05 and
with a confidence level 1− α = 0.95, FDR control is implemented at a nominal level of α = 0.05.

Procedure 2

SC BH GR LR Oracle lfdr lfdr(π̂ = 0)

π = 0.2 FDX 0.452 0.348 0.040 0.040 0.047 0.076 0.062
µ = −1.5 FDR 0.050 0.040 0.013 0.013 0.015 0.021 0.019

Power (%) 3.4 2.6 0.3 0.3 0.3 0.4 0.4

π = 0.2 FDX 0.484 0.242 0.039 0.037 0.052 0.066 0.025
µ = −2 FDR 0.050 0.040 0.004 0.004 0.028 0.029 0.022

Power (%) 22.6 18.8 1.5 1.2 13.5 14.0 10.6

π = 0.2 FDX 0.471 0.133 0.014 0.000 0.049 0.054 0.006
µ = −2.5 FDR 0.050 0.040 0.030 0.002 0.036 0.036 0.028

Power (%) 51.0 46.5 40.6 7.6 44.3 44.3 39.6

π = 0.1 FDX 0.458 0.399 0.044 0.042 0.047 0.068 0.059
µ = −2 FDR 0.049 0.045 0.007 0.007 0.011 0.016 0.014

Power (%) 11.2 10.3 1.2 1.2 2.3 3.1 2.5

π = 0.3 FDX 0.484 0.061 0.019 0.019 0.053 0.059 0.004
µ = −2 FDR 0.050 0.035 0.011 0.002 0.035 0.035 0.023

Power (in %) 33.2 25.8 8.8 1.4 25.7 25.9 18.7

We now discuss relative differences in performance across the three versions of Procedure
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2. When lfdr is estimated, the procedure generally delivers higher levels of FDX, particularly

when signals are sparse and weaker. To address the FDX inflation in very sparse and low signal

situations, one conservative approach is to impose the assumption that the null proportion is

approximately 1, lfdr(π̂ = 0) . We observe a realized FDX that is conservative yet still more

powerful than GR and LR when we do so.

5.2 One Example of Specific Dependencies

As mentioned in Section 4.2, the performance of Procedure 2 is not guaranteed when hypothe-

ses are non-exchangeable. There are, however, particular and not uncommon cases where we

can take advantage of the fact that our procedure tries to learn the properties of the null

distribution by estimating the lfdr.

Consider, for example, a hierarchical setup where one hypothesis is null most of the time,

with a probability of 0.90. When non-null, one-half of the time, the marginal distribution is

N (0.25, 1), and for the other half, it is N (−0.25, 1). Under the null, the observations arise from

a perturbed variation of the standard normal, N (µ, 1) where µ ∼ Unif [−0.1, 0.1]. Note that

while conditional on the realized value of µ, the observations are independent, unconditionally,

the null observations are not: in a sample of size n = 100, the correlation among the studentized

test-statistics is about 0.25. Figure 2 shows a scatter plot of two null test statistics first when

they are independently generated, second when generated via an independent standard normal

with an additive correlated noise model with a correlation of ρ = 0.25, and a third scenario

following the above discussed hierarchical unknown location specified null. Aside from the third

scatter plot being more spread out due to the location shift, we cannot visually distinguish the

last two cases.

We consider 5,000 tests and control the FDX at γ = 0.1 and with a confidence level

1 − α = 0.95. For convenience, we compare our proposed procedure to Guo and Romano

(2007) (GR), and to the bootstrap based procedure of Romano and Wolf (2007) and Romano

et al. (2008) (RSW) that asymptotically controls FDX in presence of arbitrary dependencies.

Table 3 reports the realized FDX, average power (correctly rejected hypotheses as a percent-

age of the number of non-nulls), and the average of the realized FDPs over 10,000 experiments.

In columns 3-4, we tabulate results obtained when GR and RSW assume the theoretical null

(i.e., N (0, 1)) as the underlying distribution for the null observations. Columns 5-6 show cor-

responding statistics when the null distribution is estimated from the data (i.e., the empirical

null). We correct for the unknown null location by centering all the test statistics by the mean

of the observations. Note that Procedure 2 is designed to adapt to the scenario automatically

so that there is no large difference in results. The lfdr estimation in procedure 2 here uses

the locfdr estimates following Efron (2004).

In the first scenario, both GR and RSW report a relatively high FDX, much higher in fact

than allowed by the selected values of α and γ. Both procedures do better when allowed to
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Figure 2: Conditional dependencies
The figure presents a visual comparison of different distributions of test statistics: the leftmost panel
corresponds to mutually independent tests; the middle panel shows tests statistics obtained from data
that have a 0.25 correlation caused by a common additive noise; the rightmost panel, instead, shows test
statistics obtained from conditionally independent samples, which are however conditionally correlated
because of a common location shift that induces a correlation of about 0.25.
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“learn” something about the background null (columns 5-6), although RSW overshoots and

becomes very conservative and loses significant power. In this setup, Procedure 2 holds its

ability to control FDX at the desired level while maintaining power.

Table 3: Conditional dependencies
The table reports the average FDX, FDR, and power for 10,000 simulated experiments. Each experiment
considers 5,000 tests drawn in a hierarchical setup where a hypothesis is null most of the time, with a prob-
ability of 0.90. When non-null, one-half of the time, the marginal distribution is N (0.25, 1), and one-half
of the time it is N (−0.25, 1). When null, the observations arise from a perturbed variation of the standard
normal, N (µ, 1) where µ ∼ Unif [−0.1, 0.1]. We compare Procedure 2 to Romano et al. (2008) (RSW)
and Guo and Romano (2007) (GR). To facilitate comparison, the table shows the results from applying
the original RSW and GR procedures (Theoretical Null) alongside the case where the econometrician can
estimate the null distribution from the data (Empirical Null). FDX control is implemented at γ = 0.1 and
with a confidence level 1− α = 0.95.

Theoretical Null Empirical Null

Procedure 2 RSW GR RSW GR

FDX 0.046 0.492 0.771 0.003 0.164
FDR 0.057 0.131 0.223 0.016 0.079
Power (%) 28.5 18.2 32.6 10.7 32.2

With the aid of a numerical experiment, we demonstrate that the lfdr test statistic ranking

is not necessarily the optimal ranking for non-exchangeable study situations. We follow the

setting described in Section 5.2 in Heller and Rosset to provide a counterexample for the

best ranking for FDX control. Ten z-scores are generated from the two-group model with

θi ∼ Bernoulli(0.3) independently. Further Z|θθθ ∼ N(−1.5∗θθθ,Σ+0.01∗diag(θθθ)). Because the

computational burden grows exponentially, we simulate only 10 test statistics and work with

γ = 0.5. Since for independent (or exchangeable) z-scores, we obtain an optimal ranking (by

sorting on lfdr) regardless of the size of γ, the framework serves as a good counterexample.

We work with a part of the variance-covariance matrix Σ that is block diagonal with two

blocks, each block being equicorrelated with a varied choice of ρ. We ran our experiment 200

times. Each time we consider the case when the indices are ranked by lfdr, which is the ideal

choice for exchangeable tests, and we select the indices with the lowest two values. We divide

the hypotheses into the two blocks in the second situation, known to the oracle as if she knew

the variance-covariance matrix structure. Further, the top indices from the two blocks with

the minimum lfdr values are selected. We find this the most intuitive way to counter the

dependencies within blocks and potentially make a better rejection due to the blocks’ positive

dependencies. Table 4 reports the percentage of time the lfdr statistic’s ranking provided

higher tail probability values than when ranked by the lfdr values within blocks separately.

The values are reported for varied values of ρ in percentage for 200 experimental runs. Consider
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the case of ρ = 0.3. Table 4 shows that in 13% of the cases selecting the top indices from

the two blocks separately produces a lower value of the tail probability than selecting the top

indices from all the indices combined.

Table 4: Counterexample to the optimal lfdr ranking
The table reports the proportion of time the tail probability was lowered when not necessarily ranked the
lfdr. The ranking may be substantially improved for moderately correlated test statistics by incorporating
the correlation structure into account. This demonstrates that the lfdr ranking and thresholding procedure
may not be optimal for non-exchangeable tests where the correlation structure is unknown to a practitioner.

ρ 0.01 0.1 0.3 0.5 0.7 0.9

Contradicts (in %) 0 4.5 13 16 21.5 31

One might also wonder if the differences in the tail probabilities are high enough. For

example, consider ρ = 0.5: the tail probability is relatively higher by an average of 16.7%.

5.3 Simulation of Stock Returns Trading Strategies

In this section we present a simulated version of the empirical application presented in Section 6

that follows the set up of Chordia et al. (2020). A total of N = 2, 000 stock returns are

generated for T = 500 periods. Returns follow a linear factor structure

Rit = αi + β′iFt + εit,

where the factors, F , are drawn from a multivariate normal distribution with the mean and

the covariance matrix matching closely those of the five Fama and French (2015) factor model,

augmented with Carhart (1997) momentum. For each stock, α represents the return that

an investor could realize in excess of the risk generated by the factors, and is drawn from a

N (0, σ2α) and εit ∼ N (0, σ2ε) with σε = 15.1%. In each time period (i.e., month), we draw

S = 5, 000 trading signals for each stock: a fraction π of the trading signals are informative

(although imperfectly) about the α of each stock: sit = αi + ηit, where ηit ∼ N (0, ση). A

fraction 1 − π just contain noise: sit = ηit. Informative and uninformative trading signals

might share some common noise through the correlation coefficient ρη among signals.

A stock trader constructs 5,000 trading strategies by sorting stocks each month based on

the signals realizations. She forms 10 portfolios, buys the portfolio corresponding to the largest

signals, and shorts the portfolio corresponding to the lowest. The performance of these 5,000

long-short portfolios is evaluated by regressing the time series of 500 portfolio return observa-

tions on the realizations of the factors. A t-statistics on the estimated regression intercept (i.e.,

the portfolio alpha/abnormal return) is used to evaluate each strategy in classical hypothe-
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ses testing, and altogether in multiple hypothesis testing. The entire simulation procedure is

repeated 1,000 times.

Figure 3 provides a visual representation of the null and alternative distributions in three

scenarios that differ for the strength of the informative signal, σα ∈ {1.1%, 1.25%, 1.5%}. As

the signal becomes stronger, the truly informative trading signals are more easily identifiable.

Note, however, that even the most favorable scenario is rather complicated for a multiple com-

parisons procedure as there is substantial overlap between null and alternative distributions.

Figure 3: Simulation scenarios
The figure presents a visual comparison of different distributions of test statistics for the trading strategy
simulation. In the base case situation: π = 0.1, σε = 0.15, ση = 0.2, and ρη = 0. The figure presents
different simulations that vary σα ∈ {1.1%, 1.25%, 1.5%}.
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We analyze the simulated data under two scenarios that differ for whether the econometri-

cian knows the true proportion of nulls and the parameters of the null distribution (Oracle)

or has to estimate that from the data (Data-Driven). Note that here, differently from the case

described in Section 5.1 where the null is a N (0, 1), the exact null distribution is unknown.

Thus, constructing the Oracle information set in a non-traditional way: We allow the Oracle to

estimate the parameters of the null distribution by temporarily endowing her with the knowl-

edge of which tests are null and which are not. Based on that, the Oracle can estimate the

null and alternative parameters, after which she forgets to have ever known which tests are

null and tries to learn that by running the various procedures. In the Data-Driven scenario,

the econometrician does not know the structural parameters and estimates them all.

We report results in Table 5 and Table 6, respectively. Both tables compare average FDX,
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FDR, and power of Procedure 2 to Sun and Cai (2007) (SC), Benjamini and Hochberg (1995)

(BH), Guo and Romano (2007) (GR), and Lehmann and Romano (2005) (LR). Both tables

consider different specifications of the standard deviation of α, σα ∈ {1.1%, 1.25%, 1.5%},
which determines the signal to noise ratio in the trading signal, and the trading signals pair-

wise correlation coefficient, ρη ∈ {0, 0.1, 0.2}. A higher σα makes the signals more informative.

Similarly, a non-zero correlation makes the signal to noise ratio higher, by reducing the back-

ground noise, and places procedures outside of the canonical i.i.d case.

Almost in every scenario considered Procedure 2 sits between BH and GR, in terms of

FDX and power. From Table 5 we see that the Oracle version is able to maintain and effective,

although a bit conservative, FDX control while delivering reasonable power, especially in the

very difficult scenario (i.e., σα = 1.1%). The Procedure outperforms GR, its most natural

comparison, in all but one scenario: when σα = 1.1% GR delivers a slightly higher FDX.

Although it is designed to control FDR, as opposed to FDX, the most applied MHT procedure

is BH. Relative to Procedure 2, BH does guarantee FDR control while maintaining a higher

power, but at the cost of FDX of relatively large FDX, often over 30%. Increasing correlation

among tests makes it easier to separate null and alternative, thus leading to an increase in

power for all procedures: thus even in the case of simple correlation structure which maintains

exchangeability, Procedure 2 is still able to accomplish its objectives of delivering FDX control

and outpacing the power of other procedures designed in the same spirit.

Once we place the procedures in the real-life scenario of having to learn the data-generating

process from the data, see Table 6, both Procedure 2 (lfdr) and GR deliver an FDX control

that is above the desired threshold in every scenario, with Procedure 2 erring on the side

of being less conservative. This is likely because estimating π from the simulated data is

particularly challenging. A way to simplify the problem is to start with the assumption that

the proportion of informative signal is zero, π̂ = 0. That leads to a substantial decrease in

FDX, which nears the desired threshold, coming at a slight power reduction expense.

6 Application: Financial Trading Strategies

We apply Procedure 2 to a real-life example where the goal is to identify interesting trading

strategies among over two million candidate strategies, as in Chordia et al. (2020). The

construction of trading strategies reflects exactly the simulation set up of Section 5.3. Each

trading strategy is constructed by sorting stocks into deciles based on a trading signal at the

end of June of each year. Stocks in the top decile are purchased at the closing price, and stocks

in the bottom decile are sold short. Portfolio compositions are held for twelve months, but the

weights are rebalanced monthly to reflect value-weighted exposures (i.e., stocks weights are

proportional to relative market capitalizations). As trading signals, we consider every variable

in the combined COMPUSTAT/CRSP datasets: we take the level, the growth rate, the ratio
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Table 5: Stock return simulation (Oracle)
The table compare average FDX, FDR, and power across 5,000 trading strategies obtained from Procedure
2 to Sun and Cai (2007) (SC), Benjamini and Hochberg (1995) (BH), Guo and Romano (2007) (GR), and
Lehmann and Romano (2005) (LR). In each simulations, the return of 2,000 stocks for 500 observations
is generated from a linear factor structure model, Rit = αi + β′iFt + εit, where αi represents the return
that an investor could realize in excess of the risk generated by the factors, Ft and is drawn from a
N (0, σ2α) and εit ∼ N (0, σ2ε). In each time period (i.e., month), we draw S = 5, 000 trading strategies for
each stock: a fraction π of the trading signals are informative (although imperfectly) about the α of each
stock: sit = αi + ηit, where ηit ∼ N (0, ση). A fraction 1− π just contain noise: sit = ηit. Informative and
uninformative trading signals might share some common noise through the correlation coefficient ρη. Each
month stocks are sorted into deciles based on the trading signal realization, and a long short portfolio is
obtained from buying stocks in the top deciles and shorting stocks in the bottom deciles. A t-statistics of
the portfolio regression alpha serves as the relevant test statistic in evaluating each trading strategy/long-
short portfolio. In the base case situation: π = 0.1, σε = 0.15, ση = 0.2. The table presents different
simulations that vary σα ∈ {1.1%, 1.25%, 1.5%} and ρη ∈ {0, 0.1, 0.2}. Each procedure is implemented
as an Oracle, who has knowledge, or is able to accurate estimate, the parameters of the data generating
process. FDX control is implemented at γ = 0.05 and with a confidence level 1 − α = 0.95, FDR control
is implemented at a nominal level of α = 0.05.

SC BH GR LR Procedure 2

σα = 1.5% FDX 0.471 0.289 0.034 0.000 0.039
ρη = 0 FDR 0.050 0.045 0.035 0.003 0.037

Power (%) 92.9 92.5 91.0 68.4 91.3

σα = 1.25% FDX 0.493 0.340 0.032 0.003 0.049
ρη = 0 FDR 0.051 0.046 0.028 0.002 0.032

Power (%) 52.7 50.9 41.8 12.7 44.4

σα = 1.10% FDX 0.477 0.382 0.045 0.045 0.041
ρη = 0 FDR 0.050 0.045 0.006 0.006 0.018

Power (%) 18.9 17.6 2.2 2.0 8.6

σα = 1.25% FDX 0.500 0.341 0.031 0.000 0.041
ρη = 0.1 FDR 0.050 0.045 0.029 0.003 0.032

Power (%) 57.5 55.9 47.8 15.8 49.8

σα = 1.25% FDX 0.483 0.334 0.031 0.000 0.044
ρη = 0.2 FDR 0.050 0.046 0.030 0.003 0.033

Power (%) 62.3 60.8 53.6 19.6 55.3
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Table 6: Stock return simulation (Data-Driven)
The table compare average FDX, FDR, and power across 5,000 trading strategies obtained from Procedure
2 to Sun and Cai (2007) (SC), Benjamini and Hochberg (1995) (BH), Guo and Romano (2007) (GR), and
Lehmann and Romano (2005) (LR). In each simulations, the return of 2,000 stocks for 500 observations
is generated from a linear factor structure model, Rit = αi + β′iFt + εit, where αi represents the return
that an investor could realize in excess of the risk generated by the factors, Ft and is drawn from a
N (0, σ2α) and εit ∼ N (0, σ2ε). In each time period (i.e., month), we draw S = 5, 000 trading signals for
each stock: a fraction π of the trading signals are informative (although imperfectly) about the α of each
stock: sit = αi + ηit, where ηit ∼ N (0, ση). A fraction 1 − π just contain noise: sit = ηit. Informative
and uninformative trading signals might share some common noise through the correlation coefficient
ρη = corr(ηi, ηj). Each month stocks are sorted into deciles based on the trading signal realization, and
a long short portfolio is obtained from buying stocks in the top deciles and shorting stocks in the bottom
deciles. A t-statistics of the portfolio regression alpha serves as the relevant test statistic in evaluating each
trading strategy/long-short portfolio. In the base case situation: π = 0.1, σε = 0.15, ση = 0.2. The table
presents different simulations that vary σα ∈ {1.1%, 1.25%, 1.5%} and ρη ∈ {0, 0.1, 0.2}. Each procedure is
implemented in a Data-Driven fashion: when necessary the econometrician estimates parameters directly
from the observed data without knowledge of the true data-generating process. FDX control is implemented
at γ = 0.05 and with a confidence level 1 − α = 0.95, FDR control is implemented at a nominal level of
α = 0.05.

Procedure 2

SC BH GR LR lfdr lfdr(π̂ = 0)

σα = 1.5% FDX 0.470 0.322 0.074 0.000 0.082 0.033
ρη = 0 FDR 0.050 0.046 0.036 0.003 0.037 0.034

Power (%) 92.9 92.5 91.0 68.4 91.3 90.6

σα = 1.25% FDX 0.593 0.398 0.073 0.002 0.123 0.069
ρη = 0 FDR 0.054 0.048 0.030 0.003 0.035 0.031

Power (%) 53.6 51.6 42.7 13.2 45.5 43.4

σα = 1.1% FDX 0.668 0.572 0.074 0.069 0.111 0.078
ρη = 0 FDR 0.063 0.057 0.008 0.007 0.026 0.022

Power (%) 22.1 20.4 2.8 2.3 11.1 9.6

σα = 1.25% FDX 0.569 0.403 0.072 0.000 0.109 0.051
ρη = 0.1 FDR 0.053 0.047 0.030 0.003 0.035 0.031

Power (%) 58.4 56.4 48.6 16.3 50.8 48.9

σα = 1.25% FDX 0.556 0.410 0.077 0.000 0.120 0.071
ρη = 0.2 FDR 0.053 0.048 0.032 0.003 0.035 0.032

Power (%) 63.0 61.3 54.3 20.1 56.1 54.2
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between two variables, and a transformation of three variables (i.e., (x1 - x2)/x3). When more

than one variable is involved, we consider all the possible combinations. We apply filters to

guarantee that strategies are well populated and that microstock returns are not overly biased.

Details can be found in Chordia et al. (2020). In total, we obtain 2,396,456 trading strategies

for the period between 1972 and 2015.

The data generating process provides that asset (stocks or portfolios) returns arise because

of three components: a systematic risk-premium, an idiosyncratic mean-zero, and a time-

invariant component (αi). Under the null, the returns are entirely due to compensation for

exposure to systematic risk factors; the time-invariant component is precisely zero (i.e., αi = 0).

We test whether the portfolio αi is zero (i.e., this is a two-tail test) for 2,396,456 strategies.

Thus we have a standard multiple testing problem.

The rationale behind adopting a combinatorial approach to constructing trading signals

is essentially twofold. On the one hand, there is a long tradition among finance scholars

and practitioners to relate stock returns to accounting variables: quantities such as the equity

market value of a firm (i.e., a level), the profitability of the assets (i.e., a ratio of two), and

the ratio of assets minus equity, divided by assets (i.e., a transformation of three) have all

been studied as predictors of future stock returns. See, for example, Chen and Zimmermann

(2021) who construct a large laboratory dataset of such variables. On the other hand, only

predictors that worked and were discovered by academics or those that no longer worked and

were found by industry practitioners are known. That leaves a large set of possible trading

signals: those that were tried by academics or practitioners but did not work, those still used

in the industry but are not widely publicized (for obvious reasons), and those that were never

tried in the first place. In other words, there is a significant file drawer problem by considering

many trading signals of the same functional form as those that have likely been studied. The

combinatorial approach aids in providing an exhaustive set that can be analyzed through

the lens of a multiple testing procedure. Adopting the combinatorial approach to generating

trading signals is not without consequences: we will uncover many trading strategies that

appear to be very profitable, but which likely are also meaningless, in the sense that they are

artifacts of our data mining, are not based on any reasonable economic argument, and are

likely not going to be profitable out of sample.

As mentioned above, this set of trading strategies has been studied in Chordia et al. (2020).

The authors apply several multiple hypotheses procedures and still “find” many profitable

strategies before applying some economic restriction. Probably a problematic aspect of their

study is that they fail to incorporate the information gained from the data about the null

distribution into the procedures. Thus, this particular data set seems perfect to evaluate

Procedure 2, which heavily relies on ranking hypotheses by the data-driven lfdr (i.e., the one

that relies on the empirical null): We expect the proportion of signals that are true predictors

to be tiny. Thus, we would expect that a proper multiple testing procedure fails to select the
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very great majority of the strategies.

Figure 4: Data representation under different assumptions
The figure compares histograms of the distribution of t-statistics for 2,396,456 trading strategies. The left
panel is created by drawing a 90% of 2,396,456 from a N (0, 1), the center panel presents the histogram
of the actual data, and the rightmost panel is the density of the estimated empirical null. We use the
analytical method of estimating the empirical null distribution parameters and null proportion described
in Section 4 of Efron (2008). The data contains 2,396,456 trading strategies for the period between 1972
and 2015.
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In Figure 4 we compare the histogram of the distribution of 2,396,456 alpha t-statistics,

with the theoretical null (i.e., a normal with mean zero and standard deviation equal to 1)

and with the empirical null. We estimate the empirical null distribution parameters and null

proportion using the analytical method described in Section 4 of Efron (2008).

The data is more widespread than the theoretical null but relatively close to the empirical

null. The cross-sectional distribution of estimated alphas is dependent because some signals

are correlated, and the alpha is conditional on a set of common returns. In that sense, concep-

tually, the Efron empirical null is a much better approximation to the data generating model.

However, because our data contains many trading strategies that have already been reported

as profitable, we expect some amount of divergence in the tails of the respective distributions

(i.e., a few genuinely non-zero alphas). How much of that might be in the data is a question

that can only be answered by correcting for multiple hypotheses.

We implement Procedure 2 and report the number of strategies that are selected at different

levels of γ and α in Table 7, where γ denotes the maximum allowable proportion of false

discoveries (FDP), and α refers to the allowable tail probability. Similar to what we do for the
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simulation exercise described in Section 5.3, we compare the results obtained from applying

Procedure 2 to the one proposed by Guo and Romano (2007) (GR), the FDP-StepM procedure

of Romano and Wolf (2007) and Romano et al. (2008) (RSW), and the FDR procedure of Sun

and Cai (2007) (SC).

Table 7: Discoveries in a sample of 2,396,456 trading strategies
The table reports the number of trading strategies selected by Procedure 2, Guo and Romano (2007)
(GR), the FDP-StepM procedure of Romano and Wolf (2007), and Romano et al. (2008) (RSW), and the
FDR procedure of Sun and Cai (2007) (SC) when applied to the set of 2,396,456 stock trading strategies
constructed from accounting and stock price information for the period between 1972 and 2015.

Panel A: Procedures based on empirical null

Procedure 2 GR
γ/α 0.01 0.05 0.10 0.01 0.05 0.10

0.05 1 4 5 1 2 3
0.10 1 20 24 1 2 3
0.20 40 47 51 1 2 3

Panel B: Procedures based on theoretical null

Procedure 2 GR
γ/α 0.01 0.05 0.10 0.01 0.05 0.10

0.05 253,837 254,894 255,454 204,011 205,113 205,654
0.10 416,217 417,137 417,627 351,377 352,334 352,907
0.20 698,052 698,881 699,322 626,247 627,418 628,007

Panel C: Alternative procedures

RSW SC
γ/α 0.01 0.05 0.10 0.01 0.05 0.10

0.05 5,528 32,812 65,001 290,932 411,855 549,435
0.10 21,867 90,722 15,1614 446,077 549,435 673,698
0.20 96,241 235,708 328,007 722,506 808,424 915,176

In general, the number of findings increases with how many false discoveries are allowed.

For example, for a choice of γ = 0.10 and α = 0.05, we pick out 20 strategies, while for

a γ = 0.2 the procedure selects 47 strategies. The number of selected strategies also varies

considerably with the assumption about the shape of the null hypothesis: if one relies on the

theoretical null (Panel B) instead of Efron’s empirical null, the number of discoveries grows

dramatically.

Compared to the standard frequentist procedure of Guo and Romano (2007), which emerges

from our simulation as the most powerful alternative solution in the frequentist’s paradigm,

Procedure 2 selects more strategies. This is not surprising as the result of the simulation
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presented in the previous section confirms GR to be less powerful. For example, in the case

where the empirical null is used and γ = 0.10 and α = 0.10, Procedure 2 selects 24 strategies

while GR selects 3. When the theoretical null is used for the same parameters, Procedure

2 selects 417 thousand strategies, while GR selects 352 thousand. This is understandable

as Efron’s method imposes a much less stringent condition on the null specification. By

conforming to the data, it restricts the number of strategies that can be selectable by any

procedure.

Finally, compared to procedures based on entirely different assumptions, the number of

selected strategies by Procedure 2 is between RSW, which aims to control FDP at the same

levels of γ and α; still, it is very conservative, and the SC which controls FDR at a level

α+ (1− α) γ. The exercise reinforces the idea that the application of a multiple comparisons

procedure to a vast number of tests can give questionable answers when all the information in

the data is not taken into account. Learning the parameters of the data-generating process is,

therefore, a valuable effort, especially in the context of the procedure that we propose in the

paper, which relies on the local false discovery rate as one of its primary inputs.

7 Discussion

The proposed method is an (γ, α)-level FDX control method, which provides an instrumental

framework for experiments run only once or a few times. Unlike FDR methods, which only offer

a long-run average guarantee, FDX methods provide a high-probability control for individual

experiments. Under an empirical Bayes framework, this method uses the Poisson binomial

distribution to theoretically guarantee that the probability of false discoveries exceeding γ

proportion is no more than α. There remain several open issues to address as the scope of this

work progresses.

Several other error rates could be more attractive to specific researchers: for example,

maximizing power only on the “nicer” realizations, that is, on those realizations where the

FDP is indeed controlled at γ. Such exciting and highly relevant error control is left for future

explorations.

An essential question for FDX and FDR methods based on the empirical Bayes framework

is how to estimate the lfdr statistic in practice. This paper only considers a few available

estimates to provide an implementable FDX procedure. Although valuable, a careful study of

lfdr estimation is outside the scope of this work.

Also, several extensions may be worth investigating for this FDX method. For example,

it may be possible to incorporate auxiliary information or develop a weighted FDX method

for asymmetric hypotheses. Applied researchers may also need to design FDX controlling

methods for discrete test statistics. These are interesting problems that we leave for future

development. Another line of future work will be to construct FDX controlling procedures by

28



modeling dependencies within the tests using the hidden Markov model (HMM), following the

work of Sun and Cai (2009) and more recently by Perrot-Dockès et al. (2021).

References

Basu, P. (2016). Model selection principles and false discovery rate control. Ph. D. thesis,

University of Southern California.

Basu, P., T. T. Cai, K. Das, and W. Sun (2018). Weighted false discovery rate control in large-

scale multiple testing. Journal of the American Statistical Association 113 (523), 1172–1183.

https://doi.org/10.1080/01621459.2017.1336443.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Sta-

tistical Methodology) 57 (1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

Blanchard, G., P. Neuvial, and E. Roquain (2020). Post hoc confidence bounds on

false positives using reference families. The Annals of Statistics 48 (3), 1281–1303.

https://doi.org/10.1214/19-aos1847.

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Fi-

nance 52 (1), 57–82. https://doi.org/10.2307/2329556.

Chen, A. and T. Zimmermann (2021). Open-source cross-sectional asset pricing. Critical

Finance Review , Forthcoming. https://doi.org/10.2139/ssrn.3604626.

Chen, S. X. and J. S. Liu (1997). Statistical applications of the Poisson-binomial and condi-

tional Bernoulli distributions. Statistica Sinica 7, 875–892.

Chi, Z. and Z. Tan (2008). Positive false discovery proportions: Intrinsic bounds and adaptive

control. Statistica Sinica 18 (3), 837–860.

Chordia, T., A. Goyal, and A. Saretto (2020). Anomalies and false rejections. The Review of

Financial Studies 33 (5), 2134–2179. https://doi.org/10.1093/rfs/hhaa018.

Delattre, S. and E. Roquain (2015). New procedures controlling the false discovery

proportion via Romano-Wolf’s heuristic. The Annals of Statistics 43 (3), 1141–1177.

https://doi.org/10.1214/14-aos1302.
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